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Computing Information Rates of Magnetic Recording Systems

with Media Noise

Dieter Arnold

IBM Research, Zurich Research Laboratory, 8803 Rüschlikon, Switzerland

Abstract

The compound behavior of the magnetic recording channel is modelled by combining a media
noise model, the Lorentzian read-back pulse, and additive white Gaussian noise (AWGN).
The media noise model is used to imitate the random zig-zag transition effects that take place
when storing a change in magnetic flux on thin film media. The Lorentzian pulse models
the frequency-dispersive nature of the read-back head, and the AWGN models electronics
noise. By noting that at the output of the magnetic recording channel the read-back signal is
cyclostationary, the average autocorrelation function and corresponding power spectral density
over one period are computed. The average power spectral density is then used to characterize
achievable information rates of the magnetic recording channel for various linear-density and
media noise scenarios by using the conjectured Shamai–Laroia bound.
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1 Introduction

It is expected that in future high-density magnetic recording devices media noise will be
one of the limiting factors in achieving ultra-high areal densities [1]-[4]. The main sources
of media noise at such high densities are pulse jitter and partial signal erasure [5, 6]. We
will focus on these two noise sources, and call them “media noise” although they only
occur at the transitions and are therefore sometimes termed “transition noise” in the
literature.

There are two main difficulties associated with determining the effects of media noise
on the information-theoretic capacity of magnetic recording systems. First, even in the
absence of media noise, the capacity of magnetic recording channels is unknown. Second,
it is difficult to derive a simple channel model that combines the effects of media noise,
intersymbol interference (ISI), and electronics noise at high linear densities.

French and Wolf computed upper and conjectured lower bounds on the capacity for
the magnetic recording channel for various noise scenarios (including media noise) by
assuming Gaussian inputs and physically motivated channel models [7]. However, the
Gaussian assumption fails — in particular at high rates, where our main interest resides.
Moreover, the channel models used are not easily describable and are difficult to use for
signal processing such as coding.

Recently, the effect of pulse jitter on the capacity of binary input ISI channels was
investigated with the Arimoto–Blahut algorithm in [8]. To this end, the channel output
was quantized to three levels, resulting in considerable quantization loss even for the
additive white Gaussian noise (AWGN) channel without memory and jitter.

The purpose of this report is to present a simple information-theoretic approach to
study the limiting effects of media noise. It is based on a model for media noise and the
conjectured Shamai–Laroia lower bound (SLLB) on the capacity of ISI channels [9]. Three
different media noise models are considered, namely: the microtrack model [10], the 2nd-
order model (a variation of the microtrack model), and the Nair–Moon Model [11]. The
SLLB was applied in [12, 13] to magnetic recording systems in which partial-response (PR)
polynomials without media noise were assumed as underlying channel model. In similar
spirit, the SLLB is applied here to the compound magnetic recording channel including
media noise. The pivotal observation behind this approach is that the read-back signal is
cyclostationary at the output of the magnetic recording channel. This allows us to derive
the average power spectral density, from which in turn the achievable information rates
are computed by means of the SLLB.

The motivation for this report is the question whether for a fixed noise power media
noise is preferable to AWGN from an information-theoretic viewpoint. Our approach to
this question is first to derive a stationary channel model, secondly to compute achievable
information rates with the assumption of Gaussian inputs, and thirdly to translate these
numerical results to binary inputs by means of the SLLB. Because media noise is, in
contrast to AWGN, shaped like the channel, we found that for the same noise power
media noise leads to higher information rates in certain cases.

The original contributions of this report are:
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• A qualitative and quantitative comparison of three commonly used models for media
noise.

• Derivation of the average power spectral density of the microtrack model. Because
of the generality of the microtrack model, this average power spectral density can
be adapted to the 2nd-order and the Nair–Moon model, thereby providing a unified
framework to study media noise.

• Extension of the SLLB to Markov input processes.

• Numerical results of information rates with a 0.5-Bernoulli and optimized memory-
one Markov input process for various noise scenarios.

The structure of this report is as follows: In Section II different models for media
noise are presented. In Section III, the average power spectral density is described and
discussed. Section IV is devoted to a description of the Shamai–Laroia bound. Numerical
results are provided in Section V, and final remarks are given in Section VI.

2 Models for the magnetic recording channel with

media noise

Three models are considered for modelling media noise in magnetic recording channels:
the microtrack model, the 2nd-order model, and the Nair–Moon model. Of these three
models, the microtrack model is the one most detailed and most complex. The Nair–
Moon model is the crudest and simplest. The 2nd-order model is a “derivative” of the
microtrack model, and conceptually lies in between the microtrack and the Nair–Moon
model. All of these models are well known in the literature. We describe the microtrack
model in detail, and discuss what is referred to as media noise before presenting the other
two models.

This Section is self contained, but it is assumed that the reader is familiar with the
write and read process. Descriptions of the write and read process from a signal processing
perspective can be found for instance in [10] and [14]. The underlying physics is explained
in [15].

2.1 Microtrack model

In a first approximation, the magnetic recording channel is well modelled by a linear
superposition of alternating Lorentzian pulses. Each Lorentzian pulse

h(t) = λ
1

1 +
(

2t
PW50

)2 (1)

is the isolated step response to an abrupt change, i.e. a transition, of the magnetic flux from
−1 to +11 (or from +1 to −1, where we have −h(t)). A normalizing factor λ is typically

1The values of −1 and +1 can also be thought of as left and right polarization of the magnetic material.
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introduced such that the energy of the Lorentzian equals EL, i.e.
∫ +∞
−∞ |h(t)|2dt = EL. We

therefore have

h(t) =

√

4EL

πPW50

1

1 +
(

2t
PW50

)2 , (2)

where we set EL = 1 in what follows.
The Lorentzian pulse models the frequency-dispersive nature of the read-back signal,

and it depends on a single parameter called the pulse width at 50% amplitude or PW50.
The ratio PW50/T , where T is the data rate, is a measure of the normalized linear density
in a hard-disk system. A small PW50/T causes less dispersion and therefore less ISI. It
can be achieved, for a given rotation speed, either by a high-quality read head (i.e. small
PW50) or alternatively by a low data rate (i.e. a large T ).

The medium magnetization results from applying the head field during the write pro-
cess. The magnetization changes as a function of the location x along the track, and does
not change abruptly in response to the applied field. Thus, the transition is assigned a
certain width. The widely used Williams–Comstock model for saturation recording [16]
defines an tanh-like magnetization m(x) according to

m(x) = Mr tanh
2x

aπ
, (3)

where a denotes the so-called transition-width parameter a. For a position x far away
from the transition, we experience the magnetization of the remanent state, i.e.

m(x → ∞) = −m(x → −∞) = Mr. (4)

The transition-width parameter a is a measure of the transition width. This can be seen
from

d

dx
m(x)|x=0 =

2Mr

πa
. (5)

The average cross-track magnetization profile is a cumulative distribution function (cdf)
that indicates the average polarization at location x for a single transition. It is obtained
from m(x) through shifting, i.e.

