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Abstract�We propose a systematic method to determine the 
lower bound for internal buffering of practical CIOQ switching 
systems. To this end we introduce a deterministic traffic scenario 
that stresses the global stability of finite output queues. We 
demonstrate its usefulness by dimensioning the buffer capacity of 
the CIOQ under such traffic patterns. Compliance with this 
property maximizes the performance achievable with finite 
buffers.  
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I.  INTRODUCTION 
Most of recently proposed switching fabrics belong to the 

class of combined input-output queued (CIOQ) architectures 
[4-17]. As shown in Fig. 1, CIOQs involve a degree of internal 
speedup and output queue buffering. The two main classes of 
CIOQs are centralized with limited speedup [9-17] and 
distributed with full speedup [4-8]. While the speedup 
required for ideal output-queue (OQ) emulation [10] has been 
the subject of numerous studies, e.g., [2,11-17], the topic of 
buffering has received little attention so far. Whereas the 
majority of theoretical papers assume infinite buffers, practical 
CIOQ implementations have a limited amount of internal 
buffering. Independently of their physical implementation, OQ 
buffers can be logically managed as shared (SM) [4-8] or as 
partitioned/dedicated memory architectures, e.g. CICQ 
[23,24]. 

Investigations of CIOQ buffering requirements, such as [3], 
are less numerous, and assume negligible round-trip times 
(RTT). Our contribution is that we investigate the switch core 
behavior under increasingly large RTTs.  

A question worth asking is: Can one derive a lower bound 
for the buffering capacity, and can one find a benchmark and a 
metric for assessing the global queuing capacity required by a 
CIOQ system? As we will show in the following, the answer is 
positive if we augment the definition of work-conservation 
with global stability.  

Definition (Work-Conservation Property): A work-
conserving (WC) switch will serve any output for which at 
least one packet is present in the system. 

However, the WC definition is too strict to be practical in 
assessing the properties of CIOQ switches with finite buffers; 
formally; no such system can be strictly WC [1]. The con-
sequences deriving from this result are that neither is perfect 
OQ emulation feasible nor is an absolutely robust and traffic-
agnostic CIOQ switch physically possible. If strict work con-
servation is unachievable, then it follows that the notion of 

strict work conservation has no practical value in sizing the 
buffers. Therefore we propose the notion of absolute global 
stability (AGS) of a CIOQ core; this sets a tight upper limit to 
the global queue buildup. Based on this property we derive the 
lower bound for the internal buffer requirements. To derive a 
pragmatical instrument for buffer dimensioning, we propose a 
new benchmark scenario, called sweeping hotspot.  From the 
outset we make the assumption that a switching core must be 
lossless under any traffic pattern, and its throughput (Tput) 
should emulate as closely as possible that of an ideal OQ 
switch. In [21] is shown that traffic patterns and behavior for 
the Internet are not predictable, motivating the assumption that 
the switch fabric should be traffic independent. 

The remainder of the paper is organized as follows. In 
Section II we present the background and set the framework to 
this paper. In Section III we prove that a lower bound for the 
buffering capacity of CIOQ switching systems exists. To this 
end we will first outline our method and introduce the 
sweeping hotspot traffic scenario. We then prove that the 
absolute global stability theorem places a tight bound on the 
number of packets admitted to the switch without violating 
work-conservation. As a result, we prove that the output buffer 
size for both SM and CICQ must scale as O(RTT*N2). The 
degree of AGS is proposed as the quantitative metric to 
differentiate between various CIOQ implementations. We 
conclude with future work. 

II. BACKGROUND AND FRAMEWORK 

A. Background 
In addition to the study of the internal buffering capacity 

performed in [3], we credit [1,2,22] as predecessing investiga-
tions in the same direction as our current work, namely, analy-
sis of stability and work-conservation. However, a number of 
basic assumptions distinguish our approach from previous 
studies. First, from [22] we borrow and extend the notions of 
admissible and inadmissible traffic [15,22]. However, as the 
traffic pattern proposed here is deterministic, basic calculus 
provides us with exact results. This contrasts with [22], where 
the use of ergodic traffic called for the use of stochastic 
methods. Second, whereas for the investigation of PPS [2] 
assumes infinite OQ buffers and that �no state information is 
communicated from the core to the inputs,� we apply a 
different set of hypotheses for the global stability study of a 
single-plane CIOQ. As any practical switch contains a finite 
OQ capacity, OQ state information must be communicated 
periodically to the IQ schedulers in order to prevent OQ over-
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Figure 1.  CIOQ system with finite buffers. 

