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ABSTRACT
Massive multi-players games are interesting from a network
research point of view as they are sensitive to loss and delay
while at same time producing huge amounts of data. Their
characteristics are very different from the request/response
protocols that currently dominate the Internet. It is per-
haps timely to consider the required infrastructure for future
games that are one or two orders of magnitude larger than
those currently available. Typically, existing large games
use a central server model as peer-to-peer systems are as-
sumed to be unscalable. However, central servers cannot
scale beyond a certain point owing to I/O limitations. This
paper proposes a hybrid solution between the peer-to-peer
and central server models that, we claim, is more scalable
than either alone.

1. INTRODUCTION
A game is a system in which some of the system states

are considered by the participants to be more desirable than
others and whose unique purpose is the placement of the sys-
tem by the participants in these states. They achieve this
through a set of well-defined operators. Different partici-
pants may have different desired states.

A networked game is one in which state changes are per-
formed across the network. In practice two ways of achieving
this are possible: each participant keeps a copy of the state
locally, and all participants communicate the operations to
be performed to all other participants who use this informa-
tion to update their local state; one reference copy of the
state is kept and all operations are transmitted to an actor
which updates the state and distributes it to all participants.
The first system is commonly called peer-to-peer while the
second is a central server system.

The second method is more efficient in resource usage as
the operations are transmitted only once and their execution
is performed only once. However, a large burden is placed
on the actor who maintains the reference state. Practical

systems also need to consider that the infrastructure will
introduce delay and loss into the transmission of operations
and state updates.

In this paper we discuss the architecture of a networked
game involving a million participants, each producing a max-
imum of one operation every second. These numbers are ar-
bitrary and are chosen only in that they are more demanding
than any existing multi-player game. For example, while the
owners of the EverQuest role-playing game [19] claim that
tens of thousands of people can participate simultaneously,
a user is in fact restrained to choose one of about 40 servers
on which to be located. As it is not possible to move be-
tween servers, each server is in fact independent. Therefore,
EverQuest is better thought of as 40 independent instances
of the same game, each of which handles about 2000 play-
ers. Bharambe et al. [5] report that current games have
difficulties supporting more than 3000 – 6000 players.

First, we describe the infrastructure which would be needed
to support such a game using a central server approach, then
we identify weaknesses in this approach and describe how
these can be addressed using a hybrid peer-to-peer/central
server system. Finally we describe a prototype implementa-
tion of the basic component required to support this hybrid
model.

2. EXISTING APPROACHES
The hypothetical game has 106 players, each of which is

capable of sending an operation every second. The logic of
this game is such that when a player performs an operation
at time t, all operations performed at time t-1 must have al-
ready been taken into account in order to calculate the new
game state. This is slower than the inter-packet transmis-
sion time required by so-called First Person Shooter games
(FPS), which is typically less than 100 ms [7].

Using a peer-to-peer model for supporting such a game
would involve the transmission of 1012 operations per sec-
ond; supposing each operation was encoded in 100 bytes —
a typical client packet size for an FPS game [7] — then 1014

bytes of information would be sent across the network every
second. This is unfeasible.

With a central server approach, the server receives 100
Mbytes of operations per second and has to transmit the
new game state to each of the players. Suppose that the
size of the total game state is directly proportional to the
number of participants and that each participant’s state is
represented by 1 Kbyte, i.e. the total state of the game is
1 Gbytes. Sending the whole game state every second to



each player is unfeasible; supposing further that only deltas
were sent and only 1 byte of information per participant
was modified each second this would still require 1 Mbyte
of information to be sent to each participant per second.

The obvious conclusion is that in order to scale we cannot
treat the game state as monolithic and that very large games
must take advantage of the fact that a given participant is
oblivious to most of the game sub-states. Many papers have
already proposed this approach, for example [5, 8].

The fraction of the game state that interests a given par-
ticipant is game specific. Let us assume — as is commonly
the case for massive multi-player games — that the game
has some concept of virtual location and that interest in the
activities of the other participants is related to closeness of
virtual locations. Say that a given participants has a max-
imum of a 100 other participants that are close enough for
their activity to be of interest.

