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Abstract

Peer-to-peer overlay networks offer a novel platform for a variety of scalable and decentralized
distributed applications. Systems known as Distributed Hash Tables provide efficient and fault-
tolerant routing, object location and load balancing within a self-organizing overlay network. The
alternative solution we propose is an overlay location and routing infrastructure that efficiently uses
minimal local information to achieve global routing. The main novelty of our approach consists
in fitting the overlay network in a hyper-toroidal space and building it with “locality awareness”.
Thanks to this specific network construction phase, forwarding decisions always take into account
“locality preservation” in an implicit manner, leading to significant improvements in end-to-end
delays and path lengths.

With this overlay network it is possible to obtain global routing by adding minimal information
to each single host and by making only local forwarding decisions. Our analysis shows how the
average path length coming from the overlay routing is close to the optimal average path length
of the underlaying network: on average, they only differ by a factor of 2. Furthermore, “locality
preservation” has a significant impact on the end-to-end latency of the routing process as well.

Such a system can be viewed as novel in the field of peer-to-peer data location and addressing,
allowing the development of new applications in a real “low-latency” environment.
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CHAPTER 1. INTRODUCTION

1.1 Scenario overview

The computing world is experiencing a transition from desktop PCs to connected
information devices, which will profoundly change the way information is used. The
number of devices capable of connecting to the Internet continually increases: laptops,
cell phones, car GPS, and uncountable Bluetooth devices. The need for a global
system which could add its own reliable mechanisms to the advantages offered by
diffusion over the Internet, becomes more significant every day.

The ever increasing size of routing tables represents a significative problem when
designing large-scale network protocols. After years of predictable growth, in the
first semester of 2001, the size of routing tables exploded, topping 104,000 entries in
some cases. Even more troubling is evidence that frequent updates to the routing
table entries by network managers are causing instability in the Internet’s backbone
routing infrastructure. Nobody knows how big or how active routing tables can get
before the Internet’s core routers start crashing. The exchange of routing information
is even larger.

1.1.1 Routing table scalability

The routing table is the complete set of routes that describe the origin of every routed
address within the Internet. As new networks connect to the Internet they announce
their address prefix into this table. As the Internet grows so does the size of this
table. Looking at this table in regular intervals can give us a good idea of what is
happening in the routing system.

In routing circles you will often hear talk about the “Big Question”: how will the
routing scale deal with the demands of tomorrow’s Internet? While many aspects of
the Internet are prone to scaling pressures, routing appears to be one of the technolo-
gies at the tip of the scaling problem, and the issues involved are illustrative of the
more general issues of technology design in a rapidly expanding domain.

There is quite a story behind the chart in Figure 1.1, and it can tell us a lot about
what is likely to happen in the future. The chart appears to have four distinct phases:
exponential growth between 1988 and 1994, a correction during 1994, linear growth
from 1995 to 1998, and a resumption of exponential growth in the past two year, and
some oscillation in the past few months.

Prior to 1994 the Internet used a routing system based on classes of addresses.
One half of the address space was termed class-A space, and used a routing element of
8 bits (or a /8) and the remaining 24 bits were used to number hosts in the network.
One quarter of the space was termed class-B space, with 16 bits of routing address
(/16) and 16 bits of host address space, and one eighth was the Class-C space, with
24 bits of routing address (/24) and 8 bits of host space. According to the routing
system, routed networks came in just three sizes, small (256 hosts), medium (65,535
hosts) and large (16,777,215 hosts). Real routed networks however came in different
sizes, most commonly one or two thousand hosts. For such networks a Class-B routing
address was a severe case of oversupply of addresses, and the most common technique
was to use a number of Class-C networks. As the network expanded so did the
number of Class-C network routes appearing in the routing table. By 1992 it was
becoming evident that if we did not do something quickly the routing table would
expand beyond the capabilities of the routers being used at the time, and by “quickly”
we were talking months rather than years.

The solution was termed CIDR or Classless Inter-Domain Routing. The technique
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CHAPTER 1. INTRODUCTION

was elegant and effective. Instead of dividing the network into just three fixed prefix
lengths, each routing advertisement was allowed to have an associated prefix length.

CIDR lead to the other change in routing policy, namely that of provider-based ad-
dresses and provider route aggregation. Instead of allocating network address blocks
to every network, the address registry allocated a larger address block (a /19 prefix)
to a provider, who in turn allocated smaller address blocks from this block to each
customer. Now a large number of client networks would be encompassed by a single
provider routing advertisement. This technique, hierarchical routing, is used in a
number of network architectures, and is a powerful mechanism to aggregate routing
information.

From 1995 to 1998, the combination of CIDR and hierarchical provider routing
proved very effective. While the Internet continued to double in size each year (or
even faster), the routing space grew at a linear rate, increasing in size by some 10,000
routes per year. For the routing system this was good news: vendors were able to
construct larger routers at a pace that readily matched the growth of the Internet,
and a combination of Moore’s law in hardware and CIDR and hierarchical routing in
the routing system proved very effective in coping with the dramatic growth of the
Internet.

But midway through 1998 something changed. The routing system stopped grow-
ing at a linear rate and resumed a pattern of exponential growth, at a rate of a little
les than 50% each year. While the size of the routing table was some 105,000 routes
in mid-2001, in a year’s time it could be some 150,000 routes and 225,000 routes the
year after, and so on. Within six years, the table will be reach some 1,000,000 routes
at this rate of growth. Figure 1.1 shows the latest evolution of active BGP entries in
Internet core routers.

Figure 1.1: Active BGP entries until 14th June 2002 [1].

There are many factors driving this pattern of routing-table growth, including
detailed connectivity policies being expressed in fine-grained prefixes, traffic engi-
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CHAPTER 1. INTRODUCTION

neering across a dense mesh of interconnectivity, and even some level of operator
inattention to aggregation management. But if there was one factor that appears to
be the predominant driver of growth, then it would be, in one word, multi-homing.
Multi-homing is when an ISP has a number of external connections to other networks.
This may take the form of using a number of upstream ISPs as service providers, or
using a combination of upstream providers and peer relationships established either
by direct links or via a peering exchange. The way in which multi-homing impacts
the global BGP table is that multi-homing entails pushing small address fragments
into the global table with a distinct connection policy that differs from that of any
of its upstream neighbors. What we are seeing in this sharp rise in the size of the
BGP table is a rapid increase in the number of small address blocks being announced
globally.

Connecting to multiple upstream services and connecting to peering exchanges
bith imply the use of more access circuits. When the cost of these circuits was high, the
offset in terms of benefit was low enough to negate most of the potential benefits of the
richer connectivity mesh. Over the past few years the increasing level of competition
in the largely deregulated activity of communications agents provision resulted in
reductions in the price of these services. This, togheter with an increasing technical
capability in the ISP sector, has resulted in the increasing adoption of multi-homed
ISPs. In the quest for ever increasing resilience, we are also starting to see multi-
homed customers in addition to ISPs. In the routing system we are seeing the most
challenging of environments: a densely interconnected semi-mesh of connectivity, with
very fine-grained policies being imposed on top of this connectivity. Any topological
or other form of logical hierarchical abstraction is largely lost in such an environment,
and the routing system is facing increasing overheads in its efforts to converge the
distributed algorithm to a stable state.

If multi-homing becomes a common option of corporate customers, then the func-
tion of providing resilience within a network will shift from a value-added role in the
network to that of a customer responsibility. And if customers are not prepared to pay
for highly robust network services from any single ISP then there is little economic
incentive for any single ISP, to spend the additional money to engineer robustness
within their service. From that perspective, what the ISP industry appears to be
heading into is a case of a somewhat disturbing self-fulfilling prophesy of minimalist
network engineering with no margin for error.

But then, as the economists tell us, such are the characteristics of a highly com-
petitive open commodity market. That is quite a story that emerges from a simple
chart of the size of the BGP routing table.

1.1.2 Peer-to-peer systems

Peer-to-peer (P2P) Internet applications have recently been popularized through file-
sharing applications such as Napster [3], Gnutella [2], and Freenet [10]. While much
of the attention has been focused on the copyright issues raised by using these appli-
cations, P2P systems have many interesting technical aspects such as decentralized
control, self-organization and adaptation. They can be characterized as distributed
systems in which all nodes have identical capabilities and responsibilities and all com-
munication is potentially symmetric.

Even though they were introduced only a few years ago, P2P file-sharing systems
are now one of the most popular Internet application and have become a major
source of Internet traffic. P2P has been generating lots of attention. Like PCs in the
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CHAPTER 1. INTRODUCTION

1980s and the Web in the 1990s, industry watchers say it is one of those disruptive
technologies that will turn the world of computing upside-down.

P2P represents a class of applications that take advantage of resources (storage,
cycles, content, human presence) available at the edges of the Internet. Because
accessing these decentralized resources means operating in an environment of unstable
connectivity and unpredictable IP addresses1, P2P nodes must operate outside the
DNS system and have significant or total autonomy from central servers.

Until 1994, the whole Internet had one model of connectivity. Machines were
assumed to be always on, always connected, and assigned permanent IP addresses.
The DNS system was designed for this environment, where a change in IP address
was assumed to be abnormal and rare, and could take days to propagate through the
system.

With the appearance of Mosaic [29], another model began to spread. To run a
Web browser, a PC, not connected before, needed to be connected to the Internet
over a modem, with its own IP address. This created a second class of connectivity,
because PCs would enter and leave the network cloud frequently and unpredictably.

Furthermore, ISPs began to assign IP addresses dynamically, giving each PC a
different, possibly masked, IP address with each new session and justifying it with
the reason that there were not enough IP addresses available to handle the sudden
demand caused by Mosaic. This instability prevented PCs from having DNS entries,
and therefore prevented PC users from hosting any data or net-facing applications
locally.

For a few years, treating PCs as dumb but expensive clients worked well. PCs
had never been designed to be part of the fabric of the Internet, and in the early days
of the Web, the toy hardware and operating systems of the average PC made it an
adequate life-support system for a browser, but good for little else.

Over time, though, as hardware and software improved, the unused resources that
existed behind this veil of second-class connectivity started to look like something
worth getting at. At a conservative estimate, the world’s Net-connected PCs currently
host an aggregate ten billion MHz of processing power and ten thousand terabytes of
storage, assuming only 100 million PCs among the net’s 300 million users, and only
a 100 MHz chip and 100 Megabyte drive in the average PC.

P2P computing is not exactly new. As many as 30 years ago, companies were
working on architectures that would now be labeled P2P. But today, several factors
promotethe P2P movement: inexpensive computing power, bandwidth, and storage.
P2P computing is the sharing of computer resources and services by direct exchange
between systems. These resources and services include the exchange of information,
processing cycles, cache storage, and disk storage for files. P2P computing takes
advantage of existing desktop computing power and networking connectivity, allowing
economical clients to leverage their collective power to benefit the entire enterprise.

In a P2P architecture, computers that have traditionally been used solely as clients
communicate directly among themselves and can act as both clients and servers,
assuming whatever role is most efficient for the network. This reduces the load on
servers and allows them to perform specialized services (such as mail-list generation,
billing, etc.) more effectively. At the same time, P2P computing can reduce the
need for IT organizations to increase parts of their infrastructure in order to support
certain services, such as backup storage.

In the enterprise, P2P is about more than just the universal file-sharing model

1Most dialup services are based on dynamic IP (re-)assignment, DHCP and/or NAT protocols.
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CHAPTER 1. INTRODUCTION

popularized by Napster. Business applications for P2P computing cover several sce-
narios.

1. Collaboration. P2P computing empowers individuals and teams to create and
administer real-time and off-line collaboration areas in a variety of ways, whether
administered, un-administered, across the Internet, or behind the firewall. P2P
collaboration tools also mean that teams have access to the newest data. Col-
laboration increases productivity by decreasing the time for multiple reviews by
project participants and allows teams in different geographic areas to work to-
gether. As with file sharing, if implemented efficiently, it can decrease network
traffic by eliminating e-mail and decreases server storage needs by storing the
project locally.

2. Edge services. This is exactly what you think: Akamai for the enterprise. P2P
computing can help businesses deliver services and capabilities more efficiently
across diverse geographic boundaries. In essence, edge services move data closer
to the point at which it is actually consumed, acting as a network caching
mechanism. For example, a company with sites on several continents needs
to provide the same standard training across these continents using the Web.
Instead of streaming the database for the training session on one central server
located at the main site, the company can store the video on local clients, which
act essentially as local database servers. This speeds up the session because the
streaming happens over the local LAN instead of the WAN. It also utilizes
existing distributed storage space, thereby saving money by eliminating the
need for local storage on servers (e.g Groove Networks, Lotus Notes).

3. Distributed computing and resources. P2P computing can help businesses with
large-scale computer processing needs. Using a network of computers, P2P
technology can use idle CPU MIPS and disk space, allowing businesses to dis-
tribute large computational jobs across multiple computers. In addition, results
can be shared directly between participating peers. The combined power of
previously untapped computational resources can easily surpass the normally
available power of an enterprise system without distributed computing. The
results are faster completion times and lower costs because the technology takes
advantage of power available on client systems.

4. Intelligent agents. Peer to peer computing also allows computing networks to
dynamically work together using intelligent agents. Agents reside on peer com-
puters and communicate various kinds of information back and forth. Agents
may also initiate tasks on behalf of other peer systems. For instance, Intelligent
agents can be used to prioritize tasks on a network, change traffic flow, search
for files locally or determine anomalous behavior and stop it before it effects the
network, such as a virus.

P2P designs harness huge amounts of resources: the content advertised through Nap-
ster has been observed to exceed 7 TB of storage on a single day, without requiring
centralized planning or huge investments in hardware, bandwidth, or rack space. As
such, P2P file sharing may lead to new content distribution models for applications
such as software distribution, file sharing, and static web content delivery.

