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Abstract: Many online systems today attempt to personalize their interaction with users. For
example, electronic shops may want to provide decision support to users by recommending
products, and portals may try to customize their content in a unique fashion for each user.
Personalization requires a model of a user�s preferences, and in many cases, preferences are
represented in the form of a utility function. Because it is difficult to elicit the information
necessary to specify completely a user�s utility function, many online systems that employ
user modeling must reason with partial utility models; for instance, an online recommender
system might have to use incomplete information about a user�s preferences when choosing a
product to suggest. Although a ranking of alternatives based on partial utility models cannot
be certain, such a ranking can sometimes be beneficial. In that case, we require an easily
interpretable numeric estimate of the utilities of alternatives. Existing systems that use
numeric estimates of partial utility models have the problem that the estimates do not
consistently improve in accuracy. Some sequences of questions that might be asked in order
to elicit a user�s utility function can result in a final numeric estimate of an alternative that is
actually more inaccurate than the starting estimate. We propose a simple means of numeric
utility estimation that tracks the lower bound of a user�s utilities. Our defensive estimation
technique has the advantages that it is guaranteed to improve in accuracy over time and that
its estimates can be clearly understood by the user to represent the minimum utility of an
alternative. These properties allow us to use an automated interview construction algorithm
with full confidence that at termination the estimate of the user�s utility will be more accurate
than at the beginning. The technique introduced in this paper also allows us to display a
reasonable ranking of choices to the user at any point in an interview. In addition, we present
a particular interview construction algorithm that, because of its use of our defensive utility
estimation technique, is able to select the question that results in the greatest expected
reduction in uncertainty of a partial utility model.



1 The Need for Reasonable Numeric Estimates of Partial Utility Models

One way to assist users in choosing among alternatives, such as in the selection of
products in an electronic shop or in the customization of online content, is to apply the
methods of decision theory, which holds that the best choice for a user to make in a given
situation is the one that maximizes her expected utility. The expected utility of a decision is
computed by summing the utility for the user over its possible outcomes, weighted by their
probabilities. An accurate model of a user�s preferences, in the form of a utility function that
maps outcomes to utilities, is thus a critical piece of a decision-theoretic system, and so it is a
critical piece of many systems that aim to provide user-specific recommendations or content.

Traditional decision theory assumes that a user�s utility function is completely
specified before the decision-making process begins. However, the task of eliciting a user�s
full utility function is difficult and time-consuming (Ha and Haddawy 1997; Chajewska et al.
2000). The user�s utility function is usually elicited by conducting an interview about her
preferences, but for many automated systems in which decision theory is a useful tool,
eliciting a complete model of a user�s utility function is infeasible. For instance, time
constraints or user frustration may limit the number of questions an online recommender
system can ask a user during a utility elicitation interview. In these cases, the system must
present the user with choices before the utility model has been completely assessed. The
system must then present these choices on the basis of a partial utility model, in which some
outcomes are not mapped to utilities. In order to do this well, the system must be able to
reason with and about partial utility models in a sensible way. Since the number of questions
the system can ask is limited, a related goal is for the system to select those utility elicitation
questions that tend most to improve its model of the user�s utility function.

Researchers in artificial intelligence have recently looked into the intricacies of
reasoning with incomplete utility models, as well as into techniques for choosing interview
questions. Much of the work that has been done on partial utility models concerns the
qualitative representation of preferences (Bacchus et. al. 1995; Boutilier et al. 1997; Tan and
Pearl 1994) or reasoning in a non-numeric way about alternatives (Ha and Haddawy 1997).
Most of these approaches, such as that of Ha and Haddawy (1997), use partial information
about a user�s utility function to eliminate alternatives that can be proven to be suboptimal.
The elimination process results in a set of unranked alternatives that, as long as the utility
model is incomplete, cannot be known to be satisfactory, but have not yet been shown to be
unsatisfactory. 

The aim of approaches that eliminate dominated alternatives is to narrow down the set
of alternatives sufficiently so that a user can view the remaining options herself and choose
the one that best suits her needs. This is quite a valuable approach, but in some cases, the
remaining set of alternatives may still be quite large. In cases such as this, the user may
benefit from a ranking of the remaining alternatives. If a partial utility model is used to rank
nondominated alternatives in some way, the ranking cannot be certain, no matter what
method of computing the ranking is used�new information about the form of the utility
function may alter the ranking. As such, any ranking method will be merely a heuristic for
ordering the alternatives. But there may be some ranking methods that are easily
interpretable, so that the information they provide to the user is valuable, despite the
possibility of change. Such a ranking method could be used to present alternatives to a user
either during the course of an interview, after a user has answered all the questions she
wishes to answer, or after an interview has ended. Ranking methods such as this would be
particularly useful in online recommender and navigation aid systems. In these domains,
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users are not likely to wish to spend a great deal of time answering questions or sorting
through numerous options, and they may appreciate being presented with alternatives as they
answer or if they decide to leave an interview early.

In order to rank alternatives, we need a measure with which to order them, and the
most natural measure to use is a numeric estimate of their utilities. Some systems use ranges
or probabilities of numeric utilities to model uncertainty about a utility function, and most of
these systems produce numeric estimates of utilities by using the average according to the
ranges or probabilities (Jameson et al. 1995; Chajewska et al. 2000; Chin and Porage 2001;
Porage 1999). However, such estimates have an undesirable property when used by
algorithms that automatically choose elicitation questions or in interviews that a user may
terminate at any point. An estimate produced using averages is not guaranteed to be moving
closer to the final utility that would result from a completely assessed utility model.
Depending on which and how many questions are chosen, the estimate of the user�s utility
function�and thus the selection of alternatives presented to her�may actually be worse at
the end of the interview than at the beginning. 

