
RZ 3427 (# 93469) 06/24/02
Computer Science 11 pages

Research Report

Event Matching in Symmetric Subscription Systems

Walid Rjaibi,1 Klaus R. Dittrich,2 and Dieter Jäpel1

1IBM Research
Zurich Research Laboratory
8803 Rüschlikon
Switzerland

2Database Technology Research Group
Department of Computer Science
University of Zurich
8057 Zurich
Switzerland

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has
been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher,
its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside
publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports
are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich

Event Matching in Symmetric Subscription Systems

Walid Rjaibi
�

Klaus R. Dittrich
�

Dieter Jaepel
�

Abstract

Publish/subscribe and database systems re-
searchers have recognized the importance of the
event matching algorithm to the performance and
scalability of a content-based subscription sys-
tem. A number of interesting event matching
techniques as well as DBMS solutions have been
proposed in recent research work in the area.
Content-based subscription systems allow infor-
mation consumers to define filtering criteria when
they register their interest in being notified of
events that match their requirements. However,
information producers are not offered the same
flexibility. Moreover, content-based subscription
systems require that the value of each attribute in
the event schema be known at publication time.
Certain types of information producers need to
be given the flexibility of selecting what types of
information consumers can receive their publica-
tions as well as the ability to personalize their
publications at individual attribute level. This pa-
per introduces symmetric subscription systems as
the next generation of content-based subscription
systems which addresses the above issues, and
proposes a novel event matching algorithm in this
context.

1 Introduction
A Publish/subscribe system connects together infor-
mation producers, which publish events to the system,
and information consumers, which subscribe to partic-
ular types of events within the system. The system
is responsible for identifying the set of subscriptions
that are matched by a published event (if any), and for
notifying the corresponding subscribers. The earliest
�
E-Business Solutions Research Group, IBM Zurich Research

Laboratory, � rja, jae � @zurich.ibm.com�
Database Technology Research Group, Department of Com-

puter Science, University of Zurich, dittrich@ifi.unizh.ch

publish/subscribe systems were subject-based. In such
systems, information consumers subscribe to one or
more subjects and the system notifies them each time
an event classified as belonging to one of the subjects
they subscribed to is published. Event matching is a
straightforward task in these systems because events
can be filtered only according to their subject. Any ad-
ditional event filtering has to be done by the subscriber
himself. Examples of such systems are OrbixTalk [15],
TIB/Rendezvous [16] and CORBA [17].

An attractive alternative to subject-based systems
is content-based subscription systems. These sys-
tems appear to be more promising in meeting sub-
scriber needs of defining filtering criteria (or predi-
cates) when they register their interest in receiving pub-
lications. Compared to subject-based systems, content-
based systems allow subscribers to express a “query”
against the content of a published event. Examples
of content-based systems are Le Subscribe [6, 7],
Gryphon [14, 11], NEONet [18] and READY [19].
Le Subscribe, Gryphon, NEONet, READY and, in
general, most content-based subscriptions systems use
quite similar publication and subscriptions languages � .
In these systems, an event is distinguished based on its
event schema [14]. An event schema defines the type of
the information contained in each event, and the system
usually supports multiple event schemas. For example,
a content-based system for a book market may define
an event schema as a tuple containing three attributes:
A title, an author and a price of string, string and float
types respectively. A subscription is then a conjunc-
tion of predicates, such as (author = “Al-Kharezmi”)
and (price � $100).

Content-based subscription systems allow informa-
tion consumers to define filtering criteria so that they
are only notified of events that match their require-
ments. However, information producers are not offered
�
These systems differ from each other mainly by the richness

of the set of comparison operators their subscription languages
provide.

1

the same flexibility. This might be acceptable for sim-
ple applications like our book market example. But in
other applications like an insurance market for exam-
ple, it is certain that information producers will require
the ability to define filtering criteria so that only infor-
mation consumers who most closely match their crite-
ria are sent the event notifications. Moreover, content-
based subscription systems require that the value of
each attribute in the event schema be known at pub-
lication time. In some applications, the value of one or
more attributes may not be known at publication time
because it is case or information consumer specific and
can not be specified in advance. For example, an auto-
insurance company might want to vary the price of an
insurance offer depending on the driver’s age and driv-
ing history.

To address the needs of a new range of applica-
tions such as insurance markets, the next generation
of content-based subscription systems must be flexi-
ble enough to allow the information producers to se-
lect what types of information consumers can receive
their publications as well as to personalize their publi-
cations at the individual attribute level. We will refer
to such systems as symmetric subscription systems be-
cause they allow both the information consumer and
the information producer to define filtering criteria.
The cost of the gain in flexibility in a symmetric sub-
scription system is an increase in the complexity of the
event matching algorithm. Therefore, efficient event
matching techniques are needed to achieve scalabilty
in a symmetric subscription system.

The rest of this paper is organized as follows.
Section 2 formally defines the event matching prob-
lem. Section 3 reviews event matching algorithms in
content-based subscription systems. Section 4 intro-
duces symmetric subscription systems and proposes a
novel event matching algorithm in this context. Finally,
conclusions and future research direction suggestions
are presented in section 5.