flow. In CIOQs with centralized arbitration, such state 
information is implicitly included in the scheduling/arbitration 
algorithm  [9-12]. In CIOQs with distributed scheduling, the 
state information can be conveyed, e.g., as backpressure (BP). 
A more sophisticated flow-control scheme prevents both over-
flow and underflow. 

While [1] assumes a CIOQ with finite OQs, for the purpose 
of that study �backpressure is applied instantaneously in case 
an OQ is completely full�. In fact, many existing CIOQs 
assume fractional RTTs [5], or disregard the RTT altogether. 
However, we argue for the opposite trend. In current CIOQ 
systems, the distance between IQs and OQs spans tens to 
hundreds of feet, whereas the cycle time has shrunk from 
microseconds per packet to a few nanoseconds. One can no 
longer neglect the transport latencies, which affect both the 
datapath and the control path. Furthermore, scheduling perfor-
mance, scalability in number of chips and power budget per 
system favor the support of RTT inside the CIOQ core. In our 
study the sum of all logical and physical delays are lumped into 
the RTT.  BP is characterized by the fundamental time constant 
of a closed-loop feedback control system, τ = RTT, which 
marks the delay between the issuance of a BP command and its 
effect becoming visible at the same location where it was 
issued. We assume arbitrarily large RTT values within the 
switching fabric, normalized to packet cycles, in the range of 
tens to hundreds. 

B. Framework 
A typical CIOQ system is shown in Fig. 1. The CIOQ 

system under study contains an N×N switch core organized as 
single stage and single plane. We start by developing the global 
stability conditions of a CIOQ with full output speedup So = N; 
then we generalize the results to CIOQs with any speedup S. 
We seek to derive stability conditions without constraining the 
CIOQ speedup or scheduling. The system contains a total of N 2 
VOQ input queues [9-17] and N OQs; its physical and logical 
OQ architecture could be implemented as shared-memory 
[4,8], distributed [23,24] or mixed, i.e., physically distributed 
and logically shared [5,6]. Time-slotted operation with fixed 
sized packets is assumed. 

An implication of the results of [1] asserts that �more buffer 
space at the output is always better�; the authors in [5] 
advocate for 2 to 4 times more buffering capacity than their 
actual implementation provides. The main benefit of a buffered 
switch resides in its capability to remove the immediate 
dependency between packet arrivals and departures; provided 
there is sufficient internal queuing capacity, the downstream 
departure processes can be arbitrarily decoupled from 

preceding and current upstream arrival processes. As a con-
sequence, flow control, scheduling, and, essentially, the QoS 
service levels can be tuned to a range of throughputs and delay 
metrics. In short, internal buffering provides scheduling free-
dom, at the high expense of fast memory, i.e., low density and 
high power. 

By definition, a WC switch must be inherently lossless. For 
better clarity without significantly reducing generality, we 
initially assume a shared-memory CIOQ architecture with 
On/Off backpressure, which is reactive and stateless. Here the 
goal of BP is to achieve lossless operation.  

A difference between our work and previous studies is that 
[2] focuses on the absolute stability, which at the limit is 
equivalent to the work-conservation property of any single 
output (Definition 1, condition 3). We extend the method to a 
global CIOQ switching core across all its output ports. 
Intuitively defined, a globally stable CIOQ with finite buffers 
must achieve the same aggregate throughput as an ideal OQ 
switch with infinite buffers, if both are offered the same traffic 
patterns. To this end we must derive an absolute bound for the 
global queue buildup during a relevant, if possible, determi-
nistic traffic scenario. The question is how to build such a 
scenario. This will be shown below. 