The server still receives the same number of operations,
but needs to send only 100 bytes of state updates to each
participant per second, i.e. 100 Mbytes per second. The
server receives 100 Mbytes and transmits 100 Mbytes per
second. Such figures are high but well within the boundary
of currently available network access speeds.

The server sends and receives 106 distinct packets per sec-
ond. These packets are generally carried using UDP; an ex-
amination of the loss-free rate at which a UDP server can
receive from a client across a range of operating systems,
CPUs, Network Interface Cards and buses [11] shows that
on an unloaded server about 104 small packets per second
are sustainable without loss. Assuming that a two-order-
of-magnitude increase is possible with specialized hardware,
then the server could send and receive at the required rate,
but would have no time for any processing.

Distributing the processing over multiple servers is an ob-
vious next step in scaling the game. Suppose that we have
100 servers and the load could be evenly balanced across
them, then each server would only have to support the re-
ception and transmission of 104 packets per second; we as-
sume this leaves enough time to perform the processing in
order to produce the game’s new state.

However, each server has to receive the packets from par-
ticipants who are in the same virtual location. Assume there
are 103 distinct locations in the game each containing 103

players, then each server is responsible for 10 locations and
must receive all the operations for those locations before it
can calculate the new state.

It would be possible to place another server between the
edge router and server farm which examines the virtual lo-
cation of the emitter of a packet and forwards the packet to
the server responsible for maintaining that location. This
routing server would have to read and write 106 packets per
second. As it performs no computation it seems more sensi-
ble to combine its action with that of the router in the form
of an application-specific router, capable of looking at data
carried in the payload of the packet to make a forwarding
decision.

In summary, assuming a hundredfold increase in server
I/O, approximately 100 servers each with no limitation on
processing and interconnected to an almost loss-free Inter-
net via a piece of dedicated application-specific hardware
capable of “intelligent” forwarding at 1 Gbit per seconds
could sustain a 106 person game in which each player sends
1 operation every second.

As a reality check lets us compare the required infras-
tructure for the example game with that of a real large
networked application: the 1998 Winter Olympic Game’s
web site was supported by thirteen IBM SP/2 mainframes
containing a total of 143 processors. On average it han-
dled about 40 million requests per day, with a peak load
of about 2000 requests per second. An upper bound of 30
seconds of end-to-end delay was set for users requesting a
dynamic web page [6]. As the example game is required to
handle two orders of magnitude more requests per second
and process them in two orders of magnitude less time, it is
to be expected that even with increases in processing power
the infrastructure would be much larger than that of [6].

Even allowing for the idealized assumptions made, this
solution is not very satisfactory. Firstly, it is centralized
and thus vulnerable to failure. This could be handled by
replicating the servers over a number of geographical sites,
at the cost of additional servers and of keeping the replicated
state on the servers synchronized.

More importantly, the solution is very dependent on the
example we chose. If we decided that two events per second
were needed, then the number of servers needed would dou-
ble. On the other hand, if only a tenth of the anticipated
number of participants played, our infrastructure would be
largely over-dimensioned. A better solution is one that im-
plicitly scales with the number of users, i.e. that as users join
the total amount of processing, bandwidth and memory I/O
increases.

The resources available to a peer-to-peer system increase
with the number of peers. Although, as we have seen, these
systems cannot scale to a large number of peers, we earlier
assumed that at a given moment in the 106 person game
there were fewer than 100 other participants with which a
player was required to communicate. For our hypotheti-
cal game, each player would therefore only need to be able
to receive 100 operations per second. The bandwidth re-
quirements of each client would be 100 Kbytes/s, which is
well in the range of available ADSL or cable-modem offer-
ings. Assuming a reasonable amount of processing for each
operation, e.g. comparable to that in current peer-to-peer
games, normal desktop PCs should be quite capable of sup-
porting the execution of the game logic. If it were possible
to construct the massive game as a federated set of small
peer-to-peer systems, then the game would not only scale
with the number of players, but (best of all from the game
provider’s point of the view) the clients would be supplying
both bandwidth and processing themselves.