2 The Event Matching Problem
The event matching problem can be expressed as fol-
lows. Given an event 	 and a set of subscriptions

determine all subscriptions in
 that are matched by
	 . The definition of an event and a subscription is dif-
ferent depending on whether the subscription system
is content-based or symmetric. In the next subsections

we review the definition of an event and a subscrip-
tion in a content-based subscription system, and pro-
pose our new definition of an event and a subscription
in the context of a symmetric subscription system.

2.1 Events and Subscriptions in Content-
based Subscription Systems

An event 	 is a set of (�� , ���) pairs, where �� is a
valid attribute name as defined in the event schema
and ��� is a valid data value with respect to ��� ’s data
type. A subscription � is a conjunction of predicates,
each of which is a triplet (��� , operator, ���). Oper-
ator is a comparison operator supported by the sub-
scription language. The relational operators ���������
��������������������� are normally supported by all sub-
scription languages. Content-based subscription sys-
tems usually support a few additional specific opera-
tors. For example, Le Subscribe [7] supports two ad-
ditional specific operators called kind of and contains.
See [19, 14, 11, 18] for further examples.

An event 	 matches a subscription � if every pred-
icate in � is satisfied by some pair (��� , ���) in 	 . For
example, the event � (subject, “Algorithms”), (author,
“Al-Kharezmi”), (price, $50) � matches the following
subscription which is expressed as a conjunction of
two predicates: (author = “Al-Kharezmi”) and (price
� $100).

2.2 Events and Subscriptions in Symmetric
Subscription Systems

A symmetric subscription system extends the event
definition above by adding an optional conjunction of
predicates. Each predicate is a triplet (���� , operator,
����), where ��� is a valid attribute name as defined in the
subscription schema and ���� is a valid data value with
respect to ��� ’s data type. The subscription schema is
the extension made to the subscription definition above
so that a subscription in a symmetric subscription sys-
tem can also include a set of (���� , ����) pairs that describe
the information consumer. For example, a subscription
schema for our book market example can be defined
as a tuple containing two attributes: A name, an age
of string and integer types respectively. An event can
then contain a predicate on the age attribute so that a
certain category of information consumers does not re-
ceive notifications when certain events are published.

An event 	 matches a subscription � if every pred-
icate in � is satisfied by some pair (��� , ���) in 	 , and

2

every predicate in 	 is satisfied by some pair (���� , ����)
in � . For example the event � (subject, “Adult Ma-
terial”), (author, “Some Author”), (price, $50), (age
� 20) � matches the subscription � (name, “some cus-
tomer”), (age, 45), (price � $100) � because predicates
from both sides are satisfied.

3 Event Matching in Content-based
Subscriptions Systems

The most straightforward solution to identify the set
of subscriptions that are matched by an event is a se-
quential search. In this method, the system traverses a
list of subscriptions sequentially and tests each of them
against the event. This solution might be acceptable
when the total number of subscriptions and the aver-
age number of predicates per subscription are small.
However, it clearly performs very badly when the num-
ber of subscriptions and the average number of predi-
cates per subscription are large. Another major draw-
back to this solution is the overhead associated with
the evaluation of the same predicate multiple times and
the unnecessary evaluation of certain predicates. This
can happen when multiple subscriptions have similar
or interdependent predicates. In the first case, the same
predicate is evaluated as many times as it appears in
the set of subscriptions. In the later, a predicate "!
is needlessly evaluated when an interdependent pred-
icate #� has already been evaluated. For example, if the
predicate (price � 20) is true then it is clear that the
predicate (price � 100) is also true.

The problem of determining all the subscriptions
that are matched by an event is similar to another prob-
lem encountered in artificial intelligence and active
databases research some years ago. In artificial in-
telligence, forward-chaining expert systems must test
each newly asserted fact against a collection of predi-
cates to find those rules that match the fact. In active
databases, each time a tuple $ is updated, deleted or in-
serted into a table on which a trigger has been defined,
the DBMS must determine whether or not $ satisfies
the trigger condition. If the trigger condition is satis-
fied the trigger action is executed. A number of predi-
cate indexing techniques and testing network structures
have been proposed in this context. See [12, 4] for
an overview. These solutions have been the basis for
developing a number of main memory algorithms to
address the event matching problem in content-based

subscription systems.
Event matching algorithms in content-based sub-

scription systems can be divided into two categories:
Predicate indexing based algorithms and testing net-
work based algorithms. The solutions based on pred-
icate indexing consist of two phases. The first phase
determines all the predicates (in all subscriptions) that
are satisfied by the event. The second phase finds all
the subscriptions that are matched by the event based
on the results of the first phase. The techniques based
on testing networks pre-processes the set of subscrip-
tions into a matching tree. Events enter the tree at
the root node and are filtered through by intermedi-
ate nodes. An event that passes all intermediate test-
ing nodes reaches a leaf node where a reference to a
matching subscription is stored. In the following sub-
sections, we present and compare examples of event
matching algorithms from each category.