M(x) =
1

2
(1 + m(x)). (6)

The jitter probability density function (pdf) is given by the derivative of the average
cross-track magnetization profile. For an tanh-shaped average cross-track magnetization
profile, the jitter pdf is [10]

pJ(j) =
Mr

πa
sech2

(
2j

πa

)

. (7)

The characteristic function or Fourier transform of pJ(j) is then expressed in terms of
hyperbolic functions as

PJ(f) =
aπ2(2πf)

8
csch

[
aπ2

8
(2πf)

]

sech

[
aπ2

8
(2πf)

]

.
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To gain more insight from the following calculations, we approximate2 the squared
sech-pdf of the jitter by a Gaussian pdf as in [10] with variance

σ2
J =

π

2
· a2 (8)

and Fourier transform

PJ(f) = exp(−0.5(2πfσJ)
2). (9)

This corresponds to an average cross-track magnetization profile with error-function shape.
Media noise is data-dependent and results from the random microstructure of the

grains in thin-film recording media. The microtrack model imitates the random zig-zag
transition effects. It is specified by the parameters N , the number of microtracks, a, the
transition width parameter, and L, the threshold below which two transitions erase each
other. The random zig-zag form of a transition is captured by dividing the recording
track into N equally-sized microtracks (in Fig. 1, there are four microtracks). An ideal
transition exhibits an average cross-track magnetization profile with a step response shape.
Such ideal transitions are written on each microtrack at a position shifted randomly from
the ideal location of the overall transition. The noiseless output of the magnetic recording

Ideal center
of transition

pdf pdf

ji,4

T

L

Figure 1: Microtrack channel as described in [17].

2This approximation is widely accepted [10].
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channel to a single positive transition is then given by

v(t) =
1

N

N∑

i=1

h(t − ji). (10)

The jitter process {ji} is modelled as a process that is independent and identically dis-
tributed (i.i.d.) according to pJ(.) that in our case is a Gaussian distribution.

The output v(t) of our magnetic recording channel is therefore given by

v(t) =
1

N

+∞∑

k=−∞
xk

N∑

i=1

h(t − kT − ji,k), (11)

where xk = (uk − uk−1)/
√

2, with initial condition u−1 = −1. The uk’s are generated by
a discrete memoryless source (DMS) and take on the two possible values ±1 with equal
probability, i.e. the input is a 0.5-Bernoulli process. Hence, xk ∈ {−

√
2, 0, +

√
2} and

correlated. Moreover, ji,k is the jitter of the i-th microtrack at the k-th time step. Note
that Eq. (11) is a time-varying convolution.

The noisy output y(t) is given by the noiseless output v(t) that is corrupted by AWGN,
n(t). The AWGN is determined by its one-sided power spectral density N0 and represents
electronics noise.

In summary, the behavior of our magnetic recording channel is specified by the five
parameters PW50/T,N, a, L, and N0, (see Fig. 2).

...DMS

Channel ReceiverSource

uk

n(t)

v(t)

N0

h(t)

PW50/T

δ(., j2)

δ(., j1)

δ(., jN )

N, a, L

LP
yk

T

...

1
N

y(t)xk

(1 − D)/
√

2

Figure 2: Model for the magnetic recording channel with five parameters.

2.2 Media noise: Ideal, smooth, and real transitions

The microtrack model promises to analyze write-head and media noise separately [10]3.
This separation is a consequence of the definition of media noise. We will adopt the

3The transition-width parameter, a, can be estimated from the head and media parameter using the
Williams–Comstock approximation [10]. As a depends on head and medium, it is strictly speaking not
possible to separate the influences of write head and medium completely. However, this separation is
justified by noting that a is in first order directly proportional to the fly height.
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definition of media noise, given by Caroselli in his thesis [10]: Media noise is for a given
jitter distribution, the difference between a finite and an infinite number of microtracks.

For infinitely many microtracks, the noiseless output to a single transition at the input
becomes

vN→∞(t) = pJ(j) ∗ h(t − j), (12)

where ∗ denotes the convolution operator. Using Taylor expansion, we get

vN→∞(t) =
∞∑

k=0

(−1)k

k!
EpJ

[jk]
∂k

∂tk
h(t). (13)

On the other hand, applying Taylor expansion to Eq. (10), we obtain, for a finite number
of microtracks

v(t) = h(t) −
N∑

i=1

ji

N
h′(t) +

N∑

i=1

j2
i

2N
h

′′

(t) ± . . . . (14)

The difference between a finite and infinite number of microtracks therefore equals a
weighted sum of the derivatives of the Lorentzian. These weights are the differences
between the ensemble moments and the estimated moments (by N samples) of the jitter
pdf. Media noise is the difference between a finite and an infinite number of microtracks,
i.e.

nm(t) = v(t) − vN→∞(t) (15)

= −
( N∑

i=1

ji

N
− E[j]

)

h
′

(t) +
1

2

( N∑

i=1

j2
i

N
− E[j2]

)

h
′′

(t) ± . . . . (16)

With increasing N , the estimated moments become more accurate, and the differences
start vanishing. For real magnetic recording systems, N ranges from 10 to 50.

With this notion of media noise in mind, we can distinguish three different cross-track
magnetization profiles and consequently three different transitions (see also Fig. 3):

1. Ideal transition: An ideal transition has width zero, i.e. a = 0. The jitter variance
is zero (see Eq. (8)). There is no jitter, and all magnetic particles change their
polarization at the same location.

2. Smooth transition: A smooth transition has an infinite number of microtracks,
N = ∞, but a finite transition width a. It exhibits a smooth average cross-track
magnetization profile that in our case is shaped like an error-function. The slope at
the origin is determined by the inverse of the a-parameter, called transition-width
parameter. The steepness of the slope is measure of the quality of the write head.
A larger a signifies wider transitions.

3. Real transition: A real transition has a finite number of microtracks N and a finite
transition width a. Owing to the granularity of the medium, it exhibits a bumpy,
error-function-like cross-track magnetization profile. The thinner the granularity of
the medium, the smoother the transition and the more microtracks are needed to
model this transition.

6



aπ

2

+Mr

−Mr

+Mr

−Mr

+Mr

−Mr

T

Figure 3: Average cross-track magnetization profiles for different transitions: ideal tran-
sition (top), smooth transition (middle), real transition (bottom). +Mr is the positive
and −Mr the negative remanent state of the magnetization.

2.3 Receive filter

For channels with AWGN and without data-dependent noise, a sampled matched filter
provides a set of sufficient statistics for estimating the input sequence [18]. In the presence
of data-dependent noise, this is not true in general.

In practice, an anti aliasing (low-pass) filter is used as receive filter before the sampler.
The cut-off frequency of this low-pass filter is a trade-off between collecting most of the
signal energy (large bandwidth) and maintaining a good SNR (low bandwidth). We adopt
this technique and use a brick-wall-shaped low-pass filter together with a sampler at the
channel output (Fig. 2). Clearly, this is suboptimal from a SNR point of view. However,
as we are interested in information rates and not in receiver structures that might prefer
high SNR, this is not of importance to us. Alternatively, we could also argue that the
low-pass filter cannot be changed and is therefore part of the channel (in practice any
read-back device has low-pass characteristic).

An alternative way to look at the microtrack channel is to relate it to a multipath
environment known from the vast literature on mobile communications. This view is
mainly motivated by the hope to exploit the “space“ diversity provided by the microtrack
model to find better receiver structures. In the mobile-communication setting, the N
tracks correspond to N channels from N transmit antennas to N receive antennas. The
microtrack channel can be characterized as frequency non-selective because the coherence
time is zero (the impulse response of each microtrack is a Dirac, see also Fig. 2). The
i.i.d. jitter process corresponds to a rapidly fading process, and the multiplicative model
can be adopted [19]. Moreover, no channel state information is available to the receiver

7



(i.e. the jitter is unknown on each microtrack and for each time step) and the transmitter,
except that the distribution (Gaussian) and the variance (a-parameter) are known.

Given that the actual jitter value is unknown to transmitter and receiver, we see no
point in pursuing this idea further as there seems to be no way to exploit directly the
diversity provided by the microtrack model.