To counteract the problem of potentially worsening estimates, some automated
interview construction methods use another mechanism to determine the distance of the
current numeric estimate from that of the complete utility function, such as an estimation of
the regret the user would experience by stopping with the current recommendation
(Chajewska et al. 2000). However, there are still cases in which a consistently improving
estimate, rather than a way to assess the accuracy of the current estimate, is desirable. In
particular, a consistently improving estimate is crucial if recommendations are to be
presented to a user before the end of an interview is reached. (This is a valuable tactic in
online recommender systems, since users may often decide to exit a utility elicitation
interview early.) Another benefit of a consistently improving estimate is that it could simplify
interview construction for implementors of recommender systems if they, or the
question-choosing algorithms they design, were allowed to ask any sequence of the available
questions in their database. For instance, implementors of electronic shops may often have
their own preferences about which questions to ask a user.

A further advantage of a consistently improving estimate is that it may be more
readily interpretable by users. In the approaches that use averages, it is not clear at each point
in the interview what the numeric estimates indicate about a user�s actual utilities, whether or
not the associated interview construction technique ends questioning only when the estimate
has improved. A user may have difficulty viewing the averaged numeric estimates as the
system�s �best guesses� about her actual utilities, since, counterintuitively, the guesses can
decrease in accuracy as more information about the user becomes known . In addition, the
possible decrease in accuracy could make it difficult for an automated system to assign
meaning to the numeric estimates in order to use them consistently in calculations. Thus, we
believe that there are purposes for which another kind of numeric estimate is necessary.

2 Our Proposal

Our solution to the problem of finding an interpretable numeric estimate of partial
utility models is a simple one, but it nonetheless accomplishes the task of ensuring a strict
progression of accuracy. We propose using a defensive technique for numeric estimation of
partial utility models, one which tracks the lower bound of the utilities of the alternatives. In
addition to improving with time, this technique has the advantage that the numeric utility can
be easily understood to represent the minimum satisfaction that a user will gain from a
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certain alternative, and so the utility estimate serves as an understandable basis for ranking
alternatives. 

The defensive estimation technique we present here can be used by any automated
interview construction algorithm that requires estimates of partial utility models, with full
confidence that at the close of an interview the utility estimate will be more accurate than at
the beginning. As a second contribution of this paper, we present one particular interview
construction algorithm, based on our earlier paper (Stolze and Ströbel 2001), that is able to
use the properties of our defensive estimation technique in order to select the questions that
tend most to reduce uncertainty about the partial utility model. Defensive utility estimation
thus helps us to achieve two important tasks for systems that rely on decision-theoretic
methods: on its own, it allows us to reason with partial models in a consistent way, and, when
applied in our algorithm for question selection, it allows us to select questions that tend most
to improve our knowledge about them. 

In the next section, we briefly describe utility theory and explain terms that will
appear in the rest of the paper. Then we present a technique for defensively estimating utility
functions in general, and, in particular, for the additive utility functions that are commonly
assumed by user modeling systems (Linden at al. 1994; Ha and Haddawy 1997). In Section 5,
we apply this technique in an algorithm that constructs utility elicitation interviews. In
Section 6, we discuss related work on reasoning with and refining partial utility models, as
well as benefits, problems, and potential extensions related to our system.

3 Multiattribute Utility Theory
 

In this section, we give a brief overview of some key terms and ideas from decision
theory and multiattribute utility theory. We concentrate primarily on definitions and
techniques relevant to additive utility functions, since our discussion focuses on such
functions. The explanation in Sections 3.1 and 3.2 is based on information in Keeney and
Raiffa (1976) and in Clemen�s textbook (1996). For more details on utility theory,
particularly on independence conditions, conditions of uncertainty, and nonadditive utility
functions, we refer the reader to the previously mentioned books or to another textbook on
decision theory. 

3.1 Definitions

The goal of multiattribute utility theory is to represent the satisfaction that a person
will get from a variety of different outcomes, or states. A utility function maps outcomes to
utilities, which are values on a scale from 0 to 1. An outcome is generally assumed to consist
of different values for certain variables, or attributes. If certain independence conditions are
met, the utility function can be decomposed into a combination of individual or subutility
functions. A subutility function is a function that maps the values of an attribute, or a
combination of attributes, into utilities, also between 0 and 1. One kind of decomposable
utility function is the multilinear function, which is capable of representing certain kinds of
interactions among attributes. A multilinear function is computed by summing, for each
possible set of attributes, the product of the subutility functions of the attributes in the set.
(For simplicity, we will follow Ha and Haddawy (1997) in referring to sets of attributes as
attributes themselves.) A special case of multilinear functions is the additive function, for
which the utility is a weighted sum of all subutility functions. 

In the case of additive utility functions, each attribute has a weight by which we
multiply the result of the subutility function. This weight represents how important that
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attribute is to the user, and the weights for all attributes must add up to 1. The result will be a
total utility between 0 and 1. Formally, the utility of a given outcome is calculated as follows,
where ki is the weight of attribute i, xi is the value of attribute i for the given alternative, and
Ui is the subutility function for attribute i (Clemen 1996):

U(x1,...,xn) =! i=1
n kiUi(xi)

Technically, there is a difference between decisions with certain outcomes and cases in which
the outcomes of decisions are uncertain. The term utility function generally refers to the
mapping of outcomes to utilities in the latter case, and a value function refers to a similar
mapping in the case of certain outcomes. However, in this paper we will refer to both as
utility functions. The expected utility of a decision, according to traditional decision theory, is
the sum of the utilities of its possible outcomes, weighted by their probabilities. In the case of
certain outcomes, there is no probability involved; the utility of the relevant outcome is
achieved with certainty.

The techniques presented in the rest of this paper apply to utility functions under
conditions of both certainty and uncertainty, although the likely domain of application will be
in product recommenders, for which outcomes are generally certain.1 In our discussion, we
will call outcomes alternatives, since we will use throughout the paper an example of an
online recommender system for computers, and it is more natural to think of presented
products as alternatives than as states of the world.