3.1 Predicate Indexing Based Algorithms

Algorithms that are based on predicate indexing tech-
niques use a set of one-dimensional index structures to
index the predicates in the subscriptions. They differ
from each other by whether or not all the predicates
in the subscriptions are placed in the index structures.
The counting algorithm [7] is an example where all the
predicates in the subscriptions are placed in the index
structures. The Hanson et al. algorithm [4] is an ex-
ample where not all the predicates in the subscriptions
are placed in the index structures. The matching algo-
rithms proposed in [7, 8] are examples of recent exten-
sions to the Hanson et al. algorithm.

3.1.1 The Counting Algorithm

The counting algorithm [7] groups the predicates (from
all subscriptions) into predicate families. A predicate
family consists of predicates having the same attribute
and the same comparison operator. For example, con-
sider the two subscriptions defined as follows:%#&('*) +-,/.103254*68797;:=<>)@?;ACBED-F/,G4IHKJML=NPO>D-?;,�2/Q9R�.1S S :
%�TM'*) +-,/.1032GUWV9X9:
where Y denotes logical equivalence. There are three
predicate families in this example: (price =), (price
�), and (author=). The counting algorithm allows var-
ious indexing structures to be used depending on the
predicate family. For example, hashing is preferred
for equality predicates because it provides fast access.

3

B+-trees or IBS-trees are more suitable for non equal-
ity predicates. When an event occurs, the algorithm
uses the set of indexes built for each attribute in the
event schema to determine all the predicates that are
satisfied. Let Z denote this set of predicates. Then,
for each "�P[\Z , the set of subscriptions containing
 #� is fetched. For each one of these subscriptions, its
number of satisfied predicates is incremented by one.
Lastly, the algorithm goes through the set of all sub-
scriptions and verifies whether or not all their pred-
icates have been satisfied. All subscriptions whose
number of satisfied predicates equals its total number
of predicates is a matching subscription. To illustrate
the algorithm, consider the following example of a sys-
tem containing three subscriptions] � ,]_^ ,]_` defined
as follows:%#&('a+-,�&b<c+-,8Td<c+-,8e
%�TM'a+-,�&b<c+-,8T
%�eM'a+-,8ef<c+-,hg
Assume that an incoming event 	 of event schema ij]f`
satisfies predicates #k � and #k9^ but does not satisfy #k�`
and #kml . Further assume that predicates #k � , #k9^ , #k9`
and #kml involve attributes � � , �^ , �` and �cl respec-
tively. Figure 1 describes the data structure that could
be used to match events in a content-based subscription
system using the counting algorithm.

Event e

Hash on event schema name

ES1 ES2 ES3 ESn

A1 A2 A3 ApA4

P1 P3 P4P2

Figure 1: Event matching using the counting algo-
rithm

The incoming event is first filtered based on its event
schema ^ . Next, the algorithm concludes that the set of
predicates that match event 	 is composed of predicates
 #k � and #k9^ . During the second phase, the algorithm
first determines the set of subscriptions involving pred-

n
A content-based subscription system usually handles multiple

event schemas.

icates #k � and #k9^ . These are subscriptions] � and]_^ .
Next, the algorithm increments the number of satisfied
predicates for] � and]_^ . Subscription]b^ is retained
because its number of satisfied predicates equals its to-
tal number of predicates. However, subscription] � is
rejected because its number of satisfied predicates is
less than its total number of predicates.

3.1.2 The Hanson et al. Algorithm

The Hanson et al. algorithm [4] was proposed in the
context of active databases but it can also be applied
to determine what subscriptions match an event. In
a pre-processing step, the algorithm builds a set of
one-dimensional indexes, one for each attribute in the
event schema. For each subscription, the most se-
lective predicate is placed in the corresponding one-
dimensional index. This one-dimensional index is a
balanced IBS-tree which allows efficient searching to
determine which interval and equality predicates match
a value. An interval binary search tree (IBS-tree) is a
binary search tree augmented with additional informa-
tion to make it possible to find all intervals that overlap
a point. See [4] for a detailed description of IBS-trees.
When an event occurs, the algorithm uses this set of
one-dimensional indexes to determine all the subscrip-
tions whose most selective predicate is satisfied. Then,
for each one of these subscriptions, the remaining pred-
icates are evaluated to find out if there is a complete
match. Note that considering only those subscriptions
whose most selective predicate is satisfied is an im-
provement over the counting algorithm. Indeed, the
counting algorithm incurs the overhead of considering
all subscriptions in its second phase. This is because
it needs to determine for each subscription whether or
not its number of satisfied predicates equals its total
number of predicates.

To illustrate the Hanson et al. algorithm, consider
again the example from the previous section. Suppose
that predicates #k � and #kml are the most selective pred-
icates. Predicates #k � and #kml are therefore placed on
the IBS-tree of attributes � � and �cl respectively. Fig-
ure 2 describes the data structure that could be used
to match events in a content-based subscription system
using the Hanson et al. algorithm.

In the first phase of the algorithm, the IBS-trees for
the corresponding event schema are searched for the
values in the event. This first phase concludes that only

4

Event e

Hash on event schema name

ES1 ES2 ES3 ESn

A1 A2 A3 ApA4

P1 P4

Figure 2: Event matching using the Hanson et al.
algorithm

predicate #k � is satisfied. In its second phase, the algo-
rithm concludes that only subscription]f^ is a matching
subscription. Subscription] � is not a matching sub-
scription because its predicate #ko` is not satisfied. It is
clear that subscription]d` is not a matching subscrip-
tion because its most selective predicate #k�l is not sat-
isfied.