III. GLOBAL STABILITY: METHOD AND TRAFFIC SCENARIO 
In this section we analyze under which conditions a CIOQ 

with finite buffers and distributed scheduling can emulate the 
ideal OQ switch with infinite buffers, when the traffic pattern 
exhibits correlated spatial burstiness. Our focus is on both the 
individual and the aggregate output behavior. In a globally 
stable CIOQ the arrival processes to any Oj must be indepen-
dent of those of other outputs. Decoupling can be achieved by 
partitioning the buffers into dedicated output queues, as in a 
class of CICQs, whereas in shared-memory CIOQs [4-6], it is 
achievable by providing sufficient speedup S and capacity for 
all the outputs. We prove here that either case elicits a global 
internal capacity O(RTT*S2). More specifically, we determine 
the global stability conditions that would permit neither 
overflow nor starvation of any output. Global stability under 
admissible traffic can be defined as the condition that, when the 
aggregate drain rate of all the output queues equals that of an 
unconstrained ideal OQ switch, the global queuing capacity 
available within a CIOQ core will accommodate exactly the 
maximum queue buildup. 

A. Method 
Let λij(t) be the instantaneous intensity of the packet-arrival 

process from input Ii to output queue Oj.  Let Λ(t) be the global 
matrix of intensities of arrival processes, as 

( ) |||| ijt λ=Λ    (1) 

With internal output speedup So=N,1 the sum per column in 
(1) is the total rate of arrival processes for Oj, λj(t) = !iλij(t). 
However, in a buffered CIOQ we are interested in the total 
amount of work arriving at output Oj within a specific time 
interval  

                                                           
1Speed up will be generalized later to values other than N. 
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Next, let µj(t) be the instantaneous intensity of the departure 
process from the output queue Oj; µ(t) is the vector of departure 
rates 

( ) ].,1[||,|| )( Njt tj ∈= µµ    (3) 

The output service rate µj(t) can be independently constrained, 
i.e., the service rate of an output Oj can be reduced or blocked 
by a condition external to our system (e.g., a blocking 
condition downstream). In a lossless CIOQ, if such an output is 
temporarily blocked while the arrival processes λj(t) are still 
active, no packets should be dropped; instead, backpressure 
mode is activated. Accordingly, a(ny) constraint applied to µ(t) 
will eventually backpressure the arrival processes, in a 
feedback loop. Thus, µ(t) is considered an independent variable 
that influences Λ(t). In general, the aggregate rate of arrival 
processes for any output Oj,  

λj(t) = !i λij(t) " [0, N$!λmax,i].   (4) 

Under ideal traffic, the total rate of arrival processes for any 
output Oj is bounded 

0 [ λj (t) [ 1,    (5) 

while under admissible traffic, the sum of any column of the 
global matrix of intensities of arrival processes, λj (t) < 1, (≤)t. 
We assume a bimodal distribution for the arrival processes; 
thus, either λij(t) = λmax = 1, or λij(t) = λmin = 0.  If λj(t) = 0, 
e.g., because no traffic is available in the IQs, then Oj is idling 
by necessity. If, at the other extreme, λj(t) > µj(t) for a given 
time interval, then Oj becomes congested and its OQ will 
backlog, which eventually will cause backpressure. This will 
occur despite a departure service with maximum rate µmax = 1. 

Definition We denote as inadmissible traffic any situation 
when the aggregate arrival intensity exceeds the available 
aggregate departure service rate, λj(t) > µj(t) = µmax. 

During inadmissible traffic, even the ideal OQ switch 
experiences loss of throughput and queue buildup; this will be 
discussed later. On the other hand, whereas the ideal OQ switch 
has maximum throughput under admissible traffic, a real CIOQ 
may still experience loss of throughput and non-work-
conserving behavior. One cause is that, if not dimensioned 
according to global stability, admissible traffic may induce an 
OQ to overflow, or, starve. This could, for example, result from 
premature backpressuring of inputs, which otherwise could 
provide the OQs with new arrivals. Thus, not all the traffic 
offered will materialize in throughput. 