In the next section we explain how this can be achieved.

3. A HYBRID APPROACH
The large game is partitioned into multiple peer-to-peer

systems. These systems are federated in such a way that the
user is unaware when crossing the boundary between them.
The basic enabler of this federated system is an efficient and
reliable means of communicating within the geographically
distributed peer-to-peer groups. This is achieved using a
network-based server capable of very fast packet forward-
ing, called a Booster Box. While game data is transmitted
between clients without passing through a central server,
control servers are used for out-of-band control information
needed to configure and manage the system. All game data
packets are carried using UDP, while control operations use
TCP. An overview of this architecture is shown in Figure 1.
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Figure 1: Architecture Overview

It is important to note that existing games cannot run as
is on this hybrid system; existing commercial solutions [12]
already recognize the need for new models for game devel-
opment that explicitly take into account the scaling consid-
eration required for very large games. However, our hybrid
architecture, while imposing certain constraints on game de-
velopers, is game independent and can be used for many
different games.

3.1 Game Packet Forwarding

3.1.1 Multicasting
A booster box maintains the list of clients resident at a

given virtual location. The client sends data packets to the
booster box which then sends them to all co-located clients.
The client does not know the addresses of the other clients,
nor does it communicate with them directly. This reduces
the communication overhead for the clients significantly and
matches with the asymmetric bandwidth resources of ADSL
and cable modems in that the upstream direction, which is
used for sending, provides less capacity than the downstream
direction, which is used for receiving.

The booster box implements the multicast function with-
out requiring the network to support IP multicast. The
clients send unicast IP packets to the addressable booster
box, which in turn generates many unicast IP packets to
send to the members of the peer group.

Consider again the hypothetical game described in Sec-
tion 2, suppose the maximum number of clients that a peer-
to-peer system can support is 100, then 104 distinct virtual
locations/multicast domains are required to support a 106

person game. The controlling booster box receives 1 opera-
tion each second from each client in a given virtual location.
As the booster box multicasts all operations in each virtual
location, the booster box forwards 100 packets to all 100
clients, i.e 104 packets per second. As we have seen in Sec-
tion 2 this is about the rate at which current commodity
systems can handle UDP packets without loss. However, it
would require 1 booster per box per virtual location, i.e. 104

booster boxes. Such a system would be both costly and dif-

ficult to manage.
Instead we implement the multicast function in programmable

hardware [15]. This allows forwarding rates of more than 106

packets per second, allowing a single booster box to handle
100 virtual locations, and thereby reducing the number of
booster boxes to more manageable levels. A booster box
may handle multiple distinct games, in which case the num-
ber of clients per game is reduced accordingly.

Booster boxes are typically distributed throughout the
network; as there is no correlation between network and vir-
tual location, the round-trip Time (RTT) between a client
and its controlling booster box and the RTT between client
and a central server are likely to be comparable. However, as
the booster box performs no computation on the data path,
the RTT between two clients communicating via a booster
box is lower than if they were communicating via a server.

3.1.2 Handling Packet Loss
Loss leads to incoherent states between clients, and at a

certain level of loss games become unplayable. The use of
reliable transport protocols such as TCP involves a larger la-
tency as the sender after sending a window of data must wait
for an acknowledgment before sending the next. Allowing
for 200 ms RTT, then supposing each operation is acknowl-
edged, a client can only send two operations per second.
If the size of TCP’s receive window is larger than that of
a game packet, multiple packets can be acknowledged with
the same ACK, but loss can lead to a received packet not be-
ing expedited to the user process until the preceding packet
has been retransmitted. For these reasons UDP is generally
preferred over TCP in games. However, the application de-
veloper must handle retransmission at the application level.