3.1.3 Extensions to the Hanson et al. Algorithm

The propagation algorithm proposed in [7] optimizes
the second phase of the Hanson et al. algorithm. In a
pre-processing step, the subscriptions are grouped into
clusters. Each cluster groups together the subscriptions
having the same access predicate and the same number
of predicates. The access predicate is the most selec-
tive predicate for each subscription in the cluster. This
is the predicate placed in the IBS-tree. Within a clus-
ter, the remaining predicates for each subscription are
stored in decreasing order of selectivity, that is, from
the 2nd most selective to the least selective predicate.
In its second phase, the propagation algorithm consid-
ers only those clusters whose access predicate is satis-
fied. For each cluster, a propagation strategy is used
to evaluate the rest of the predicates for the subscrip-
tions contained in the cluster. This propagation strat-
egy works as follows. First the 2nd most selective pred-
icates are evaluated. Subscriptions which fail this step
are eliminated. Those which succeed are considered
for the next step where the 3rd most selective predi-
cates are evaluated, and so on. A subscription which
succeeds all steps is a matching subscription.

The matching algorithm proposed in [8] is simi-
lar to the propagation algorithm in that it also groups

subscriptions into clusters. However, it does not re-
strict the cluster’s access predicate to be composed of
a single predicate. The schema based clustering tech-
nique proposed groups together subscriptions in terms
of their number of predicates and a common conjunc-
tion of equality predicates as an access predicate. The
set of attributes referred to in the conjunction of equal-
ity predicate is called the schema of the access predi-
cate. The algorithm uses multi-attribute hashing to find
out the relevant clusters when an event occurs. The per-
formance evaluation presented in [8] demonstrates that
there can be advantages to this technique.

3.2 Testing Network Based Algorithms

The matching algorithm used in the Gryphon [5, 14]
subscription system initially pre-processes the sub-
scriptions into a matching tree. In the matching tree,
each non-leaf node contains a test and edges from that
node represent the results of that test. A leaf node con-
tains a subscription. The matching tree can also have
special “do not care edges” called *-edges that repre-
sent the fact that subscriptions reachable through the
edge do not care about the result of a test. These edges
are necessary when some of the subscriptions are in-
dependent of that test. When an event occurs, the al-
gorithm walks the matching tree by performing the test
prescribed by each node and by following the edge that
represents the result of the test, and the *-edge if it is
present. The set of matching subscriptions contains all
those leaf nodes reached. To illustrate the algorithm,
consider two subscriptions defined as follows:%#&('*) +-,/.103254*68797;:=<>)@?;ACBED-F/,G4IHKJML=NPO>D-?;,�2/Q9R�.1S S :
%�TM'*) +-,/.1032GUWV9X9:
Figure 3 describes the matching tree that corresponds
to subscriptions] � and]_^ . Note that subscription]d^
does not depend on the test prescribed at the root node
of the matching tree and therefore a *-edge is required.

The Gough et al. matching algorithm proposed in
[22] is similar to the Gryphon algorithm in that it also
uses a matching tree. However, it allows a subscrip-
tion to appear in more than a single leaf node. When
an event occurs, the Gough et al. algorithm generally
needs to follow several paths in the matching tree while
Gryphon’s algorithm follows a single path. Therefore,
the Gryphon algorithm is more efficient. However, its
matching tree is more space consuming. Compared
to the predicate indexing based techniques, the match-
ing tree based techniques are more space consuming.

5

Author =

Price >

S1

Event e

S2

*Al−Kharezmi

25100

Price =

Figure 3: Example of a matching tree

Moreover, the matching tree data structure is more
costly to maintain in systems where the rate of new
subscriptions arivals (or subscription modifications) is
quite high. Therefore, matching tree based techniques
are better suited for systems where the subscription set
is relatively stable during long periods of time.

4 Event Matching in Symmetric Sub-
scription Systems

The advantages of a symmetric subscription system is
that it allows the information producer to express filter-
ing criteria and does not require the value of each at-
tribute in the event schema to be known at publication
time. The cost of this gain in flexibility is an increase
in the complexity of the matching algorithm. The sym-
metry aspect requires that the predicates from both the
information producer and the information consumer be
satisfied before a subscriber is notified of a matching
event. Allowing the value of an attribute to be deter-
mined at runtime rather than specified at publication
time introduces another level of complexity. If deter-
mining the value of an event attribute ��� depends on
some attribute ��� from the subscription schema, then
it is not possible to use a predicate indexing technique
to determine in one step which subscription predicates
(�c� , operator, ���) are satisfied. Moreover, the overhead
of computing the value of ��� at runtime adds to the
complexity of the event matching algorithm in a sym-
metric subscription system. Therefore, efficient event
matching techniques are needed to achieve scalability
in a symmetric subscription system.

The Websphere Matchmaking Environment (WME)
[24, 25, 26] is an example of a symmetric subscription
system. In the following subsections, we briefly intro-

duce WME and present a novel event matching algo-
rithm in this context.

