
RZ 3430 (# 93609) 07/01/02
Electrical Engineering 10 pages

Research Report

A Four-Terabit Single-Stage Packet Switch with Large
Round-Trip Time Support

F. Abel, C. Minkenberg, R. P. Luijten, M. Gusat, and I. Iliadis

IBM Research
Zurich Research Laboratory
8803 R̈uschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available
at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich

Abstract
We present the architecture and practical VLSI imple-

mentation of a 4-Tb/s single-stage switch. It is based on a
combined input- and crosspoint-queued structure with virtual
output queuing at the ingress, which has the scalability of in-
put-buffered switches and the performance of output-buf-
fered switches. Our system handles the large fabric-internal
transmission latency that results from packaging up to 256
line cards into multiple racks. We provide the justification
for selecting this architecture and compare it with other
current solutions. With an ASIC implementation, we show
that a single-stage multi-terabit buffered crossbar approach is
viable today.

1. Introduction

We present the design of a multi-terabit single-stage
switch fabric that supports from 64 (OC-768) to 256
(OC-192) ports. Owing to the large number of line cards and
the size of the switch fabric, the system is distributed over
multiple racks, whereby the line cards are packaged tens to
hundreds of feet away from the switching core. At OC-768
speed, the impact of the resulting Round-Trip Time (RTT) on
the performance of the system architecture is considerable.
So far this issue has received insufficient attention in related
work. In contrast, the architecture proposed here is designed
to directly support a wide range of RTT values in the
switching core itself. This constitutes a novel approach in
solving the challenges of multi-Tbps switching fabrics.

Because of performance and Class-of-Service (CoS) re-
quirements, we employ a Combined Input and Crosspoint-
Queued (CICQ) switch architecture, a subclass of the well-
known Combined Input- and Output-Queued (CIOQ) archi-
tecture. The CICQ considered consists of a buffered crossbar
switch combined with a Virtual Output Queuing (VOQ) ar-
rangement at the ingress. This scheme has been shown to
exhibit close to ideal performance characteristics, even under
bursty traffic conditions [1].

CICQ has been proposed earlier [2,3], and we will show
here that it has become practical because of current advances
in CMOS integration density and the addition of VOQ at the
ingress. The renewed interest in CICQ is demonstrated in

[4]−[9], without however considering large RTT and feasibi-
lity issues.

Our system is built from four different CMOS ASIC
building blocks, using a total of 40 chips for the switching
fabric and 64 interface chips on the line cards, to achieve
4 Tb/s of aggregate throughput.

 The paper is organized as follows: In Section 2 we dis-
cuss related switch architectures, and in Section 3 we show
our motivations for the proposed architecture and highlight
the attractive features of such an arrangement. Section 4
gives a system-level description of the proposed CICQ archi-
tecture. Section 5 shows the practical implementation and de-
scribes the four-ASIC chipset. Performance simulation
results are given in Section 6, and we present our conclusions
in Section 7.

2. Related Work

Most current single-stage switch architectures employ
VOQ at the ingress, see Fig. 1. The key distinguishing archi-
tectural feature is whether scheduling among the ingress
VOQs is performed in a centralized or distributed fashion.
The centralized approach typically consists of input buffers
organized by destination (VOQ) combined with a bufferless
crossbar switch core. Within this category a further distinc-
tion can be made between approaches without speed-up
(purely input-queued) or with limited speed-up1 (combined
input- and output-queued: CIOQ). Both approaches require a

A Four-Terabit Single-Stage Packet Switch with Large Round-Trip Time
Support

F. Abel, C. Minkenberg, R. P. Luijten, M. Gusat, and I. Iliadis
IBM Research, Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland

fab@zurich.ibm.com

Figure 1. Generic system architecture

1 As the core is bufferless, this speed-up applies to the ingress buffer read access, the egress buffer write access, the arbitration process, and the entire
switch core, including links (see Fig. 1).

centralized arbitration algorithm to resolve input and output
contention. In the former case a bipartite graph-matching
algorithm such as PIM, iSLIP [10], or similar algorithms, is
required, whereas in the latter case even more complex ar-
bitration algorithms [11,12] have been proposed to achieve
exact output queuing (OQ) emulation, bringing better QoS
support and performance, in particular under non-uniform
traffic. The main drawback of this approach is the limited
scalability of its centralized arbitration. First, it requires a
high degree of connectivity and tight coupling (synchroniza-
tion) between the arbitration unit and all ingress line cards to
exchange requests and grants. Second, the arbitration algo-
rithm must converge within one packet cycle, which becomes
extremely challenging at high line rates and large port counts
because of the super-linear complexity of the arbitration
algorithms.

The distributed approach removes the need for central-
ized arbitration of the inputs by employing a limited number
of output buffers with full speed-up that are typically inte-
grated in the switch core,2 i.e., a CIOQ architecture with an
internal speed-up of N. Link-level flow control between the
input and output buffers is required to ensure losslessness
and prevent output buffer hogging; typically, backpressure,
grant, or credit flow control are employed. The main draw-
back of the distributed CIOQ approach is the complexity of
implementing OQ with full speed-up. The traditional imple-
mentation is based on a shared-memory switch core, where
all inputs and outputs simultaneously access a common mem-
ory [13]−[15]. However, this implementation does not scale
to multi-Tb/s with current technology. Moreover, when using
VOQ at the ingress to reduce head-of-line (HoL) blocking,
the performance advantage of a shared memory is no longer
an argument [16]. This calls for a more distributed output
buffer implementation, such as can be achieved by parti-
tioning the shared memory into dedicated buffers per groups
of inputs and/or outputs. Taking this approach to the extreme
leads to the well-known classic buffered crossbar archi-
tecture, which provides a dedicated buffer for every input/-
output combination. Such a combination of VOQ ingress
buffers with a buffered crossbar (CICQ) has recently been
proposed in several works [4]−[9], where performance very
close to ideal OQ has been shown. The performance depends
to a limited degree on the contention resolution mechanisms
used at the VOQs and outputs, e.g. RR_RR [6], OCF_OCF
[5] and LQF_RR [7].3 However, because of practical
implementation issues, the existing proposals have mostly
considered only one or a few packets per crosspoint, and paid
little attention to the interaction between RTT, work
conservation, and QoS scheduling.