The booster box adds support for application-layer re-
transmissions. When a packet arrives at a booster box, the
forwarding mechanism adds a packet sequence number. The
sequence number increases monotonically. A receiver can
determine whether it has not received a packet by examin-
ing whether any sequence numbers are missing in the stream
of packets it receives. Noncontiguous arrival may be caused
by out-of-order delivery as well as loss. The application must
wait some window of time before deciding that a packet has
been lost and should be retransmitted; how long it waits is
application specific. Besides allowing retransmissions, the
sequence numbers also define a causal order on the pack-
ets. This allows the clients to keep a consistent state by
processing incoming packets in the same sequence.

A client requests retransmission of the packet from the
booster box, rather than from the initial sender. The client
does not know the address of the sender, and the burden for
handling retransmissions is placed solely on the booster box.
The booster box can only keep a finite number of already
transmitted packet in memory, so packet retransmission is
not possible for old packets. As game-related packets are in
any case only valid for a short period of time, this is not a
drawback.

Periodically the booster box sends a “heart beat” packet
to all clients in a location, repeating the sequence number
sent last and the lowest (oldest) available one it has in mem-
ory. In this way clients can distinguish inactivity from high
levels of loss and can determine whether retransmission is
possible.

The booster box behaves similarly to the master com-
ponent of the “Multicast Transport Protocol” (MTP) de-
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Figure 2: Handling Packet Loss

scribed in [3]. However, MTP offers a richer set of func-
tions, in particular a rate-based flow-control mechanism that
is implemented using a token-passing scheme. The token-
passing scheme limits the amount of parallelism and also
significantly adds to the delay and therefore cannot be used
for networked games.

Levine et al. [12] describes a method of application-layer
transmission between a central game server and client. The
application-layer protocol allows senders to distinguish be-
tween packets that should be reliably and unreliably sent,
keeping a copy of the reliable ones in memory in case of
the need for retransmission. The problem with applying
such a model of retransmission in a central server system is
that unless it can adapt to the current network state, then
in times of loss clients’ requests for retransmission may be-
come correlated; requests for retransmission may cause more
loss, which causes even more retransmission. There is less
danger of this form of positive feedback forming in the archi-

tecture described here as the clients do not all communicate
with the same server, and so it is less likely that loss will
be tightly correlated. However, it is still possible that large
numbers of clients will simultaneously request retransmis-
sion if the booster box, or the network close to it, is subject
to disruption. The solution is to ensure that retransmis-
sion requests never exceed a certain threshold by reducing
the number of advertised packets in the heart-beat message.
Because clients only ask for retransmission of packets in this
window, as the window becomes smaller the total number of
retransmissions decreases. If the window is empty, then no
retransmissions will be sent. In effect, we trade off reliable
delivery of packets against the possibility of retransmission
causing failure.

3.1.3 Maintaining Location State
There are three types of state:

static state: e.g. maps, which either never change or change
only infrequently;

client-specific state: e.g. the client’s character, which changes
during a game session, and which is persistent between
sessions;

location state: e.g. which clients are currently present at
a location; this state is transient and constantly chang-
ing.

The static state is kept on the client only. The client and
control server collaborate to maintain and update the client-
specific state, but the booster boxes manage the location
state.

The state-maintaining function of the booster box is dis-
tinct from that of its packet-forwarding one, because:

• packet forwarding is application independent, while
state maintenance requires running parts of the game
application;

• packet forwarding is simple but must be performed
very efficiently. An incoming packet is processed to
update the game state and at the same time it is mul-
ticast to all clients at the same location. This is per-
formed in parallel.

Consequently in the prototype implementation described
in Section 4, these two distinct functions are actually per-
formed at different layers in the booster box architecture
and on distinct processors.

3.2 Game Control Operations

3.2.1 Booster Box/Control Server Interaction
The control server is responsible for dividing the virtual

space into separate locations and assigning these locations
to booster boxes. As the number of booster boxes in the
system is quite low, e.g. in the range of a few hundred, it
is possible to maintain a mapping table on a single server.
For redundancy reasons, multiple servers might still be used,
but are not strictly required for scalability.