To illustrate how multiattribute utility theory works, suppose that we are trying to
recommend a computer to a user, and suppose that how much she will like a computer
depends on four things: the price, the hard disk size, the amount of memory, and the speed of
the computer. These four things are the attributes of a computer, or, to keep in line with the
terminology of utility theory, the outcome represented by this particular computer. Suppose
that in the world in which the user lives�or in a particular computer store�each attribute
has four possible values. For instance, the price can be $1000, $1500, $2000, or $2500, the
hard disk size can be 10 gigabytes, 15 gigabytes, 20 gigabytes, or 30 gigabytes, and,
similarly, the memory and the speed each have four possible values. Then there are 44

different combinations of values, and so there are 256 possible alternatives (not all of which
may be actually available or possible). A utility function for a user maps each of the
alternatives described above to a utility. If we assume that the function is additive, then the
utility function will consist of a weighted sum of four subutility functions, one for each
attribute. For example, the subutility function for price will map each of the four values for
price�$1000, $1500, $2000, and $2500�to a utility. If the buyer prefers less expensive
computers, then the subutility function might map the value of $1000 to a utility of 1, the
value of $1500 to .6, the value of $2000 to .3, and the value of $2500 to a utility of 0. To
calculate the utility to the user of a particular computer, we plug its attribute values into the
utility function. This means that we use the subutility functions to compute the utility of each
particular attribute value. Then we multiply each subutility result by the weight for that
attribute, and we sum all of these weighted subutilities together to get the utility of the
computer. 

3.2 Assessment of Utility Functions

In order to use multiattribute utility theory to help a particular user make decisions,
we need to find out what her utility function is�that is, we have to elicit her utilities. Here,
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we describe briefly two common methods used in assessing utility functions. For cases in
which the utility function is too complicated to be decomposed, the utilities of outcomes or
alternatives are assessed directly, generally using the first of the methods described here. In
multilinear or additive cases, the task of eliciting utilities reduces to the task of eliciting the
user�s subutility functions and the weights for the attributes. We will deal with the simpler
case, sometimes also assumed by others (Ha and Haddawy 1997), in which the subutility
functions are assumed to be given and only the user�s weights need to be learned.2  

One of the best known methods for assessing the weights of attributes is the standard
gamble approach (von Neumann and Morgenstern 1947), sometimes also called the lottery
weights approach, a version of which can also be used to assess the utilities of alternatives
directly. In the method used for assessing weights, an individual is told that she could receive
a particular outcome with certainty or, alternatively, a lottery between two outcomes. The
lottery offers her the worst possible value for all attributes with a probability of p and the best
possible value for all attributes with a probability of (1 - p). The certain option is an outcome
with the best possible value for one particular attribute�call it Z� and the worst possible
value for all other attributes. The individual is then asked which value of p makes her
indifferent between the lottery and the certain option. Another method for asking the user
about p is to present her with this kind of choice for different specific values of p. For each
value of p, she is asked which option she prefers, until the point of indifference is reached;
the sequence of values for p can be chosen in several ways, such as by choosing alternately
high and low values or by gradually reducing p. Intuitively, if p is high, then the individual
requires a very high chance of getting the best possible outcome in order to make up for not
getting the best value for attribute Z for sure. This means that she values attribute Z very
highly, and so the weight for Z is set accordingly. In fact, it is set to exactly p. If the additive
utility model is appropriate, then the sum of the weights should be 1. 

In swing weighting (von Winterfeldt and Edwards 1986), attribute weights are
determined based on ratings that the user has assigned to all attributes, generally on a scale
from 0 to 100. Each rating is divided by the sum of all ratings in order to arrive at normalized
weights that sum to 1. The ratings of attributes are determined by comparing a number of
hypothetical alternatives, one for each attribute. Each of these outcomes has the worst
possible value for all attributes except for the attribute in question, for which it has the best
possible value. In addition, there is another hypothetical outcome that has the worst possible
value for all attributes. The user must rank these outcomes in order of preference. The
worst-case outcome is given a rating of 0, and the highest-ranked outcome is given a rating of
100. The user must then assign the rest of the outcomes ratings between 0 and 100, perhaps
by thinking of the satisfaction she would get from a good value for a particular attribute in
terms of the percentage of satisfaction she would get from a good value for her most highly
preferred attribute (Clemen 1996). The ratings are then normalized to obtain the weights in
the utility function. Formally, once the user has assigned the ratings, the utility function is
calculated as follows, where si stands for the rating of the hypothetical alternative associated
with attribute i:

U(x1,...,xn) =! i=1
n si
! j=1

m sj
Ui(xi)

Both of the assessment methods described above, as is usual for traditional utility
elicitation methods, assume that all questions are answered before the answers are used to
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calculate a user�s utility function. Some other methods for assessing weights include  pricing
out, which asks the user to think about tradeoffs between attribute values in terms of the
amount of money it would take her to switch between them, as well as some newer
approaches that have come out of the fields of market and operations research. Among these
are the Analytic Hierarchy Process (Saaty 1980), which involves pairwise comparisons of all
combinations of attributes, and Conjoint Analysis, which estimates weights using statistical
methods, based on the way a user evaluates several hypothetical alternatives (Green and
Wind 1973). For the purposes of this paper, we need not go into detail on the different
assessment techniques; to understand our method of maintaining defensive numeric
estimates, the reader need only be aware that there are some methods, such as the standard
gamble approach, that assess weights or alternatives directly and some methods, such as
swing weighting, that determine weights based on ratings of some kind.

3.3 Partial Utility Models

Partial utility models are models constructed on the basis of less information than a
complete utility elicitation interview provides. In general, a utility model is partial if the
mapping from alternatives or outcomes to utilities is not completely specified. In the
particular case of multilinear functions, including additive utility functions, a partial utility
model is one in which some attribute weights or some subutility functions are not completely
specified.3  For multilinear or additive utility functions with specified subutility functions, a
utility model is partial if some of the attribute weights have not been specified.

If we use a method that assesses weights by means of ratings, such as swing
weighting, a partial utility model is one in which ratings have not been given for some
attributes. Clearly, this means that the weights of the attributes without ratings are unknown.
It also means that even the attributes for which we have ratings are not known with certainty,
since we do not know the normalizing factor that is used to transform ratings into weights. 