Unfortunately, most of the current P2P designs are not scalable. For example,
in Napster a central server stores the index of all the files available in the entire
Napster community. To retrieve a file, a user queries this central server using the
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desired file’s well-known name or other search criteria and obtains the IP address of
a user machine storing the requested file. The file is then downloaded directly from
this user machine. Thus, although Napster uses a P2P communication model for the
actual file transfer, the process of locating a file is still very much centralized. This
makes it both expensive (to scale the central directory) and vulnerable (as there is a
single point of failure). Gnutella goes a step further and decentralizes the file-location
process as well. Users in a Gnutella network self-organize into an application-level
mesh on which requests for a file are flooded with a certain scope. Flooding every
request is clearly not scalable and, because the flooding has to be curtailed at some
point, may fail to find content that is actually in the system. We soon recognized that
central to any P2P system is the indexing scheme used to map file names (whether
well-known or discovered through some external mechanism) to their location in the
system. That is, the P2P file transfer process is inherently scalable, but the difficult
part is finding the peer from which to retrieve the file. Thus, a scalable P2P system
requires, at the very least, a scalable indexing mechanism.

There are at least three key problems:

⇁ Firstly, it is necessary to have efficient algorithms for data location and routing
within the network. The term efficient should be interpreted in terms of query
latency and routing table size.

⇁ Secondly, scalability is not a trivial problem. For an example, look at the
Gnutella network: it can have serious scalability problems because the data-
location mechanism (based on broadcast to all neighbor nodes) is not efficient
at all for large populations of nodes or high query latencies.

⇁ Finally, attention must be paid to the network convergence and self-stabilization:
P2P network usually turn out to be very dynamic because most nodes uses
dialup services. The continuous joining and leaving of nodes should not have
influence the stability of the network. Any kind of oscillation or meta-stability
should be prevented.

1.1.3 Decentralized storage systems

Decentralized systems seem to offer great opportunities (in this research field). Their
main advantages are

⇁ the opportunistic sharing of Internet connected computers is a low cost method
for achieving high computational power;

⇁ data replication over multiple hosts ensures high resilience and fault tolerance:
contents can be retrieved even when nodes go down or misbehave potentially
with malicious intent;

⇁ smart content location is a powerful means to improve query latencies, to avoid
wasting network bandwidth and to greatly enhance the overall performance;

⇁ preserving the locality of accesses improves the overall performance.

The need for reliable storage systems has been an important and partly open problem
in modern communication systems. On the one hand, the Internet expansion has
created great opportunities for decentralized, smart systems. On the other hand, it
has also created new needs in the fields of security, performance, and reliability. The
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growing amount of data exchanged every day on the Internet needs more and more
reliable systems. The availability of data is threatened seriously both by the increasing
load that most servers are requested to satisfy, and by the increasing number of denial-
of-service (DoS) attacks. Some current research efforts are also in the field of data
sharing in multiple contexts, i.e. data sharing for mobile users or sharing between
home and office.

Even if storage systems constitute a great investment field, they are not capable
of guaranteeing a democracy in storage. This means that they cannot share data over
multiple hosts in an attempt to distribute the load as much as possible. The research
efforts in this field often aim more at eliminating the symptoms than at fixing the
root of the problem. In fact there are different points of view of possible solutions,
such as

⇁ to prevent overload by increasing capacity of the network;

⇁ to increase security against DoS attack;

⇁ to design complex load-balancing systems suited for each specific scenario;

1.2 Distributed Hash Tables

Even though they were introduced only a few years ago, P2P file-sharing systems are
now one of the most popular Internet applications and have become a major source
of Internet traffic. Thus, it is extremely important that these systems be scalable.
Unfortunately, the initial designs of popular P2P systems have significant scaling
problems; for example, Napster [3] has a centralized directory service, and Gnutella
[2] employs a flooding-based search mechanism that is not suitable for large systems.

In response to these scaling problems, several research groups have (independently)
proposed a new generation of scalable P2P systems that support a distributed hash
table (DHT) functionality; among them are Tapestry [40], Pastry [35], Chord [37], and
Content Addressable Networks (CAN [32]). In these systems, that we call Distributed
Hash Tables (DHTs), files are associated with a key (produced, for instance, by
hashing the file name), and each node in the system is responsible for storing a
certain range of keys. An example is shown in Figure 1.2.

Hash 3556..03

Filename Key

Figure 1.2: Example: from file name to key.

There is one basic operation in these DHT systems, lookup(key), which returns
the identity (e.g., the IP address) of the node storing the object with that key. This
operation allows nodes to put and get files based on their key, thereby supporting the
hash-table-like interface. This DHT functionality has proved to be a useful substrate
for large distributed systems; a number of projects are proposing to build Internet-
scale facilities layered above DHTs, including distributed file systems [25, 11, 13],
application-layer multicast services [41, 33], event notification services [36, 9], and
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chat services. With so many applications being developed in so short a time, we
expect the DHT functionality to become an integral part of the future P2P landscape.

The DHT nodes form an overlay network, with each node having several other
nodes as neighbors. When a lookup(key) is issued, the lookup is routed through the
overlay network to the node responsible for that key. The scalability of these DHT
algorithms is tied directly to the efficiency of their routing algorithms, given that
each one listed above (Tapestry, Pastry, Chord, and CAN) employ a different routing
algorithm.

1.3 Project description

The network model analyzed in this project is completely decentralized and based on
a pure2 P2P structure.
User-oriented models include systems in which users are conscious of the global

complexity and actively perform precise actions to improve reliability and/or perfor-
mance. A simple example of a user-oriented model is the download of a file available
from multiple mirror sites. In this case, even if the availability of the document
is guaranteed, the end-user holds the responsibility of choosing mirror. Here, user-
oriented models [23] have been discarded because the project goal is to build up a
robust system in which end-users do not need to be conscious of data location and
of the addressing subsystem. The network itself takes care of locating and retrieving
documents. Particular attention has been paid to performance, especially in terms
of network latency and memory usage efficiency at each node (small amount of per-
request state or, better, a stateless network and small routing tables).

The overlay network designed in our project does not rely on a specific well-defined
OSI layer. The only assumption is that at least a point-to-point network protocol is
provided. A fully functional IP layer adapts perfectly to the network structure of
this project, but also any other kind of basic underlay routing protocol is well suited.
If one wants to make a strict classification our overlay network is surely above layer
three; probably it best fits into layer five (Session), but in general the nature of
overlay networks breaks the layering division.

For the routing capabilities, the project proposes a possible alternative to standard
routing protocols. Using them as a basic layer, the purpose is to build a higher layer
that takes care of data location and routing in such a distributed environment. So the
design does not aim at substituting the routing protocols currently used in Internet,
but rather at a relatively “new” solution based on them.

The main goal of achieving an efficient protocol of routing has been reached by
adding minimal information in each host of the network. The focus is mainly on
efficient data-lookup methods in a large-scale distributed environment: a distributed
lookup primitive able to locate specific data or documents in an efficient manner.
Efficiency is “measured” in a low latency environment: data location has to be as
fast as possible to result in acceptable performance even in the case of low latency
applications.

The main goals of the project can be summarized as follows:

⇁ simplifying routing: efficient mechanism, even using minimal information;

⇁ efficiently content addressing: data location in a purely P2P system;

2Pure P2P means completely decentralized: the system does not rely on any centralized database,
as for example as DNS does.
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⇁ topology awareness to improve end-to-end performance when delivering mes-
sages.

Finally there are various environments in which this project can be realized. The
common feature of these environments is the need of a distributed/decentralized ap-
plication for data exchange among multiple hosts. In addition to the most common
file-sharing applications that made systems such as Napster or Gnutella famous, this
project has mainly been created with two environments in mind:

⇁ Distributed robust data storage: multiple contents can be inserted into the
network merely by specifying the content name. The network itself is responsible
for addressing each content, storing it in a convenient fashion. Whenever a
content is requested, our smart network can easily recover it from the best
location, usually that is the one closest to the user (in terms of metrics or
latencies).

⇁ Multiplayer distributed gaming networks: this is typically an example of a low
delay/latency data retrieval. We could even think of completely serverless gam-
ing network, in which each peer can act as player or as routing node. In this
case it is not possible to locate where the game code runs. As players are located
in a distributed physical space, the game itself runs in a distributed fashion.

1.4 Related Work

In this section we review some of the existing routing algorithms. As input all of them
take a key and, as output, route a message to the node responsible for that key. The
keys are strings of digits of some length. Nodes have identifiers, taken from the same
space as the keys (i.e., same number of digits). Each node maintains a routing table
consisting of a small subset of nodes in the system. When a node receives a query for
a key for which it is not responsible, the node routes the query to the neighbor node
that makes the most “progress” towards resolving the query. The notion of progress
differs from algorithm to algorithm, but in general is defined in terms of some distance
between the identifier of the current node and the identifier of the queried key.

1.4.1 Landmark routing

Plaxton et al. [31] developed what probably was the first routing algorithm that could
be scalably used by DHTs. Although not intended for use in P2P systems, because
it assumes a relatively static node population, it provides very efficient routing of
lookups. The routing algorithm works by “correcting” a single digit at a time, for
example: if node number 36278 receives a lookup query with key 36912, which matches
its first two digits, the routing algorithm forwards the query to a node that matches
the first three digits (e.g., node 36955). To do this, a node needs to have, as neighbors,
nodes that match each prefix of its own identifier but differ in the next digit. For a
system of n nodes, each node has on the order of O(n) neighbors. As one digit is
corrected each time the query is being forwarded, the routing path is at most O(n)
overlay (or application-level) hops. This algorithm has the additional property that
if the n2 node-to-node latencies (or “distances” according to some metric) are known,
the routing tables can be chosen to minimize the expected path latency and, moreover,
the latency of the overlay path between two nodes is within a constant factor of the
latency of the direct underlying network path.
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The Plaxton location and routing system provides several desirable properties for
both routing and location:

⇁ Simple Fault Handling: Because routing only requires that nodes match a cer-
tain suffix, there is potential to route around any single link or server failure by
choosing another node with a similar suffix.

⇁ Scalable: It is inherently decentralized, and all routing is done using locally
available data. Without a point of centralization, the only possible bottleneck
exists at the root node.

⇁ Exploiting Locality: With a reasonably distributed namespace, resolving each
additional digit of a suffix reduces the number of satisfying candidates by a
factor of the ID base b (the number of nodes that satisfy a suffix with one more
digit specified decreases geometrically). The path taken to the root node by the
publisher or server S storingO and the path taken by client C will likely converge
quickly, because the number of nodes to route to drops geometrically with each
additional hop. Therefore, queries for local objects are likely to quickly run into
a router with a pointer to the object’s location.

⇁ Proportional Route Distance: Plaxton has proven that the total network dis-
tance traveled by a message during both the location and the routing phase is
proportional to the underlying network distance, assuring us that routing on
the Plaxton overlay incurses a reasonable overhead.

There are, however, serious limitations to the original Plaxton scheme:

⇁ Global Knowledge: To achieve a unique mapping between document identifiers
and root nodes, the Plaxton scheme requires global knowledge at the time that
the Plaxton mesh is constructed. This global knowledge greatly complicates the
process of adding and removing nodes from the network.

⇁ Root Node Vulnerability : As a location mechanism, the root node for an object
is a single point of failure because it is the node that every client relies on
to provide an object’s location information. Whereas intermediate nodes in
the location process are interchangeable, a corrupted or unreachable root node
would make objects invisible to distant clients who do not meet any intermediate
hops on their way to the root.

⇁ Lack of Ability to Adapt: While the location mechanism exploits good locality,
the Plaxton scheme lacks the ability to adapt to dynamic query patterns, such as
distant hotspots. Correlated access patterns to objects are not exploited, and
potential trouble spots are not corrected before they cause overload or cause
congestion problems in a wide area. Similarly, the static nature of the Plaxton
mesh means that insertions could only be handled by using global knowledge to
recompute the function for mapping objects to root nodes.

1.4.2 Tapestry

Tapestry [40] uses a variant of the Plaxton algorithm. The modifications ensure that
the design, originally intended for static environments, can adapt to a dynamic node
population. The modifications are too complicated to describe them in this short
review; for details, the reader is refered to [40]. However, the algorithm maintains the
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properties of having O(log n) neighbors and routing with path lengths of O(log n)
hops.

1.4.3 Pastry

In Pastry [35], nodes are responsible for keys that are the numerically closest (with the
key-space considered as a circle ). Keys and node IDs are from the same name space.
The neighbors consist of a Leaf Set L which is the set of |L| closest nodes (half larger,
half smaller). Correct, but not necessarily efficient, routing can be achieved with this
leaf set. To achieve more efficient routing, Pastry has another set of neighbors spread
out in the key space (in a manner not further described here but somehow similar to
the Plaxton approach). Routing consists of forwarding the query to the neighboring
node that has the longest shared prefix with the key (and, in the case of ties, to the
node with the identifier that is numerically closest to the key). Pastry has O(log n)
neighbors and routes within O(log n) hops.

1.4.4 Chord

Chord [37] also uses a one-dimensional circular key space. The node responsible for
the key is the node whose identifier most closely follows the key (numerically); that
node is called the key’s successor. Chord maintains two sets of neighbors. Each node
has a successor list of k nodes that immediately follow it in the key space. Routing
correctness is achieved with these lists. Routing efficiency is achieved with the finger
list of O(log n) nodes spaced exponentially around the key space. Routing consists of
forwarding to the node closest, but not past, the key; path lengths are O(log n) hops.

The basic idea of this routing protocol is known as Interval Routing [15]. It has the
interesting properties that any node in the network can be reached in a logarithmic
number of steps. The drawback is that node IDs cannot be random, they must have
a well-defined assignment: in this case a circular ID space, as shown in Figure 1.3, is
necessary.
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Figure 1.3: Circular ID space and routing in Chords.