4.1 Overview of Websphere Matchmaking
Environment

WME is a set of components that allow the easy devel-
opment, management and support of distributed auto-
mated matchmaking spaces for complex products and
services. A key component of WME is its symmetric
matchmaking engine (MME) which matches the needs
of information consumers with the features of products
and services advertised by information producers. The
symmetry aspect stems from the fact that the match-
ing process also takes into account the demands of in-
formation producers with respect to information con-
sumers. Figure 4 describes the WME matchmaking
engine symmetry aspect.

Symmetric
Matchmaking
Engine

− PropertiesAdvertise

− Rules
− Properties
− Rules

Query

Information
consumers

Information
producers

Figure 4: Symmetric matchmaking engine

Information producers use the WME advertising
interface to advertise products and services into an
MME. An advertisement consists of the following
three arguments:p Matchmaking union name: A string represent-

ing the type of the product or service advertised.
It also defines the set of attributes that can be re-
ferred to in an advertisement or a query. The name
must be a valid name as defined in the system’s
data dictionary. This is a mandatory argument.p Properties: A list of (attribute, value) pairs de-
scribing the product or service advertised. The
attribute must be a valid attribute name defined
in the system’s data dictionary for the product or
service advertized. The value must be valid with
respect to the attribute’s data type. It can be spec-
ified explicitly if it will be known at advertising
time or it will be computed dynamically during
the matching process. In the later case, the value
place holder consists of a program that will be
used to compute the attribute’s value during the
matching process. This allows information pro-
ducers to tailor their products and services for

6

each information consumer. An attribute whose
value is not explicitly provided is referred to as a
dynamic attribute. Similarily, an attribute whose
value is explicitly provided is called a static at-
tribute. Properties are a mandatory argument.

p Rules: A list of programs, each returning a
boolean value, describing the demands of the in-
formation producer with respect to the informa-
tion consumer. In WME, a program that is used
to implement a rule or to compute the value of
a property dynamically can be expressed in two
ways: (1) as a script written in the WME script
(programming) language, and (2) as a JAVA Call.
A script is either evaluated locally by the MME
if it was explicitly provided with the rule (or
the property), or by another WME component
called the Script Processing Engine (SPE) other-
wise. JAVA Calls provide a mechanism to lever-
age legacy systems such as dynamic pricing en-
gines and stock control systems. Rules are an op-
tional argument.

Similarily, information consumers use the WME
query interface to submit queries to the MME. The
symmetric nature of the MME implies that the query
also consists of three arguments: The matchmaking
union name, properties and rules. In this case, prop-
erties describe the information consumer and rules de-
scribe the information consumer’s filtering criteria.

To illustrate the above WME concepts, consider the
following simple auto insurance example which shows
how WME could be used to set up a matchmaking
space where auto insurance companies advertise insur-
ance offers and car drivers submit queries to obtain an
insurance offer. Before the system can accept auto in-
surance advertisements and queries, the WME system
administrator needs to create a matchmaking union for
the auto insurance matchmaking space. The creation
of the matchmaking union is accomplished using the
WME data dictionary interface. The WME system ad-
ministrator uses this interface to define the name of the
union and its two record components. The first record
defines the car driver looking for insurance and the
second record defines an insurance offer. Let AutoIn-
surance denote the name of the matchmaking union,
Driver denote the car driver record, and Insurance de-
note the insurance offer record. Tables 1 and 2 show
the details of the Insurance and Driver records respec-

tively.

Attribute Type Description
Name String Name of insurance company
Cover String Insurance coverage
Price Float Price of the insurance offer

Table 1: Insurance record description

Attribute Type Description
Name String Name of car driver
Age Integer Age of car driver
YearsNCD Integer Number of years driving

without a claim

Table 2: Driver record description

The following are examples of advertisements. Ad-
vertisement � � does not specify any rules and the value
of the price attribute is explicitly specified. Advertise-
ment �^ specify one rule and a script written in the
WME script language that specifies how to calculate
the value of the price attribute. The rule provided en-
sures that advertisement ��^ does not get returned as a
result of a query submitted by a driver whose age is
less than 40 or whose YearsNCD is less than 3. The
script provided to calculate the value of the price at-
tribute ensures that drivers who did not claim insurance
for longer periods of time are rewarded.p � � = (AutoInsurance, � (Name, “Company A”),

(Coverage, “Basic”), (Price, $500) � , �o�)p �^ = (AutoInsurance, � (Name, “Company B”),
(Coverage, “Full”), (Price, if (YearsNCD � 7)
price = 900; else price = 1200; return price;) � ,
� return (Age ��� 40 && YearsNCD ��� 3); �)

The following are examples of queries. Query q �
does not specify any rule and the value of the age at-
tribute specified is 32. Advertisement ��^ can not be a
match because q � fails �^ ’s rule which specifies that
the age attribute must be greater than 40. Therefore,
only advertisement � � is a match for q � . Query q�^
does not specify any rule but matches both � � and �^ .
Note that the value of the price attribute for ��^ is $900
in this case. Query q�` is similar to q�^ but specifies

7

a rule to indicate that advertisements where the price
is greater than $700 is not of interest. Therefore, only
advertisement � � is a match for q�` .p q � = (AutoInsurance, � (Name, “John”), (Age,