2.4 2nd-order model

The 2nd-order model (2OM) is readily obtained from the microtrack model by using
Taylor expansion and considering media noise up to the 2nd moment. The noisy output
to a single positive transition, i.e. from −1 to +1, is given by

y(t) = pJ(t) ∗ h(t) +
N∑

i=1

ji

N
h

′

(t) +
1

2

[ N∑

i=1

j2
i

N
− E[j2]

]

h
′′

(t) + n(t). (17)

The distribution of the first media noise component is Gaussian, and that of the second
one χ2 (see Fig. 4). It can be shown that they are uncorrelated. The two derivatives are:

∂

∂t
h(t) = −λ

8t

PW502
(
1 +

(
2t

PW50

)2)2 , (18)

∂2

∂t2
h(t) = λ

[
128t2

PW504
(
1 +

(
2t

PW50

)2)3 − 8

PW503
(
1 +

(
2t

PW50

)2)2

]

. (19)

The first one is an odd function and models the position jitter. The second one is an even
function and models the width variation.

T
(1 − D)/

√
2

y(t)

N(0, σ2
J/N)

LP

σ2

J

2
(χ2(N)/N − 1)

h(t) ∗ pJ

h
′

(t)

h
′′

(t)

n(t)

ykuk ∈ {±1}

Figure 4: Block diagram of the 2nd-order model.
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2.5 Nair-Moon model

Similarly to the 2OM, the Nair–Moon (NM) model [11] also uses two derivatives to mimic
the position jitter and the pulse widening, but it uses two first-order derivatives of the
Lorentzian: namely, the derivative with respect to time and the derivative with respect
to PW50. The Lorentzian from Eq. (2) can be slightly rewritten to

h(t, PW50) = c · 1

PW50

1

1 +
(

2t
PW50

)2 , (20)

where c = λ · PW50 is such that the norm equals EL. The two derivatives then become

∂

∂t
h(t, PW50) = −c

8t

PW503
(
1 +

(
2t

PW50

)2)2 , (21)

∂

∂PW50
h(t, PW50) = c

[
8t2

PW504
(
1 +

(
2t

PW50

)2)2 − 1

PW502
(
1 +

(
2t

PW50

)2)2

]

. (22)

The first is an odd function and models the position jitter. The second one is an even
function and models the width variation.

Note that in contrast to the previous two models, the NM model assumes an ideal
transition, i.e. h(t) is not convoluted with a jitter distribution in the signal path (see
Fig. 5). This results in higher signal energy at the output of the channel and consequently
higher information rates, as will be shown in Sec. V. The data-dependent position and
width jitter are modelled by two data-dependent additive white Gaussian noise sources
that are characterized by their variances σ2

J and σ2
W, respectively. Sometimes a filter

matched to the Lorentzian is used as receive filter instead of the lowpass filter [20].
Whereas in the two previous models, the variance of the media noise was determined

by the physical parameters (see Sect. III), the noise variances σ2
J and σ2

W can in principle

T
(1 − D)/

√
2

uk ∈ {±1}

N(0, σJ2 )

y(t)

LP

n(t)

h(t)

yk

∂
∂PW50

h(t, PW50)

∂
∂t

h(t, PW50)

N(0, σW2 )

Figure 5: Block diagram of Nair-Moon model from [11].
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take on any value. To assure a realistic media noise scenario in the NM model, these
variances must be related to physical parameters. For the jitter variance we obtain

σ2
J = a2 · π

2
, (23)

as for the 2OM and the microtrack model. At first glance, one might think that the
width power can take on any value independent of the jitter power leading to a so-called
jitter-to-width ratio (JWR) of

JWR =
σ2

J

σ2
W

. (24)

However, from the microtrack model [10], we know that the jitter power is inherently
determined by the physical model, and is about three times the width power. We adopt
this technique, and will set JWR = 3 for the rest of this report.

2.6 Comparison of the models

The microtrack model is the most accurate model. Its output results from a convolution
of the input and the Lorentzian waveform with shifts that vary in time, i.e. a time-varying
convolution. The microtrack model includes partial signal erasure. Neither of the other
two models can do this. Moreover, other impairments caused by the medium can easily be
incorporated into the microtrack model, for example nonlinear transition shifts, overwrite
effects, and read-back nonlinearities [10].

The 2OM allows an efficient implementation as the time-varying convolution is avoided.
Because of the Taylor expansion, the jitter is now multiplied by the Lorentzian and is no
longer an argument of it. The first and second derivatives can therefore be computed at
the beginning of a simulation and stored. The noise model still is data-dependent, but
partial signal erasure and nonlinear transition shifts do not make sense because the jitter
is no longer an argument of the Lorentzian.

In the NM model, data-dependent noise is modelled by two data-dependent AWGN
noise sources. Partial signal erasure is not included in the Nair-Moon model. Contrary
to the two previous models, ideal transitions here are assumed in the absence of media
noise as transition response. For the two previous models the ratio between the position
jitter power and width noise power is given inherently. Not so for the NM model. In
order to obtain a physical meaningful model, the JWR cannot be arbitrary but must be
determined from physical measurements or related to the microtrack model.

3 Average power spectral density

For all media noise models presented above, it is possible to compute the average power
spectral density because their noiseless outputs are cyclostationary. While this is obvious
for the NM model, it is not so clear for the microtrack model. Hence, we will present the

10



average power spectral density of the microtrack model next, and discuss it in detail. For
the other two models, the average power spectral density is obtained by modifying the
one from the microtrack model, as mentioned at the end of this section.

Media noise in the microtrack model is data-dependent noise. The output v(t) of the
microtrack model is a cyclostationary process, as shown in Appendix A. This allows us
to compute an average power spectral density of the output, and consequently to state a
SNR definition.

The power spectral density averaged over a period T is computed in a straight forward
manner. It can be shown (see Appendix B) that the average power spectral density for
the microtrack model is given by

Φ̄V (f) =

(
N − ε

N

)2 |H(f)|2
T

· ΦX(f) · |PJ(f)|2
︸ ︷︷ ︸

S(f)

+

N − ε

N2

|H(f)|2
T

rX(0)·
[

1 − |PJ(f)|2
]

︸ ︷︷ ︸

Nm(f)

, (25)

where H(f) = (PW50/2) · π · exp(−PW50/2 · |2πf |) is the spectrum of the Lorentzian,
ΦX(f) is the spectrum of the input sequence X, PJ(f) is the Fourier transform of the jitter
probability, rX(0) is the average symbol energy of X, N is the number of microtracks,
and ε is the average number of erased microtracks.

The average power spectral density consists of two terms: a signal term S(f), called
average signal power spectral density, and a signal-dependent noise term Nm(f), called av-
erage media noise power spectral density. The first models the pulse widening of the input
signal, the second reflects the noise caused by the position uncertainty of the transitions
in the output signal. The first term does not depend on the number of microtracks N but
the second does. To obtain more insight into this formula, we will now consider special
cases and relate them to results known from the literature (for ease of interpretation we
set ε = 0).

3.1 Ideal transition: PJ(f) = 1

For PJ(f) = 1 we have

Φ̄V (f) =
|H(f)|

T

2

· ΦX(f). (26)

This is equivalent to the case in which there is no jitter, only one track, and an ideal write
head that causes an infinitely sharp transition.
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3.2 Smooth transition: N = ∞
For N = ∞ we have

Φ̄V (f) =
|H(f)|

T

2

· ΦX(f) · |PJ(f)|2. (27)

Because N = ∞ and the track width is finite, the granularity of the medium is zero
— or stated otherwise, the medium is ideal and does not cause any media noise. The
pulse widening is due to the non-ideal write head only. This is equivalent to the Fourier
transform of Eq. (2) reported in [17].

3.3 Single-track channel: N = 1

For N = 1 we have

Φ̄V (f) =
|H(f)|

T

2

·
[

ΦX(f) · |PJ(f)|2 + rX(0)

[

1 − |PJ(f)|2
]]

. (28)

This is identical to the result in [21]. For a small jitter, the first-order Taylor expansion
of the second term yields rX(0)(2πfσJ)

2. Assume now that the read-back device is a
low-pass filter. To obtain an estimate of the shape of the average power spectral density
after the low-pass filter, we multiply Φ̄V (f) by 1/(2πf)2 and see that the second term, i.e.
the media noise term, becomes constant. It is therefore present in the entire spectrum of
the read-back device as is band-limited white noise, and models the position uncertainty
about the transitions. This noise can be reduced by increasing the number of microtracks,
i.e. the resolution, which is equivalent to decreasing the granularity of the medium.