A hash function maps nodes onto an m-bit circular identifier space. It defines also
a successor of a node u as the node which has the smallest ID greater or equal to u. To
implement the successor function, all nodes maintain an m-entry routing table called
the finger table. This table stores information about other nodes in the system; each
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entry contains a node identifier and its network address (consisting of an IP address
and a port number). The number of unique entries in the finger table is O(log n).
The finger table can also be thought of in terms of m identifier intervals corresponding
to the m entries in the table. Each interval has a logarithmicaly increasing size.

Each node also maintains a pointer to its immediate predecessor. For symmetry,
we also define the corresponding immediate successor (identical to the first entry in
the finger table). In total, each node must maintain a finger table entry for up to
O(log n) other nodes. As each node maintains information about only a small subset
of the nodes in the system, evaluating the successor function requires communication
between nodes at each step of the protocol. The search for a node moves progressively
closer to identifying the successor with each step.

1.4.5 CAN

CAN [32] stands for Content Addressable Network. It is another distributed infras-
tructure based on hash-table functionality. It differs from the Chords approach in
the ID structure. CAN chooses its keys from a toroidal space of d dimensions. Its
approach consists of partitioning this virtual space and assigning a small distinct area
to each node, completely tiling the entire space. So a single node is responsible for a
certain bounded region.
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Figure 1.4: ID space (2 dimensions) partitioning in CAN approach.

Intuitively, routing in a CAN works by following the straight line path through
the Cartesian space from source to destination coordinates. A CAN node maintains
a coordinate routing table that contains the IP address and virtual coordinate zone
of each of its immediate neighbors in the coordinate space. In a d-dimensional coor-
dinate space, two nodes are neighbors if their coordinate spans overlap along d − 1
dimensions and abut along one dimension. Using its neighbor coordinate set, a node
routes a message towards its destination by simple greedy forwarding to the neighbor
with coordinates closest to the destination coordinates. To allow the CAN to grow
incrementally, a new node that joins the system must be allocated its own portion of
the coordinate space. This is done by an existing node splitting its allocated zone in
half, retaining half and handing the other half to the new node.

CAN has a different performance profile than the other algorithms; nodes have

O(d) neighbors and path lengths are O
(

dn
1

d

)

hops. Note, however, that when
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d = log n , CAN has O(log n) neighbors and path lengths O(log n) like the other
algorithms.

1.4.6 Bloom Filters

Bloom filters[34] are compact data structures for probabilistic representation of a set
in order to support membership queries (i.e. queries that ask: Is element X in set Y?
). This compact representation is the payoff for allowing a small rate of false positives
answers in membership queries; that is, queries might incorrectly indicate an element
being a member of the set.

A Bloom filter is a bit-field of a fixed width w and a number of associated inde-
pendent hash functions. Each hash function maps from an object ID to an integer in
[0, w − 1]. Inserting an object in a Bloom filter involves applying the hash functions
to the object and setting the bits in the bit-field associated with the hash function
results. A bit that was already set, remains set. To see if a bloom filter contains
an object, one applies the hash functions to the objects and checks the filter for the
appropriate bits . If any of those bits are unset, the Bloom filter definitely does not
contain the object. If all of the bits are set, the Bloom filter may contain the object.
The false positive rate of a Bloom filter is a well-defined function of its width, the
number of hash functions and the number of objects inserted. After having inserted
n keys into a filter of size m using k hash functions, the probability that a specific bit
is still 0 is:

p0 =

(

1−
1

m

)kn

≈ 1− e−
kn

m (1.1)

The assumption is to have perfect hash functions that leads to an homogeneous
occupation of the space {1...m}. In practice, good results have been achieved using
MD5 and other cryptographic hash functions[34].

Hence, the probability of a false positive (the probability that all k bits have been
previously set) is:

perr = (1− p0) =

(

1−

(

1−
1

m

)kn
)k

≈
(

1− e−
kn

m

)k

(1.2)

Even if in practice only a small number (k) of hash functions are used, perr in 1.2
is minimized for k = m

n
ln 2 hash functions. An important remark is that the average

query cost is inversely proportional to the Bloom filter width. So it can be kept as
close to optimal as desired by increasing the width ( up to a certain threshold).

An attenuated Bloom filter [25] of depth D can be viewed as an array of D

normal Bloom filters. In a storage context, the first Bloom filter can be a record of
the documents contained locally on the current node. The ith Bloom filter is the
merger of all of the Bloom filters for all of the nodes at a distance i on any path from
the current node. If each node has Bloom filters for its (physical) neighbors, messages
can be routed easily towards the node who is supposed to have the document. One
drawback is that this design only works well in small neighborhoods.

1.4.7 OceanStore

OceanStore [25] is a highly distributed storage architecture providing continuous ac-
cess to persistent information. It mainly uses attenuated Bloom filters and Plaxton
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routing, firstly to create a consistent distributed directory of objects and secondly to
route object location requests.

It uses a double routing mechanism:

1. Attenuated Bloom filters as primary step; this allows the queried content to be
retrived efficiently with high probability.

2. Plaxton routing whenever the first algorithm fails.

The first mechanism can fail because Bloom filters can sometimes be misleading owing
to false positives. In OceanStore the misleading behavior happens when attenuated
Bloom filters indicate that two or more routes can lead to the object requested.
This conflict cannot be avoided entirely, but it is possible to lower the probability of
misleading behavior by choosing appropriate parameters for the Bloom filter such as
number of hashing functions or filter size (See section 1.4.6). Let us look at a simple
example of the OceanStore object location mechanism (Figure 1.5).
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Figure 1.5: Bloom filters in OceanStore.

The replica at n1 is looking for object X, whose document ID hashes to bits 0, 1,
and 3. The local Bloom filter for n1 (rounded box) shows that it does not have the
object, but its neighbor filter (unrounded box) for n2 indicates that n2 might be an
intermediate node en route to the object. The query moves to n2, whose Bloom filter
indicates that it does not have the document locally, that its neighbor n4 does not
have it either, but that its neighbor n3 might. The query is forwarded to n3, which
verifies that it has the object.

Attenuated Bloom filters are a good solution either for keeping track of replicas or
to manage caches in distributed networks. However they need to be carefully tuned
to minimize the number of false positive answers.

1.4.8 HyperCast

The HyperCast software [27] builds and maintains logical overlay networks between
applications, and supports data transmission between applications in the overlay.
Applications self-organize into a logical overlay network, and transfer data along the
edges of the overlay network using unicast transport services. Each application com-
municates only with its neighbors in the overlay network. Using the overlay, services
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for one-to-many transmissions (”multicast”) and many-to-one transmissions (”incast”
or also known as ”concast”) can easily be implemented.

HyperCast builds topologies graphs with well-known properties. Currently, Hy-
perCast can build two types of overlay network topologies:

⇁ logical hypercubes, and

⇁ logical Delaunay(HyperCast) triangulations.

An important common property to both topologies is that once the topology is es-
tablished, packet forwarding in these overlay networks can be performed without the
need for a routing protocol, just based on location.

The logical hypercube overlay network topology organizes the applications into a
logical n-dimensional hypercube. Each node is identified by a label (e.g., ”010”),
which indicates the position of the node in the logical hypercube. In an overlay
network with n nodes, the lowest n positions of a hypercube are occupied (according
to a Gray ordering [18]) as shown in Figure 1.6.
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100 101

110 111

011010

Figure 1.6: Hypercube in the HyperCast design.

One advantage of using a hypercube is that each node has only dlog ne neighbors,
where n is the total number of nodes. Also, the longest route in the hypercube is
dlog ne. A disadvantage of hypercubes in the HyperCast design is that the physical
network infrastructure is completely ignored. Another disadvantage is that the hy-
percube construction must be done sequentially, i.e. one node at a time. Therefore,
it can take a long time for large groups before the overlay network is completed.
Also, the departure of a single node may require substantial changes to the overlay
topology.

The Delaunay triangulation is a special type of triangulation. Its main charac-
teristic is that for each circumscribing circle of a triangle formed by three adjacent
nodes, no other node of the graph is inside the circle. Each node in a Delaunay trian-
gulation has (x, y) coordinates depicting a point in the plane. In Figure 1.7, we show
a Delaunay triangulation of five nodes and the circumscribing circles of some of its
triangles.

An advantage of the Delaunay triangulation overlay network topology is that it
can be constructed in a distributed fashion. Therefore, Delaunay triangulations can
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Figure 1.7: Delaunary triangulation in the HyperCast design.

be built very quickly. In a Delaunay triangulation, each node has an average of six
neighbors. In the worst-case, however, the number of neighbors is n − 1, where n is
the total number of nodes.

If the coordinates of a node in the Delaunay triangulation reflect the node’s ge-
ographical location, then nodes in the overlay network are likely to be neighbors if
their geographical location is close. However, Delaunay triangulations in the Hyper-
Cast design are not aware of the underlying network infrastructure. It also requires a
mechanism to find neighbors by ID for the construction, which is (IMHO) impossible
to do in a distributed fashion, before the network has been built.
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2.1 Layering

In order to separate the functionality of a pre-existing routing layer from the new
advantages of our protocol, the division into two layers is necessary (see Figure 2.1).
The pre-existing network layer, which we refer to as underlying layer, is supposed to
have efficient routing capabilities; that means it is supposed to be able to deliver any
message from a source address to a destination address efficiently. This is the case
for the IP network layer: its diffusion throughout the entire Internet is an optimum
environment for building up our data location protocol.

The core of the project is what we refer to as Hypercube routing protocol, and it is
located in a higher layer built directly on top of previous layer. The efficiency of this
layer is measured as the capacity to find, given an ID request, the best destination
address to which the request is to be routed. As the system is completely P2P, this
decision must be done using only local routing information.

Hypercube layer

Underlying layer

Hypercube layer

Underlying layer

Figure 2.1: Layer division.

The overlay network turns out to be an abstract set of hosts that play an active
role in the data location process. As shown in Figure 2.2, the hosts in the overlay
network are a subset of the total number of hosts present.

Underlaying network.

Overlay Network

Figure 2.2: Overlay network example.

Note how end-to-end paths between two hosts can be different in the two layers.
In particular a single edge in the overlay graph can include multiple edges in the
corresponding underlying one. This lack of path correspondence between the two
layers makes the routing process more difficult: a route retained as optimal in the
overlay graph could be not optimal in the underlying graph.

This problem is one of the most significant in the current implementations of
DHTs. On the one hand, most designs take forwarding decisions at each hop, based
on the neighborhood relationship in the overlay network. Depending on how the
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overlay network has been built, this can lead to “catastrophic” results. The neighbor
of an overlay node can potentially be located at the opposite side of the planet. On
the other hand, routing paths between two hosts that are physically close, can include
jump to hosts far away. As a consequence, the protocol performance suffers in terms
of routing-path length and total end-to-end latency. This explains why we decided to
pay great attention to locality preservation during the routing process.

The interaction of the two layers is perhaps the greatest novelty of our approach. In
fact the overlay routing layer is built using the information about the local topology
taken from the underlying layer. In other words, every time a new node joins the
network, some information must be accessed locally to determine the best point for
fitting the new node into the hypercube structure. We assume latency to be a good
metric, but we do not restrict the access of latency information to any particular
protocol; we just assume this measurement is possible somehow.

2.2 Exploiting network proximity

While there are algorithmic similarities among the proposed DHTs, one important
distinction lies in the approach they use to consider and exploit proximity in the
underlying Internet. Considering network proximity is important, because otherwise
a lookup to a key-value pair that is stored on a nearby node may be routed through
nodes that are far away in the network (on different continents in the worst case).
Three basic approaches have been suggested for exploiting proximity in these DHT
protocols:

⇁ Geographic Layout The node IDs are assigned in a manner that ensures that
nodes that are close in the network topology are close in the node ID space (e.g.
GPS coordinates).

⇁ Proximity Routing The routing tables are built without taking network proxim-
ity into account, but at each hop the routing algorithm chooses a nearby node
from those in the routing table. Routing strikes a balance between making
progress towards the destination in the node ID space and choosing the closest
routing table entry according to the network proximity.

⇁ Proximity Neighbor Selection Routing table construction takes network prox-
imity into account. Routing table entries are chosen such that they refer to
nodes that are nearby in the network topology among all live nodes with appro-
priate node IDs. The distance traveled by messages can be minimized without
increasing the number of routing hops.

Proximity neighbor selection is used in Tapestry [40] and Pastry [35]. The basic
Chord [37] and CAN [32] protocols do not consider network proximity at all. How-
ever, geographic layout and proximity routing have been considered for CAN, and
geographic layout and proximity neighbor selection are currently being considered for
use in Chord. HyperCast [27] with Delaunay triangulation is actually based on the
geographical layout approach.

2.2.1 Geographic Layout

Geographic layout was explored as one technique to improve the routing performance
in CAN. The technique attempts to map the d-dimensional space onto the physical
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network such that nodes that are neighbors in the d-dimensional space (and therefore
in each other’s routing tables) are close in the physical network. In one implementa-
tion, nodes measure the RTT between themselves and a set of landmark servers to
compute the coordinates of a node in the CAN space. This technique can achieve
good performance but has the disadvantage that it is not fully self-organizing; it re-
quires a set of well-known landmark servers. In addition, it may cause significant
imbalances in the distribution of nodes in the CAN space, leading to hot-spots.

When considering the use of this method in Chord, Tapestry and Pastry, addi-
tional problems arise. While a geographic layout provides network locality in the
routing, it sacrifices the diversity of neighboring nodes in the node ID space, which
has consequences for failure resilience and availability of replicated key/value pairs.
Both Chord and Pastry have the property that the integrity of their routing fabric
is disrupted when an entire leaf set or a successor set fails. Likewise, both protocols
replicate key-value pairs on neighboring nodes in the name-space for fault tolerance.
With a proximity-based node ID assignment, neighboring nodes, because of their
proximity, are more likely to suffer correlated failures.