4 Defensive Utility Estimation

The idea behind defensive utility estimation is straightforward. We want to track the
lower bound of the user�s utility for each alternative, at least with respect to our model. In
fact, what we want to track is the greatest lower bound that can be known with certainty. This
can be done for utility functions of any form, whether they are additive or a more general
form of a multilinear function, or whether they are too complicated to be decomposed. Our
focus is on multilinear, and particularly additive, utility functions for which the subutility
functions are specified. The main contribution of this section is the technique for obtaining a
defensive estimate for partial models of such functions when they are assessed via ratings.
The example we will use is of an additive utility function, since this tends to be the kind of
utility function for which ratings-based assessment methods are more commonly used. We
also briefly treat the case in which the weights are assessed directly; this case is analogous to
the one in which the utilities of alternatives, rather than weights, are directly assessed, and so
we cover both decomposable and nondecomposable utility functions, although we
concentrate on the multilinear cases. 
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4.1 Estimation Technique

Because of the form of multilinear functions, we will be able to track the lower bound
of the utilities for alternatives if we track the lower bound of each attribute weight. To do
this, we need to specify both a way of interpreting unknown weights and a way of adjusting
these weights, especially if weights, or the ratings used to compute them, can be changed by
an assessment method not just once, but rather can be altered incrementally. 

If an interview uses questions that set weights directly, such as the standard gamble
questions described earlier, then to maintain a defensive estimate, we need one restriction in
order to ensure a consistently improving estimate. This restriction is that, if a weight is
changed more than once, it is adjusted only in an upwards direction. This is quite easy if the
questions asked are of the style, described in Section 3.2, that ask the user to specify p
directly, since each weight is affected by only one question. In that case, we simply treat
unassessed weights as if they are 0, and we sum the weighted values of the attributes with
known weights. If the user�s value for p is determined by asking her about several different
values of p, however, and we want to incorporate the information learned at each step into
our estimate, then we must ask the questions so that the value of p is always increasing. If
this requirement is met, then it is straightforward to maintain a defensive estimate of the
utilities. Note that this approach can also be applied if the standard gamble questions are used
to assess the utilities of individual alternatives, and so a similar approach can be used to
estimate the lower bound of alternatives when a utility function cannot be decomposed. 

A more complex situation arises when we use a method of assessing weights that
requires normalizing ratings, as in swing weighting. In this case, we need to decide how to
treat both unknown ratings and the normalizing factor in order to arrive at an estimate for
weights. Analogous to the case of assessing the weights directly, in order to keep track of the
lower bounds of weights, we need to restrict our adjustment of the utility model so that each
rating can only be adjusted in an upward direction. Clearly, if a rating can decrease, the
associated attribute weight can also decrease, which can result in a lower utility for some
alternative. For example, consider the case of an online computer recommender system, as
described in the previous section. Suppose that the system is designed so that if the user
answers �no� to the question �Do you run more than two programs at once?�, the rating for
the memory attribute is decreased by 10 points, from 20 to 10. If the sum of the ratings for all
attributes prior to the decrease is 50, then the weight for the memory attribute decreases from
.4 to .25. Accordingly, the utilities of all alternatives will also decrease, and so the previous
estimates were not lower bounds on their utilities.

On its own, the upward movement of each individual rating is not enough to
guarantee that each attribute weight, and thus the estimate for the overall utility of each
alternative, is also increasing. If a rating is increased during the course of an interview and
the weights are then renormalized, the normalized weights of other attributes will decrease.
Consider again the computer example. Suppose that at a given point in time, the ratings for
price, hard disk size, memory, and speed are 10, 30, 20, and 10, respectively. The associated
weights are then approximately .14, .43, .29, and .14. If the answer to a question increases the
rating of price to 40, then once the ratings are normalized, the associated weights become .4,
.3, .2, and .1. The weights of all attributes except price decrease. Depending on the subutility
functions and on the attribute values of actual alternatives, the total utilities of alternatives
may also go down. A visual depiction of this decrease can be seen in the last step in Figure 1
for the �standard normalization� method of estimation.

A defensive estimate of the utility function requires that we alter the standard method
of normalizing the weights. In our proposed solution, we assume that until we know
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otherwise, each attribute is capable of attaining the maximal rating of 100 points. When we
then normalize the attribute weights�that is, divide the ratings by the normalizing
factor�we use the sum of the maximal ratings rather than the sum of the actual ratings as the
normalizing factor. In the case above, the ratings of 10, 30, 20, and 10 result in weights of
.025, .075, .05, and .025, and with the increase of the price rating to 40, only the price weight
changes, from .025 to .1. Again, this change is depicted as the last step in Figure 1, this time
for the �defensive estimation� method.
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Figure 1 An example of the progression of utility estimates using three different styles of estimation. The
graph shows the utility at each point during a series of 5 adjustments to ratings  for a sample product with
values of .1 for price, .4 for hard disk size, .7 for memory, and .5 for speed. All ratings begin at 0. At
Step 1, the rating for hard disk size is set to 30, at Step 2, the rating for price is set to 10, at Step 3, the
rating for memory is set to 20, at Step 4, the rating for speed is set to 10, and finally, in Step 5, the rating
for price is set to 40. For the �defensive estimation plus decrease in maximal ratings� method, it is
assumed that each time a rating is set to its final value (40, 30, 20, and 10 for price, hard disk size,
memory, and speed, respectively), it is known that the rating will not be adjusted again.

We need not always assume that each rating can attain the maximal possible number
of points. When we are certain that an attribute rating will not be changed anymore, we can
reduce the maximal rating to the actual rating, thereby making the numeric estimate more
accurate. In our example, if we know that the adjustment of the price rating from 10 to 40 is
the final adjustment to this rating, we can reduce the maximal rating for the price attribute
from 100 to 40. If none of the other ratings have yet been set to their final values, the sum by
which we divide ratings in order to obtain weights is reduced from 400 to 340, and the
weights would change from .025, .075, .05, and .025 to approximately .12, .09, .06, and .03.
These weights are higher than those obtained if the maximal rating for price were not
reduced. If the other ratings are also known to have been set to their final values, then the
new normalizing factor is the sum of all of these ratings, which is 100. In this case, the
weights reach their final values of .4, .3, .2, and .1. This is the case depicted in the last step of
Figure 1, for the adjustment method �defensive estimation plus decrease in maximal ratings�.
Since we are maintaining the lower bound on the weights, an increase in the weights is an
increase in the accuracy of the estimate. (Another extension to increase the accuracy of the
estimate is discussed in Section 6.4.) 