3. Motivation

We have adopted the CICQ architecture as the basis for
our design. The key reasons for this choice are as follows:

first, the CICQ architecture allows contention resolution to
be distributed over both inputs and outputs; independent
input schedulers resolve input contention, whereas the output
buffers resolve output contention to some extent. This results
in a simpler, more distributed implementation, as 2N schedul-
ers of O(N) complexity are required instead of one O(N2)
scheduler. This leverages newer trends in CMOS technology,
i.e. greater density (more parallelism) rather than increased
clock speeds (faster logic). Second, most practical, central-
ized scheduling algorithms are of a heuristic, sub-optimal
nature and tend to suffer from performance deterioration
under non-uniform traffic conditions [7,8]. It has been
demonstrated that CICQ switches exhibit close to ideal per-
formance characteristics even under non-uniform traffic [8].

For any non-blocking CIOQ architecture, whether shared
memory or buffered crossbar, it can be shown that the total
buffer requirement to support any traffic pattern scales qua-
dratically with N and linearly with RTT: O(N2×RTT). The
increasing line speed and the increasing physical size of
switch systems imply a large intra-fabric RTT, which, com-
bined with the growing port count, drives the buffer require-
ments upwards. A shared-memory implementation of such a
large buffer does not scale beyond 1 Tb/s throughput,
whereas a buffered crossbar implementation is practical, as
will be shown in the remainder of this paper.

The CICQ approach inherits a number of additional ad-
vantages from the distributed CIOQ approach:
− When there is no contention, packets can proceed immedi-

ately to the output without having to wait for a request-
grant-accept cycle to complete, thus significantly reducing
latency at low utilization.

− Decoupling the arrival and departure processes within the
switch core relaxes the coordination among line cards and
the core. This is particularly important for scalability as it
simplifies the synchronization constraints of large
switches that need to be distributed across multiple racks.

− A buffered switch core enables hop-by-hop instead of
end-to-end flow control. Even though N2×RTT buffers are
added in the core, the overall buffer requirements are
reduced because the total egress buffer requirement can be
lowered by a factor of 2N, and the overall minimum buffer
requirement drops from 2N2×RTT for an unbuffered core
to (N2+N)×RTT for a buffered core.

− The close-to-ideal performance of this arrangement implies
that no external speed-up of the switch core is required.
This is key in current Tb/s switches as the major cost and
power outlay is in the interconnect.

− The crosspoint memories can be operated at the line rate, a
major reduction compared to shared-memory architec-
tures.

− A buffered crossbar is inherently free of buffer hogging,
which can cause serious performance degradation in

3 The combination of the scheduler disciplines is denoted XX_YY, where XX denotes the VOQ arbitration and YY the OQ arbitration. These can be for
example Round Robin (RR), Oldest Cell First (OCF), or Longest Queue First (LQF).

2 Integrating output buffers with full speed-up in the switch core (internal speed-up) eliminates the need to speed up the links (external speed-up).

shared-memory switches that do not provide efficient
congestion-control mechanisms [1].

− Distributed control of buffering enables flow decoupling,
which improves fairness [4,17].

4. Distributed Packet Routing Switch
Architecture

A conceptual block diagram of the proposed architecture
is shown in Fig. 2, and we will refer to it as the distributed
packet routing switch architecture.

4.1. System Architecture Requirements and Overview

Our switch fabric supports 64 full-duplex physical ports
each of which is configured as either one OC-768 (40 Gb/s)
interface or four OC-192 (10 Gb/s) interfaces, referred to as
sub-ports (SP), or any combination thereof. The switch fabric
supports eight classes of service by means of priorities, e.g.
for IEEE 802.1D/Q support, and provides flexible distributed
schedulers for service differentiation and QoS delivery. The
contention resolution is round robin (RR) for the input VOQs
and weighted round-robin (WRR) for the crosspoint arbi-
tration [17]. Service differentiation is provided by a so-called

multi-layer QoS scheduler (MLQS) at each of the three
points of contention: ingress fabric interface, switching core,
and egress fabric interface. MLQS is a combination of strict
priority and weighted scheduling; the latter guarantees a
minimum bandwidth but does not preclude using the maxi-
mum thereof. With this scheme, each CoS is mapped into
either a strict or weighted scheduling group. This allows
some classes of service with low and strict delay jitter
requirements to be handled by the strict priority scheduling.
Classes of service requiring minimum guaranteed bandwidth
but no specific delay bound are mapped into the weighted
scheduling group.

For lossless operation we employ a reliable link-level
credit-based flow control between port cards and switching
core. The system is guaranteed to be non-blocking at the
port, sub-port, and CoS levels.