The control server can be viewed as a central application-
level router that computes and maintains the table contain-
ing the mapping between virtual locations and booster box
IP addresses. This is not a one-to-one mapping, as a single



booster box is expected to handle many virtual locations,
and each virtual location handled by a booster box is iden-
tified by a corresponding TCP/UDP port. In addition, a
location can be configured with one or more backup booster
boxes which take over if the primary booster box fails. We
assume that at least one backup booster box is available for
each virtual location.

When a booster box is added, it connects to the control
server and registers itself. The server then computes a new
mapping of virtual locations to booster boxes and distributes
the resulting location table to all booster boxes, which in
turn forward it to the attached clients. Note that the size
of virtual locations itself does not change, just the mapping
of locations to booster boxes. This ensures that the view of
clients does not change, even if their location gets remapped
to a different booster box. Also, remapping is done in the
least disruptive manner possible. Assuming that a booster
box is added to a system where n virtual locations and b
booster boxes exist, then exactly dn/(b+1)e virtual locations
are remapped to the new booster box.

3.2.2 Client/Control Server Interaction
When the game software is started on a client, it commu-

nicates with the control server. The cient must authenticate
itself to the control server, for example using the Kerberos [1]
security mechanism. Authentication is necessary to ensure
that only paying clients participate in the game. The control
server supplies a ticket to the client, which the client uses to
authenticate itself with booster box. These tickets have an
expiry date, which limits the time that the client can par-
ticipate in the game without having to be reauthenicated by
the server.

After a successful authentication and authorization, the
client receives the location table and the client’s persistent
state. It then terminates its connection with the control
server and communicates with booster boxes only. It for-
wards game-related traffic to the booster box that controls
the virtual location in which the client is resident. As the
player moves between virtual locations, the game software
changes the booster box destination.

When a client terminates a game session the new client-
specific state is stored on the control server.

3.2.3 Client/Booster Box Interaction
As well as acting as a multicast reflector for client packets

the booster box supports a set of control operations with
which application software can use to communicate with it
directly:

add request , which adds the client’s address to the list
of addresses in the multicast domain.

remove request , which remove its address.

stateUpdate request , which requests the entire local
game state for a given virtual location.

locationTableChanged event , which informs the clients
about a new location table.

Each time a client changes virtual location, the client ob-
tains the state of the new virtual locations using the sta-
teUpdate command from the booster box controlling that
location. In order to ensure a quick transition between vir-
tual locations the application software writer may choose to

be a member not only of the virtual location at which the
client is resident but also of all those around it. Assuming
each virtual location is a hexagon, this increases by six the
amount of processing and bandwidth required of the client,
as well as reducing the number of distinct clients a booster
box can support.

Booster boxes are typically distributed throughout the
network; as there is no correlation between network and
virtual location, the RTT between a client and its control-
ling booster box and the RTT between client and a central
server are likely to be comparable. However, as the booster
box performs no computation on the data path, the RTT be-
tween two clients communicating via a booster box is lower
than if they were communicating via a server.

3.3 Non-Uniform Client Distribution
It is highly unlikely that clients are evenly distributed

across the entire virtual space. It is more likely that at given
times certain locations are highly popular while others are
almost unpopulated. This is a potential problem for the
architecture described here as beyond a certain threshold
of participants at a location, clients become saturated by
operations and the controller booster boxes cannot keep up.

One possibility would be to do nothing at all and hope
that the degradation at a given location will cause players
to flee to locations with better performance (i.e. with fewer
players). However, such a system would be subject to oscil-
lations as a large number of players moved from one location
to avoid saturation only to saturate the new location.

The preferred solution is to dynamically adapt the number
of virtual locations that a booster box handles. If the load
on a booster box crosses a predefined threshold, it sends an
overload request to the control server. The control server
in turn computes a new location table that shifts a small
number of virtual locations from the overloaded booster box
to some less loaded booster boxes. The original booster box
transfers the set of client IP addresses to the server, which
then passes it to the new booster boxes.

The new location table is distributed to all the booster
boxes, which in turn distribute to the clients in their loca-
tions. Packets that are sent to the previous booster box will
for a time be forwarded to the new booster box, with a redi-
rect message being sent back to the client telling it that it
should update its location table.