If all attribute ratings are completely assessed, we arrive at the standard situation in
which each rating is divided by the sum of all ratings; the normalized weights then add up to
1. If we have not yet or will not reach that point, however, the normalized weights will not
add up to 1, as is usual in utility functions. Although this differs from the standard
interpretation of utility functions, it does guarantee that the utility estimate produced by this
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partial utility function is a defensive one�it is always a lower bound on the estimate that
would be produced by the completely specified utility function.

We can show more formally how our method of determining weights results in a
defensive estimate of numeric utilities. The formula we use for determining weights is similar
to that used in swing weighting, when all ratings are assessed at once, but now we divide the
attributes into two groups: those whose ratings have been set to their final value and those
whose ratings have not. As in the formula for swing weighting given earlier, let si denote the
rating of a weight, which ranges from 0 to 100. Let C denote the set of indices of the
attributes whose scores have been set to their final value, let A denote the indices of the
remaining attributes, and let |A| represent the cardinality of the set A. Then our defensive
utility function can be written as follows:

U(x1,...,xn) =! i=1
n si
! jcC sj + (|A| $ 100) Ui(xi)

This is clearly guaranteed to be less than or equal to the result of the complete utility

function, which is given by , since for all si, si    100.U(x1,...,xn) =! i=1
n si
! j=1

m sj
Ui(xi) [

Moreover, on each successive adjustment to the utility function�whether the rating of an
attribute is increased or whether it is finalized, so that the index of the attribute is moved
from A to C�the defensive utility approaches the complete utility. We prove this below.
Without loss of generality, consider a particular attribute Xm,  that has not yet1 [m [ n,
reached its final value (that is, m   A) and the amount l by which it is increased after the userc
answers some question. Let i range from 1 to n, as before. Then:

U(x1,...,xn) =!
i=1

n si
! jcC sj + (|A| $ 100) Ui(xi)

= sm
! jcC sj + (|A| $ 100) Um(xm) +!

i!n

si
! jcC sj + (|A| $ 100) Ui(xi)

[
sm + l

! jcC sj + (|A| $ 100) Um(xm) +!
i!n

si
! jcC sj + (|A| $ 100) Ui(xi)

[
sm + l

(sm + l) + ! jcC sj + ((|A| − 1) $ 100) Um(xm) +

!
i!m

si
(sm + l) + ! jcC sj + ((|A| − 1) $ 100) Ui(xi)

The first step involves pulling Xn out from the summation, the second holds as long as
l is non-negative, which we have stipulated to be the case, and the third holds as long as long
as , which is true because ratings have been stipulated to range from 0 to 100. Insm + l [ 100
addition, the defensive utility estimate converges to the final utility when all ratings have
been set to their final value.

4.2 Suitable Question Styles

Note that our method of defensive estimation does not rely on any particular way of
asking questions to assess ratings. Its only requirement is that ratings are always adjusted in
an upward direction, and its performance is improved with the knowledge of when a rating
has been set for the final time. The implementor of a user modeling system is free to choose
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the kind, number, and order of questions that suit her needs, as long as answers do not result
in decreases in ratings; some ways of ensuring this are discussed below. The questions can
also be chosen by an automated interview construction algorithm with full confidence that
any choice of questions will result in an improved estimate of the user�s utility function.
Although there is a restriction on the way in which questions can adjust weight, we trade this
limitation for increased freedom in the selection of sequences of questions. Once the mapping
rules for a set of questions have been developed, any of these questions can be asked. 

The defensive estimation method allows the implementor the possibility of using a set
of questions for which ratings can be changed by more than one question, so that weights are
adjusted incrementally. In this case, the implementor is responsible for ensuring that the
ratings are increased on each adjustment. This can be achieved by increasing a rating by a set
number of points, increasing a rating by a percentage, or by setting the ratings to exact
numbers; with the last method, care will need to be taken with respect to the order in which
rules are applied, lest a later rule set a rating to a lower value. The implementor is also
responsible for determining when a rating has been changed for the last possible time, if she
wishes to take advantage of the increased accuracy this affords. 

On the other hand, the restriction to increasing ratings can easily be achieved by using
questions that adjust the rating for each attribute only once. Individual swing-weighting style
questions fit this description. Alternatively, the implementor could use a one-to-one mapping
of questions to attributes, for which the answer to a question sets the rating for an attribute to
an exact value once and for all. For example, the user could be asked whether she finds a
particular attribute important, somewhat important, or not important, and the ratings for that
attribute could then be set to 100, 50, and 0, respectively. If the implementor prefers not to
ask about the attributes of alternatives directly�perhaps because she feels the user will not
have enough knowledge of the attributes�it is still possible to achieve a one-to-one mapping
of questions to attributes. To do this, we propose the following solution: the implementor can
design �needs-oriented� attributes that are affected by �needs-oriented questions�. For
instance, in the computer case, each computer could be assigned a value for the
needs-oriented feature �suitability for multimedia�, in addition to its values for physical
attributes; these values could be assigned either by an expert or by a specially-constructed
algorithm. Then the user could be asked how important it is to her that her computer is
suitable for multimedia, and the rating for this attribute could be adjusted in the same way as
are the ratings for more tangible attributes. Such questions are similar in spirit to Chin and
Porage�s (2001) questions that determine stereotype membership and adjust weights
accordingly (discussed in Section 6.1).

5 Application: Algorithm for Interview Construction

The defensive utility estimation technique grew out of our earlier work on
utility-based decision tree optimization (Stolze and Ströbel 2001), which focused on a
method for choosing questions in a utility elicitation interview. According to this method, the
next question asked in an interview is the one that results in the greatest increase in the
expected utility of the set of remaining alternatives, or the focus set. The stopping criterion in
the interview is the lack of such an increase. The algorithm not only asks a user questions in
order to improve its estimate of the user�s utility function, but also uses the partially elicited
utility functions in its reasoning about the next question to ask. 