Output ports are addressed by a direct bitmap, which
inherently supports multicast. Sub-ports are addressed by an
additional 2-bit sub-port destination (SPD) identifier. To re-
duce overhead, we define four 16-port groups (O[00:15],
O[16:31], O[32:47], O[48:63]) encoded by a 2-bit bitmap ex-
tension (BME). This requires a 16-bit bitmap and a 2-bit
extension, which easily fits in a 4-byte packet header. To per-
form a multicast, up to four packets can be required. The
fabric interface (FI) is implemented in a combined ingress-

Figure 2. CICQ switch fabric – logical view

CoS
Weight

CoS
WeightXPM

Dedicated Memory
4 UC areas
1 MC area

 XPC
40 Queues

(4 SP + 1 MC) x 8 CoS

 2560 Queues
(64x40)

Switch
Core

Active Switch Plane (X)

XP00,00

Redundant Switch Plane (Y)

 ICT : Input Controller MC : Multicast P : Port
 OCT : Output Controller UC : Unicast SP : Subport
 XP : Crosspoint XPC : XP Control Section XPM : XP Data Section
 NP : Network Processor NPFSI : Network Processing Forum Streaming Interface

XP63,63

XP00,63

XP63,00

NP
IC

T
00

O
CT

 0
0

Pa
ck

et
 B

ui
ld

er

Routing
Table

Fabric Interface 00

CoS
Weight

Line Card 00

NP

R
es

yn
c

La
ye

r

Fi
lte

r M
as

k
X

Fi
lte

r M
as

k
Y

VO
Q

 S
ch

ed
ul

er
VO

Q
 S

ch
ed

ul
er

N
PF

SI

R
es

yn
c

La
ye

r
Re

sy
nc

La
ye

r

Routing
Table

O
Q

 S
ch

ed
ul

er
NP

NP

NP
Pa

ck
et

 B
ui

ld
er

Routing
Table

Fabric Interface 63

CoS
Weight

Re
sy

nc
 L

ay
er Fi
lte

r M
as

k
X

Fi
lte

r M
as

k
Y

VO
Q

 S
ch

ed
ul

er
VO

Q
 S

ch
ed

ul
er

N
PF

SI

R
es

yn
c

La
ye

r
Re

sy
nc

La
ye

r

Routing
Table

O
Q

 S
ch

ed
ul

er

O
CT

 6
3

IC
T

63
eRTT

Cr
os

sp
oi

nt
 A

rb
ite

r 0
0

C
ro

ss
po

in
t A

rb
ite

r 6
3

Line Card 63

iRTT

XPM
Dedicated Memory

1 UC area
1 MC area

 XPC
16 Queues

(1 P + 1 MC) x 8 CoS

 1024 Queues
(64x16)

egress chip that connects to any Network Processor (NP) unit
that is compliant with the NPF Streaming Interface (NPFSI).
The data stream entering the switch fabric is segmented into
fixed-sized packets of either 64 or 80 bytes. Although the
system achieves 100% throughput without requiring speedup
[8], it is still operated with a line rate escalation of U = 1.6
(i.e. 64 instead of 40 Gb/s) to compensate for the switch
packet header and segmentation overhead (see Fig. 1). This
results in a switch fabric with aggregate throughput of 4 Tb/s
(2.5 Tb/s at the OC-768 and/or OC-192 levels).

A chipset of four ASIC devices implements the switch
architecture, three for the switch core and one for the fabric
interface. This chipset can be used to scale from 1 to 4 Tb/s,
by employing 27 to 104 devices, respectively.

4.2. Ingress Fabric Interface

 In our architecture, the VOQ is organized per destination
and per CoS. The ingress path of the fabric interface (iFI)
supports 256 unicast destinations and four multicast group
destinations (one per BME). Including CoS, this leads to a
total of (256 + 4) × 8 = 2080 VOQs. The iFI implements two
switch paths that connect to an active (X) and a redundant
(Y) switch plane for full redundancy (1:1). It stores up to
4096 incoming packets and performs lossless switch-over
between active and redundant planes. The VOQ scheduler is
based on MLQS and RR arbitration. The RR algorithm is
used to select packets of the same CoS when multiple queues
are eligible for transmission.

4.3. Switch Core

The switching core (SC) is based on a crosspoint queu-
ing architecture with additional QoS support. It consists of a
single-stage switch architecture with 64x64 logical links
operated at 64 Gb/s. Each logical link is implemented with
32 serial links operated at 2.5 Gb/s and 8b/10b encoding. At
64 Gb/s, a 64-byte packet lasts 8 ns. The sub-port configura-
tion is realized by multiplexing the four sub-port streams
onto a single logical link.

The internal memory and queuing structure is realized by
a 64x256 arrangement to cover all cases, including the one
where all 64 destination ports consist of four sub-ports.

Logical crosspoint architecture description: We define
XPio (Fig. 2) to be the logical crosspoint dedicated to physical
input i and physical output o. There are a total 64×64 = 4096
XPs, each having a separate data and control path section.
Organization of the data and control sections depends on the
output port configuration, i.e., with or without sub-port sup-
port. For example in Fig. 2, crosspoints corresponding to out-
put 0 are configured in sub-port mode, whereas those corre-
sponding to output 63 are not.

We define XPMio (Fig. 2) to be the data section of a
logical crosspoint. It implements a crosspoint memory buffer
dedicated to physical input i and physical output o, which
consists of a unicast (UC) dedicated area and a multicast
(MC) dedicated area. If physical output o is operated with
sub-port support, the UC area is further partitioned into four

dedicated areas per sub-port (e.g. XP0,0 in Fig. 2), required to
avoid buffer hogging at the sub-port level. The storage ad-
dress for a UC packet arriving at XPMio is provided by the
crosspoint control section. Each dedicated UC area represents
an individual flow control domain that the control section
manages by means of specific credits. There are a maximum
of 64 × 64 × 4 = 16K UC flow-control domains.

We define XPCio (Fig. 2) to be the control section of a
logical crosspoint. It consists of an output queuing structure
that routes and queues packet addresses, an address manager
that controls the pool of free address locations within the UC
area(s) of the data section, and a credit manager that flow
controls the UC dedicated area(s). This structure is a set of
40 output queues corresponding to four sub-ports queues plus
one multicast queue times eight CoS, which is necessary to
guarantee non-blocking behavior at the sub-port level, while
CoS queuing is required for QoS scheduling at the current
output contention point. If physical output o is operated
without sub-port (e.g. XP0,63), then only 16 out of 40 queues
are used. The switching core implements a total of 40 × 4K =
160K queues.