The signal and the media noise power spectral density are shown in Fig. 6 for random
input X. In this case the input spectrum ΦX(f) becomes

ΦX(f) = 1 − cos(2πf) − 1 ≤ f ≤ 1 (29)

where f is the normalized frequency.

3.4 Including partial signal erasure

For the microtrack model, partial signal erasure is incorporated by assuming that on the
average there are ε erased microtracks at each transition. Then we have only N − ε
“active” microtracks and the average power spectrum becomes as in Eq. (25)

Φ̄V (f) =

(
N − ε

N

)2

· |H(f)|2
T

[

ΦX(f) · |PJ(f)|2 +
rX(0)

N − ε
·
[

1 − |PJ(f)|2
]]

. (30)

Partial signal erasure reduces media noise on one hand but on the other hand reduces the
signal power as well. The parameter ε is determined from

Perasure =
ε

N
,

where Perasure is related to T and L as shown in [10].
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Figure 6: Average signal power spectral density S(f) and average media noise power
spectral density Nm(f) for the microtrack model at PW50/T = 3.2, a = 0.3, rX(0) = 1,
ε = 0, and N = 1. Note that for these parameters the two spectra have almost identical
shape.

3.5 Signal-to-noise ratio (SNR)

SNR is the key performance measure in signal processing for assessing different algo-
rithms. Definitions of SNR strongly depend on the underlying model. For our model,
the definitions of S(f) and Nm(f) are given by the average power spectral density of the
output v(t) as shown above, i.e.

S(f)
4

=

(
N − ε

N

)2 |H(f)|2
T

· ΦX(f) · |PJ(f)|2 (31)

Nm(f)
4

=
N − ε

N2

|H(f)|2
T

· rX(0) ·
[
1 − |PJ(f)|2

]
. (32)

Note that if a, PW50/T , T , rX(0), and ε are given, Nm(f) has one free parameter, namely
N , which allows the media noise power spectral density to be scaled.

Because the optimum receive filter is unknown, we would like to have a definition of
SNR independent of the receive filter. As signal energy, we take E[x2

k] = Es, i.e. the
input symbol energy. The media noise energy is measured before the receive filter. This
is sufficient in defining a noise blend (see below) that is needed to compare different noise
scenarios. With the help of the Parseval theorem, the media noise power (MNP) is defined
as

MNP
4

=

∫ +∞

−∞
Nm(f)df (33)

=
N − ε

N2

∫ +∞

−∞

|H(f)|2
T

rX(0)·
[

1 − |PJ(f)|2
]

df. (34)
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Here it is important to note that the MNP is a function of the microtracks N because
Nm(f) is a function of N . The SNR is now defined as

SNR
4

=
Es

N0

2
+ T · MNP

. (35)

Note: T cancels out, and the SNR definition is independent of T .4 The only difference
of this definition to the one in [22] lies in how the MNP is computed. If the underlying
model is the NM model, both MNPs are equal. The media noise factor (MF) indicates
the amount of media noise that is part of the total noise, and is defined as

MF
4

=
T · MNP

N0

2
+ T · MNP

. (36)

MF = 0.1 means 10% media noise and 90% AWGN. The amount of media noise is
controlled by adjusting N .

3.6 Average media noise power spectral density for 2OM

To obtain the average power spectral density Φ̄V (f)(.) for the 2OM only Nm(f) has to be
replaced. Since the two derivatives (19) are independent, we obtain

Nm(f) = rX(0)

[

σ2
J ·

∣
∣F{ ∂

∂t
h(t)}

∣
∣
2
+

σ4
J

2
·
∣
∣F{ ∂2

∂t2
h(t)}

∣
∣
2
]

, (37)

where the Fourier transforms of the derivatives are given by

F{ ∂

∂t
h(t)} = −i exp(−PW50π|f |)

√

πPW50EL2π|f |, (38)

F{ ∂2

∂t2
h(t)} = − exp(−PW50π|f |)

√

πPW50EL(2πf)2. (39)

Note that partial signal erasure is not included because the jitter is no longer an argument
of the Lorentzian.

3.7 Average media noise power spectral density for NM model

For the NM model, the signal power spectral density and the media noise power spectral
density have to be replaced. The signal power spectral density is obtained from the
microtrack model by setting a to zero, i.e.

S(f) =
|H(f)|2

T
· ΦX(f). (40)

4We always assume T = 1.

14



The media noise power spectral density becomes

Nm(f) = rX(0)

[

σ2
J ·

∣
∣
∣
∣
F{ ∂

∂t
h(t, PW50)}

∣
∣
∣
∣

2

+ σ2
W ·

∣
∣
∣
∣
F{ ∂

∂PW50
h(t, PW50)}

∣
∣
∣
∣

2]

, (41)

with Fourier transforms

F{ ∂

∂t
h(t, PW50)} = −i exp(−PW50π|f |)

√

πPW50EL2π|f | (42)

F{ ∂

∂PW50
h(t, PW50)} = − exp(−PW50π|f |)

√

πPW50ELπ|f |. (43)

Note that the NM model does not include partial signal erasure.

3.8 Spectra and MNPs of the different models

The media noise spectral densities for the three models are shown in Fig. 7 for PW50/T =
3.2, a = 0.3 T,N = 1, rX(0) = 1, and ε = 0. The MNPs together with the abbreviations
from Fig. 7 are given in Table 1. We see that the MNP of the microtrack model is less than
the MNP of the 2OM and the NM model. The two derivatives in the latter two models
are no longer arguments of the Lorentzian. Moreover, they are mutually independent and
hence the triangle inequality applies.
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Figure 7: Noise power spectral densities for various media noise models at PW50/T = 3.2,
a = 0.3, N = 1, rX(0) = 1, and ε = 0.
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Table 1: MNP for various media noise models.

Model Abbreviation MNP

Microtrack MT 0.1630
2nd Order Model 2OM 0.1904
Nair-Moon, JWR=1 NM, JWR=1 0.2638
Nair-Moon, JWR=3 NM, JWR=3 0.2051

4 Information Rates via the SLLB

The capacity of a linear binary-input discrete-time channel without media noise, e.g. a
partial response channel, is an open problem in information theory [23]. Surprisingly
enough, even the much simpler problem of computing the average mutual information
(information rate) under the assumption that the input is i.i.d. and uniformly distributed
over the input alphabet (uniform input information rate (UIIR)) has only been solved
recently [24, 25]. The computation of the UIIR is accomplished by sampling both a long
input sequence x and the corresponding output sequence y, followed by the computation
of both log p(y|x) and log p(y) by means of a forward sum-product recursion on the joint
source/channel trellis. It is therefore obvious to approximate otherwise intractable (non-
finite state) channels such as the microtrack channel by a finite-state channel model, which
can be done either by analysis (if possible) or simply by training a parameterized model
of simulated or measured data [26]-[28].

In this report we pursue a different approach. First we compute information rates for
i.i.d. power-limited Gaussian inputs in the classical way, and then translate this infor-
mation rate into i.i.d. binary input (0.5-Bernoulli input process) by means of the SLLB
that is a conjectured lower bound on the capacity of binary-input channels with memory.
We will also generalize the SLLB to Markov input processes, which allows us to obtain
non-uniform input information rates (NUIIRs).