B. Traffic Scenario 
For the study of global stability we employ a deterministic 

form of admissible traffic, denoted as sweeping hotspot. As 
the name suggests, this is a deterministic traffic pattern where-
by all input traffic sources synchronously target one output 
after another. If the k-th output is currently hotspotted, then  
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Persistent contention of two, or more, arrival processes at a 
single Oj will eventually result in congestion and backlog the 
corresponding OQ. We define the congestion rate at the single 
hotspot Oj as  

λcong,j (t) å λj (t) � µj(t) = !i λij (t) � µj(t).  (7) 

Assume that Oj is just being hotspotted, starting at time tj. 
We define the congestion epoch. 

 tCE = # + $ ,   (8) 

where # is the BP activation delay offset, an initial reaction 
time until backpressure mode is activated2, and, as mentioned, 
$ is the round-trip time (RTT) after which the effects of back-
pressure activation are felt. Correspondingly, under maximum 
degree N:1 of hotspot congestion starting at t0 = 0, the 
corresponding OQj will receive a monotonically increasing 
amount of work, 

             ∑ ∫
=

=
N

i

t

jj dttta
1 0

cong,CE,cong

CE

,)(),0( λ   (9) 

which, if the traffic pattern does not cease, will also cause the 
hotspotting IQs upstream to backlog once the BP is activated. 
The congestion graph rooted on the congested output Oj, and 
buildup of OQj concatenated with its respective ingress VOQs 
�all fully backlogged, is denoted saturation tree [20]. 

The sweeping hotspot will periodically (minor cycle) shift 
the hotspot target from one output to another one; and then 
repeat the sequence in the next major cycle. A round-robin 
sweeping sequence is shown in Fig. 2. 

After a certain number of congestion epochs which 
depends on the CIOQ speedup, this admissible traffic pattern 
converges to a steady state (see Fig. 4). This particular proper-
ty of the proposed benchmark for global stability enables us to 
test the convergence (absolute bound) of the queue buildup 
during back-to-back congestion periods. We will show that a 
CIOQ with finite buffers can emulate the ideal behavior and 
achieve the same steady state. 

C. Absolute Global Stability 
Here we prove that during admissible congestion, the 

global queue buildup of a CIOQ core with finite buffers is 
strictly upper-bounded. Moreover, no OQ underflows, i.e., it is 
work-conserving, provided that the global queuing capacity 
available in the CIOQ core equals this absolute bound.  

                                                           
2The reasoning behind this will be elaborated later. 

Figure 2.  Graphical description of sweeping hotspot. 
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Global Stability Theorem. If Q is the total internal buffer 
capacity of an N×N CIOQ with effective RTT = $ + #, and, 
Qmax, open is the maximum of the global queue buildup with 
open outputs, then the system is globally stable if and only if 

Qmax, open [ Q. 

Assuming that S = N, for a shared-memory CIOQ, 
QSM_max, open = N(N � 1)(λmax � µmax/2)(# + $), and for CICQ, 
QCICQ_max, open = N(N � 1)$. 

Proof. We are interested in the effects on the global queue 
buildup function (sum of all backlogged OQs) when shifting a 
synchronized hotspot target as soon as Oj is backpressured. 
Globally synchronized shifting arrival processes are readily 
obtained, even with loosely correlated inputs; it is sufficient 
that all input VOQ schedulers make their first transmission to 
the same Oj and, upon receipt of the backpressure signal for 
OQj, they choose the next hotspot target in the same sequence 
�whether incremental or random walk. After the first 
iteration of N minor cycles, the major sweep cycle will repeat 
starting from the OQ signalled as available; clearly, the oldest 
queue will be the first to disable its BP, BPj = Off, when j is 
the first queue that was congested during the preceding major 
sweep cycle. Global synchronization is effectively achieved by 
the backpressure signal, assuming that the backpressure mode 
is fair.  

Other assumptions are that the switch starts empty, and 
that it employs instant and per-output discriminative back-
pressure mode to prevent OQ overflow. In the context of 
CIOQs with non-negligible RTTs, �instant backpressure� 
denotes that the backpressure mode is activated as soon as 
conflicting arrival processes are detected at any output�at 
most after an activation delay #. This delay ensures that the 
OQ will not unnecessarily starve, by activating BP only after 
at least RTT*µmax packets have arrived. Thus, the effective 
RTT is composed of $ = !Transport_lags, plus the activation 
delay #. Hence, �instant� activation of backpressure is not 
equivalent to instant effect, i.e., the arrival processes at Oj may 
continue with maximum intensity for up to another $ after the 
activation delay #. Also, for reasons of fairness and work-
conservation, backpressure must discriminate between con-
gested and non-congested outputs; otherwise a single back-
logged OQ will head-of-line (HOL)-block the remaining N � 1 
outputs as well, thus eliminating the benefits of the VOQ in 
the IQ. 