XPM dimensioning: Considering that switches and
routers are typically housed in 19–21-inch shelves, each
having approx. 16 line cards, the proposed architecture
implies a minimum of five shelves (one for the switch core
and four for the fabric interfaces) interconnected with cables
or optical fibers. This physical distance combined with the
short packet duration (8 ns) causes a significant
switch-fabric- internal RTT. We consider this an important
new design factor that so far has not been addressed
extensively in current CICQ proposals. We define the input
Round-Trip Time (iRTT) as the composite of the transmis-
sion packet delay from an ingress fabric interface to a XP
destination plus the transmission of the flow control
information back to the iFI (see Fig. 1). iRTT is expressed in
number of packets being in flight, and includes the contri-
bution of the cables, the logic at the receiver and transmitter
sides, such as data deskewing and alignment, plus the VOQ
and XP arbitration times. eRTT is defined similarly at the
egress side. Credit flow control inherently satisfies the loss-
lessness property, but to satisfy the input work-conserving-
ness property under any traffic scenario, the size of the
XPMio must be scaled proportionally to iRTT (XPMio ú
iRTT), which translates into at least iRTT credits being
available to fully utilize the link (memory size and credits are
linear functions of RTT).

Our requirement is to support any traffic pattern over a
distance of 100 feet of interconnect between the FI and the
SC, which translates into iRTT = eRTT = 64 packets. With
this number of credits (64) one can operate over interconnect
lengths of more than 100 feet if the range of traffic patterns is
limited. For example, considering only uniformly distributed
traffic allows us to operate with link lengths of up to 10,000
feet and still achieve 100% throughput. Finally, to fully de-
couple unicast and multicast performance we allocate
2×iRTT packets per XPM, where the size of the MC area is
programmable between 0 and iRTT packets.

Unicast and multicast operation: Figure 2 shows the
distributed output buffers and output queues dedicated to a
particular input port. In this design, arriving packets are
broadcast on a unidirectional bus that connects to all XPs of
that specific input.

For unicast packets, every XP in a row filters out the bit-
map and the BME fields of the header to determine if a
packet is destined to the output it connects to. If yes, a UC
store address is internally generated by the XPC and used to
write the packet into the XPM. At the same time, the address
is also enqueued in the XPC according to the SPD and the
CoS fields.

This broadcast-and-select behavior also provides multi-
cast capability, as multiple bits set into the bitmap will select
multiple XPs. Contrary to UC, the MC store address is
generated by an MC address manager (MCAM) common to
16 output ports (one MC group), and is broadcast along with
the packet. This guarantees that all the replicated copies of an
MC packet get written at the same address within all the
dedicated MC areas, and implies that an MC group
constitutes one flow control domain. The use of a unique MC
address simplifies the design of the MCAM which generates
and recycles this type of addresses. The XPC has one specific
MC queue per CoS.

Crosspoint arbitration description: There is one cross-
point arbiter per output port. Every 8 ns, the arbiter selects
one out of the 64×40 queues. The algorithm is as follows:
1) Mask out those destinations that have either no traffic or

no credit available for the corresponding sub-port or MC
destination.

2) Select a sub-port or MC destination according to the fol-
lowing RR pattern: [SP0, MC, SP1, MC, SP2, MC, SP3,
MC].

3) For the selected sub-port or MC destination, select a CoS
according to MLQS.

4) Choose a crosspoint corresponding to the selected CoS
and destination according to a WRR schedule.

Steps 2) and 4) are of spatial nature, while 3) is temporal.

4.4. Egress Fabric Interface

Owing to the reduced memory requirement, which is
driven only by the link-level flow control (eRTT = 64), the
egress fabric interface (eFI) can be implemented in the same
chip as the ingress (Figs. 1, 2). If sub-ports are enabled the
egress buffer is partitioned into five areas (one per sub-port
and one for MC), otherwise into two areas (one for UC and
one for MC). This scheme is replicated per plane (X and Y).
Queuing is performed per switch plane, sub-port destination
and CoS (2×4×8 = 64 queues). Multicast at port level is
handled by the switch core; MC at sub-port level is expanded
by the egress adapter by means of a routing index that
addresses a multicast table. At the NPFSI egress side, packet
scheduling is also based on MLQS arbitration.

5. VLSI Implementation

In this section we demonstrate the feasibility of the pro-
posed CICQ system and its implementation into a chipset of
four different ASICs. Because of space limitation we mainly
focus on the switch core, which is the most challenging part.

5.1. Cost and Power Requirements

To remain cost-effective, we limit the die size to a maxi-
mum of 250 mm2 and the pin count to approx. 1000 signal
IOs (total j1500 pins package). For design-time reasons,
only standard cell design methodologies, processes and pack-
ages can be considered.

To comply with stringent Network Equipment Building
Standards (NEBS) rules, a single board must not dissipate
more than 250 W (some applications require even less than
150 W). At the same time, single-chip power dissipation
must remain under 25 W to avoid hot spots and remain
cooled by forced air.

5.2. Sizing Assumptions

The sizing and design assumptions are based solely on
currently available, proven technologies. The target CMOS
technology is a 0.11-!m copper technology (Cu-11). The
sizing was performed with the following assumptions: all
critical parts of the design have been VHDL-coded and syn-
thesized. This includes a specific 4x4 cluster that implements
the control section of 16 logical XPs (4 inputs x 4 outputs),
an equivalent 4x4 cluster for the data-section implementa-
tion, and the output-queue scheduler that performs crosspoint
arbitration and MLQS. Sizing numbers for the digital and
analog hard macros, such as memories and serializers/-
deserializers (SERDES), are retrieved from the standard cell
ASIC library. All other chiplets were individually estimated
based on previous switch designs. A wiring factor of 100% is
taken into account for all control logic except for the hard
macros which are already placed and routed.