4.1 Shamai-Laroia bound

The UIIR5 of a discrete-time channel with i.i.d. Gaussian inputs, per symbol energy
constraint E[x2

k] ≤ Es, finite memory, real channel coefficients, and AWGN at the output,
is given by [29]

IUIIR,G =
1

2π

∫ π

0

log2(1 +
Es

N0/2
|Sh(Θ)|2)dΘ, (44)

where |Sh(Θ)|2 is the discrete-time channel power spectrum at the receiver obtained by a
sampled filter that is matched to the channel. Es

N0/2
is the SNR. The capacity of the binary-

input AWGN channel without memory for a given SNR is denoted by CBin w/o mem(SNR);

5In the literature, UIIR is also termed symmetric information rate [25].
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it can be easily computed [19]. The Shamai-Laroia lower bound CSLLB(.) is then given
by [9]

CSLLB(
Es

N0/2
) = CBin w/o mem(2IUIIR,G − 1) (45)

≤ CBin with mem(
Es

N0/2
). (46)

To obtain a better understanding of the SLLB, consider a discrete-time channel with
real coefficients h0, h1, . . . , hL after a whitened matched filter. The output yk at time k is
given by

yk =
L∑

i=0

xk−ihi + nk

= h0xk +
L∑

i=1

xk−ihi + nk,

where the second term in the last line is the ISI term and a length-L approximation of the
whitening filter was employed (for more details see [13]). Because the input to our channel
is binary, the noise consists of an ISI term, and the AWGN term, nk, and is structured
(a mixture of different distributions). The basic idea of the SLLB is now to replace the
structured noise term by an AWGN noise term ñk of the same power, i.e.

yk = h0xk +
L∑

i=1

xk−ihi + nk (47)

= h0xk + ñk. (48)

The problem of computing the information rate of a binary-input discrete-time channel
with memory is now reduced to computing the information rate of a binary input channel
with AWGN without memory.

The algorithmic description for computing UIIR via the SLLB (the points enumerated
correspond to the numbers in Fig. 8) is as follows

1. Determine the desired SNRb at which you want to know the UIIR of the binary-input
channel with memory.

2. Compute the rate Rg of the same channel at the same SNRb but with i.i.d. Gaussian
input.

3. Compute the necessary SNRg to achieve the same rate Rg for a Gaussian input
channel without memory.

4. Compute Rb of the binary input channel without memory at SNRg.

5. Assign this rate Rb to the UIIR of the i.i.d. binary-input channel with memory at
SNRb.

The general idea behind the SLLB is to consider only the second moment of the
structured noise and to replace its distribution by a Gaussian. In the next subsection, we
will briefly address some theoretical problems resulting therefrom.
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Figure 8: Conceptual sketch of the algorithmic procedure to compute UIIRs via the SLLB.
“G” means Gaussian input and “B” binary input.

4.2 Lindeberg condition

In the Shamai–Laroia bound a mixture of ISI terms and AWGN is replaced by a new
AWGN component with the same power as the mixture. Intuitively one would think
that for a large number of ISI terms this approximation is good because of the central
limit theorem (CLT). However, this is wrong. Because the sum of the squared channel
coefficients is normalized to one, the coefficients of the channel impulse response tend to
zero if their number goes to infinity. Therefore the so-called Lindeberg condition (see [30])
is not fulfilled, i.e. the variances of the ISI terms and the AWGN can be very different.

When we have a sum of independent random variables with different distributions, the
Lindeberg condition (for an elegant proof see [30]) asserts that the shapes of the individual
distributions are negligible compared with the total shape such that the CLT holds.

Lindeberg condition [30]: Assume that x1, x2, . . . are mutually independent random

variables distributed according to the pdfs p1, p2, . . . with zero mean and variance σ2
i . Now

define

s2
n

4

= σ2
1 + σ2

2 + · · · + σ2
n. (49)

If we assume that for each t > 0

1

s2
n

n∑

k=1

∫

|y|≥tsn

y2pkdy → 0, (50)
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then the distribution of the normalized sum

S =
X1 + X2 + · · · + Xn

sn

(51)

tends to the normal distribution with zero mean and unit variance.

The Lindeberg condition guarantees that the individual variances σ2
i are small com-

pared with the their sum s2 =
∑

i σ
2
i , in the sense that for a given ε and sufficiently large

n
σi

si

< ε k = 1, . . . , n. (52)

As example consider the case where Xk are uniformly distributed between −ak and
+ak (the variance is 1/3a2

k). Hence the Lindeberg condition is satisfied if the ak remain
bounded and a2

1 + · · ·+ a2
n → ∞. In this case the sum in Eq. (52) vanishes identically for

all n sufficiently large. On the other hand, if
∑

k a2
k ≤ ∞, then sn remains bounded and

Eq. (52) is not fulfilled. In this case the CLT does not hold.
The general approach in the literature for proving the CLT is to utilize a scaled sum, S,

and to show by expansion of the moment-generating functions that the difference between
the moments of S and the normal distribution vanishes for n large. As scaling factor,
one often uses the square root of the summed variances, s2

n, although depending on the
particular sequence S, other scaling factors are more effective (see [30, 31]). In our case,
we see that the Lindeberg condition is not fulfilled for all possible values of the channel
coefficients. However, this does not imply that for large n the structured noise distribution
never converges to a Gaussian distribution. Consider for instance the case that all ISI
terms h1, . . . , hL are equal. For large L, the ISI terms are well approximated by a Gaussian
distribution. On the other hand, if for instance one term, say h0, is considerably larger
than the other ones, the resulting distribution will be dominated by the distribution of
this h0, which is not a Gaussian.

Irrespective of whether the structured noise term is well approximated by a Gaussian
distribution, the central question is whether the Gaussian distribution is a worst-case
distribution for the power constraint

∑L
`=1 |h`|2 + |nk|2 (h0 is not an ISI term). If this is

the case, then the SLLB will always deliver a lower bound on the UIIR and therefore a
lower bound on the capacity. If not, it might be that the SLLB even delivers a rate above
capacity. The SLLB is therefore a conjectured lower bound on capacity.

Related to this question is the work of Shamai and Verdú in [32]. Therein, it is shown
that for a given noise power AWGN is not worst-case noise on a binary input channel
without memory. This is in sharp contrast to i.i.d. Gaussian inputs, where it is well known
that AWGN is worst-case noise. In the binary case, the worst-case noise distribution is in
general a mixture of two lattice probability mass functions. The authors also show that
for the binary-input channel without memory the difference in capacity for Gaussian and
worst-case noise can amount up to 0.118 Bits/Symbol.

The difference of the SLLB and the true UIIR depends on the closeness of the Gaussian
distribution to the structured distribution (the closeness can be measured by the Berry–
Esseén Theorem [30]). The empirical results in [24] may serve as illustrative example.
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Therein, the difference between the SLLB and the exact UIIR (computed via sum-product
algorithm) is shown for two different channels. This difference is only pronounced at high
SNR where the structured noise exhibits a different distribution than the Gaussian. The
difference is bigger for the DICODE channel6, i.e. h(D) = (1−D)/

√
2, than for a channel

with memory six whose channel coefficients are Gaussian like.

4.3 Non-Uniform Input Information Rates (NUIIR) via the gen-
eralized SLLB (g-SLLB)

Here, we generalize the SLLB to inputs that are generated by a parameterized Markov
process. For a given memory of the Markov process, the transition probabilities are free
parameters that can be optimized in order to shape the (parameterized) input spectrum
to the channel. Note that in contrast to the water-filling procedure for Gaussian input, we
impose here a parameterized spectrum on the input. By shaping the parameterized input
spectrum to the channel, a higher information rate is achieved for Gaussian inputs that is
then translated via the SLLB to binary inputs resulting in the NUIIR. This procedure is
termed g-SLLB where the “g” stands for “generalized” because it generalizes the SLLB,
in which only i.i.d. inputs were considered.
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Figure 9: Conceptual sketch of the algorithmic procedure to compute NUIIRs via the
g-SLLB. “G” means Gaussian input and “B” binary input.