In other designs, such as in HyperCast [27] or in various ad-hoc mobile networks
[26], geographic layout is fully adopted by the use of GPS devices. This assumption
cannot be justified in the distributed environment of the Internet.

2.2.2 Proximity Routing

Proximity routing was first proposed in CAN [32]. It involves no changes to routing
table construction and maintenance because routing tables are built without taking
network proximity into account. But each node measures the RTT to each neighbor
(routing table entry) and forwards messages to the neighbor with the maximum ratio
of progress in the d-dimensional space to RTT.

As the number of neighbors is small (2d on average) and neighbors are spread
randomly over the network topology, the distance to the nearest neighbor is likely to be
significantly larger than the distance to the nearest node in the overlay. Additionally,
this approach trades off the number of hops in the path against the network distance
traversed in each hop: it can ever increase the number of hops. Because of these
limitations the technique is less effective than geographical layout.

Proximity routing has also been used in a version of Chord [37]. Here, a small
number of nodes are maintained in each finger table entry rather than only one, and
a message is forwarded to the topologically closest node among those entries whose
node ID is closer to the message’s key. As all entries are chosen from a specific region
of the ID space, the expected topological distance to the nearest of the entries is likely
to be much larger than the distance to the nearest node in the overlay. Furthermore,
it appears that all these entries have to be maintained for this technique to be effective
because not all entries can be used for all keys. This increases the overhead of node
joins and the size of routing tables.

In conclusion, proximity routing offers some improvement in routing performance,
but this improvement is limited by the fact that a small number of nodes sampled
from specific portions of the node ID space are not likely to be among the nodes that
are closest in the network topology.
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2.2.3 Proximity Neighbor Selection

The locality properties of Tapestry [40] and Pastry [35] derive from mechanisms to
build routing tables that take network proximity into account. They attempt to
minimize the distance, according to the proximity metric, to each one of the nodes
that appear in a node’s routing table, subject to the constraints imposed on node ID
prefixes. Pastry ensures the following invariant for each node’s routing table:

Proximity invariant: Each entry in a node’s routing table refers to a node
that is near, according to the proximity metric, among all live Pastry nodes
with the appropriate node ID prefix.

As a result of the proximity invariant, a message is normally forwarded in each routing
step to a nearby node, according to the proximity metric, among all nodes whose node
ID shares a longer prefix with the key. Moreover, the expected distance traveled in
each consecutive routing step increases exponentially, because the density of nodes
decreases exponentially with the length of the prefix match. From this property, one
can derive two distinct properties of Pastry with respect to network locality:

⇁ Total distance traveled - The expected distance of the latest routing step tends
to dominate the total distance traveled by a message. As a result, the average
total distance traveled by a message exceeds the distance between source and
destination node only by a small constant value.

⇁ Local route convergence - The paths of two Pastry messages sent from nearby
nodes with identical keys tend to converge in the proximity space at a node
near the source nodes. To see this, observe that in each consecutive routing
step, the messages travel exponentially larger distances towards an exponentially
shrinking set of nodes. Thus, the probability of a route convergence increases
in each step, even if earlier (smaller) routing steps have moved the messages
farther apart. This result is of significance for caching applications layered on
Pastry.

The routing algorithms in Pastry and Tapestry claim that they allow effective proxim-
ity neighbor selection because there is freedom to choose nearby routing table entries
from among a large set of nodes.

CAN also proposed a limited form of proximity neighbor selection in which several
nodes are assigned to the same zone in the d-dimensional space. Each node period-
ically gets a list of the nodes in a neighboring zone and measures the RTT to each
of them. The node with the lowest RTT is chosen as the neighbor for that zone.
This technique is less effective than those used in Tapestry and Pastry because each
routing table entry is chosen from a small set of nodes.

2.3 Overlay structure

Each node of our overlay network is assigned an unique identifier (ID). IDs are not
scalar, they are vectors in a d-dimensional space.

This space has the form of an hyper-torus, that means, it is wrapped on itself.
IDs can be considered as points in this space with d coordinates:

ID1 = (x1, x2, . . . , xd)
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Figure 2.3: Example of ID positions in a threes-dimensional space.

Each coordinate is expressed with a certain number of bits (b), so that

xi ∈
[

0, 2b−1
]

As the space is wrapped on itself, each coordinate is circular. As shown in Figure
2.3, this network structure can be easily seen from a geometrical point of view if the
number of dimensions is less than four (if you consider the space not wrapped).

As an abstraction, when we say that a node has a certain “position”, we mean that
its ID has a certain position in the virtual ID space. In the same way, when speaking
about the distance between two nodes the distance between their IDs is meant.

2.3.1 Neighbor placement

Two possible approaches are possible for the neighborhood relationship among nodes.
In order to explain this two approaches well, it is worth considering a two-dimensional
(2D) ID space. The two cases are shown in Figure 2.4:

⇁ Case (a) is the simplest neighborhood relationship: using the node itself as
origin of a d-dimensional Cartesian system, neighbors are placed along the axes
of this system. The number of neighbors in this case is 2d.

⇁ In case (b), neighbors are placed by partitioning the space in 2d quadrants, so
the number of neighbors is 2d.

Using this neighborhood relationship, it is possible and useful to extend the word
“quadrant” to a d-dimensional space as well. Figure 2.5 shows a generalization to a
three-dimensional (3D) space:
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(b)(a)

Figure 2.4: Possible neighbors placement in a 2D ID space.

⇁ In case (a), neighbors of a certain node are placed in the vertex of a kind of
octahedron centered around the node itself;

⇁ In case (b), the neighbors of a node are placed in the vertex of a cube whose
center is the node itself. Here you can see that the number of neighbors is 2d.

(a)

x y

z

(b)

z

y

x

Figure 2.5: Possible neighborhood relationships in a 3D world.

In our design, the second approach has been chosen because

⇁ it offers good flexibility in terms of node positioning: neighbors of node are not
obliged to be on the axis extendng from that node but can be placed anywhere
in each quadrant;
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⇁ quadrants can be used as “directions” during the routing process, so that the
routing path is as close as possible to a line and does not present strange loops.

Figure 2.6 shows the space division induced by this choice for the neighbors’ placement
around a certain node. Note how the space has been partitioned in “octants” (for
the sake of simplicity, we will always call them “quadrants” when the space has d

dimensions).

Figure 2.6: 3D example. Given a certain node as the origin, there are 23 regions
where neighbors can be placed.

2.3.2 Distance notion

Given the d-dimensional ID space, if the space were not wrapped, the Cartesian
distance between two points would be:

A = (x1, . . . , xd)

B = (y1, . . . , yd)

dAB = ‖A−B‖ =

√

(x1 − y1)
2
+ (x2 − y2)

2
+ . . .+ (xd − yd)

2

The fact that the space is wrapped leads to some modifications (see Figure 2.7).

d

Space

(a) (b)

Figure 2.7: Scalar distance in a 2D wrapped space.
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It is still possible to give a scalar distance definition; denoting by Mx = 2b (where b

is the number of bits used for each coordinate) the maximum value of each coordinate
x, the new distance definition is

dAB =

√

min
[

(x1 − y1)
2
, (Mx − (x1 − y1))

2
]

+ . . .+min
[

(xd − yd)
2
, (Mx − (xd − yd))

2
]

(2.1)
It is possible to provide also a kind of non-scalar distance definition, if we define

the concept of “distance in a quadrant”. As the space is wrapped, the relationship
between two nodes can change depending on the observer’s angle of observation.

As shown in Figure 2.8, the position of node B with respect to A is not well defined.
If an observer is placed in A and looks at B, the distance from B to A would appear
different, depending on in which direction the observer is looking. In the example in
Figure 2.8 we have

A = (xA, yA) B = (xB , yB)

dAB = (d1, d2, d3, d4)

dAB ⇒























































d1 =

√

(xA − xB)
2
+ (yA − yB)

2

d2 =

√

(xA − xB)
2
+ (Mx − (yA − yB))

2

d3 =

√

(Mx − (xA − xB))
2
+ (Mx − (yA − yB))

2

d4 =

√

(Mx − (xA − xB))
2
+ (yA − yB)

2

Mx = 2b − 1 ⇒ maximum for x/y coordinate

From this example it is easy to generalize to a general d-dimensional space.
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Figure 2.8: Simple distance (above) and extended distance concept in a wrapped
space (below).
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2.3.3 Links

Once that the quadrants, a neighborhood relationship and the distance notion have
been defined, we describe how nodes set up links to each other. The criterium wheter
to establish links is the notion of closeness in the virtual ID space.

In our design two main link rules stand:

⇁ Each node must have at least one link per quadrant. That means that quadrants
without any link are not allowed.

⇁ Links are allowed to be “one way” as explained below.

The closeness criterium used to establish links is as follows

“Each node has a link in each quadrant to the closest neighbor in that
quadrant.”

The relationship of closeness is in terms of scalar distance as defined in the equation
2.1.

The “one way” properties of links are due to the inner nature of quadrants: given
two nodes, the relationship “to be the closest in a certain quadrant” is not reciprocal.
Figure 2.9 can clarify this concept.
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Figure 2.9: Example of links between nodes in a 2D space.

The link between A and C is a “one way” link because

⇁ considering the south-east quadrant around A, C is the node closest to A in
that quadrant;

⇁ considering the north-west quadrant around C, B is the node closest to C in
that quadrant;

This approach combines a relative simplicity of the joining protocol with the capacity
of keeping the message forwarding among nodes efficient. In fact this structure assures
that at each step of the routing process, messages are forwarded to the closest neighbor
in a certain direction. Routing remains efficient, even in the case of simple greedy
forwarding decisions.

Moreover, in order to avoid the possibility of some nodes remaining isolated, we
“force” a certain symmetry with a new rule:
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“Whenever a node B is referenced by A, B is obliged to reference A as
well.”

This new rule breaks the “one way” properties and introduces “symmetrical” links
with a preferential direction. It means that each link can be walked in both directions,
but one direction can be more weighted and more important than the other.

Nodes are also allowed to keep pointers to more than one neighbor in each quad-
rant. One of these pointers always represents the closest node in that quadrant and
is the favorite “next hop” when forwarding messages, whereas the others have a re-
dundancy role, so that they can be used when the first one fails.
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3.1 Hypercube Layer Integration

The interface between the hypercube layer and the lower layer is defined through
some primitives such as

⇁ sendMessage( [Destination Address], [Message] ) : sends a message to a spec-
ified destination address;

⇁ measureDelay( [Destination Address] ) : returns the delay between the cur-
rent node and the specified destination;

⇁ measureHops( [Destination Address] ) : returns the path length between the
current node and the specified destination (in number of hops);

⇁ processMessage( [Message] ) : processes a message arrived from the lower
layer;

⇁ getAddress() : prompts lower layer for its own address, as the higher layer
normally ignores low-level information;

3.2 Join protocol

The need of a specific joining phase is justified by the critical impact of the ID
assignment on the overall behavior of our protocol. The ID assignment takes place
during the phase of overlay network building. Assuming that somewhere a small
hypercube network is already in place, any new node that wants to join should set
up links to some nodes of the existing network. At this moment, it should be able
to fix its own ID in order to fit into the global hypercube structure, built in the ID
space. At the same time, some nodes of the existing network should set up links to the
new node, so that it does not remain isolated from the network. From this brief it is
easy to observe, how two main phases can be identified when building the hypercube
structure from scratch:

⇁ Firstly, a small network must be constructed. Having some nodes, opportunely
placed in the global ID space, helps not only in placing future nodes but also
provides a better and more efficient occupation of the ID space. We will call
these few nodes “landmarks”, because they serve as points of reference for any
new joining node. In the physical world, landmarks should be placed in areas
that are sufficiently far apart. This assumption is not essential for the funciton-
ing of our protocol, butit is strongly recommended: nodes that are reasonably
distributed in the physical space remain reasonably distributed also in the ID
space. The allocation of the ID space to new nodes is important, and attention
should be paid so that no portions of this space are wasted (Section 3.3).

⇁ Secondly, any new node that wants to join should know an “entry point”, that
is, the address of any node already belonging to the network. Starting from this
entry point, the new node searches that node in the network which is closest
to itself. Then it tries to join up with it and the neighbors of the node found
(Section 3.4).
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d
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(a) (b)

Figure 3.1: Distance example in 2D wrapping space.

3.3 Landmark placement

Assuming that landmark position in the physical world is a ”good” distribution among
areas covered by the overlay network, we want to place all landmarks in the ID space
so that their position reflects more or less this distribution. The only rule, on which
the placement is based, is that the distance between two landmarks in the ID space
should be proportional to distance metric measured between them in the physical
world.

3.3.1 “Spring forces” algorithm

The first phase of the joining protocol, the landmark placement, consist of an algo-
rithm commonly used in graph visualization onto a 2D surface [14]. In the beginning
all landmarks are placed randomly throughout the ID space. After the latency be-
tween two nodes has been measured, we intend to move these two nodes so that their
distance is proportional to the measured latency by a factor applicable to all nodes.
In other words, nodes are connected by springs whose strengths are inversely propor-
tional to their lower-layer distance. The system is then released until a stable state
is reached.

Forces are applied to each node in order to move it in the right direction. The
intensity of each force is proportional to the difference between the current distance
between two nodes and the distance they should have.