An early implementation of the original algorithm used a ratings-based framework in
which ratings were initially set to default values and could then be either increased or
decreased; in addition, more than one question could affect a weight. In experiments with this
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implementation, we realized that in some situations the algorithm chose a sequence of
questions such that some weights were further from their true values at the end of questioning
than they were at the beginning. An improved and complete implementation of the algorithm
thus requires some way of ascertaining that the final estimates are better than the initial
estimates. One way to do this is to use a utility estimation method that ensures that utilities
move progressively closer to their final values. The defensive estimation technique presented
in this paper is our proposed solution.  

The defensive utility estimation technique has an added advantage for our
question-choosing algorithm. Not only is the utility estimate guaranteed to be moving closer
to the final estimate, but now the choice of a question based on utility increases acts as a
heuristic for choosing the question that most reduces the uncertainty about the utility
function. If the chosen question is the one whose focus sets�the alternatives remaining after
each of its possible answers�has the highest expected average utility for the user, then we
are likely to have chosen the question whose focus sets have an expected average utility that
is closest to the final expected average utility. That is, the average deviation between the
estimated utilities and the final utilities is most likely smaller for the chosen question than for
 any others. 
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Figure 2 An example of the estimates of a user�s utilities after two possible questions. According
to our question-choosing algorithm, the question that is chosen is the one for which we have the
greatest increase in average expected utility. To calculate this, first we calculate the average utility
of the focus set for each answer, and then we sum over all possible answers to a question,
weighted by the probability of each answer. In this example, Question 1 would be chosen over
Question 2, no matter what the probabilities of the answers are. (Note that a question would be
chosen only if it provides an increase over the current average utility of alternatives, but this is
guaranteed to be the case here if our defensive utility estimation technique has been used; since
the utilities cannot decrease, and since Question 2 has lower utilities than Question 1, Question 1
must provide an increase over the current average utility. )
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In effect, the revised algorithm chooses the question for which it is most likely that an
answer will have a strong effect on the estimated utility function; this is the question that is
expected to reduce most greatly uncertainty about the average expected utility. This means
that the estimates of some alternatives become more accurate, but, unfortunately, there is no
way of knowing whether the estimates that become more accurate are those of the
alternatives that would be most highly ranked by the user�s true utility function. There is also
no guarantee that those alternatives that appear most highly ranked at a given point will
ultimately be the best. However, this is a problem that besets any ranking of nondominated
alternatives based on partial utility models. Any method for ranking alternatives based on
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partial information can only serve as a heuristic. In our case, the choice criterion acts as a
heuristic for choosing a question that will be likely to result in more alternatives that can be
shown to be closer to a satisfactory score. While it is hoped that this will provide a more
accurate ranking of alternatives, even if the results of the ranking do not match a ranking
based on the user�s true utility function, the user can nonetheless rely on certain properties of
defensive numeric estimates to aid her in her decision making. For example, since the
estimates represent certain information about the minimal utility of alternatives, the user may
be able to use this information to reason about the alternatives in a way that she can�t with
other methods, such as default estimates, for which the user is unaware of whether the utility
estimate for an alternative is higher or lower than its actual utility. 

If we use the original stopping criterion suggested in our earlier paper �the lack of
an increase in the expected utility of a focus set �we run into the complication that any
question that is capable of altering the utility function will, by the definition of defensive
utility estimation, increase the average expected utility of the set. In this case, the
question-choosing algorithm will not terminate until all such questions have been asked. If
we don�t wish to ask all of these questions, we can use the algorithm as a means for
determining the order of questions that will most quickly improve the utility estimates; we
can then either impose a limit on the number of questions to ask or allow the user to decide
how many questions she wishes to answer. Alternatively, the algorithm can be terminated
earlier if the expected utility of the focus set is reduced by other means, even though the
utilities of all alternatives are increasing. For instance, the calculation may take into account
the rate of user attrition, so that the score of a question is reduced by a certain amount
(perhaps a percentage) based on how likely a user is to leave the interview upon being asked
that question. In this case, the algorithm essentially balances the increase in accuracy of the
utility function against the risk of losing a user. Another option is to specify a minimal
increase in the average expected utility of the remaining products, such that questioning stops
when no question can provide at least that increase. Intuitively, this means that questioning
stops when the improvement in the accuracy of the utility function is not great enough to be
worthwhile. Of course, because the algorithm is myopic (that is, it only looks at the benefit
provided by asking one question at a time), the algorithm could miss a combination of
questions that provides greater than the minimal increase, but since the problem of evaluating
all sequences is intractable, similar risks are run by all question-choosing algorithms.

6 Discussion

Here we discuss some benefits of, possible problems with, and potential extensions to
our technique. To place the discussion of our algorithm in context, we begin with an
overview of related work.

6.1 Related Work

Because classical decision theory treats primarily complete utility models, it is
difficult to say what the right way of interpreting partial utility models is. Different
interpretations of partial utility models depend on what the unknown variables are and how
the system treats them. In this section, we briefly describe five of the existing approaches to
partial utility models: one that uses default weights, one that uses ranges, two that reason
probabilistically, and one non-numeric approach. Like ours, all of these approaches combine
a method for interpreting a partial utility model with a method for choosing the questions that
further refine this model. We discuss how each of these approaches resolves the question of
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unknown variables so that a partial utility model can be used to make decisions or
calculations. We also discuss what ramifications each solution has for systems that
automatically construct utility elicitation interviews.