3.4 Handling Failure
In very large distributed systems failure, of part of the

system is the norm rather than the exception. The basic
model of handling failure is to soft state for control, i.e. state
that needed to be periodically refreshed in order to persist.

Client’s periodically use the add operation to ensure their
continued presence in a given location. If a client has not
renewed its presence after a certain time, the booster box
assumes the client has gone and removes it from the list of
residents of the virtual location.

If a client has not received any packets from the booster
box for a period, it can assume that either the booster box
failed or that there no longer is a network connecting it to
the booster box. It sends a ping message to the back-up
booster box in its location table. If the back-up booster box
receives the ping it replies, as well as forwarding the ping
to the primary booster box, which if it receives it will also
reply through the back-up. If the client receives no replies,



it assumes there is severe network disruption and tries to
terminate cleanly. If it receives a reply from the back-up
booster box and the primary booster box, it assumes that
there is a small amount of network disruption and will com-
municate via the back-up to the primary. If only the back-
up replies, then it assumes the primary booster box has
failed, and switches to the back-up booster box. This sim-
ple solution does not work reliably in the case of network
partitions where primary and backup booster boxes get sep-
arated. In this case, primary and backup booster boxes will
each handle a part of the clients. The state information has
to be resynchronized once the network partition has been
repaired. This is a topic for future research.

4. IMPLEMENTATION
In this section we describe how we have implemented parts

of the architecture described in Section 3.
A booster box is a general-purpose computation platform

capable of forwarding packets at very high speed. A piece
of application-specific code, called a booster, is executed on
the booster box. The booster box provides interfaces that
allow the booster to observe and manipulate data streams,
and to participate in control and management protocol op-
erations. Boosters may cache, aggregate, filter, and reroute
packets in an application-specific way. Boosters are not lim-
ited to gaming applications, and are useful in other contexts
as explained in Section 5.

We envisage that booster boxes will be deployed at the
edges of an ISP network, attached directly to the IPS’s ac-
cess routers. These booster boxes might be considered as
members of the broad range of appliances that the IETF
terms “middleboxes”[20]. The ISP will allow privileged third
parties to instrument their booster boxes in a way specific
to the applications they wish to support.
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Figure 3: Booster- and data-layer overview

Booster boxes are “conventional” computers with a Linux
operating system and equipped with a IBM-NP4GS3 net-
work processor card [15]. Network processors allow booster
boxes to process and forward packets at line speed. As de-
picted in Figure 3, the booster box architecture is divided
into a booster layer, in which the high-level logic resides, and
a data layer, which actually does the packet forwarding.

4.1 Data Layer
The main role of this layer is to embody forwarding-related

functions. Typically such functions consist of redirecting
packets belonging to a given flow (based on addresses and

ports), modifying headers, computing checksums, duplicat-
ing packets etc. The data layer must be able to handle these
operations at speeds equivalent to the port of a residential
access router, i.e. in the range of 155 Mbit/s to 1 Gbit/s. A
pure software solution is not able to handle such line speeds,
whereas a pure hardware solution does not offer sufficient
flexibility. Our approach is to use network processors for
implementing the data layer of the booster box. Although
the term network processor (NP) covers a wide variety of
processors with different capabilities and designed for differ-
ent markets — a good overview can be found in [17] — the
simplest way to think of a NP is as a general-purpose pro-
cessor with access to many network-specific co-processors,
performing tasks such as checksum generation, table look-
up, and header comparison. Arbitrary network-forwarding
code can be written in a high-level language such as C (aug-
mented with pragmas for co-processor invocation) compiled
and loaded into such a processor. The NP therefore is a
mid-point between a pure hardware and pure software solu-
tion.

Two functions are required in the data layer in order to
support the architecture described in Section 3: receiving
game and control packets sent by the client, and multicas-
ting game packets to all the clients belonging to a virtual
location.