For example, given two nodes A and B (Figure 3.2), the measured latency between
them is L, and each has its own ID. Each ID is a point in an n-dimensional coordinate
space:

−−→
IDA = [x1, x2, .., xn] and

−−→
IDB = [y1, y2, .., yn]

The Euclidean distance between them is

D =
∥

∥

∥

−−→
IDA −

−−→
IDB

∥

∥

∥

D =

√

(x1 − y1)
2
+ (x2 − y2)

2
+ . . .+ (xn − yn)

2

but as we are working in a wrapped space (Figure 3.1), whereMx = 2b is the maximum
value for each coordinate x:
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D =

√

min
[

(x1 − y1)
2
, (Mx − (x1 − y1))

2
]

+ . . .+min
[

(xn − yn)
2
, (Mx − (xn − yn))

2
]

(3.1)
By fixing a common constant c for all nodes, we can calculate the two forces to be
applied to A and B:

∥

∥

∥

−→
FA

∥

∥

∥
= c · L−D

−→
FA = (c · L−D) ·

−−→
IDA −

−−→
IDB

∥

∥

∥

−−→
IDA −

−−→
IDB

∥

∥

∥

· Γ =

(

c · L

D
− 1

)

·
(−−→
IDA −

−−→
IDB

)

· Γ

−→
FB = −

−→
FA

Γ is a diagonal matrix so that ‖Γ‖ = 1 and

Γ =









s1 = ±1 0 . . . 0
0 s2 = ±1 . . . 0
. . . . . . . . . . . .

0 0 . . . sn = ±1









,

with

si = sign
[

(xi − yi)
2
− (Mx − (xi − yi))

2
]

si =







+1 if min
[

(xi − yi)
2
, (Mx − (xi − yi))

2
]

= (xi − yi)
2

−1 if min
[

(xi − yi)
2
, (Mx − (xi − yi))

2
]

= (Mx − (xi − yi))
2

Once the forces have been calculated, each landmark is moved a little bit into the
direction that results from the sum of all forces applied to that node (see Figure 3.2).
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distance = latency * const

current distance
forceforce

A B

Figure 3.2: Example of the “Spring forces” algorithm.

We borrowed our approach from “Simulated Annealing” [24]. Simulated annealing
is a Monte Carlo approach for minimizing such multivariate functions. The term
simulated annealing derives from the roughly analogous physical process of heating
and then slowly cooling a substance to obtain a strong crystalline structure. In
simulations, a minimum of the cost function corresponds to this ground state of
the substance. The idea is that there is a cost function H (in physical terms, a
Hamiltonian) which associates a cost with a state of the system, a “temperature”
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T , and various ways to change the state of the system. The algorithm works by
iteratively proposing changes and either accepting or rejecting each change. Having
proposed a change we may evaluate the change δH in H. The proposed change can be
accepted or rejected by a certain criterion: if the cost function decreases (δH < 0) the
change is accepted unconditionally; otherwise it is accepted but only with a certain
probability, which is a constant value in our case, and exp

(

− δH
T

)

for the original
simulated annealing algorithm.

Care has been taken to make the algorithm converge consistently and quickly:

⇁ nodes are moved one by one in round-robin fashion; moving all nodes together
leads to a great instability, and convergence is never reached;

⇁ at each step only a little part of the force is applied, this avoids that nodes are
moved too fast and improves convergence;

⇁ decreasing the partial intensity of the forces exponentially at each step helps
convergence because moves tends to become more precise;

⇁ at the beginning a fixed number of iterations are performed to help “hill climb-
ing”. In fact in the earlier phase, when the system is far away from its stable
state, this solution helps prevent oscillations and moving from local to global
minima;

⇁ the algorithm has a statistical probability to stop: it continues as long as the
general “energy” decreases, otherwise it stops with a certain probability. This
solution further helps small “hill climbing”.

⇁ if the energy increases too much, then algorithm is reinitialized, and nodes are
again placed randomly.

This algorithm converges to a good landmark placement in an finite time. Figure 3.3
shows a screen-shot of landmark placement in a 2D space. Each node is marked with

[node number][coordinates][force],

so that for example 16 (426, 386) (−157,−114) means that the node number is 16, it
has coordinates (426, 386) in the 2D ID space, and the resulting force on it is the
vector (−157,−114).

Note that this approach can be seen as a generalization of a triangulation method.
In fact, in a 2D space the absolute position of a point can be determined if the distances
from three other points are known (see Figure 3.4).
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Figure 3.3: Screen-shot of the working algorithm.

d1

d2

d3

Figure 3.4: Example of triangulation in a 2D space.
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In a d-dimensional space at least d+1 distances are necessary to determine uniquely
the position of a point. Whenever there are more than d+ 1 distances, it is possible
that no exact solution of the problem exists: there is no point whose coordinates can
satisfy all the relationships given by the known distances. Given a certain number
of known distances nd > d + 1, the coordinates of the point to place must satisfy
nd conditions. Triangulation methods offer an exact solution of the problem when
nd = d + 1. The “Spring forces” algorithm is a numerical method to calculate these
coordinates so that they fit best and satisfy the nd conditions even when nd > d+ 1.

3.4 Node Join Phase

This second phase occurs whenever a new node wants to join the small landmark
network. This phase can be divided in four sub-phases:

1. Latency minimum search: from an entry point the search moves to the best
area in which the new node can join.

2. Determine node ID: with the area and a certain neighborhood in that area
chosen, a “spring forces algorithm” can set the node ID by taking into account
relative distance metrics to neighbors.

3. Set up links: the new node must know its closest neighbor in each quadrant, so
there is a specific search mechanism to do that;

4. Network update: all nodes that could have a reference to the new node should
be informed of its presence.

3.5 Latency Minimum

The new node must know an entry point address from which the join phase can start.
It aims to discover which is the best point it can actually join; here “best” means
closest in terms of distance metric, so the search aims find that node in the network
that is closest to the new node joining.

It proceeds by walking through the existing network using the latency measure-
ment as an heuristic function: it walks in the direction in which the latency measure-
ment decreases. Using this procedure, the new node normally finds a “good” (local)
minimum among the latency measures. This minimum is assumed to be the closest
neighbor in the hypercube network as well (see Figure 3.5).

As this phase has a critical impact on the global behavior of our protocol, we
added a kind of “overshooting” to the minimum search process: even when a (local)
minimum has been found, the search process does not stop but tries to localize an
even better minimum. The direction in which the search continues is determined by
the behavior of the “slope” of the distance metric function used (in our case latency)
in that point. The search continues in the direction having the smaller slope; it ends
up either with a better minimum found (from which the search starts again) or after
a constant predefined number of steps. Given a fixed maximum number of steps ns

of the overshooting search1, the complexity overhead of this phase is only O(ns).
Once the closest node has been found, the area in the ID space where the new node

is to be placed is well defined. In order to place the new node correctly in that area,

1We chose a value ranging from 3 to 10 for this constant.
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Figure 3.5: 3D representation of distance gradient following.

the “Spring Forces” algorithm introduced above is run once more. In this case the
algorithm acts over a small part of the network, moving only the new node, relative
to its new neighbors, as determined by the closest node found and its immediate
neighbors. Finding the position of the new node in the ID space means to assign it a
new ID.

The same nodes as used for the “Spring Forces” algorithm are also used to add the
new node to the network, i.e. to determine the neighbors and establish connectivity.

3.6 Setting up links

Once that the position of the new node has been fixed in the virtual ID space, it must
set up links to neighbors in the overlay network. This phase should ensure that the
node is efficiently integrated into the network. The node should be reachable from
anywhere and should be able to make accurate forwarding decisions for messages
traveling through it.

As described in Chapter 2, the particular structure of the overlay network relies
on the affirmation that each node in each quadrant is linked to the closest neighbor
in that quadrant. This phase of the joining protocol aims to find the closest neighbor
of a certain node in a given quadrant.

The starting scenario comprehends a node, with a its new ID, and a list of neigh-
bors that it retrieved from the first phase of the joining protocol. However, nodes
advertised in this list

⇁ are not guaranteed to be the closest node in any quadrant;

⇁ may not even be placed in one of the quadrants around the new nodes;

The process of finding the closest node in each surrounding quadrant is not trivial.
Given a joining node A, and selecting a specific quadrant q among the 2d possible
quadrants adjoining A, the aim is to find a node B that is the closest neighbor for A

in quadrant q (this scenario is illustrated in Figure 3.6).
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C

A

BD

q2q1

B is closest to A in q1
D is closest to A in q2

Figure 3.6: Scenario example.

There are two cases that require particular attention, and they are both shown in
Figure 3.6:

⇁ There is a node B in quadrant q2 but A does not know any node in that
quadrant;

⇁ A knows a node C in quadrant q1 but it is not the closest node (D is the closest)
in that quadrant.

In our design, we provide a general first phase in which a node tries to get as close
as possible to a certain quadrant. Then the second phase takes care of getting inside
this quadrant and of moving as close as possible to the original node (A).

3.6.1 First connection sub-phase: “getting closer to a quad-

rant”

Supposing that a node A wants to find its closest neighbor in a given quadrant q, but
does not know any node in that quadrant. The first phase of the neighbor-discovering
process consists in getting as close as possible to quadrant q. This can be done by
sending probing messages to known nodes and moving from them to their neighbors
in the desired direction. Figure 3.7 shows the strategy used.
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A

q

B

C

Figure 3.7: Example of strategy used to get ”close” to a quadrant.

The “strategy” consists of moving clockwise from node to node until there are no
more improving steps. That means that node A tries to locate a node that is as close
as possible to quadrant q. It beginsby probing the neighbors it knows and proceeds
hop by hop until the last hop found (C) does not have any neighbor closer than itself
to quadrant q. This algorithm always converges because at each step

⇁ either C knows a node that is better suited than itself, and which accordingly
is the next hop for the search,

⇁ or C does not know any node that could improve the situation, so that C is
considered the final result of this search.

Once that a node C that satisfies the conditions above has been found, one can be
sure that C has at least one neighbor inside quadrant q. In facts if it is not true, then
C would have a neighbor C ′ outside q, but C ′ would be closer to q than C; in that
case the algorithm would have passed from C to C ′ before, and C ′ would have been
chosen as the closest node to q.

This first phase can be skipped whenever node A already knows a neighbor C that
is already inside quadrant q.

3.6.2 Second sub-phase: “Finding the closest neighbor”

As shown in Figure 3.8, this phase starts when the search is already in quadrant q,
but it has not yet found the closest node in that quadrant.

Firstly, in a simple 2D case (as in Figure 3.8) we have an invariant that allows
the search phase to converge to the closest neighbor. Given a node C in quadrant q,
which is the current node being evaluated by the search process, we have that

⇁ C is the closest node or C knows about a closer node;
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q

BC

Figure 3.8: Search example inside a quadrant q.

⇁ there is a node further in counterclockwise direction that is the closest node or
knows about a closer node.

The first rule is intuitive: it allows jumping from one node to the next by evaluating
the distance from the original node A.

The second rule takes into account the relationship of “neighbors of a neighbor”.
This concept is necessary to deal with the inner nature of the quadrant structure. In a
2D space the second rule could be seen as “try to proceed in counterclockwise direction
until either a closer neighbor B is found or you exit from quadrant q” similar to the
routing mechanism used in GPSR [22]. When the number of dimensions is greater
than two, this rule is not useful becaus clockwise and counterclockwise have no natural
definitions there.

The generalization to the d-dimensional space, with a generic node C situated in
the quadrant q, is as follows:

1. “Whenever a node C ′ knows of a node in q and closer to A than C, then C ′ is
the next node to be evaluated”,

2. “whenever none of the neighbors of C satisfy rule 1, then look in quadrant q for
a neighbor C ′′ that could potentially have a neighbor closer to A than C (always
in q). If C ′′ exists then C ′′ is the next node to be evaluated but the message
keeps a reference to C as current best match.

Figure 3.9 shows two examples of application of rules 1 and 2.
From the radius of the circles we see that

⇁ in the first case the jumps from C to C ′ and from C ′ to the final destination
B satisfy the conditions AC ′ < AC and AB < AC ′, so that following this path
the distance from A always decreases;
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Figure 3.9: Examples of search rules application.

⇁ in the second case note that AC ′ > AC but AB < AC, so that B is the closest
neighbor for A in quadrant q but C does not have a direct link to B. Therefore
one cannot jump directly from C to B following the first rule. In other words,
C does not know anything about B, it only knows a neighbor C ′. Analyzing
the position of A and C ′, C can deduce whether C ′ could potentially know a
neighbor B closer than itself to A.

The sentence “C can deduce whether C ′ could potentially know a neighbor B closer
than itself to A” needs a more formal explanation. The basic assumption is that each
node has a link (not only, but at least) to its closest neighbor in each quadrant around
it.

Given an hyperspace with coordinates x1, x2, . . . , xd, given the distance AC, the
sphere or the hypersphere with center in A and radius AC is

(x1 − x1A)
2
+ (x2 − x2A)

2
+ . . .+ (xd − xdA)

2
= AC

2
. (3.2)

Any node C ′ which is inside this hypersphere allows the search to pass from C to
C ′ following the first rule: in fact in this case C ′ is closer to A than C.

C ′, being a generic neighbor of C, “could potentially know a neighbor closer than
itself to A” if

⇁ C ′ is outside the hypersphere of Eq. 3.2;

⇁ C ′ is in the same quadrant as C when considered from the point of view of A;

⇁ C ′ is in the same quadrant as B when considered from the point of view of C.

This conditions define an unique region in the ID hyperspace in which C ′ can be
placed. This region is a kind of dark zone, intended as an area in which the first rule
cannot be applied. It is represented in Figure 3.10, where the space has only two
dimensions.
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Figure 3.10: Example of dark zone in a 2D space.

On the one hand, note that the condition to be in a “dark zone” makes C ′ a good
“next hop” in the searching phase. On the other hand, if B is not there, a node C ′

in a “dark zone” just represents a false path. In that case the only possibility is to
revert to C and consider it as the closest neighbor to A in q.