5.3. Physical Implementation

In addition to the quadratic memory challenge, a buffered
crossbar is also limited by IO pins and power requirements.4

Given the high-speed and high-density SERDES available in
ASIC libraries today5 (j125 mW per 2.5 to 3.2 Gb/s full-
duplex), a 4-Tb/s switch requires about 10,000 pins and dissi-
pates roughly 256 W of IO power, thus requiring at least 16
chips to meet the pin and power constraints.

To overcome the inherent IO and memory limitations of
buffered crossbars, we expand the port rate and buffering
capacity by stacking multiple (31) switch slices operated in
parallel and have them controlled by a single master chip.
This technique of parallel sliced switching has been success-
fully used to scale shared-memory architectures up to 1 Tb/s
[15,16], and is often referred to as port speed expansion

5 Fujitsu, IBM, LSI, Lucent, TI.
4 This IO limitation is inherent in any crossbar, whether buffered or bufferless.

(SPEX) mode or distributed switch architecture with central-
ized control. Note that this architecture is based on a single
switch domain and therefore does not provide multiple paths.
However, the proposed 4-Tb/s switch core can be used as a
building block with external load-balancing controllers to
realize an NxN multipath switch with higher external port
rate.

Figure 3 shows the proposed implementation of the
switching core based on the SPEX concept distributed over 8
physical boards. It consists of one master chip (M) and 30
slave chips (S), organized in a combination of a chain- and
tree-based topology. The master implements the control sec-
tion XPC of the 4096 XPs, while each of the 30 slaves
implements 1/30 of the data section XPM.

Incoming packets are partitioned by the iFI into k = 32
segments of 16 bits (or 20 bits if packet size is 80 B) before
being sent to the switching core over k different links, each
operating at 2.5 Gb/s. The first two segments containing the
packet header are sent to the master module, whereas the k-2
other segments containing only data payload are transmitted
to the slave modules. When the master receives its two seg-
ments, it extracts the header information and queues the store
address according to the routing and QoS information carried
by the header. At the same time, a 2-byte control information
comprising the destination XPM within a row, the store
address within that XPM, and a UC/MC flag, is transmitted
to the slaves over the ingress speed expansion interface
(iSPEX). This information directs the slaves how to handle
their data segments. Another reason why MC packets share
the same store address is to reduce bandwidth of the iSPEX
interface. Every time a packet address is scheduled for trans-
mission in the master, the corresponding data segments need
to be retrieved from all slave chips. Therefore, a similar
process takes place at the egress side of the switch core over
an egress speed expansion interface (eSPEX). The control
information transmitted on this interface specifies an XPM
selection within a column and a retrieve address within the
selected XPM. Note that the content of the header is not
stored in the master chip but is rebuilt at transmission time:

the CoS and SPD fields are retrieved accordingly from the
read queue, while the bitmap and BME fields are replaced
with inband flow control information.

There is one re-driver chip (R) per card to reshape the
iSPEX and eSPEX interface signals (also implemented with
high-speed SERDES) before forwarding them via a back-
plane to the next daisy-chained card. A driving without re-
shaping of the signals is performed at board level by a com-
mercially available driver (D).

The 4-Tb/s switch core is packaged over eight physical
cards, each consuming a single slot of a 19–21-inch shelf.
Every card connector handles a bisectional bandwidth of
1 Tb/s (512 Gb/s in + 512 Gb/s out), which translates into a
minimum card edge of 18 inches, given the state-of the-art
2.5-Gb/s connectors and plug-compatible cable assemblies
(2 mm VHDM-HSD connectors offer 36 differential pairs per
linear inch). Connecting eight times 1 Tb/s over a back plane
requires approx. 4000 differential wire pairs and is only
feasible by keeping the wires short and spatially localized.
This is achieved by plugging in the eight switch core blades
only every other slots (e.g., slots 0, 2, 4, ... , 14), thus always
leaving an entire slot free for the interconnect between line
cards and switch core.
− If the interconnection links between line cards and switch

core use copper cables6, the cables directly plug into the
rear side of the back plane (Fig. 3) at specific empty slots
(i.e., slots 1, 3, 5,..., 15). The cable assemblies use the
same signal distribution and connector type as the switch
core blade, thus enabling short (one inch) and direct
one-to-one back-plane wiring.

− If the interconnect links use optical fibers, eight additional
optical blades are required to perform the
electrical-to-optical adaptation and vice-versa. For the
same wiring reasons, these blades are interleaved with the
switch core blades, and plugged into the empty slots 1, 3,
5,..., 15.

5.4. Master and Slave Chip Sizing

Figure 4 shows the area utilization and power consump-
tion of the master and slave chips. The x-axis indicates four
logical crosspoint sizes, which correspond to RTT/4, RTT/2,
RTT and 2×RTT packets. The seven parts of the stacked bar
represent the contribution of the SERDES IO interface (TX
and RX), the SERDES SPEX interface (TX or RX), the
logical crosspoints (XPM or XPC), some additional control
for the switch core (CORE), for the switch IO protocol
(SHELL), and some spare area for the global wiring
(SPARE).

Slave chip (XP size of 128): With a die size of approx.
200 mm2, a power consumption of 20 W and a pin count of
740 IO signals, the slave chip is clearly feasible. As expected
from a buffered crossbar implementation, the greatest area
contributor is XPM (46%) with its 1.25 MB of on-chip
memory. A well- known characteristic of distributed archi-
tectures with centralized control is the large amount of

Figure 3. Physical switch core implementation

Slave
Board
(x7)

S
S
S
S

128 Gb/s
128 Gb/s
128 Gb/s
128 Gb/s
128 Gb/s
128 Gb/s
128 Gb/s
128 Gb/s

R

Master
Board
(x1)S

S
128 Gb/s
128 Gb/s
128 Gb/s
128 Gb/s

R

128 Gb/s
128 Gb/s

128 Gb/s
128 Gb/s

iSPEX
eSPEX

iSPEX
eSPEX

eSPEX
iSPEX

eSPEX
iSPEX

M
 iSPEX eSPEX

D

D

D

D

6 The considered SERDES can drive 15 feet of coaxial cable and two connectors, directly from ASIC pin to ASIC pin.

information flowing from the master to the slaves. This
typical drawback also hits the proposed implementation,
particularly on the power consumption side, where the
control-section bandwidth (SPEX-RX) dissipates as much as
the entire data-section bandwidth (IO-RX and IO-TX Ports).