During the congestion epoch focused on Oj the following 
amount of work arrives 
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However, not all of this work will be backlogged. Here we 
assume that the output departure processes are not constrained, 
µj(t) = µmax. Queue buildup qj(t) of OQj is proportional to the 

amount of work produced by the congestion rate λcong,j(t) 
within this epoch 
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 If we insert (7) into (11), with λmax = µmax,j= 1, 

),()1(),( max,CEcong, ετλ +⋅⋅−=+ ijjj Ntttq        (12) 

i.e., ).,(),( CEcong,CEcong, tttatttq jjjjjj +<+  
Next, we observe that the maximum of the local queue buildup 
is reached when hotspotting arrivals shift from Oj to Oj+1; on 
the traffic scenario timeline, qj(t) is a monotonically increasing 
function from tj up to this moment; the rate of increase is 

.)1( maxλ−N  From now on, until the next congestion epoch, 
OQj enters its drain epoch, monotonically decreasing with rate 
µj(t) = µmax.  

An interesting question is what is the behavior of the 
global queue buildup Q(t) during a number of contiguous 
congestion epochs, before the sweep converges to steady state 
and becomes cyclic. Two lemmas are needed to conclude the 
proof of AGS theorem. 

Monotonicity Lemma. In the first N � 1 congestion 
epochs, the global queue buildup Q(t) is a monotonically 
increasing function.  

Proof. We will prove that in the restricted time domain of 
the initial N � 1 congestion epochs (see Fig. 3), the global 
queue buildup Q(t) continues to consume OQ buffering 
capacity, i.e., monotonicity. This sets an absolute lower bound 
on the capacity required for ensuring that all outputs are work-
conserving under traffic of maximum contention, i.e., the 
finite buffer CIOQ emulates an ideal OQ switch. We express 
Q(t) as the difference between two cumulative functions, 

Q(t) = A (0, tN � 1) � D(0, tN � 1),   (13) 

where A (0,t) is the total amount of work that has arrived in the 
switch, and D(0,t) is the total number of departures since the 
initial time 0. Both functions are readily calculated by integra-
tion over N � 1 congestion epochs.  

Here we are interested in the monotonicity of their differ-
ence; i.e., either prove the positive sign of the first derivative 
or show that Q(tj + 1) > Q(tj) for all tj + 1 > tj.  A(0,t) is a 
monotonically increasing function of time, with constant rate 
of acong,j, i.e., Nλmax. While also monotonically increasing on 
each subdomain, i.e., distinct congestion epochs, the departure 
function D(0,t) is not continuous3 across congestion epochs; 
its rate, denoted M(t), increases in discrete steps with every 
new epoch. M(t) represents the aggregate departure rate from 
the switch as the sum of service rates µj(t) of currently active 
outputs. For M(t) we observe  
1st congestion epoch: j = 1 => M(1) = µmax,j tCE 
2nd congestion epoch: j = 2 => M(2) = 2·µmax,j tCE 

:  
jth congestion epoch:  M(j) = j·µmax,j tCE. 
                                                           
3Therefore, we can neither use the sign of first derivative to prove monoto-
nicity nor the second derivative to locate the maximum of Q(t). 
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Thus, after N � 1 congestion epochs, there were a total of 

A(0, tN � 1) = N(N � 1) λmax tCE     (14) 

arrivals, whereas the total number of departures D(0,tN � 1) is 
sum of the arithmetic progression 

CEmax

1

1
CEmax1 2

)1(),0( tNNtjtD
N

j
N ⋅⋅

−
=⋅⋅=∑

−

=
− µµ     (15) 

In general,  

and,)1(),0( CEmax1 tjNtA j ⋅−=− λ  (16) 

.
2

)1(),0( CEmax,1 tjjtD jj ⋅
−

=− µ   (17) 

The corresponding global queue buildup after N � 1 con-
gestion epochs Q(tN � 1) will be 

Q(tN � 1) =  N(N � 1)(λmax � µmax,j /2) tCE.    (18) 

If, for simplification. we assume λmax = µmax,j = 1 in (18), then,  

Q(tN�1) =N(N � 1) tCE /2.     (19) 

After simple calculations, we obtain  

Q(tN � 2) = (N � 2)(N + 1)tCE/2.  