Linden et al. (1997) assume an additive utility function, in which the unknown
variables are attribute weights and subutility functions, and they treat unknown weights by
assigning them default values. Their system has the additional feature of allowing new
attributes� constraints, in their terminology�to be added to the utility function, and so their
user model might be partial not just in that it has some unassessed weights, but also in that it
does not contain all of the attributes that appear in complete utility function. Weights are
refined based on how the user critiques alternatives presented to her. In this system, it is the
user who decides when to stop the interview process, and so if default values for weights are
incorrect and result in an inappropriate list of products, the user can continue to critique
alternatives until the utility model results in a satisfactory list of products. However, the use
of default values for unknown weights could prove problematic if an algorithm or system, not
the user, determines when to stop asking questions, or if the user does not wish to continue
answering questions. If such a system does not ask all possible questions, some weights may
remain set to their default values, and the numeric estimate could then be worse at the end
than at the beginning. For example, if the ending numeric estimate is slightly higher than the
original estimate, but in fact one of the weights that remains set at its default value should be
quite low, the true utility might actually far below both the original and ending estimates.
Instead of using default weights, our system reasons about an unknown weight by treating its
value as if it equals only as much as can be known with certainty, thus avoiding the need to
revise default assumptions. 

Chin and Porage (2001) also assume an additive utility functions. They deal with
uncertainty over weights, and subutility functions as well, by representing ranges over them.
A question is chosen based on how much it reduces uncertainty, and the interview terminates
when the reduction in uncertainty cannot compensate for the user�s impatience with
questioning. In their algorithm, the means of the ranges are used to determine the alternative
with the highest utility for the user. However, because of the nature of ranges, there is no
guarantee that the estimated utility of an individual alternative will be closer to its actual
utility at the end of the interview than at the beginning, and so there is no guarantee that the
final solution will be better than one produced at the beginning. For example, if the true value
of a weight is just below the midpoint of the initial range, and the range is then reduced to its
lower half, the average of the new range is now further from the true value of the weight than
the average of the initial range was. Although a case like this may be unlikely to arise in
practice, nothing in the structure of the reasoning mechanisms rules it out. This seems to be
an undesirable property in an interview system that aims to better serve the user by gaining a
more accurate estimate of her utility function. However, the spirit of our approach is quite
similar to that of Chin and Porage�s. In effect, what we do is simply to take the lower end of
ranges and use this endpoint as our estimate, because we can reason consistently with this
endpoint in a way that we can�t with a changing average.

Two approaches reason probabilistically about the utilities of alternatives. Chajewska
et al. (2000) present a technique that can be used for reasoning about utility functions that do
not exhibit the decomposable structure assumed by the approaches above; they also present
an extension of their technique to cases in which there is correlation among outcome utilities.
In both cases, they represent uncertainty directly over individual outcome utilities, rather than
over attribute weights, by representing a probability distribution over these utilities, and they
use the mean of utilities under this distribution in an influence diagram to recommend
strategies.  Jameson et al. (1995) assume a decomposable utility function and use a Bayesian
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network to infer the weights of attributes, and then to infer the overall utilities of alternatives.
Although there are significant differences between the systems of Jameson and Chajewska,
both predict numeric utilities of alternatives based on current probability distributions, and
they both use the predicted utilities in making recommendations; they also both choose
questions according to the reduction in uncertainty they provide. However, we can�t be sure
that the average, or the result of Bayes net inference, under an updated distribution is closer
to the actual utility than the result  under the previous distribution. This need not be a
problem for an interview construction method if some other means of testing for the
improved accuracy of a final estimate is used. For example, Chajewska et al. use an
additional stopping criterion that predicts the estimated regret of terminating the questioning
process. However, as noted in Section 1.1, there are some situations in which we nonetheless
want a consistently improving estimate4. For such situations, our defensive estimation
technique is one way of guaranteeing the necessary increase in the accuracy of estimates.
Certainty, a probability distribution could also be used to estimate the lower bound on the
utilities of alternatives. However, if all that is needed is a lower bound, our simple defensive
estimation technique is easier to use than a sophisticated probabilistic system, and might also
be more appropriate for domains in which we do not have enough historical data to estimate
accurate probabilities.

Lastly, Ha and Haddawy (1997) deal with unknown weights in an additive utility
function in a non-numeric way. They use the known weights to determine which alternatives
are dominated by others, and they eliminate these alternatives from consideration, without
ranking or scoring the remaining alternatives. They use an iterative process to determine the
ratios of particular unknown weights�by using lottery-style or �trade-off� questions that
assess indifference�and then find more suboptimal alternatives. A later paper (1999)
presents an approach that can eliminate dominated alternatives for multilinear utility
functions. The approach of eliminating alternatives is clearly a useful one, but, as discussed
in Section 1.1, we feel that it would be useful to have a numeric interpretation of partial
utility functions, in addition to approaches that eliminate dominated alternatives. Our
approach could be combined with an approach such as Ha�s in order to obtain the benefits of
both; for instance, our approach could be used to rank the nondominated alternatives as
determined by Ha�s algorithm.

6.2 Benefits of Defensive Utility Estimation

One of the causes of difficulties in producing interpretable numeric estimates from
partial utility models is that a partial utility model is by definition one in which there is some
uncertainty about a user�s true utilities. However, when a partial utility model is used to
produce a numeric estimate, any representation of uncertainty is lost in the translation to a
single numeric value. A defensive estimate solves this problem by using only that
information which is certain in calculating the defensive estimate, and, on a higher level, we
are aware of the direction in which our estimate is uncertain, if not of the amount; we then
know exactly what kind of information the estimate conveys about a user�s true utilities. 

Our defensive utility estimation technique has the properties that we found to be
missing in other numeric estimates. Its meaning is easily interpretable, and the estimation is
guaranteed to become more accurate as time goes on. Thus, it can be used in the situations in
which, as described earlier, an interpretable and increasing numeric estimate is beneficial,
such as when a user exits an interview early, when recommendations are displayed in parallel

14

4 One of these situations is when a user decides to exit an interview early. Note that  in the medical domain
treated by Chajewska et al., it is reasonable to assume that users will answer all questions asked of them, given
the seriousness of health-related decisions.



with questions, and when an implementor desires the possibility to ask any sequence of
questions. Our numeric estimation technique also provides an inverse benefit to the benefits
of approaches that eliminate alternatives: it cannot eliminate candidates from consideration,
but it can prove that a candidate attains at least a certain utility. It can thus show that a
candidate is �good enough�, although perhaps not optimal.