Master chip (XP size of 128): A 4-Tb/s single-chip
implementation of the master, with approx. 540 mm2 and
56 W, exceeds our area and power limits, although it could
be built. In this case the greatest area contributor is XPC,
which represents 54%. Figure 5 shows the area utilization of
multiple configurations with varying number of ports (NxN),
of sub-ports (Sp), of priorities (Pr) and of dedicated MC
locations (Mc) as well as crosspoint buffer sizes (Xp). Given
our requirements (4Sp 8Pr 64Mc 128Xp) and the area and
power limits, Fig. 5 shows that a 2-Tb/s version of the master
chip is feasible (32x32).

We considered the high complexity of a 4-Tb/s single-
chip master less attractive than the following two-step
approach. First, based on the regular and symmetrical

structure of the master, we design a split master chip and use
two identical chips in parallel. This results in a split chip that
has the same number of IO pins as a unsplit chip of the same
configuration, but with only half of the queuing structure
(XPC), half of the speed expansion interface (SPEX), and
half of the switch core control (CORE). Four chip configura-
tions have been sized and are shown in Fig. 5. With this
approach, a 48x48 (3 Tb/s) split master chip can be built in
0.11-!m CMOS process within the die size and power limits.
Second, to realize the 4 Tb/s of aggregate throughput we will
re-map only the master chip to 0.08-!m CMOS to obtain the
64x64 configuration. Note that a scaled-down version of the
master does not impact the slave chip, and that a 64x64 slave
can be operated with a 48x48 master by disabling 16 of the
64 ports.

Adapter and re-driver chips: For space reasons, these
two chips are not discussed, but both meet the area, power,
and pin requirements.

Figure 4. Master and slave chip sizing

20 20 20 20

123 135
159

206

16 32 64 128
Logical Crosspoint Size (packets)

0

50

100

150

200

250

300

Ar
ea

 (m
m

2)

0

5

10

15

20

25

30

Po
w

er
 (W

)

SPARE
SHELL

CORE
XPM

SPEX-RX
IO-RX Ports

IO-TX Ports

Slave (64x64@2Gb/s/port)

55 55 55 56

428 446 477
539

16 32 64 128
Logical Crosspoint Size (packets)

0

100

200

300

400

500

600
Ar

ea
 (m

m
2)

0

10

20

30

40

50

60

Po
w

er
 (W

)

SPARE
SHELL

CORE
XPC

SPEX-TX
IO-RX Ports

IO-TX Ports

Master (64x64@4Gb/s/port)

Figure 5. Area utilization for various single and split master chip configurations.