3.6.3 Algorithm to recognize ”dark zones”

During the search phase, whenever a node C and its neighbors are analyzed, it is
not trivial to establish whether C ′ is in a “dark zone”, especially when the number
of dimensions of the ID space exceeds 2. Given C ′ a generic neighbor of C, then
another hypersphere is defined having the center at C and with radius CC ′, as shown
in Figure 3.11 and 3.12:

(x1 − x1C)
2
+ (x2 − x2C)

2
+ . . .+ (xd − xdC)

2
= CC ′

2
(3.3)

A

BC

q

C’C’’

C’’’

"dark zone"

Figure 3.11: Determining a dark zone.

Through deduction, we can demonstrate that C ′ has to be in a dark zone when
the intersection of the two hyperspheres (3.2) and (3.3) passes through quadrant qc,
where qc is the quadrant in which C ′ is placed from the point of view of C.
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In a d-dimensional space the intersection of two hyperspheres is a hypersphere of
(d − 1) dimensions. If we calculate the intersection of the two hypersphere with the
plane (not hyperplane) defined by the three points A, C, C ′, we always obtain the
situation shown in Figure 3.12. This plane defined by the three points A, C, andC ′

can easily be written in a parametric form:

A (x1A, . . . , xdA) C (x1C , . . . , xdC) C ′ (x1C′ , . . . , xdC′)

X = u (A− C) + v
(

A− C ′
)















x1 = u · (x1A − x1C) + v · (x1A − x1C′)
x2 = u · (x2A − x2C) + v · (x2A − x2C′)

. . .

xd = u · (xdA − xdC) + v · (xdA − xdC′)

(3.4)

A

BC

qc

C’

Figure 3.12: Intersections in a 2D space (hyperspheres become circles).

Independent of the number of dimensions n, the intersection of (3.4) with (3.2) and
(3.3) always generates a 2D scenario as the one in Figure 3.12, yielding the system:































x1 = u · (x1A − x1C) + v · (x1A − x1C′)
x2 = u · (x2A − x2C) + v · (x2A − x2C′)
. . .

xn = u · (xdA − xdC) + v · (xdA − xdC′)

(x1 − x1A)
2
+ (x2 − x2A)

2
+ . . .+ (xd − xdA)

2
= AC

2

(x1 − x1C)
2
+ (x2 − x2C)

2
+ . . .+ (xd − xdC)

2
= CC ′

2

(3.5)

52



CHAPTER 3. OVERLAY NETWORK CONSTRUCTION

This system contains n+2 equations with n unknowns and 2 parameters. It always
has two real solutions that are the intersection points of the two circles in Figure 3.12.
We are interested in only one of these two solutions, the one which (eventually) falls
into quadrant qc.

The entire pseudo-code for the algorithm to recognize dark zones is:

currently evaluating a node C, define the hypersphere SA of center A and
radius AC

for each neighbor C ′ of C placed in quadrant qc with regards to C and in
quadrant q with regards to A:

define the hypersphere SC with center C and radius CC ′

define the plane PACC′ through the three points A, C, C ′

calculus of the two intersection of SA, SC and PACC′

if one of the two intersection calculated falls inside the
quadrant qc then:

C ′ is in a dark zone

else

C ′ is NOT in a dark zone

3.6.4 A Shortcut

The exact coordinates of the two intersections in Figure 3.12 can be found by solving
system (3.5).

The process of searching a node in a quadrant does not need to know these coor-
dinates exactly: it only needs to known whether one of these intersections falls into
a specific space area (quadrant qc, as explained before). Therefore solving the whole
system is a waste of resources.

We found that there is a more efficient way to determine whether one of the
intersections of the two circles falls into qc. It is possible to calculate the projections
of C ′ onto the axis that define quadrant qc with origin in C (Figure 3.13). The empiric
rule we use, which can be intuitively demonstrated, is

⇁ if at least one of the projections of C ′ onto the axes that define quadrant qc with
origin in C falls inside the hypersphere with center A and radius AC, then the
two hyperspheres discussed above have an intersection in qc.

The evaluation of this rule requires only the calculus of 2d (or even fewer if we consider
only the semi-axes around quadrant qc) projections of C ′ in a d-dimensional space,
and the evaluation of their distance from A.

As a consequence, whenever the above condition is satisfied, then point C ′ is in a
dark region defined by A, B, q.
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Figure 3.13: Projection of C ′ onto the axes defining qc with origin in C.

3.7 Network update

The last phase of the node-joining protocol consists of updating the area in which the
new node joins so that other nodes can have a reference to the new node arrived. This
is done by sending some specific messages (such as ”join” or ”notify closest changed”)
so that

⇁ each node A in each quadrant has a reference to its closest neighbor;

⇁ each node A keeps references to nodes claiming A as their closest neighbor in a
quadrant.

On the one hand this mechanism assures that nodes always have outgoing links in
each quadrant around them. On the other hand, nodes are always referenced by other
nodes (even if they are not “closest”) so that isolated nodes cannot exist in the overlay
network.

3.7.1 Updating Phase

This phase takes place whenever a new node (A) joins the network. It aims to inform
all network nodes that could benefit. Nodes to be notified are all those that would
consider the new node A as the closest in a quadrant. As shown in Figure 3.14, the
number of nodes that can potentially satisfy this condition is O(n), and the expected
number is less than two per quadrant.

The new node joining, A, sends a specific update message through each quadrant
to its closest neighbor in that quadrant. These 2d (one per quadrant) messages travel
through the network with the following considerations (see Figure 3.15):
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A

q

Figure 3.14: Example of nodes who claim A as the closest in A’s quadrant q.

1. Given the hypersphere of center A and radius r, as in Figure 3.15, A sends the
update message to its closest neighbor B, so that the radius r is the distance
AB.

2. B analyzes its neighborhood, and replicates the update message to neighbors
trying to stay as close as possible to the surface of that hypersphere.

3. A d-dimensional space must be explored in d − 1 dimensions to find all the
neighbors wanted.

4. Message replication continues until the boundaries of the quadrant are reached
in each d− 1 direction.

5. This kind of exhaustive search always find all nodes who could claim A as the
closest, and keeps strong locality properties. In fact, the nodes explored always
lie near to A, and owing to the overlay network construction phase of our
protocol, the closeness relationship keeps its value in the underlaying topology
as well.

3.7.2 Joining Serialization

Another important mechanism we want to emphasize is the “serialization of multiple
joins”. If multiple nodes are relatively close in the underlying network and join the
network simultaneously, it is likely they will occupy the same area in the ID space of
the overlay network. In this case serialization is needed to prevent the protocol from
misbehaving. The two conditions

⇁ two or more nodes joining have a common potential neighborhood;

⇁ two or more nodes joining have potential relationship among themselves in one
or more quadrants;

represent the two necessary events to recognize when serialization is needed.
How to detect the need for serialization in practice and how to implement the

serialization mechanism currently are open research areas.
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Figure 3.15: 2D example of message replication with update purposes.

3.8 Message exchange.

Figure 3.16 shows the joining phase of a new node into the overlay network we de-
signed. This is the general behavior of the protocol; some exceptions can shorten
this flow of messages: they have been successfully implemented in our simulator (see
Chapter 4), but are not shown here. Examples of exceptions are

⇁ the phase of locating a neighbor outside a certain quadrant can be skipped if
the new joining node already knows a neighbor in that quadrant;

⇁ the join message may not require any notification so that there is no message
notify closest changed.
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Figure 3.16: Example of message exchange.
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Chapter 4

The network simulator
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4.1 Requirements

The development of our own network simulator was motivated by our specific needs.
Some common network and/or routing simulators (such as NS [4], MaRS [30], Ant
[38], etc.) do not suit our requirements:

⇁ Capacity of dealing with large networks, whose size is comparable to the entire
Internet.

⇁ In most of our scenarios, only a single message travels through in the network.
The capacity of handling a large number of messages simultaneously, typical
for routing simulators, turns out not to be useful, hence it would be a waste of
system resources.

⇁ Measurement and analysis focus on some specific parameters, so that we do
not care about low-level details such as mean latency in each forwarding step,
process time in each hop, etc. On the one hand, most simulators, particularly
NS, offer a lot of detail about the network internals. On the other hand, the
price to be paid for this measurement precision is worse performance, which
unfortunately limits the size of the network to simulate.

Given these reasons, we decided to write our own simulator from scratch. This choice
allows us to adapt the program exactly to our needs and to achieve a better tradeoff
between the value of results obtained and the complexity of the analysis.

4.2 Programming language

Analyzing the project requirements, the possible choices of the programming language
were C, C++ or Java. The choice of Java resulted in some important advantages:

⇁ high code flexibility about code re-usage in different situation;

⇁ high portability to multiple platforms;

⇁ availability of many data structures already implemented in standard libraries;

⇁ improvements in code simplicity and readability thanks to the completely mod-
ular organization of classes;

⇁ simple building of a visualization and a user-friendly graphical interface.

The only drawback is that the large amount of data to process requires particular
attention in the design of classes. Our simulator should work with hundred thou-
sands of nodes, so any code that is executed multiple times and is replicated multiple
times in memory should be particularly efficient in terms of CPU usage and memory
occupation (details are given in Section 4.6).

4.3 Simulator Goals

Our main goal is to evaluate the mean delay that a common find request accumulates
from the source to any destination. This is the main parameter to judge how efficient
the protocol is in terms of query latency.
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Secondly, we want to evaluate the impact of simulation parameters on the protocol.
The main parameters are the total number of nodes, the number of dimensions chosen
for the hypercube structure, the size of additional routing information to store at each
node, etc. The simulator must provide results about the choices to take in order to
improve protocol behavior.

Thirdly, there are various ways to make the protocol work: one can play with the
link disposition, with the dynamics of node joining and leaving and so on. This is the
main reason for developing a software simulator soon. Simulation results are good
guidelines to further protocol design, and help define the protocol details.

4.4 Simulation Layers

The division into two layers has been respected during the simulator development.
The two different layers, as described in the Section 2.1, have different requirements
from the simulation point of view:

⇁ The basic underlying layer provides basic connectivity among nodes. In other
words, whenever a node knows the low-level address (for example the IP address)
of a certain destination, then this layer is charged with taking the message to
that destination. This layer also simulates the static behavior of some well-
known routing protocols such as RIP [6] or OSPF [5].

⇁ The core of the hypercube routing protocol is located at the highest layer. At
this layer, simulations should deal with the routing decision in the peer-to-peer
network. At the same time global end-to-end analysis of all important phases
of our protocol can be performed.

4.5 Design Details

4.5.1 Observer design pattern.

The observer design pattern [16] turned out to be very useful to implement the sched-
uler policies. It prevents processor resources from being wasted in continuously polling
all nodes; instead when a node requires processing resources it notifies a central unit
(the scheduler), which keeps a queue of all nodes to be served.

This design pattern works in two phases:

⇁ Osbservable objects register their own observer, so whenever a new event occurs
the observer object can be informed, see the example in Figure 4.1;

��

����������
������

Node

message

attach(Scheduler)

Scheduler

Figure 4.1: Attach observer example.
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⇁ Whenever a change occurs, observable objects notify their observer; an example
is given in Figure 4.2.

���
���
���
���

������������

Node
notify()

add a new task

Scheduler
message ���

���
���
���
������
	�	
�

������

Figure 4.2: Notify example.

A node which requires services from the central scheduler is considered a task. Using
the observer design pattern, the scheduler always has a updated list of active tasks
and can share its resources fairly among them.

4.5.2 Statistics collection

Each message object contains some information fields which are updated, either in
each node the message passes through, or at the beginning or at the and of the message
path (for details about paths, see Section 4.5.3).

Information

Message

Query Latency

Number of hops

Link latency

. . . . .

Figure 4.3: Information fields in each message.

4.5.3 Source routing or hop-by-hop

Even if the routing protocol of the lower layer is supposed to be efficient and reliable,
there is no need for implementing a real routing algorithm such as RIP [6] or OSPF
[5]. As the simulator has a priori complete knowledge of the entire network, the route
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for each message can be pre-computed at the beginning, when the message is sent.
This approach has the advantage of offering useful statistics as soon as the message
is sent. Routes are calculated by creating a shortest path tree from the source node
to the destination and then extracting the source-destination path from this tree.

To improve the simulation speed, once the route for a certain message has been
computed and statistics for that message have been gathered, the message can be
directly sent to the destination, without passing through any intermediate underlying
node. Even if in some cases the synchronization among multiple messages is not
preserved, the speed improvement obtained largely justifies this choice (which is the
default working mode). However, we also keep the possibility to route the message
in a more “traditional way”, that is, step by step. This is suitable for studing the
effects of queuing at intermediate nodes and of “hard” message synchronization. For
the time being we did not used this secondary mode because we are mainly interested
in end-to-end statistics.

4.5.4 Scheduling

The core of the design is an event-driven, discrete-time1 network simulator. As shown

Simulation

Inout Scheduler Queue Output Scheduler Queue

NodesNodes

Figure 4.4: Simulation organization.

in Figure 4.4, the simulation is based on a simple task scheduling:

⇁ Nodes that are going to receive a message are scheduled as new tasks in a FIFO
input queue.

⇁ An output queue is reserved for nodes that want to send a message.

Then the simulation consist roughly of repeatedly updating these two queues, as
shown in Figure 4.5. The processor resources are never wasted: they are always fairly
shared among all active tasks. The scheduler performs a Round Robin among active
tasks.

1Time of simulation is discrete but unspecified: the original order of messages is preserved during
the exchange, but there are no references to any numeric timestamps. Messages are ordered in a
FIFO queue.
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Figure 4.5: Scheduler tasks.

4.6 Simulator Optimization

The necessity of optimizing some aspects of the network simulator arises when dealing
with a large amount of data. Our task is to analyze and gather statistics of large-scale
networks with more than 100,000 nodes. We can take advantage of the power and
flexibility of a strong object-oriented language like Java, and use specific optimizations
to keep the performance of the program reasonably acceptable.