Thus, if %(tN) denotes the difference function, 

%(tN � 1) = Q(tN � 1) � Q(tN � 2) = 1 > 0 
%(tN � 2) = Q(tN � 2) � Q(tN �3 ) = 2 > 0. 

§ 

Straightforward polynomial manipulations yield the general 
function form  

   % (tj) = N � j,    0 < j [ N � 1.  (20) 

Therefore, the following inequality series holds: 

Q(tN � 1) > Q(tN � 2) > � > Q(tN � j) >�> Q(1) > 0,   

(≤) j [ N � 1. 

Consequently, Q(tj + 1) > Q(tj) for all tj + 1 > tj.  

« qed. Monotonicity Lemma. 

Convergence Lemma. The function Q(t) converges to 
absolute steady-state value Qmax, open. 

Proof. If expressed in total number of packets to be 
buffered in a shared-memory CIOQ, i.e., the cumulative 
function of queue buildup 

Q(t) = N(N � 1)(λmax � µmax,j/2)(# + $). (21) 

Whereas Q(t) reaches its maximum after the first con-
gestion epoch when the difference between aggregate input 
and output is maximum, the cumulative function of queue 
buildup, Q(t), peaks after precisely N � 1 congestion epochs. 
From this moment on, as the sweeping hotspot visits ON and 
subsequently continues with a new cycle, the system con-
verges to steady state when, assuming that λmax = µmax = 1, 

Q(t) = Qmax, open = N (N�1) tCE /2 = constant,           (22) 

and  %(tj) = 0,   ≤  j > � 1.  

« qed. Convergence Lemma. 

As shown in Fig. 4, the aggregate drain rate increases pro-
portionally to the number of backlogged outputs during the 
transient warm-up phase. The process repeats for each new 
congestion epoch, until convergence to steady state, i.e., until 
all outputs are active. At this instance the rate of global queue 
buildup becomes zero, while the aggregate throughput is 1. 

We calculate for a shared-memory CIOQ, 

        QSM_max, open= N(N � 1)(λmax � µmax/2)(# + $), (23) 

 
At this point we compute the BP activation delay, #, as 
follows. In order not to underflow an OQ with fully open 
output, the On/Off threshold is set according to: 

  # * λcong,j  = $ * µmax  (24) 

# * (N � 1) * λmax = $ * µmax.    (25) 

Assuming λmax = µmax = 1, the activation delay required before 
BP = Off  is 

  # = $/(N � 1).       (26) 

Figure 3. Sweeping hotspot snapshot: All OQs, except ON, backlogged after 
N � 1 congestion epochs. 

Figure 4. Convergence to steady-state limit value
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Introducing the BP activation delay into Eqs. (23), we obtain 
the absolute lower bounds of global stability for the two 
classes of CIOQs: 

QSM_max, open= $ N 2/2   (27) 

QCICQ_max, open= $ N (N � 1).  (28) 

« (A)GS Theorem 

The strong form of the global stability condition above 
denotes the absolute global stability. That is, the end of the 
drain epoch for the first (oldest) output hotspotted, i.e., OQ1, 
coincides with the termination of the Nth congestion epoch and 
with the start of new major sweep cycle, or 

Tdrain_AGS = N tCE,   (29) 

which prevents the underflow of the oldest queue, i.e., the loss 
of the work-conservation property. Absolute global stability 
under sweeping hotspot traffic ensures that after an output was 
activated, it will never unnecessarily idle. Also, the global 
capacity according to Eqs. (23) is sufficient to prevent that an 
output can be starved due to other congested outputs; this is 
equivalent to non-hogging.  