32), (YearsNCD, 3) � , �o�)p q�^ = (AutoInsurance, � (Name, “Bob”), (Age,
48), (YearsNCD, 8) � , �o�)p q�` = (AutoInsurance, � (Name, “Chris”), (Age,
42), (YearsNCD, 8) � , � return (Price ��� 700); �)

4.2 The Event Matching Algorithm
4.2.1 Preliminaries

The matchmaking union name defines the set of at-
tributes that can be referred to in an advertisement or a
query. In the rest of this paper, we will refer to this set
of attributes as the matchmaking union domain. Sim-
ilarily, we will refer to the set of attributes that can be
referred to in an advertisement and in a query as the ad-
vertisement domain and the query domain respectively.
Let r , s and t denote the advertisement domain, the
query domain and the matchmaking union domain re-
spectively. Mathematically, we have tu�vrxwys .

For a given matchmaking union name, an event 	 (an
advertisement) and a subscription � (a persistent query)
can be defined as follows.254{z�)@?|&/}E~;&h:�}8)@?�Tm}E~mT/:�}h� � � }8)@?��=}E~m�-:�}E,�&�}E,8Tm}h� � � }E,��o�
� 4�z�)@?�S& }E~�S& :�}8)@?�ST }E~�ST :�}h� � � }8)@?�S�c}E~�S��:�}E,�S& }E,�ST }h� � � }E,�S� �
where �(��������� , f�3������� , �C��[�r , �-�! [�s ,
��������� , and ��������� . k � ��k9^�����������kh� are
optional rules that describe the demands of the infor-
mation producers with respect to the information con-
sumer. ko�� ��k��^ ����������k�� are optional rules that describe the
requirements of the information consumer with respect
to the advertisements. In WME, these rules are pro-
grams expressed in the WME script language and can
potentially refer to any attribute in the matchmaking
union domain t . However, we contend that in most
practical situations, the rules in an event will refer to at-
tributes in s and the rules in a subscription will refer to
attributes in r . After all, the purpose of the rules in an
event is to express predicates on the subscriptions and
the purpose of the rules in a subscription is to express
predicates on the events. Therefore, we formally define
an event rule as a conjunction of predicates, each refer-
ring to an attribute in s , and a subscription rule as as a
conjunction of predicates, each referring to an attribute
in r . A predicate is a triplet (attribute, operator, value)

as defined in section 2. In this paper we focus on the
relational operators �������¡����������������������� because
they are common among all content-based subscription
systems and they are sufficient to support most usual
subscriptions for event notifications.

4.2.2 The Dynamic Attributes Cache

A dynamic attribute is an attribute whose associated
value is to be calculated using a provided program. Re-
call from section 4.1 that this program can be executed
locally by the MME, remotely by an SPE, or com-
pletetly outside the WME system through a JAVA Call
to some back-end system. The advantage of dynamic
attributes is that it allows information producers to tai-
lor their products and services for each subscriber. The
cost of this flexibility is the overhead associated with
evaluating the provided programs for each subscrip-
tion. For example, the program associated with the
attribute Price in advertisement ��^ of the previous ex-
ample needs to be evaluated for subscriptions q � , q�^
and q�` . Another implication of this flexibility is that
it is not possible to use a predicate indexing scheme to
determine what predicates satisfy an (attribute, value)
pair if the attribute is dynamic. For example, if q � , q�^
and q�` all have a predicate on the attribute Price then
it is not possible to determine in one step which of q � ,q�^ and q�` has its predicate satisfied. This is because
the computation of the value of the attribute Price de-
pends on each q�� .

In the case of a JAVA Call or a script to be executed
remotely by an SPE, the value place holder of an at-
tribute will consist of the name of the program to be
used for the calculation of the dynamic value. For ex-
ample, this can be a standard program that computes
the price of an auto insurance based on the driver’s age
and the number of years driven without an insurance
claim. Observe that this program will have to be exe-
cuted on all the subscriptions each time an event enters
the system. Therefore, caching program results could
be a significant performance improvement.

The dynamic attribute cache stores the results of pro-
gram invocations. Each program has a unique program
ID which is used to access the cache. In addition to
the program ID, each cache entry includes the program
signature and an invocation table. When a cache en-
try is accessed, the program signature is used to en-
sure that the current invocation of the program matches

8

its signature. If there is a mismatch then the program
has been modified and the cache entry is invalidated.
The invocation table stores the results of program in-
vocations with different input parameter values. It is
composed of two columns: A hash key and a program
result. The hash key is the result of applying a multi-
attribute hashing (MAH) function on the the input pa-
rameter values of a program invocation. The program
result column stores the value returned by the program
for those input parameter values. Figure 5 describes
the dynamic attributes cache structure.

... ...

Program Signature

progr1(int a)

progr2(int a, int b)

progrn(float a, int b,
int c)

Table1

Table2

key = MAH(input param. values)Tablen

progr_id1

Program ID

progr_id2

progr_idn

Invocation
Table

...
...

Hash Key Program Result

key1
key2

keyn

value1
value2

valuen
...