6Note: The distribution of ISI and AWGN of the DICODE channel is very different form a Gaussian
distribution.
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The algorithmic description for computing NUIIRs via the g-SLLB (the points enu-
merated correspond to the numbers in Fig. 9) is as follows:

1. Determine the desired SNRn
b at which you want to know the NUIIR of the binary-

input channel with memory.

2. Compute the non-i.i.d., i.e. optimized rate, Rn
g , of the same channel at the same SNRn

b

but with the parameterized input spectrum that has been optimized (the input is
still Gaussian but correlated).

3. Compute the necessary SNRn
g to achieve the same rate Rn

g for a Gaussian input
channel without memory.

4. Compute the rate Rn
b of the binary input channel without memory at SNRn

g .

5. Assign this rate Rn
b to the NUIIR of the optimized binary-input channel with memory

at SNRn
b.

All NUIIRs provided in this report were obtained by optimization for a memory-one
Markov source (this is essentially the correlation box in Fig. 2). There is a vast literature
on computing power spectral densities of Markov sources. For a memory-one source the
spectrum can be found in [33].

For the g-SLLB, Fig. 10 shows the same behavior as reported in [24], namely that
at low SNR a transmission above the capacity of power limited Gaussian inputs without
memory is possible. Note also that at very low SNR the UIIR and the NUIIR for binary
inputs tend in both cases to the rates achieved with Gaussian inputs.

In Fig. 11 the rates obtained by the SLLB for the DICODE channel are related to
those from [24]. We conclude that we obtain i.i.d. and optimized rates that are very close
the exact ones.

A related approach has been investigated in [34, 35], with the difference that the trans-
formation to binary inputs via the SLLB was substituted by a constrained water-filling
procedure. The constraints imposed on the input spectrum approximate the spectrum of
binary signals. An exact spectrum for binary inputs requires infinitely many constraints.

An alternative approach would be to approximate the optimum unconstrained input
spectrum (from water-filling) by a Markov process [36]. We did not pursue this further.
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Figure 10: UIIR and NUIIR for DICODE channel.
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Figure 11: Comparison of SLLB and SPA method from [24] for the DICODE channel.

22



5 Numerical results

In this sections, numerical results are provided in order to study the influence of the
channel parameters N, a, L, PW50/T,N0 (with T = 1, r(0) = 1) qualitatively and quan-
titatively. The input sequence X was assumed to be random resulting into a spectrum
given by Eq. (29). Moreover, the media noise factor MF is varied to examine the effect
of media noise for a fixed noise power and to answer the question whether media noise
is preferable to AWGN from an information-theoretic perspective. To this end, all three
models for media noise are used.

5.1 Information rates without media noise

In this subsection, Es/N0 is chosen as SNR where Es = 1 is the energy of the input signal.
The number of microtracks is assumed to be infinite, i.e. there is no media noise.

In Fig. 12, UIIRs for the case of no memory, i.e. binary phase-shift keying (BPSK),
and a Lorentzian channel with densities PW50/T = 2.0, 2.6, 3.2, and 3.8 are shown. The
Lorentzian is normalized to EL = 1. The jitter variance is kept small, i.e. a = 0.1 T . This
setting allows us to study the loss in SNR due to increased PW50/T . At 0.9 Bits/Symbol,
a loss of 4 dB in SNR can be observed when increasing PW50/T from 2.0 to 3.8.

In Fig. 13, the UIIRs are computed for PW50/T=3.2 and varying jitter variance σ2
J

with a = 0.1, 0.3, and 0.5 T . Again there is no media noise, and one can observe the
loss in SNR due to wider transitions. At 0.9 Bits/Symbol a loss of 2 dB is experienced
when the transition width is increased from 0.1 to 0.5 T . For a = 0.5 T essentially, the
transitions are much wider, resulting in alternating output pulses that overlap more. This
overlapping reduces amplitude and energy of the output signal.
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Figure 12: UIIR vs. Es/N0 [dB] for different PW50/T .
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Figure 13: UIIR vs. Es/N0 [dB] for PW50/T = 3.2 and various values of a.

5.2 Information rates with media noise and varying MF

Again PW50/T=3.2 and the jitter variance is determined by a = 0.3 T . Es/N0 is chosen
as SNR that consists only of electronics noise. In Figures 14 and 15, the amount of media
noise varies along the curves from 0 to 1. For a very high SNR, i.e. a high Es/N0, there is
almost no electronics noise, but media noise that was not taken into account in the SNR.
This allows us to study the limiting effect of media noise.

The number of microtracks is 100, 10, and 1 (see Fig. 14). As N = 100, there is
virtually no difference to the information rate of Fig. 13, where for the same a and the
same PW50/T an infinite number of microtracks was assumed. For N = 1, the jitter is
strong enough to preclude transmission above 0.9 Bits/Symbol, even in the absence of
electronics noise (see Fig. 14).

Finally, the influence of the erasure probability is shown in Fig. 15. As the number of
microtracks was set to N = 100, E = 10 corresponds to an erasure probability of 10%.
In [10], it was shown that in the microtrack model with a = 0.3 T an erasure probability
of 10% translates into an erasure threshold L = 0.75 a. At 0.9 Bits/Symbol, this results
in a SNR loss of about 1 dB.

We conclude that partial signal erasure results in a loss of SNR and consequently in a
shift of the UIIR curves only. In what follows, we will set the erasure probability to zero.
By appropriately shifting it is possible to obtain the resulting curves for any amount of
erasure probability. The qualitative behavior, i.e. the shape, of the curves will remain
unchanged.

24



−15 −10 −5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

E
s
/N

0
 [dB]

B
its

/S
ym

bo
l

BPSK   
N = 100
N = 10 
N = 1  

Figure 14: UIIR vs. Es/N0 [dB] for PW50/T = 3.2, a = 0.3 T , and different numbers of
microtracks N .

−15 −10 −5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

E
s
/N

0
 [dB]

B
its

/S
ym

bo
l

BPSK         
ε = 0 
ε = 1 
ε = 10

Figure 15: UIIR vs. Es/N0 [dB] for PW50/T = 3.2, a = 0.3 T , N = 100, and E = 0, 1, 10.
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5.3 Information rates with fixed SNR blend

In practice, we are given a certain operating point, i.e. a particular PW50/T , N , a, L, and
N0. For our computation, we can artificially generate operating points in the following
way. For a given a and a given PW50/T , one first computes the MNP at N = 1. After
having fixed the MF, we solve Eq. (36) for N0. Various SNR points are then obtained by
varying N . In a computer-simulation environment, N must be an integer number. For
our computation however, we can assume N to be a real number. In the remainder of
this report, the SNR definition of Eq. (35) is used, i.e.

SNR =
Es

N0

2
+ T · MNP

. (53)

In this subsection, only the microtrack model was used as the underlying media noise
model.

5.3.1 Varying PW50/T

Figures 16 and 17 show how the UIIR varies at SNR = 10 [dB] for different noise blends
with a = 0.1 T and a = 0.3 T , respectively. Instead of using the UIIR as y-axis, the
so-called lineal capacity is show, i.e. the UIIR is multiplied by PW50/T .

We notice that a higher MF, i.e. more media noise, leads in some cases to a higher
lineal capacity, in particular at high normalized linear densities PW50/T (see also Fig. 23).
Note that no saturation is visible for the lineal capacity, even at PW50/T = 3.8.
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Figure 16: Lineal capacity vs. PW50/T at SNR = 10 [dB] and a = 0.1 T .