Our defensive estimation technique also proves to be useful for another important
task: it allows us to present an algorithm for constructing interviews that reasons about which
question most reduces uncertainty about utilities. The amount of reduction in the uncertainty
of a partial utility model is a common measure used for choosing questions, as described in
the section on related work. However, in other systems, a reduction in uncertainty does not
necessarily result in the immediate increased accuracy of a numeric estimate. In our
algorithm for choosing questions, however, the amount by which numeric estimates are
increased�and so the amount by which they become closer to their final value, and thus
more accurate�also serves as way of measuring the reduction in one kind of uncertainty
about the utility model (that is, uncertainty about the average utility of a set).

6.3 Difficulties

We have stated throughout the paper that we would like a numeric estimate that
consistently increases in accuracy, which is not the case with approaches that use default
values, averages, or probabilistic predictions. However, it is possible that the constant
improvement in accuracy of our defensive estimation technique comes at the cost of having a
more inaccurate estimate at the start. Indeed, since the starting estimate for each alternative is
0, the initial estimate produced by our method has a good chance of being further from the
true utilities of a user than the estimate produced by the other numeric methods. However,
even if that is the case, the defensive estimate still has the advantage of being clearly
interpretable as a lower bound on the utility, whereas the meaning of estimates produced by
the other methods is not clear.

The usefulness of the numeric defensive approach presented here seems to depend in
part on a different way of viewing utility functions. The goal of multiattribute utility theory
has traditionally been to find the optimal alternative in a set of alternatives, and in this sense
the utilities assigned can take on a comparative meaning. Our approach is to view the utilities
more as scores, which can be used to judge the alternatives independently of one another.
This is what makes it possible for us to talk about a utility being �satisfactory� for a user,
instead of simply using utilities to compare alternatives in order to find the best one. While
this differs from the approach of classical decision theory, it may be a realistic view in many
cases. It is possible that a user needn�t find the optimal alternative in a set, but in fact would
be satisfied with one of several alternatives; she may look for alternatives whose utility for
her is above a certain threshold. It would be interesting to think further about the relation
between the standard way of viewing utilities and the view that seems to be entailed by the
approach presented here.  

Finally, we should state the rather obvious qualification to our claims about defensive
utility estimation. Our estimates are lower bounds on the user�s utilities only with respect to
our model. Our model could be incorrect, in that the way in which it adjusts weights might
not correspond to the user�s judgments. (This is a hazard with any user modeling system.)
What we mean by �defensive utility estimation� is that the estimate at any given point is
always less than or equal to the estimate that would be produced by a full utility function
using the same model.
6.4 Possible Extensions
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In the estimation technique presented here, only the minimal rating for attribute
weights is adjusted by a user�s answers to questions. The maximal rating is reset only once,
after the final change to the minimal rating; until it is set to equal the minimal rating, it
remains at its highest value. One possible extension to our estimation technique would be to
have a user�s answers affect the maximal rating of an attribute as well as its minimal rating.
This could be used for two purposes: to compute a more accurate defensive estimate of
utilities, and also to compute an �optimistic�, rather than a defensive, estimate of utilities. For
the first purpose, we use the maximal ratings to normalize the weights, as before. By
decreasing maximal ratings, we decrease the normalizing sum, which increases the weights,
thereby bringing them closer to their final value. For the second purpose, we simply invert
the process of maintaining a lower bound on the weights and utilities. Instead of dividing the
minimal rating by the sum of all maximal scores, we divide the maximal rating by the sum of
all minimal ratings in order to compute the maximum possible utility of each alternative.5
This would allow us to eliminate alternatives whose maximal score is not satisfactory, as well
as to present the user with additional information to make her decisions. We could also use
the upper and lower bounds to perform reasoning that uses ranges. Note that if we were to
adjust both the minimal and maximum ratings of a weight, we would confront some issues
that need to be dealt with by all approaches that use ranges, such as ensuring that our
adjustment method does not allow the minimal and maximal scores to cross. 

The next item in our future plans is to conduct empirical evaluations with actual users
(Chin 2001). We plan to design experiments that can evaluate both the usefulness of
defensive utility estimation on its own and the success of our question-choosing algorithm.
One claim about defensive utility estimation that we would like to test is whether knowledge
of the minimum guaranteed utility of an alternative is useful to users, and if so, whether it is
more useful than other numeric estimates. With regard to the algorithm, we would like to
determine whether choosing the question with the greatest decrease in uncertainty about
expected utilities in fact helps the users to find a suitable product more quickly and whether it
increases their confidence in the proposed selection. 

7 Conclusion

In this paper, we discuss a solution to the problem of interpreting partial utility
models numerically. In order to do this, we need to solve the problem posed by potential
decreases in the accuracy of numeric estimates during utility elicitation interviews, such as
interviews built using the utility-based interview tree optimization technique of Stolze and
Ströbel (2001). Our solution is to use a defensive estimation technique that tracks the lower
bound of a user�s utilities. This achieves the desired result of guaranteeing increasing
accuracy during utility elicitation interviews, and it also renders the meaning of a numeric
estimate clearly understandable. Moreover, in the particular case of utility-based
optimization, it allows the interview construction algorithm to reason about reducing
uncertainty in a partial utility model. 

Defensive utility estimation assumes an additive utility model and the presence of
subutility functions, and it requires that the effects of questions alter attribute ratings or
weights in only an upwards direction. However, it is independent of the kind of elicitation
questions used, the number of questions asked, and the sequence in which questions are
asked. This allows implementors of recommender systems or navigation aid systems the
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freedom to choose questions in their preferred way or to construct their own algorithms for
choosing questions, as long as the questions follow the prescribed guidelines. Implementors
who wish to choose their own questions can thus use defensive utility estimation on its own
as a way of reasoning consistently with partial utility models and presenting users with
understandable choices. Alternatively, defensive utility estimation can be used in conjunction
with the algorithm for interview construction presented here, which chooses questions that
tend to most improve the partial models used for recommending alternatives. Overall,
because the results of the presented techniques can be consistently interpreted, their
application could allow for decision support that is both user- and implementor-friendly.
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