4.6.1 Building the shortest path tree.

Figure 4.6 explains the main phases of our algorithm, as also used by Dijkstra[12]:

Source

Destination

Source

1

2

3

4

5

6

7

1

4
6 57

Destination
3 7Source Destination

32

Figure 4.6: Shortest-path computation.

Normally the tree building procedure is O(n2) with an n-node graph. This is
because each time a node is to be inserted into the shortest path tree, it is necessary
to check whether it already exists. This is an ordinary (in-order) search in tree and
it is on the order of n, so the entire routine is on the order of n2. To improve the
behavior of this routine, we used an auxiliary data structure to reduce the search
complexity. Using a hash table to check whether a certain element exist, the search
time is constant and the entire tree building procedures remains O(n).

The tree structure is a tree with linked lists among nodes at the same level and
parent pointers for each node (see Figure 4.7). The “horizontal” linked lists are
necessary because the tree must be constructed in a breadth-first manner, that means
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level by level. The parent pointers allow us to extract the path from the destination
to the source easily, in only log(n) steps, as log(n) is the tree depth. So the time
complexity of searching the shortest path between two nodes is O(n) + O(log n) 5

O(n).
After we did a standard implementation in Java, the algorithm turned out to be

Source

1

6 57

32

4

Destination

Levels

Figure 4.7: Data structure.

extremely slow, so that the exchanges of messages at the lower layer was not nearly as
fast as we needed. The main reason was that creating the shortest path tree involves
the creation of too many objects. We did a further optimization leading to better
results: the creation of dynamic objects can be avoided completely; all local data, as
well as the method to do the computation itself have been declared as static; the tree
has been substituted by a couple of static vectors of integers, and all work is done
using only the integer data type. In other words, the strong object-oriented features
of Java have been substituted by an old procedural style of coding, resulting in a
speedup by one order of magnitude.

4.6.2 Locality and caching

Whenever a node sends a message to a certain destination, there is a high probability
that further messages will be sent to the same destination and vice-versa, as messages
usually require answers. Note that, from the point of view of the simulator, the
only purpose of the shortest-path tree calculation is to determine the delay a certain
message accumulates in going from its source to its destination. If this information
could be cached somewhere, it would not be necessary to recalculate the shortest-path
tree for each message to a certain destination. It would be sufficient to calculate it
for the first message, and then use the cached information for further messages.

Figure 4.8 demonstrates how we designed local node caches in order to avoid having
to repeat the shortest-path tree calculation for each message. When the shortest-path
tree has been built, delay information relative to each node is stored in the same hash
table used to verify node existence in the tree. For each node the hash table contains
the cumulative delay from the source to that specific destination. After the tree
and the table have been calculated, the shortest path is extracted from the tree and
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Figure 4.8: Caching.

the tree is discarded, and the hash table is stored in the local node. Whenever a
new message has a destination that already is contained in the hash table, it can
be sent without recalculate again the shortest-path tree. It is sufficient to pick the
delay information from the hash table (with a complexity O(1)) and forward the
message. Note that the hash table does not contain all destinations possible. This is
a consequence of the tree construction method: when the shortest-path tree is built,
the building process is stopped as soon as the specific destination is reached. This
choice is a further speed-up in shortest-path calculation.

4.6.3 Specific Optimizations

⇁ Avoid method calls in functions where efficiency is critical.

⇁ Avoid thread spanning during the simulation. This is a common approach also
in other simulation environment, such as JavaSim [20].

⇁ Limit object creation, growth, and structure size in frequently used code as
much as possible .

4.6.4 Profiling

Using the profiler option built into the Jsdk 1.4, it is possible to track down any
performance problems including memory leaks, excessive object allocation, perfor-
mance bottlenecks and inefficient algorithms, right down to the line of source code
responsible. We used this feature to find out where particular optimizations were
needed (see Figure 4.9). The profiler allowed us to discover the pieces of code that
were particularly slow and to concentrate our efforts to some precise aspects. More-
over, whenever a certain section was optimized, it allowed us to compare directly its
performace before and after the optimization.
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Figure 4.9: Example of profiling output.

4.7 Graphical Interface

The graphical interface has been built from scratch. A complete view of the network is
provided, as can be seen in Figure 4.10. The user can easily interact with the program
using either the menu bar on the top or the pop-up menu within the window. Any
part of the network can be explored with a single mouse click. The viewing window
can “fly” over the network, and be moved to any desired point just by dragging the
mouse pointer to the new point specified. The 2D graphics are quite sophisticated and
include some specific cares: triple buffering2, resolution reduction during the drag,
and some extra-computation to place nodes, draw links, and handle zoom. Moreover,
we also developed another version of the simulator, that excludes the Java classes
with the graphic interface. This choice brings a further speed-up in simulations that
do not requires a “real time” visual output. These “blind” simulations continually
output statistics for the benefit of the user (for example mean latencies, number of
hops, path lengths, etc.) that can be easily ordered and printed out in graphs and
tables using basic plotting tools.

4.8 JNI

JNI is the Native programming Interface for Java that is part of the JDK. Program-
mers use JNI to write native methods to handle those situations when an application
cannot be written entirely in the Java programming language. In our case, we needed

2Useful to efficiently handle the dragging of the mouse pointer over the window.
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Figure 4.10: Screen-shot example of the network simulator.

to implement a small portion of time-critical code in a lower-level programming lan-
guage, such as C, and then have the Java application call these functions.

Using the java profiler we found that the standard Java implementation of the
Hashtable class was too slow for our purpose: we use hash tables to store latency in-
formation for each node, so that the shortest-path tree among nodes can be calculated
efficiently.

The problems with the standard Hashtable class arise with the methods:

Object put(Object key, Object value);

Object get(Object key);

These two methods do not allow to put and retrieve int variables directly into a hash
table. The correct code to add and retrieve elements is

hashtable.put(new Integer(key), new Integer(number));

int number = (Integer)hashtable.get(key)).intValue();

As hash tables are accessed continuously during the simulation and each node in the
network has its own hash table, this code turns out to be too slow owing to frequent
object creation and access functions.

Using JNI, we coded our own hash table implementation. The result is a shared
library which contains a group of functions to handle hash tables efficiently, such as:
init, put, get, contains, etc., so that the operations now look as follows:
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hashtable.put(key, number);

number = hashtable.get(key);

if (hashtable.contains(key)) ...

The shared library also handles memory allocation for elements in each table, and
has its own addressing system to handle multiple hash tables of different nodes.

The impact of this approach on the overall behavior of the simulator was significa-
tive. The speed-up obtained by using this native library is around 150% (1.5 times
faster), even after the optimizations reported in section 4.6.1.

Unfortunately we pay fr this excellent performances in terms of portability. The
library using JNI is strictly platform-specific, so it needs to be recompiled whenever
the program is “ported” to another platform.

4.9 Testing

Software testing is the process of verifying the functionality and correctness of software
by running it. Software testing is usually performed for one of two reasons:

⇁ error detection

⇁ reliability estimation.

The problem of applying software testing to error detection is that software can only
suggest the presence of flaws, not their absence (unless the testing is exhaustive).
The problem of applying software testing to reliability estimation is that the input
distribution used for selecting test cases may be flawed. In both of these cases, the
mechanism used to determine whether the program output is correct (known as an
oracle) is often impossible to develop. Clearly the benefit of the entire software testing
process is highly dependent on many different pieces. If any of these parts is faulty,
the entire process will be compromised.

Testing involves any activity aimed at evaluating an attribute or capability of a
program or system and determining that it meets the requirements [28]. Software is
not unlike other physical processes where inputs are received and outputs are produced
[19]. Where software differs is in the manner in which it fails. Most physical systems
fail in a fixed (and reasonably small) set of ways. By contrast, software can fail in
many bizarre ways and detecting all of the different failure modes for software is
generally infeasible.

An interesting analogy to the difficulty in software testing is use of the pesticides,
known as the Pesticide Paradox [8]: “Every method you use to prevent or find bugs
leaves a residue of subtler bugs against which those methods are ineffectual”.

4.9.1 Simulator testing

In our case, the testing phase did not have to be intensive, for the following reasons:

⇁ firstly, we do not plan to ship a public release of our network simulator. Our
purpose is only to analyze our protocol;

⇁ secondly, our simulator does not require a large number of inputs. Simulations
need a network-structure file (that describes the topology of the network, usually
the output of a topology generator) and a few parameters;
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⇁ thirdly, our Java implementation guarantees a certain portability3 among mul-
tiple platforms and prevents the presence of bugs linked to specific platforms;

On the other hand we also had valid reasons to perform testing; namely,

⇁ tp guarantee the validity and consistency of the results obtained with the sim-
ulator;

⇁ the deep optimization done by using the Java Native Interface led to strict
machine- and platform-dependent code. Consequently, we needed to ensure
that these parts of code are reasonably “bug free”.

4.9.2 Programming with Assertions

An assertion is a statement containing a boolean expression that the programmer
believes to be true at the time the statement is executed. For example, after “unmar-
shalling” all of the arguments from a data buffer, a programmer might assert that
the number of bytes of data remaining in the buffer is zero. The system executes the
assertion by evaluating the boolean expression and reporting an error if it evaluates
to false. By verifying that the boolean expression is indeed true, the system corrobo-
rates the programmer’s knowledge of the program and increases the confidence that
the program is free of bugs.

Assertion checking may be disabled to increase performance. Typically, assertion-
checking is enabled during program development and testing, and disabled during
deployment. Because assertions may be disabled, programs must not assume that
the expressions contained in assertions will be evaluated. Thus, it is extremely bad
practice for these expressions to have any side effects: evaluating the boolean expres-
sion should never affect any state that is visible after the evaluation is complete (it
is not, in general, possible for the compiler to enforce a prohibition of side effects in
assertions, so the language specification does not disallow the practice).

Similarly, assertions should not be used for argument-checking in public methods.
Argument-checking is typically part of the contract of a method, and this contract
must be upheld regardless of whether assertions are enabled or disabled. Another
problem with using assertions for argument checking is that erroneous arguments
should result in an appropriate runtime exception (e.g., IllegalArgumentException,
IndexOutOfBoundsException, NullPointerException). An assertion failure will not
throw an appropriate exception (again, it is, in general, not possible for the compiler
to enforce a prohibition on the use of assertions for argument checking on public
methods, so the language specification will not disallow the practice).

Types of assertions include the following:

⇁ Precondition - an assertion that must be true before some operation. For ex-
ample the precondition of x = y/z is that z != 0. If the precondition is false,
the code can do anything up to and including starting World War III. If the
precondition is true the code should always succeed, i.e. make the postcondition
true.

⇁ Postcondition - the assertion that will be true after the code completes (if the
precondition is true). For example the postcondition of sort is that the output
value is the sorted version of the input.

3An exception is the library developed with JNI, which needs to be recompiled if the program is
ported to platforms different than Linux.
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⇁ Loop invariant - an assertion which is true on every iteration of a loop. For
example one way to sort an array is to sort a[0..i] with i initially 0. If we
increase the region that is sorted by 1 each time we go around the loop the
array will eventually be completely sorted. In the case the invariant is that
a[0..i] is sorted.

⇁ Loop variant - an integer expression used to prove that a loop terminates. For
sorting, the variant is the number of elements which have not been sorted. If on
every loop iteration we reduce this number by 1, and we stop when it reaches 0
(i.e. sorting has finished), then the loop will terminate. Loop variants are used
to represent progress in solving the problem.

⇁ Data invariant - an assertion about data variables which is always true. For
example an integer representing human tallness must be always positive.

Example extracted from our code:

static public double distance(Node a, Node b){
long square sum = 0;

( ... )

assert a != b : a; //print out the value of a if expression is false

assert (a.address != -1) && (b.address != -1);

( ... )

The piece of code above belongs to the set of functions responsible for calculating
the distance between two nodes in our virtual multi-dimensional space. This example
shows that assertions are useful to check whether everything works well.
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5.1 Design parameters

The overall behavior of the protocol we designed is influenced by some main param-
eters analyzed in this section.

5.1.1 Hyperspace dimensions

As the overlay network aims to reflect somehow the underlaying topology, one impor-
tant parameter is certainly the number of dimensions (d) of the virtual ID space. This
parameter stronlgy influences both node placement in the ID hyperspace and number
of links for each nodes. As discussed in Chapter 2, the number of links that each node
keeps is O

(

2d
)

(at least one link in each quadrant). As d has a strong influence on
the degree of connectivity of the overlay network, we expect a strong impact on the
efficiency of the routing process as well as on the routing table. Figure 5.1 shows some
examples of hypercubes in spaces with different numbers of dimensionsto illustrate
how the degree of connectivity among vertices changes.

1
2 3 4 5

Figure 5.1: Hypercubes in 1, 2, 3, 4, 5 dimensions.

5.2 Local versus Global Minimum

An important parameter, which strongly influences the joining phase in our design,
is how well the structure of the overlay network can adapt to and take into account
the structure of the underlying network.

Every time a new node joins the global overlay network, it tries to find the best
neighborhood. This is an area close to it in terms of the kind of distance metrics
used. If, for example, the distance metric used is latency, then it will join into the
network in an area with nodes having minimal latency to it. We wanted to analyze
how much the minimum in latency found by any new joining node (which we call local
minimum) is related to the absolute latency minimum existing in the network for that
node. Figure 5.2 shows a typical graph-output that we obtained from a simulation
with 1000 nodes in the overlay network. The graph is related to the joining phase of
the 1000th node in the network and shows the quality of the local minimum found
by this new joining node. Clearly this graph by itself is not significant, because the
behavior of the joining phase depends on the node and topology, but this graph is
useful to give an idea of what is happening during the joining phase.