 6
4x

64
 4

Sp
 8

Pr
 6

4M
c

12
8X

p
 6

4x
64

 4
Sp

 8
Pr

 3
2M

c
12

8X
p

 6
4x

64
 4

Sp
 4

Pr
 6

4M
c

12
8X

p
 6

4x
64

 4
Sp

 8
Pr

 6
4M

c
64

Xp
 6

4x
64

 4
Sp

 4
Pr

 3
2M

c
12

8X
p

 6
4x

64
 4

Sp
 8

Pr
 3

2M
c

64
Xp

 6
4x

64
 1

Sp
 8

Pr
 6

4M
c

12
8X

p
 6

4x
64

 1
Sp

 8
Pr

 3
2M

c
12

8X
p

 6
4x

64
 4

Sp
 8

Pr
 3

2M
c

32
Xp

 6
4x

64
 1

Sp
 4

Pr
 6

4M
c

12
8X

p
 6

4x
64

 4
Sp

 4
Pr

 6
4M

c
64

Xp
 6

4x
64

 1
Sp

 4
Pr

 3
2M

c
12

8X
p

 6
4x

64
 4

Sp
 4

Pr
 3

2M
c

64
Xp

 6
4x

64
 1

Sp
 8

Pr
 6

4M
c

64
Xp

 6
4x

64
 4

Sp
 4

Pr
 3

2M
c

32
Xp

 6
4x

64
 1

Sp
 8

Pr
 3

2M
c

64
Xp

 6
4x

64
 1

Sp
 4

Pr
 6

4M
c

64
Xp

 6
4x

64
 1

Sp
 4

Pr
 3

2M
c

64
Xp

 6
4x

64
 1

Sp
 8

Pr
 3

2M
c

32
Xp

 4
8x

48
 4

Sp
 8

Pr
 6

4M
c

12
8X

p
 6

4x
64

 1
Sp

 4
Pr

 3
2M

c
32

Xp
 4

8x
48

 4
Sp

 8
Pr

 3
2M

c
12

8X
p

 4
8x

48
 4

Sp
 4

Pr
 6

4M
c

12
8X

p
 4

8x
48

 4
Sp

 8
Pr

 6
4M

c
64

Xp
 4

8x
48

 4
Sp

 4
Pr

 3
2M

c
12

8X
p

 4
8x

48
 4

Sp
 8

Pr
 3

2M
c

64
Xp

 4
8x

48
 1

Sp
 8

Pr
 6

4M
c

12
8X

p
 4

8x
48

 1
Sp

 8
Pr

 3
2M

c
12

8X
p

 4
8x

48
 4

Sp
 8

Pr
 3

2M
c

32
Xp

 4
8x

48
 1

Sp
 4

Pr
 6

4M
c

12
8X

p
 4

8x
48

 4
Sp

 4
Pr

 6
4M

c
64

Xp
 4

8x
48

 1
Sp

 4
Pr

 3
2M

c
12

8X
p

 4
8x

48
 4

Sp
 4

Pr
 3

2M
c

64
Xp

 4
8x

48
 1

Sp
 8

Pr
 6

4M
c

64
Xp

 4
8x

48
 4

Sp
 4

Pr
 3

2M
c

32
Xp

 4
8x

48
 1

Sp
 8

Pr
 3

2M
c

64
Xp

 4
8x

48
 1

Sp
 4

Pr
 6

4M
c

64
Xp

 4
8x

48
 1

Sp
 4

Pr
 3

2M
c

64
Xp

 4
8x

48
 1

Sp
 8

Pr
 3

2M
c

32
Xp

 4
8x

48
 1

Sp
 4

Pr
 3

2M
c

32
Xp

 3
2x

32
 4

Sp
 8

Pr
 6

4M
c

12
8X

p
 3

2x
32

 4
Sp

 8
Pr

 6
4M

c
64

Xp

Switch Configuration

0

100

200

300

400

500

250

Ar
ea

 (m
m

2)

Single master chip Split master chip

 48x48 4Sp 8Pr 64Mc 128Xp

6. Simulated Performance

In this section we evaluate the performance of the
proposed system by means of simulation. We have simulated
a 64x64 system (16 ports, 4 sub-ports) with 8 classes of
service and an RTT of 64 packet cycles between line cards
and switch core. Every crosspoint memory has 128 (2×RTT)
packet locations, i.e., 32 per sub-port. The egress fabric
interface of the line card has 1024 packet locations, 256 per
sub-port, whereas the ingress side has infinite buffer space,
so that no losses occur.

Although the system is designed with a line-rate escala-
tion U = 1.6, we have simulated it with a speedup of one
because we expect this line speedup to be canceled by the
packet header and segmentation overhead.

The traffic is synthetic, consisting of bursty arrivals with
geometrically distributed burst sizes, where a burst is a
sequence of consecutive packets from one input to the same
output (average burst size = 30 packets). The bursts are
uniformly distributed over the 8 available CoS, i.e. Ci =
12.5% of the offered load for all i ∈ {0,1,...,7}, and the desti-
nations are uniformly distributed over all outputs.

The multi-layer QoS schedulers can be configured in
various combinations of strict priority and/or weighted
scheduling modes. Here we study the case in which the
multi-layer QoS schedulers are configured to operate in strict
priority mode, i.e. the highest-priority class (C0) always goes
first.

Figure 6 shows the throughput as a function of the input
load, whereas Fig. 7 shows the overall system delay as a
function of the input load, each figure containing 9 curves:
one per CoS (C0-C7) plus one aggregate curve for all traffic
(ALL). The x-axis shows the overall input load as a fraction
of the maximum bandwidth. The y-axis in Fig. 6 shows the
throughput, also as a fraction of the maximum bandwidth,
whereas the y-axis in Fig. 7 shows the average packet delay
expressed in packet cycles of the switch core. Note that the
packet cycle of the switch core is four times shorter than the
that of the external sub-ports (OC-768 versus OC-192).

The throughput equals the input load up to the simulated
maximum load of 98%. This demonstrates that even under
quite bursty traffic with heavy congestion (high load) the
system is free of HoL blocking. The system has been
rigorously designed to eliminate HoL blocking, because
1) per-destination VOQs (one per output per sub-port and

per priority) are used at the ingress,
2) the buffered crossbar switch core eliminates output buffer

hogging,
3) dedicated buffers per sub-port at the egress fabric inter-

face eliminate egress buffer hogging, and
4) per-destination hop-by-hop credit flow control allows

flows to non-congested ports to proceed while flows to
congested ports are stopped.
Moreover, the system remains work-conserving under

completely unbalanced, i.e. totally directional, traffic [6,8].
This behavior is guaranteed by the crosspoint memory size,

which provides sufficient credits to fully utilize the available
link throughput and therefore avoid OQ underflow and the
ensuing loss of throughput.

The delay curves clearly show the CoS differentiation
and ordering, with the top classes (C0–C3) being largely
unaffected by the load increase, whereas the delay for the
lower-priority classes increases drastically. Figures 8-10
show the delay in the ingress fabric interface buffers, in the
switch core, and in the egress fabric interface buffers,
respectively. We observe that at loads up to 85% the majority
of the delay occurs in the eFI buffers, whereas at higher
loads, as the eFI buffers saturate, the distribution shifts
towards the switch and then, as the switch buffers also
saturate, towards the iFI. Figure 11 illustrates this and shows
the relative delay contributions of the iFI, switch core, and
eFI for all priority classes together as a function of input
load.

Figure 10 exhibits a non-intuitive behavior: the average
latency experienced in the eFI buffer (and to a lesser degree
in the switch) of all but the lowest-priority-class (C7) packets
decreases as the load increases beyond a certain point
(80%–90%, depending on the priority class), although the
overall system packet latency still increases. This behavior
results from a trade-off between sub-port fairness and CoS
scheduling. An in-depth discussion on this behavior would
exceed the scope of this paper.

Figure 6. Throughput versus input load

Figure 7. System delay versus input load

0.5 0.6 0.7 0.8 0.9 1

Input load

0

0.2

0.4

0.6

0.8

1

Th
ro

ug
hp

ut

ALL
C0-C7

0.5 0.6 0.7 0.8 0.9 1

Input load

10

100

1000

10000

100000

D
el

ay
 (p

ac
ke

t c
yc

le
s) ALL

C0
C1
C2
C3
C4
C5
C6
C7

7. Conclusions

We have presented a multi-terabit single-stage distributed
packet-routing switch architecture which combines the scal-
ability of input-buffered switches with the performance cha-
racteristics of output-buffered switches.