Figure 5: The structure of the dynamic attribute
cache

When the value of a dynamic attribute needs to be
determined, the program ID of the program associated
with the dynamic attribute is looked up in the cache.
If the program ID is found and the current invocation
matches the program signature, the invocation table as-
sociated with that program ID is retrieved. Next, the
cache’s MAH function is used to compute the hash key
for the input parameter values. This hash key is then
searched in the invocation table. If the hash key is
found then the associated program result is returned.
Otherwise, the program is called to compute the de-
sired result. This result is then entered in the invocation
table with the associated hash key. If the invocation ta-
ble is full the caching policy used is a standard Least
Recently Used (LRU) policy. If the program ID is not
found in the cache, then a cache entry is created for
that program after it is called to compute the desired
result. If no cache entry is available, an LRU policy is
used to select a victim cache entry. When a program is
removed or modified the cache entry depending on that
program is invalidated.

Programs that are explicitly submitted with each
event like advertisement ��^ in the previous example
can not take advantage of the dynamic attribute cache
because they are expected to be different for each

event. Obviously, if they were intended to be the same
program then there is a clear performance advantage in
registering this program as an SPE program and only
submit its name with each event.

4.2.3 The Event Matching Algorithm

The goal of an event matching algorithm is to effi-
ciently determine the set of subscriptions that match
an event. Our event matching algorithm initially pre-
processes the subscriptions in a set of data structures
that allow fast matching. The subscriptions are first
didvided into two classes: Those that have predicates,
like query q�` from the previous example, and those
that do not. A subscription that does not have predi-
cates need only to satisfy the event predicates to qual-
ify as a matching subscription. But a subscription that
has predicates can only qualify as a matching subscrip-
tion if it satisfies the event predicates and its predicates
are satisfied by the event itself. Figure 6 describes the
steps of the algorithm.

Static
sub−event

Dynamic
sub−event

Match

Predicates
set

Subscriptions with
predicates (index structures)

subscriptions

Matching

subscriptions
Matching

Subscriptions without
predicates

Final set of matching
subscriptions

Dynamic attributes
Cache

Analysis

Event e

Static
Match

Dynamic
Match

Final

Figure 6: The Event Matching Algorithm

The first step in the algorithm is the “Analysis” pro-
cess. This is the process where the event is analyzed
and divided into two sub-events and a predicates set.
The first sub-event is composed of the sub-set of static

9

attributes and their corresponding values from the orig-
inal event. The second one consists of the the sub-set
of dynamic attributes and their corresponding program
names. In the rest of this paper, we will refer to these
two sub-events as the static sub-event and the dynamic
sub-event respectively. The predicates set represents
the event’s predicates.

The next step is the “Match Static” step, which de-
termines all the subscriptions that match the static sub-
event. Observe that the set of subscriptions that would
match the static sub-event is the union of the subscrip-
tions that do not have any predicates and those that
have predicates satisfied by the static sub-event. The
“Match Static” step only considers those subscriptions
which have predicates. To efficiently determine the
matching subscriptions at this step, the subscriptions’
predicates are organized in a predicate index structure
as detailed in section 3. A testing network based algo-
rithm could also be used during this step. The matching
subscriptions are then fed into the “Match Dynamic”
step. This is the step where the subscriptions that have
one or more predicates depending on a dynamic at-
tribute are further processed. The dynamic attributes
cache is used to efficiently determine the value of each
dynamic attribute. Subscriptions that pass the “Match
Dynamic” step are fed into the “Match Final” step to-
gether with the subscriptions that do not have any pred-
icates. The “Match Final” step applies the event predi-
cates over these subscriptions to determine the final set
of matching subscriptions. For example, the predicates
(Age ��� 40 && YearsNCD ��� 3) in advertizment
�^ from the previous example are evaluated at this
step. To efficiently process this step, our event match-
ing algorithm creates a B+-tree for each attribute in the
query domain s during the pre-processing step. These
B+-trees are used to efficiently determine all those sub-
scriptions that satisfy the event’s predicates.

5 Conclusions and Future Directions

The event matching algorithm is critical to the per-
formance and scalability of a subscription system.
This paper has reviewed a number of interesting event
matching algorithms that have been proposed in re-
cent research work in the area of subscription sys-
tems. These algorithms can be classified into two cat-
egories: Algorithms based on predicate indexing tech-
niques and algorithms based on matching trees. Com-

pared to the predicate indexing based techniques, the
matching tree based techniques are more space con-
suming. Moreover, the matching tree data structure
is more costly to maintain in systems where the rate
of new subscriptions arrival (or subscriptions modifi-
cation) is quite high. Therefore, matching tree based
techniques are better suited for systems where the sub-
scription set is relatively stable during long periods of
time.

This paper also introduced symmetric subscription
systems as the next generation of content-based sub-
scription systems and presented Websphere Match-
making Environment (WME) as an example of a sym-
metric subscription system. Symmetric subscription
systems can be viewed as content-based subscription
systems augmented with additional functionality to ad-
dress the needs of a new range of applications such as
insurance markets. They allow the information pro-
ducers to select what types of information consumers
can receive their publications as well as to personal-
ize their publications at the individual attribute level.
The cost of this gain in flexibility is an increase in the
complexity of the matching algorithm. The symme-
try aspect requires that the predicates from both the in-
formation producer and the information consumer be
satisfied before a subscriber is notified of a matching
event. Allowing the value of an attribute to be deter-
mined at runtime rather than specified at publication
time introduces another level of complexity. The dy-
namic attributes cache proposed in this paper reduces
the cost of personalizing publications at individual at-
tribute level. Our event matching algorithm takes ad-
vantage of the dynamic attribute cache.