Booster boxes are built on a Linux kernel with a TCP/IP
stack and are, therefore, network entities addressable with
an IP address. The data-layer acts here as a redirection
mechanisms for all the incoming packets. TCP packets are
directly forwarded to the TCP/IP stack and delivered to the
appropriate booster based on the TCP port. A booster in
charge of a given virtual location is identified by the TCP
or UDP port.

Game packets (UDP packets) are treated differently. These
packets have to be forwarded to the booster in charge of the
virtual location and as well as being multicast to all the
clients in that location. In addition, a sequence number has
to be inserted to enable loss detection and retransmission.
The use of a network processor is particularly suited imple-
menting this process. When such a packet is received an
increasing sequence number is inserted between the payload
and the UDP header. After the header fields are updated
(checksum and length), the packet is forwarded to the Linux
protocol stack and delivered to the appropriate booster. A
copy of the packet is kept in the network processor for mul-
ticasting. The UDP port is extracted and used to look up a
table associating the UDP port to the list of clients belong-
ing to this virtual location. The copy of the packet is then
forwarded to all the clients after the appropriate UDP and
IP headers have been computed. All these operations are
executed at line speed. Figure 4 gives a schematic overview
of this process.

The data layer caches game packets for retransmission in
case of loss. Game packets corresponding to a given virtual
location are stored in a circular buffer associated with the
location. This buffer keeps the last N packets. The booster
box generates heart-beat packets containing the lowest and
the highest sequence number of the packets in this buffer.
When a client detects a mismatch in the sequence number
it sends a retransmit message to the booster box. The data
layer of the booster box will then resend the missing packet
to the client provided it still exists in memory. Additional
logic for adjusting the heart-beat messages, as explained in
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Section 3, in order prevent retransmission itself from causing
loss, is also implemented on the NP.

4.2 Booster Layer
The booster layer consists of a set of boosters and a con-

trol point that is common to all boosters. Each booster is a
combination of application-specific logic and generic booster
library functions. The application-specific code is trusted,
being either written by the ISPs themselves or supplied by
trusted third parties. The library contains the API through
which the boosters control the data-layer operations. The
boosters execute independently; however, certain operations
need to be coordinated. The booster control point coordi-
nates the boosters, and manages any data that is common
to all of them. For example, the booster control point co-
ordinates the assignment of port numbers to boosters and
communicates them to the central control server.

A booster for the architecture described in Section 3 needs
to implement the four operations: add, remove, stateUpdate
and locationTableChanged described in Section 3.2.3. The
first two operations manipulate the multicast-routing table
in the network processor.

The booster receives a copy of each game UDP packet
handled by the network processor. This enables the booster
to track the state of the game in its virtual location. It keeps
the up-to-date state in local storage. The state contains the
sequence number of the packet that last modified the state.

When a new client enters a virtual location, it opens a
TCP socket to the associated booster and registers with
the add primitive. Subsequently the client issues a state-
Update primitive, causing the booster to transmit an up-to-
date state of the game in the virtual location to the client.
The booster adds the client’s IP address in the entry of the
multicast-routing table. At this point the clients receives
all the game packets associated with the virtual location.
As the state contains the reference sequence number, the
client can ask for retransmission of any packets it might
have missed during the initialization phase. Therefore this
approach guarantees that the client can synchronize.

Periodically, a client refreshes the soft-state by sending an
add request to the booster. If the booster does not receive
an add from a given client after a certain period of time, it

removes the client from the location.

5. OTHER APPLICATIONS
Booster boxes are general-purpose computation platforms

and as such can be used for enhancing the performance of
other non game applications. We briefly mention the nature
of these applications.

5.1 Peer-to-Peer File Sharing
Gnutella [10] is an example of a file-sharing protocol that

does not require a central server. Such approaches are very
resilient to failure and have other advantages such as the
number of locations at which a file can be found is propor-
tional to the file’s popularity. However, they are not very
scalable, as a single search operation results in the flooding
of a large number of request messages.

Current work investigates making peer-to-peer file-sharing
protocols more scalable by using boosters. Boosters can re-
duce the amount of traffic by caching, aggregating requests,
and performing intelligent forwarding.