The necessity proof of AGS theorem is simple. If the total 
amount of internal buffering is less than Qmax, open, the CIOQ 
will block before converging to steady state; i.e., one or more 
outputs will starve. Hence, compliance with the AGS property 
allows the exact emulation of an ideal OQ switch under 
admissible congestion traffic.  

Generalization of the absolute global stability theorem 
(for any S). It can straightforwardly be shown that the above 
analysis also holds for the more general case of an N×N switch 
fabric with output speedup S. This is done by introducing S, 
instead of N, in (7)�(29). More specifically, if in (13)�(15) we 
replace N with S, and assume that λmax = µmax = 1 and 

),1/( −= Sτε then, for example, the total internal buffering 
capacity required for a shared-memory CIOQ is 

  QSM_max, open = $ S2/2.  (30) 

As a result, the required number of buffers depends on the 
RTT and speed-up S rather than the number of ports N. This 
result holds independently of the scheduling algorithm.        « 

Derivatives that follow from global stability: 
Lemma 1. The load offered under admissible multiple-

hotspot congestion traffic makes the same forward progress in 
a globally stable CIOQ switch core with finite buffers as it 
would in an ideal OQ switch. 

Lemma 2. Separation Principle. An absolute, globally 
stable CIOQ switch core provides strict independence of any 
{in,out}-tuple. Therefore, a stable switch of speedup S = N is 
resilient to N distinct saturation trees, i.e., it is non-blocking. 
Such a switch can support any admissible traffic pattern 
without loss of throughput, independently of its spatial and 
temporal distributions.  

D. Discussion 
In order to compare our results with [3], we will reverse an 

initial assumption, i.e., the one that all outputs are always fully 

open. This was required to establish the absolute lower bound 
of queue buildup during admissible congestion; in fact, µj(t) = 
µmax, ≤ j, t, is optimistic over arbitrary time intervals. In a 
�closed� scenario, any output Oj may be arbitrarily constrained 
to a service rate µj(t) " [0,1]. A conservative variation of the 
sweeping hotspot scenario assumes that µj(t) = 0 just after4 the 
onset of a congestion epoch. In this case the local maximum of 
Q(t) is reached only after N congestion epochs (after which 
outputs must open), during which no departures occurred: 

Qmax, closed = N 2 λmax ($ + #′),  (31) 

where #′ is the activation delay with closed outputs, calculated 
similar to (24)�(26). However, in this case the on/off threshold 
is reached sooner, after 

#′ = $ / N.     (32) 

If λmax = 1, then 

Qmax, closed = N (N +1) $.    (33) 

The difference between our study and the worst case from [3, 
Section 3.2] is that we do not assume that the congested out-
puts must be externally blocked. By comparison, the absolute 
global stability shows that a shared-memory CIOQ with finite 
buffers can emulate the ideal OQ with infinite buffers with 
less than half of the buffer capacity resulting from [3]. Indeed, 
if all other factors are equal, 

N 2 / 2 < N (N + 1) .   (34) 

Next, unlike [2], where Oj is investigated independently of 
the other outputs, we study the stability across the full set of N 
outputs, by considering the dependencies arising from practi-
cal constraints and/or resource sharing. 

Comparing (27) and (30) we observe that for limited 
speedup values, e.g., S < N, absolute global stability can be 
achieved with less internal buffering capacity. Therefore, if 
not considering other issues such as scalability, general work 
conservation, multicast and QoS, a CIOQ core with limited 
speedup is less expensive in terms of memory size. Also it 
must be observed that in Eq. (27) the value QSM_max, open = $ 
N2/2, holds only for shared-memory architectures. If parti-
tioned per output queue, an absolute globally stable CICQ 
with backpressure and full speedup requires more capacity. 
The following inequalities hold 

QSM_max, open  < QCICQ_max, open  < Qmax, closed .       (35) 

Because arrivals in a shared-memory CIOQ can readily use 
the queuing capacity just freed by the departures of other 
outputs, this architecture seems appealing. However, the 
relative benefit of shared-memory CIOQ vs. CICQ (ca. 50% 
less internal capacity for SM) is rather theoretical, as the 
shared-memory requires that the entire OQ capacity is fully-
spedup RAM�instead of memory operating at line speed, 
which is sufficient for CICQ. 