26



2 2.6 3.2 3.8
2

2.5

3

3.5

4

PW50/T

B
its

/S
ym

bo
l*

P
W

50
/T

MF = 0.0
MF = 0.1
MF = 0.5
MF = 0.9
MF = 1.0

Figure 17: Lineal capacity vs. PW50/T at SNR = 10 [dB] and a = 0.3 T .

5.3.2 Varying a

Again PW50/T = 3.2 and the jitter variance is varied from 0.0 to 0.5 T . SNR is fixed to
10 [dB]. Figures 18 and 19 show UIIRs at the normalized linear densities PW50/T = 2.0
and PW50/T = 3.2, respectively.

Again, we notice that media noise is in some cases preferable to AWGN from an
information-theoretic perspective.
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Figure 18: UIIR vs. a for PW50/T = 2.0 at SNR = 10 [dB].
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Figure 19: UIIR vs. a for PW50/T = 3.2 at SNR = 10 [dB].

5.3.3 Best-case and worst-case MF

In Fig. 20, the best case MFBC, i.e. the SNR blend that leads to the highest UIIR, is
shown for different SNR and varying a. The worst case blend, i.e. MFWC, is shown in
Fig. 21.

We notice that

• the best blend is dependent on the SNR and a;

• at low SNR and high a, AWGN is preferable to media noise. This means that for
wide transitions media noise is worse;

• for high SNR and low a, the more media noise the better. This means that for small
transitions media noise is preferable.
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Figure 20: Best-case blend for varying SNR and a at PW50/T = 3.2.
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Figure 21: Worst-case blend for varying SNR and a at PW50/T = 3.2.

29



5.4 Comparison of media noise models

In Figures 22 and 23, UIIRs vs. SNR are shown for the microtrack model and various
SNR blends at PW50/T = 2.0 and PW50/T = 3.2, respectively. We notice that from a
certain SNR point on, media noise is better than AWGN. This SNR point depends on the
MF. This is more pronounced at PW50/T = 3.2 than at PW50/T = 2.0.

The UIIRs vs. SNR for the 2OM and NM model at PW50/T = 3.2 and a = 0.3 T
are shown in Fig. 24 and Fig. 25 respectively. We observe that the 2OM models leads
generally to lower and the NM to higher UIIRs. This becomes more visible from Fig. 26
and Fig. 27 where the UIIRs are shown for MF = 0.0 and MF = 1.0 respectively.

We observe the following:

• For all models media noise is in some cases preferable to AWGN, in particular at
high rates;

• The UIIRs for NM model are constantly higher than for the other two models because
the signal path is not attenuated with a (see also Eq. 40). This difference can best
be seen in Fig. 26, where the UIIRs of the three models for MF = 0.0 are depicted.

• The NM model prefers media noise the most, whereas the 2OM model prefers AWGN
the most. The microtrack model is in between. This is evident from Fig. 27, where
the UIIRs of the three models for MF = 1.0 are shown.
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Figure 22: UIIR vs. SNR for various SNR blends at PW50/T = 2.0 and a = 0.3 T for
the microtrack model.
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Figure 23: UIIR vs. SNR for various SNR blends at PW50/T = 3.2 and a = 0.3 T for
the microtrack model.
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Figure 24: UIIR vs. SNR for various SNR blends at PW50/T = 3.2 and a = 0.3 T for
the 2nd Order model.
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Figure 25: UIIR vs. SNR for various SNR blends at PW50/T = 3.2 and a = 0.3 T for
the Nair-Moon model.

32



−15 −10 −5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

E
s
/(N

0
 + T⋅ MNP) [dB]

B
its

/S
ym

bo
l

MT 
2OM
NM 

Figure 26: UIIRs vs. SNR for the three different models at PW50/T = 3.2, a = 0.3 T ,
and MF = 0.0.
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Figure 27: UIIRs vs. SNR for the three different models at PW50/T = 3.2, a = 0.3 T ,
and MF = 1.0.
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5.5 NUIIRs for different MF scenarios

Figure 28 shows UIIRs and NUIIRs for AWGN and media noise-dominated noise scenarios
on the microtrack model. We conclude that shaping the input to the channel is only
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Figure 28: UIIRs and NUIIRs vs. SNR for two blends at PW50/T = 3.2, a = 0.3 T .

meaningful in a noise scenario dominated by AWGN. If media noise dominates (i.e. for
MF = 1.0 and high SNR), this optimization does not lead to a higher UIIR because the
noise is already shaped to the channel, i.e. the ratio of signal to noise spectral density is
flat. However, if AWGN predominates (i.e. MF= 0.1) the ratio of signal to noise spectral
density is not flat and we can shape the input, resulting in a substantial gain of the output
SNR. This gain in SNR results in a higher information rate, which at a medium-to-low
SNR outperforms the UIIRs obtained from the media-noise-dominated noise scenario.
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6 Conclusions

The compound magnetic recording channel was modelled as a media noise model followed
by a Lorentzian and an AWGN channel. The behavior of this channel is determined by
the five parameters PW50/T,N, a, L, and N0. Three different media noise models were
investigated: the microtrack model, the 2nd-order model, and the Nair–Moon model. By
noting that all media noise models deliver a cyclostationary output, the average power
spectral density at the output of the magnetic recording channel was computed. With
help of this average power spectral density, the influence of the five parameters on the
achievable information rate was studied by means of the SLLB. Information rates for
0.5-Bernoulli and optimized memory-one Markov processes were computed. We found
that

• media noise is in some cases preferable to AWGN noise. This applies in particular
for high rates, 0.5-Bernoulli inputs, and a large amount of media noise.

• optimized information rates were also obtained, by considering the spectrum of
Markov sources with memory one. When AWGN was the dominating noise source,
considerable gain could be observed compared to the i.i.d. information rate. However,
when media noise was the dominating noise source, the improvement was negligible.
Moreover, the optimized information rate with AWGN outperformed the optimized
information rates with media noise at low to medium rates.

• partial signal erasure is detrimental because it reduces the signal power.
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A Proof of cyclostationarity

In order to prove that the noiseless output of the microtrack channel (11) is cyclostation-
ary, we have to show that (i) the mean and (ii) the autocorrelation function are periodic
in T (see [37]), i.e. that

(i) E[y(t)] = E[y(t + T )], (54)

(ii) E[y(t) · y(t + τ)] = E[y(t + T ) · y(t + τ + T )], (55)

where the expectation goes over the data sequence X and the jitter sequence J for the
mean and over both the data sequence X at time t and X̃ at time t + T as well as both
jitter sequences J at time t and J̃ at time t + T for the autocorrelation function.

Because the waveform is deterministic and periodic in T , we only have to show that
the data and jitter distributions are jointly cyclostationary of order two [37]. Noting
that the jitter depends on the current data xk and is on each microtrack i distributed
independently of the other microtracks, the joint distribution of data and jitter can be
written as

pXJ =
+∞∏

k=−∞

[ N∏

i=1

pJi,k|Xk

]

pXk|Xk−1
. (56)

Data and jitter form a hidden Markov process. If the hidden process (the data process)
is stationary, so is the observable process (jitter process). Therefore condition (i) and (ii)
are fulfilled.

B Derivation of the average power spectral density

of the microtrack model

Following [19, 21], we can derive the average power spectral density for the microtrack
model in a straightforward way.