5.2 Floating Car Data
Floating Car Data (FCD) [2] is a label for a set of different

initiatives that involve gathering sensor information from
cars, processing it, and using the result to generate useful
information such as traffic-flow predictions. Sensor devices
are placed in the cars to measure parameters such as speed
or location information. The resulting data is transmitted
in real time to back-end servers, first using General Packet
Radio Service (GPRS) and later third-generation wireless
communication and/or wireless LAN technologies. Poten-
tially a huge amount of data can be produced by each car.
Current work looks at how boosters can aggregate such in-
formation, e.g. by sending a single message saying that 50
cars are traveling at 40 km/h, rather than sending 50 sepa-
rate messages.

5.3 Overlays Using Measurement-Based Rout-
ing

Previous work has shown that routing inefficiency in the
public Internet results in the overuse of certain links while
others remain idle. Booster boxes can form an overlay over
the public Internet to allow certain packets to be carried over
paths other than those that would be chosen by normal IP
routing. The booster boxes measure loss and delay between
their peers in the overlay in order to detect and avoid con-
gestion. This work is explained in some detail in [4].

6. RELATED WORK
A good overview of the problems arising with the devel-

opment of networked multi-player computer games can be
found in [18]. Funkhouser [9] proposed placing “Message
Servers” in the network to enhance server scalability. Each
of these entities is in charge of a number of clients and man-
ages message communications on their behalf. In addition
Message Servers can perform specific processing on the in-
formation. Similar approaches have been proposed in [8,
13]. Using booster boxes removes the need for transferring
game packets through a central server. The control function
of the booster boxes in some ways can be considered as an
intelligent proxy for the control server, e.g. client add and
remove themselves from a location by communicating with
the booster box rather than with the server.



Bharambe etal. [5] attempt to ensure that game players
receive only relevant events using a publish/subscribe model.
It specifies a routing mechanism whereby nodes are arranged
in attribute chains, such that each node is responsible for
keeping track of other nodes interested in a given attribute
range, e.g. virtual location. The system described in [5]
permits a more scalable peer-to-peer system, and has the
advantage of not requiring any infrastructure other than the
clients themselves; however this in turn limits the number
of clients it can support.

The attempt described to make peer-to-peer games more
scalable has analogies with that being done in the field of file
sharing, e.g. [16]. In this work different peers are allocated
different parts of the file name space to manage. Active
research topics involve ensuring that the files are balanced
across the set of available peers and that a given file can
be quickly found without requiring requests to be flooded.
However, other than the peers agreeing on how the name
space should be structured and divided, there is no need
for coordination between peers in file-sharing systems. This
clearly is not the case for games.

The work described in the overview paper of military sim-
ulation [14] is simular in nature to the architecture described
here. For example, in the Navel Postgraduate School Net
(NPSNET), the space is divided into cells in which informa-
tion is multicast. One member of the cell is responsible for
adding and removing others as well as giving a new member
the current state of the cell. The difference between military
simulations and games is rather of context than form; simu-
lations are performed in a highly controlled network where
the participants in the simulations and their activities are
known in advance. Consequently the simulation designers
can design the infrastructure with this in mind. There are
more unknowns in running commercial games over the pub-
lic Internet; for example, no player can be trusted to be a
group leader as in NPSNET.

7. CONCLUSION
By dividing very large multi-players games into a feder-

ation of many peer-to-peer systems, we allow the resources
required to support the game to scale with the number of
participants. This federation is enabled by separating con-
trol from data operations, such that control is handled by
conventional central servers, while the actual data forward-
ing is performed by network-based servers with special hard-
ware support for fast packet forwarding. The latter is made
possible by the recent availability of highly configurable net-
work processors.

Our work to date has involved prototyping various parts
of the architecture in order to gain a better understanding
of the system behaviour. In this paper, we have tried to
give an overview of how an entire system could be made to
work. However, determing its overall feasability would re-
quire much larger-scale experiments than we have currently
been able to perform.
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