Based on this architecture, we have presented the design
of a 4-Tb/s switch fabric with up to 256 ports, and shown the
practical implementation of this system using today’s
state-of-the-art CMOS technology. What distinguishes our
system is that it supports cables of up to 100 feet between the
line cards and the switch core, without performance degrada-
tion under any traffic pattern. Such distances result in large
round-trip times, and arise from the necessity to distribute
multi-terabit systems over multiple shelves and racks.

At the time of writing, this architecture is finalized,
simulated, synthesized (major blocks), and ready to be imple-
mented.

Acknowledgments

The authors extend their special thanks to the IBM Zurich
Research Lab’s switch team as well as the PRIZMA
Technology group of IBM La Gaude, France, and the logical
and physical design team of the IBM Laboratory in
Böblingen, Germany, for their substantial contributions to
this challenging project.

References

[1] J.W. Causey and H.S. Kim, “Comparison of Buffer Alloca-
tion Schemes in ATM Switches: Complete Sharing, Partial
Sharing, and Dedicated Allocation”, Proc. ICC '94, pp.
1164-1168.
[2] A.K. Gupta, L. Orozco Barbosa, and N.D. Georganas,
“16x16 Limited Intermediate Buffer Switch Module For ATM
Networks”, Proc. GLOBECOM’91, pp. 939-943.
[3] Y. Doi and N. Yamanaka, “A High-Speed ATM Switch with
Input and Cross-Point Buffers”, IEICE Trans. Commun., vol.
E76-B, no. 3, March 1993, pp. 310-314.

[4] D.C. Stephens and H. Zhang, “Implementing Distributed
Packet Fair Queueing in a Scalable Switch Architecture”, Proc.
IEEE INFOCOM '98, San Francisco, CA, vol. 1, pp. 282-290.
[5] M. Nabeshima, “Performance Evaluation of a Combined
Input- and Crosspoint-Queued Switch”, IEICE Trans. Commun.,
vol. E83-B, no. 3, March 2000, pp. 737-741.
[6] R. Rojas-Cessa, E. Oki, Z. Jing, and H. Jonathan. Chao,
“CIXB-1: Combined Input-One-cell-Crosspoint Buffered
Switch”, Proc. 2001 IEEE Workshop on High Performance
Switching and Routing, Dallas, TX, May 2001, pp. 324-329
[7] T. Javidi, R. Magill, and T.Hrabik, “A High-Throughput
Scheduling Algorithm for a Buffered Crossbar Switch Fabric”,
Proc. ICC 2001, Helsinki, Finland, June 2001, vol. 5, pp.
1586-1591.
[8] R. Rojas-Cessa, E. Oki, and H. Jonathan. Chao, “CIXOB-k :
Combined Input-Crosspoint-Output Buffered Packet Switch”,
Proc. GLOBECOM '01, vol. 4, pp. 2654-2660.
[9] K. Yoshigoe and K.J. Christensen, “A Parallel-Polled Virtual
Output Queued Switch with a Buffered Crossbar”, Proc. 2001
IEEE Workshop on High Performance Switching and Routing,
Dallas, TX, May 2001, pp. 271-275.
[10] N. McKeown, “The iSLIP Scheduling Algorithm for
Input-queued Switches”, IEEE/ACM Trans. Networking, vol. 7,
no. 2, April 1999, pp. 188-201

 Figure 8. Ingress delay versus load Figure 9. Switch core delay versus load Figure 10. Egress delay versus load

0.5 0.6 0.7 0.8 0.9 1
1

10

100

1000

10000

0.5 0.6 0.7 0.8 0.9 1
1

10

100

1000

10000

0.5 0.6 0.7 0.8 0.9 1
1

10

100

1000

10000

ALL
C0
C1
C2
C3
C4
C5
C6
C7

Figure 11. Relative delay composition (ALL)

0.5 0.6 0.7 0.8 0.9 1

Input load

1

10

100

R
el

at
iv

e
de

la
y

co
nt

rib
ut

io
n

(%
)

Total
Ingress FI
Egress FI
Switch Core

[11] S-T. Chuang, A. Goel, N. McKeown, and B. Prabhakar,
“Matching Output Queueing with a Combined Input Output
Queued Switch”, IEEE J. Sel. Areas Commun., vol. 17, no. 6,
June 1999, pp. 1030-1039.
[12] P. Krishna, N. Patel, A. Charny, and R.J. Simcoe, “On the
Speedup Required for Work-conserving Crossbar Switches”,
IEEE J. Sel. Areas Commun., vol. 17, no. 6, 1999, pp. 1057-
1066.
[13] M. Katevenis, D. Serpanos, and E. Spyridakis, “Switching
Fabrics with Internal Backpressure Using the ATLAS I
Single-chip ATM Switch”, Proc. GLOBECOM '97, Phoenix,
AZ, Nov. 1997, pp. 242-246.
[14] F.M. Chiussi, J.G. Kneuer, and V.P. Kumar, “Low-cost
Scalable Switching Solution for Broadband Networking: The
ATLANTA Architecture and Chipset”, IEEE Commun. Mag.,
vol. 35, Dec. 1997, pp. 44-53.

[15] C. Minkenberg and T. Engbersen, “A Combined Input and
Output Queued Packet-switched System Based on PRIZMA
Switch-on-a-Chip Technology”, IEEE Commun. Mag., vol. 38,
Dec. 2000, pp. 70-77.
[16] R.P. Luijten, F. Abel, M. Gusat, and C. Minkenberg,
“Optimized Architecture and Design of an Output-Queued
CMOS Switch Chip”, Proc. 10th Int'l Conf. on Computer
Communications and Networks, Scottsdale, AZ, Oct. 2001, pp.
448-453.
[17] M.G.H. Katevenis, “Fast Switching and Fair Control of
Congested Flow in Broadband Networks”, IEEE J. Sel. Areas
Commun., vol. 5, no. 8, Oct. 1987, pp. 1315-1326.