The noiseless signal at the output of the microtrack model is given by

v(t) =
1

N

+∞∑

k=−∞
xk

N∑

i=1

h(t − kT − ji,k), (57)

where xk = (uk − uk−1)/
√

2. The uk’s are i.i.d. and ∈ {−1, +1} with initial condition
u−1 = −1. Hence, xk ∈ {−

√
2, 0, +

√
2} and correlated. Furthermore, h(t) = λ · 1/(1 +

(2t/PW50)2), i.e. h(.) is the Lorentzian pulse, and ji,k is the jitter of the i-th microtrack
at the k-th time step.
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Now, the autocorrelation function of v(.) is

Rv(t + τ, t) = E[v(t + τ) · v(t)]

= E

[ +∞∑

k=−∞

N∑

i1=1

xk

N
h(t + τ − kT − ji1,k) ·

+∞∑

`=−∞

N∑

i2=1

x`

N
h(t − `T − ji2,`)

]

=
+∞∑

k=−∞

+∞∑

`=−∞
E

[ N∑

i1=1

xk

N
h(t + τ − kT − ji1,k) ·

N∑

i2=1

x`

N
h(t − `T − ji2,`)

]

=
+∞∑

k=−∞

+∞∑

`=−∞

1

N2
E

[

xkx`

N∑

i1=1

h(t + τ − kT − ji1,k) ·
N∑

i2=1

h(t − `T − ji2,`)

]

.

Because of data-dependency we have to go through all possible cases for xk and x` to
obtain

Rv(t + τ, t) =
+∞∑

k=−∞

+∞∑

`=−∞

1

N2
r(k − `)E

[ N∑

i1=1

N∑

i2=1

h(t + τ − kT − ji1,k) · h(t − `T − ji2,`)

]

=
+∞∑

k=−∞

+∞∑

`=−∞

1

N2
r(k − `)

N∑

i1=1

N∑

i2=1

E

[

h(t + τ − kT − ji1,k) · h(t − `T − ji2,`)

]

Substituting m = k − ` results in

Rv(t + τ, t) =
+∞∑

m=−∞
r(m)

1

N2

+∞∑

k=−∞

N∑

i1=1

N∑

i2=1

E

[

h(t + τ − kT − ji1,k) · h(t − kT + mT − ji2,k−m)

]

=
+∞∑

m=−∞
r(m)

1

N2

+∞∑

k=−∞

N∑

i1=1

N∑

i2=1

∫ +∞

−∞

∫ +∞

−∞

h(t + τ − kT − ji1,k) · h(t − kT + mT − ji2,k−m)pji1,k
pji2,k−m

dji1,kdji2,k−m

where in the last line we used the property that the jitters are independent from one
transition to the next. Now with random binary input

r(m) =







1 if m = 0
−0.5 if m = ±1
0 otherwise,

(58)
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this yields

Rv(t + τ, t) =
r(0)

N2

+∞∑

k=−∞

N∑

i1=1

N∑

i2=1

∫ +∞

−∞

∫ +∞

−∞

h(t + τ − kT − ji1,k) · h(t − kT − ji2,k−1)pji1,k
pji2,k

dji1,kdji2,k

+
r(1)

N2

+∞∑

k=−∞

N∑

i1=1

N∑

i2=1

∫ +∞

−∞

∫ +∞

−∞

h(t + τ − kT − ji1,k) · h(t − (k − 1)T − ji2,k−1)pji1,k
pji2,k−1

dji1,kdji2,k−1

+
r(−1)

N2

+∞∑

k=−∞

N∑

i1=1

N∑

i2=1

∫ +∞

−∞

∫ +∞

−∞

h(t + τ − kT − ji1,k) · h(t − (k + 1)T − ji2,k+1)pji1,k+1
pji2,k

dji1,kdji2,k+1.

The first term is called the self-jitter, the other two are symmetric and termed adjacent-

jitter. Because Rv(t + τ, t) = Rv(t + τ + T, t + T ), the stochastic process is periodic, i.e.
it is wide sense cyclostationary (see also Appendix A).

For the spectrum, we therefore need the average autocorrelation function (i.e. the
process must be a wide sense stationary before we can apply the Wiener–Khintchine
relation). The average autocorrelation function of v(.) is by definition

Rv(τ) =
1

T

∫ T

0

Rv(t + τ, t),

and with
∫ T

0

+∞∑

k=−∞
=

∫ +∞

−∞

the self-jitter terms becomes

r(0)

TN2

∫ +∞

−∞

N∑

i1=1

N∑

i2=1

∫ +∞

−∞

∫ +∞

−∞
h(t + τ − kT − ji1,k) · h(t − kT − ji2,k)pji1,k

pji2,k
dji1,kdji2,kdt.(59)

The double sum over i1 and i2 leads to N 2 summands. N of those result from the
autocorrelation within one time step of the N microtracks, i.e. i1 = i2. This leads to

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
h(t + j − kT − ji1,k)h(t − kT − ji1,k)pji1,k

pji1,k
dji1,kdji1,kdt(60)

=

∫ +∞

−∞

∫ +∞

−∞
h(t + j − kT − ji1,k)h(t − kT − ji1,k)pji1,k

dji1,kdt, (61)

where the second integral over ji1,k can be omitted as both integrals are definite. The
other N(N − 1) terms are crosscorrelations, i.e. i1 6= i2, within one time step and have
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the following form

∫ +∞
−∞

∫ +∞
−∞

∫ +∞
−∞ h(t + τ − kT − ji1,k) · h(t − kT − ji1,k)pji1,k

pji2,k
dji1,kdji2,kdt (62)

=
∫ +∞
−∞

[
∫ +∞
−∞ h(t + τ − kT − ji1,k)pji1,k

dji1,k ·
∫ +∞
−∞ h(t − kT − ji2,k)pji2,k

dji2,k

]

dt (63)

Let us now introduce the following new terms:

Rh(τ)
4

=

∫ +∞

−∞
h(t + τ)h(t)dt (64)

ĥ(t)
4

=

∫ +∞

−∞
h(t − j)pjdj (65)

R̂h(τ)
4

=

∫ +∞

−∞
ĥ(t + τ)ĥ(t)dt. (66)

The self-jitter term can be written as

r(0)

TN2

[
N∑

i=1

∫ ∞

−∞
Rh(τ)pji

dji + N(N − 1)

∫ +∞

−∞
ĥ(t + τ)ĥ(t)dt

]

. (67)

With the new definitions, we obtain

r(0)

TN2

[

N · Rh(τ) + (N 2 − N) · R̂h(τ)

]

.

From the adjacent-jitter term, only crosscorrelations are obtained because the time steps
are different. Hence, this leads to

1

T

∑

m6=0

r(m)
1

N2

[

N2 · R̂h(τ − mT )

]

.

Therefore the average autocorrelation function of v(.) becomes

R̄v(τ) =
r(0)

N2
· 1

T

[

N · Rh(τ) + (N 2 − N)R̂h(τ)

]

+
1

T

∑

m6=0

r(m)R̂h(τ − mT ). (68)

For the spectrum of the average autocorrelation function, let us introduce the following
terms:

F{ĥ(t)} 4

= H(f) · PJ(f)

F{Rh(τ)} 4

= |H(f)|2

F{R̂h(τ)} 4

= |H(f)|2 · |PJ(f)|2.
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Furthermore, let us note that

F
{

∑

m

r(m) · R̂h(τ − mT )

}

= ΦX(f) · |H(f)|2 · |PJ(f)|2.

Then the spectrum of the average autocorrelation function of v(.) becomes

Φ̄V (f) =
|H(f)|2

T

[

ΦX(f) · |PJ(f)|2 +
rX(0)

N

[

1 − |PJ(f)|2
]]

. (69)

The formula in Eq. (25) is obtained by considering only N − ε microtracks.

C Useful formulas for the Lorentzian pulse

C.1 Time- and frequency-domain representation

The Lorentzian is given in the time domain by

h(t) =

√

4EL

πPW50

1

1 +
(

2t
PW50

)2 (70)

such that
∫ +∞
−∞ |h(t)2|dt = EL. Its Fourier transform is

H(f) =
√

PW50πELe−πPW50|f |. (71)

C.2 Energy of the n-th derivative of the Lorentzian

By inspection, we found that

∫ +∞

−∞
|∂

nh(t)

∂t
|2dt =

[ 2n∏

i=1

i

]
EL

PW502n . (72)
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