References
[1] P. Bernstein et al. The asilomar report on database

research. ACM SIGMOD record, 27(4), 1998.
[2] E. Hanson, C. Carnes, L. Huang, M. Konyala,

L. Noronha, S. Parasarathy, J. Park and A. Vernon.
Scalable Trigger Processing. In Proc. of the Interna-
tional Conference on Data Engineering, 1999.

[3] J. Chen, D. Dewitt, F. Tian and Y. Wang. Nia-
graCQ: A scalable continuous query system for inter-
net databases. In Proc. of the ACM SIGMOD Conf. on
Management of data, 2000.

[4] E. Hanson, M. Chaabouni, C. Kim and Y. Wang. A
predicate matching algorithm for database rule sys-
tems. In SIGMOD’90, 1990.

[5] M. Aguilera, R. Strom, D. Sturman, M. Astley and
T. Chandra. Matching events in a content-based

10

subscription system. In Eighteen ACM Symposium
on Principles of Distributed Computing (PODC’99),
1999.

[6] J. Pereira, F. Fabret, F. Llirbat, R. Preotiuc, K. Ross
and D. Shasha. Publish/subscribe on the web at ex-
treme speed. In Proc. of the 26th VLDB Conference,
2000.

[7] J. Pereira, F. Fabret, F. Llirbat and D. Shasha. Efficient
matching for web-based publish/subscribe systems.
In Proc. of the Fifth IFCIS International Conference
on Cooperative Information Systems (CoopIS’2000),
Eilat, Israel, September 2000.

[8] F. Fabret, A. Jacobsen, F. Llirbat, J. Pereira, K. Ross
and D. Shasha. Filtering algorithms and implementa-
tion for very fast publish/subscribe systems. In SIG-
MOD’2001, 2001.

[9] B. Segall and D. Arnold. Elvin has left the building: A
publish/subscribe notification service with quenching.
In Proc. of AUUG’97, Brisbane, Australia, September
1997.

[10] Y. Huang and H. Garcia-Molina. Publish/Subscribe in
a Mobile Environment. In Proc. of the 2nd ACM Inter-
national Workshop on Data Engineering for Wireless
and Mobile Access (MobiDE01), Santa Barbara, Cali-
fornia, USA, May, 2001.

[11] G. Banavar, T. Chandra and B. Mukherjee. An ef-
ficient multicast protocol for content-based publish-
subscribe systems. In Proc. of the 19th International
Conference on Distributed Computing Systems, 1999.

[12] E. Hanson and J. Widom. An overview of production
rules in database systems. The Knowledge Engineer-
ing Review, vol. 8 no. 2, June 1993 1999.

[13] A. Garzaniga, D. Rosenblum and A. Wolf. Achiev-
ing scalability and expressiveness in an internet-scale
event notification service. In Proc. of the 19th Annual
ACM SIGACT-SIGOPS Symposium on PRINCIPLES
OF DISTRIBUTED COMPUTING (PODC), Portland,
Oregon, USA, 2000.

[14] IBM Research. The Gryphon project home page,
http://www.research.ibm.com/gryphon/home.html.

[15] IONA Technologies. OrbixTalk.
http://www.iona.com/products/messaging/index.html.

[16] A. Chan. Transactional publish/subscribe: The proac-
tive multi-cast of database-changes. In SIGMOD’98,
1998.

[17] Object Management Group. Common object service
specification. Technical report, Object Management
Group, 1998.

[18] New Era of Networks Inc.
http://www.neonsoft.com/products/NEONet.html.

[19] R. Gruber, B. Krishnamurthy and E. Panagos. The
architecture of the ready event notification service.
In Proc. of the 19th IEEE International Conference
on Distributed Computing Systems Middleware Work-
shop, 1999.

[20] J. Pereira, F. Fabret, H. Jacobsen and F. Llirbat. Web-
Filter: A high-throughput XML-based publish and
subscribe system. In Proc. of the 27th VLDB Con-
ference, Roma, Italy, 2001.

[21] E. Hanson. Rule condition testing and action execu-
tion in Ariel. In Proc. of the ACM SIGMOD Inter-
national Conference on Management of Data, June
1992.

[22] K. Gough and G. Smith. Efficient recognition of
events in distributed systems. In Proc. of the ACSC-
18, 1995.

[23] L. Liu, C. Pu and W. Tang. Continual queries for in-
ternet scale event-driven information delivery. TKDE
11(4), 1999.

[24] Y. Hoffner, C. Facciorusso, S. Field and A. Schade.
Distribution issues in the design and implementa-
tion of a virtual marketplace. Computer Networks
32(2000), 2000.

[25] IBM Research. http://www.zurich.ibm.com/wme.
[26] W. Rjaibi. The Design of the WebSphere Match-

making Environment Query and Advertising Agents.
Technical Report, IBM Zurich Research Laboratory,
March 2002.

11