As you can see in Figure 5.2 (the star represents the minimum found), the new
joining node in this case finds quite a good minimum, located on the part of the curve
in which the latency is steeply decreasing.

Moreover, multiple simulations have shown that typically about 40% of the local
minima found are also global minima.
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Figure 5.2: Minimum analysis based on latency measurement.

We also analyzed the ratio between the latency of the local minimum and of the
global minimum. Figure 5.3 shows the results. This figure has been generated with
300 nodes joining the overlay network one by one; for each we take into account two
parameters:

⇁ the delay from the new joining node to the local minimum;

⇁ the delay from the new joining node to the global minimum.

Note that these two parameters are different for each new joining node. Figure 5.3
shows the ratio between these two parameters. Specifically, Figure 5.3 represents the
cumulative distribution function of the ratios obtained.

We can easily see in Figure 5.3 that the average ratio is relatively small (less than
5 for more than 80% of the nodes).

Figure 5.4 shows the behavior of the latency minimum found when the number of
nodes (n) in the overlay network grows. Note that the behavior does not get worse
when n increases: there are a few peaks up to 10 but the average ratio remains around
2.

Figure 5.5 shows the absolute latency difference of the ratio peaks in Figure 5.4.
Values of latency ratio grater than 5 are considered as peaks.

5.3 Routing path length

The estimation of the latency minimum is significant because it influences the relation-
ship between the routing path in the overlay network and the one in the underlying
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Figure 5.3: Latency ratio from the local/global minimum for each joining node.

network. Figure 5.6 points out the meaning of this relationship.

If we call nU the number of hops needed to route a certain message from a source
to a destination in a basic underlying network (for example, the IP network) and nO

the same quantity defined in the overlay network, we find that

nU ≤ nO (5.1)

The ratio nO

nU
is a fundamental expression of the efficiency of the overlay routing

protocol, and the efficiency increases when this ratio becomes closer to one (note that
nO

nU
> 1 always).

Figure 5.7 has been plotted in an overlay network of 200 nodes and an underlying
network of 10,000 nodes. Each curve represents the ratio nO

nU
for 10,000 routing

requests made in the overlay network. The values obtained are sorted in increasing
order of the ratio nO

nU
.

As expected, increasing the number of dimensions leads to better performance in
terms of the path-length ratio, because the degree of connectivity of nodes in the
overlay network increases, and accordingly the length of the end-to-end routing path
tends to decrease.

Note also that when the number of dimensions (d) is four or greater, the path
length in the overlay network remains always smaller than twice the one in the under-
lying network. This results suggests a good value for the global number of dimensions
of the virtual ID space: d = 4 turns out to be a good choice.
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Figure 5.4: Quality of latency minimum found as the network grows.
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Figure 5.7: Path length ratios with 2, 4, 6 dimensions.
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5.4 Memory usage

Using d = 4, the average number of neighbors referenced by each node, which is also
the number of “routing table entries” in the overlay network, is:

2 · 2d
∣

∣

d=4
⇒ 32

If we choose d = 6, then we would have

2 · 2d
∣

∣

d=6
⇒ 128

Given that in the d-dimensional ID space we allocate b bits for each dimension,
these previous simulations have been done with b = 10. It means that each dimension
is defined by 10 bits. The choice of this value is empirical, in order to reach a tradeoff
between memory occupation of the IDs and correct space occupation of the “ID
cloud”.

Given d = 4 and b = 10, each ID takes d · b = 40 bits. Furthermore, each entry of
the routing table at the overlay layer merely consists of the ID of the corresponding
node. Depending on how the table lookup function is implemented, there can be some
other parameters inside the table, but we only aim to achieve a general estimation.

We analyze the follwing cases:

⇁ d = 4, having 32 entries of 40 bits each, leads to a table size of 1280 bits;

⇁ d = 5, having 64 entries of 40 bits each, leads to a table size of 2560 bits; and

⇁ d = 6, having 128 entries of 40 bits each, leads to a table size of 5120 bits.

This amount of memory is very poor, even for mobile devices.

5.5 End-to-end Latency

Whenever a data location request is issued by an host in the overlay network, the
end-to-end latency measured for that request can be defined as “the total delay from
the moment in which the request is issued to the instant the final destination is found”.
This delay depends on how efficient the routing process is in the overlay network.

We define Lu to be the latency to route a message between two generic nodes A

and B in the underlying network. When the address of B is known to A, Lu is the
end-to-end latency for a message traveling from A to B.

When A does not know the address of B, we want the message to B to be sent
using the capabilities of the overlay network. In that case, we define Lo as the latency
for a message traveling from A to B and using only the routing capabilities of the
overlay network.

As in terms of end-to-end latency the routing of the overlay network is not as
efficient as the one of the underlaying network, we can expect that in most cases
Lo

Lu
> 1. We cannot state that this ratio is always greater than 1. In fact, the routing

mechanisms of the underlying network are optimal with regard to the number of hops
of the total path between the source and the destination of a certain message.

Figure 5.8 represents the ratio Lo

Lu
when the number of dimensions d = 2, 4 and

6. This graph has been obtained with 200 nodes in the overlay network and 10,000
nodes in the underlying network. The curves have been drawn by sorting the values
of Lo

Lu
in increasing order.
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Figure 5.8: Overlay/Underlying network latency ratios for 2, 4 and 6 dimensions.

As we can notice, the overlay network performs well from the point of view of
latency. The curves obtained with d ≥ 4 show that the ratio Lo

Lu
is lower than 2 for

most requests.
Note how there are even (on the extreme left) some values of Lo

Lu
< 1: in these

few cases the overlay network is even more efficient than the underlying one from the
point of view of latency.
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5.6 Input datasets

The network structure plays a fundamental role in the overall behavior of the simu-
lation. In order to make our result significant, we examined different types of input
datasets. In particular we found that two topology generators are suited for our pur-
poses. Both of them can generate realistic large-scale scenarios that try to emulate
the structure of the Internet. We need a kind of dataset that includes topology as
well as some kind of “distance” metric. Currently we used latency as distance metric
for our simulation but any kind of metric can be used, such as link cost, bandwidth
or a combination of delay/cost/bandwidth, etc.

5.6.1 GT-ITM topology generator

The Georgia Tech Internetwork Topology Models [17] (GT-ITM) provides a great
number of choices. It includes flat random graphs, n-level hierarchies, and 2-level
transit-stub hierarchies. A flat random graph may be generated using a wide variety
of edge probability functions. For an n-level hierarchy, the user specifies the number
of nodes within each level and the type of probability function to use for connecting
edges within each level. The user does not specify connectivity between levels. Rather,
intra-level links are resolved into inter-level links; the degree of inter-level connectivity
is determined by the edge probability function used within the upper level. For the
transit-stub hierarchy, the user specifies a two-level transit hierarchy in the above
manner, then lists the average number of stub domains per transit domain and the
average number of extra transit-stub and stub-stub edges.

Its output format is a sgb file, and it is widely used as input file for NS [4].

5.6.2 Inet topology generator

The “Inet” generator[21] produces an AS-level representation of the Internet with
qualitatively similar connectivity. It generates random networks with characteristics
similar to those of the Internet from November 1997 to June 2000, and beyond. The
generator should be used to generate networks of no fewer than 3037 nodes, which
is the number of ASs in the Internet in November 1997. It provides connectivity
information over a large-scale network and a weight for each link of the network.

We found this solution to be appropriate for our simulator. At the same time we
also wrote a simple perl script to convert file formats from sgb to Inet, so that the
GT-ITM generator can be used as well.

Figure 5.9 shows the latency distribution in a network with 10000 nodes generated
by Inet. Latency values seems to have a mean around 100 ms as we expected. Most
of values are within the interval [50, 200] ms.

5.6.3 Self-collected data

Statistics [39] show that most latency peaks of point-to-point links in the Internet
are between 50 and 150 ms. In our first implementation we assigned distance metrics
among couples of nodes randomly. We were using a Gaussian distribution centered
around 100 ms.

In order to obtain an idea of the current latency distribution in the Internet, we
planned to collect latency information by ourselves. Having selected some few source
points in several areas of the “planet”, we run a simple program that is able to set
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Figure 5.9: Latency distribution from the Inet topology generator.

up TCP connection from there. The program simulates the TCP/IP connection of
a Web browser, and if there is a server waiting on the other side, it issues a few
simple HTTP commands and then shuts down the connection properly. We are able
to collect latency data about four types of TCP/IP interactions:

⇁ delay between the first SYN message and the SYN-Ack message received;

⇁ if the port is not opened on the other side, most systems answer with an ICMP
message: “port domain unreachable”;

⇁ delay between the first DATA packet sent and the first Ack received;

⇁ delay between the first FIN packet sent to shutdown the connection and the
ensuing FIN received from the remote system.

Probing a randomly generated pool of IP addresses (eventually with multiple asyn-
chronous queries) it is possible to dump this huge latency data into a single log file.

This file can be be analyzed to extract a possible correlation or a particular data
distribution. In particular, for each address probed, we considered the minimum
latency value (whenever more than one type of message are present) obtained among
the four different message described above to be the most significant. Figures 5.10
and 5.11, show, respectively, the cumulative distribution function and the distribution
function of latency data we collected1. The probing program has been run from five
different location (the legend in figure shows the five hosts):

1Latency values greater than one second are not shown as they represents a timeout or network
congestion.
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⇁ athos-arl-wustl-edu is in the US;

⇁ wanda-ch, pooky-granitsoft-ch and zurich.ibm.com are in Switzerland, but use
different ISPs;

⇁ sfo-openpksd-org is in Japan.
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Figure 5.10: Cumulative Distribution Function of the four data sets collected.

As we can see, there are three peaks that can be isolated in all the four distribu-
tions. All but the Japan-related location data show peaks around 50, 160 and 350
ms. The data collected for the Japan location has the three peaks slightly shifted to
the right, namely to 100, 280 and 380 ms.

On the one hand, Figure 5.10 shows that data collected for the Switzerland location
are quite similar. On the other hand, if compared with the other ones, latency for
the US location is lower and latency for the Japan location is higher. As expected
we can conclude that the latency behavior depends more strongly on the geographic
location than on the ISP connection.

We do not plan to go into details about this study, because the analysis of the
Internet latency distribution is not part of this project. The aim of the simple program
we developed was only to give us a general idea of point-to-point latencies around the
Internet and not to perform accurate measurement in this fields.

Figure 5.12 shows the comparison of the latency distribution of real data collected
with that of a topology of 10,000 nodes generated by Inet. The behavior of the Inet
curve is similar to our data when the latency is less than 150 ms; for larger values the
data from the Inet topology generator turns out to be “optimistic”, providing lower
latency values than the mean we found.

83



CHAPTER 5. ANALYSIS AND RESULTS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900 1000

oc
cu

rr
en

ce
s

delay (ms)

zurich.ibm.com
pooky.granisoft.ch

wanda.ch
athos.arl.wurst.edu

sfo.openpksd.org

Figure 5.11: Latency distribution of data collected from the four different locations.
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Figure 5.12: Comparison of Inet topology with datasets collected.
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6.1 Summary

Peer-to-peer overlay networks offer interesting possibilities to decentralized distributed
applications. The main weakness usually associated to the concept of peer-to-peer
networks is the need for some mechanism to locate data in a distributed environment.
Distributed Hash Tables (DHTs) address and solve this problem efficiently.

Our work has been to design a distributed infrastructure based on DHTs schemes,
in order to provide efficient and fault-tolerant routing, object location and load bal-
ancing in a self-organizing overlay network. Furthermore, our project’s purpose is
to achieve global routing capabilities even if the individual nodes only have a very
limited knowledge of the network around them, that means:

⇁ packet/message forwarding decisions are just local,and

⇁ the information overhead due to the overlay layer is minimal.

We payed attention to one aspect that usually reduces the routing efficiency of overlay
P2P networks: the lack of “locality preservation” during the routing process. We
addressed this problem using the following concepts:

1. our overlay network maps to a d-dimensional hypertorus (each node has an
unique identifier that belongs to this hypertorus structure);

2. routing is done by address in this space;

3. we provide an explicit network construction phase with the purpose to place
each node at the best-suited location in the overlay network structure;

4. the network construction phase is strongly “locality aware”, based on the mea-
surement of some distance metrics in the underlying network (delay, bandwidth,
cost or any combination of the previous ones);

5. the problem of establishing efficient routing is moved from the routing mech-
anism itself to the network construction phase: the routing efficiency depends
only weakly on the routing process but strongly on “how good” the overlay
network was built.

Fitting nodes into the hypertorus structure is a delicate phase that occurs whenever
a new node wants to join the overlay network. Our design provides the means to
guarantee the correctness, stability and efficiency of this mechanism.

Our simulations show significant improvements in end-to-end delays and path
lengths, so that our overlay network is well suited for the development of new appli-
cations in a real “low-latency” environment.

6.2 Future Work

Below is a list of some key aspects related to our design that could be developed in
the future:

⇁ Various possible applications could take advantage of the data location infras-
tructure we focused on, in particular in the field of robust distributed storage
protocols. In this case more capabilities should be integrated into our solution,
such as handling multiple replicas of documents or taking care of security issues
(cryptography, privacy, transactions, etc.).
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⇁ The quadrant structure we propose has numerous advantages from the point of
view of routing, but also includes some nasty problems in the network construc-
tion phase. What we propose is just a possible solution to address the problem of
building the overlay network correctly, but the problem remains open to further
research;

⇁ an open question is the study of the impact of underlaying network dynamics
(e.g. frequent node join/leave) on the overall stability of our network;

⇁ Our work actually consisted in the prototype implementation of a protocol;
beyond our analysis and our simulations it would be intersting to test it with
a distributed application over a real network or associated to some specific
hardware such as network processors, gaming boxes, booster boxes [7], etc.
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