Finally, we observe that, whereas in (33) we derive 
Qmax, closed for the first N congestion epochs, i.e., the first major 
cycle of the sweeping hotspot, the result is of limited practical 
                                                           
4In fact this timing is not essential; outputs could have been closed ab initio. 
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value. First, under such circumstances and with closed 
outputs, the ideal OQ remains non-blocking owing to its 
infinite buffers. Meanwhile its throughput is null, because the 
system functions as a degenerated buffered switch, i.e., as a 
memory. This makes the �closed output� assumption 
questionable. As there is no reason to stop the sweeping 
hotspot after the first major cycle, if this will continue past the 
N-th congestion epoch, the global queue buildup is unbounded 
in an ideal OQ switch. Unlike during the �open output� 
scenario, the Q(t) function is not convergent as long as at least 
one departure process is constrained; the global backlog 
continues to increase monotonically�or, at the best, 
interleaved with periods of stagnation. Finally, we observe that 
the issue of potential output starvation upon restart is covered 
by the BP activation delay, according to (24)�(26) and (32). 

If convergence to steady state is not achievable with con-
strained departures, we argue that a �closed� traffic scenario 
can neither be used as benchmark nor the global stability 
property as a metric; instead, this case ought to be treated as 
inadmissible traffic. Our target was to determine the inflexion 
point beyond which the performance gains are cancelled by 
the cost of over-provisioning with additional capacity.  

E. Global Stability Degree 
As degree of global stability of a CIOQ core, we introduce 

the normalized ratio of the global stability condition--e.g., Eq. 
(23) for shared-memory CIOQs--to the available internal OQ 
capacity of that CIOQ. This is a helpful metric to assess to 
which degree a CIOQ will not experience throughput loss, i.e., 
to which degree it is non-blocking under admissible traffic.  

For example, consider a 64×64 CIOQ core with full output 
speedup S = N, packet size and memory width of 64 B, RTT = 
50 packet cycles and arrival, resp. service rates λmax = µmax = 
64 Gbps. To achieve a global stability degree of 1.0, if 
implemented in shared-memory, 6.25 MB of RAM with cycle 
time 0.06 ns are needed. If implemented as a CICQ with per 
output queue partitioned memory, 12.3 MB of RAM with a 
cycle time of 4 ns are needed. Clearly, the shared-memory 
requires a large number of interleaved memory banks, each 
512-bit wide; despite the 50% advantage, the implementation 
cost of a globally stable SM CIOQ architecture becomes 
prohibitive for line rates beyond 10Gbps.   

IV. CONCLUSIONS 
We have derived the exact lower bound of global stability 

under admissible traffic, and proved that in such conditions a 
practical CIOQ can emulate the ideal OQ switch. For the 
particular case of shared-memory CIOQs, stability is 
achievable with buffers of less than half the size as estimated 
by the previous dimensioning attempts. Moreover, we have 
proposed the global stability degree as a metric to assess the 
potential loss of throughput under deterministic admissible 
traffic.  

As method we have used the sweeping hotspot as a deter-
ministic traffic benchmark to measure the stability degree. The 
sweeping hotspot is an important benchmark because of its 
unique combination of contrasting properties: locally and 
periodically it produces maximally contending arrival patterns 
of inadmissible traffic, while globally, when applied to an 

ideal OQ with infinite buffers, it converges to admissible 
traffic with steady state whereby throughput is maximal. The 
method is useful in sizing any CIOQ systems that must 
support non-negligible RTTs within the switching core. 

V. LIMITATIONS AND FUTURE WORK 
Whereas the absolute lower bound of global stability is of 

practical value for a global dimensioning of CIOQ cores, the 
result does not provide insight into how to partition and 
schedule this buffering capacity. Notably missing are more 
specific work-conservation issues5, i.e., does Eq. (23) hold for 
any other traffic scenario? 

Once the issue of stability has been dealt with, some more 
pragmatical issues arise next. (i) Is a globally stable CIOQ 
core feasible, and up to which size? (ii) Can we emulate its 
correctness properties with less expensive constructs? (iii) Can 
other, tighter, benchmarks be found? 
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