
RZ 3451 (# 93512) 08/26/02
Electrical Engineering 5 pages

Research Report

An Ordered-Statistics-Based Approximation of the Sum–Product
Algorithm

Xiao-Yu Hu and Thomas Mittelholzer

IBM Research
Zurich Research Laboratory
8803 R̈uschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available
at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich

An Ordered-Statistics-Based Approximation of the Sum–Product Algorithm

Xiao-Yu Hu and Thomas Mittelholzer

IBM Research, Zurich Research Laboratory, 8803 Rüschlikon, Switzerland

Abstract

A complexity- and delay-efficient simplification of the sum–product algorithm (SPA) for decoding
low-density parity-check (LDPC) codes is presented. The key feature of the new algorithm consists
of a modification of the complexity-intensive and delay-causing update equations at the check nodes
of the factor graph of the LDPC code. The modified update equations at a check node are based
on ordering the reliability values of the incoming messages and on using a balanced tree topology
to achieve optimum parallel processing. Furthermore, the complexity of the new algorithm can be
adjusted: the least complex version of the algorithm corresponds to the so-called min-sum approxi-
mation, and the most complex version gives the full SPA.

1

I. Introduction

OWING to their outstanding performance, low-density
parity-check (LDPC) codes [1], are currently recog-

nized to be the best class of codes to approach the Shan-
non limit efficiently, using iterative decoding [2]. Efficient
implementation of the decoding algorithm in hardware has
become an area of increased interest (see e.g. [3, 4] and
references therein). In particular, substantial reductions of
the total decoding complexity have been obtained by con-
sidering simplifications of the core operations in the sum–
product algorithm (SPA).

Here we focus on various binary tree representations as-
sociated with the check nodes in the factor graph of an
LDPC code. We propose a modification of the highly com-
plex and delay-causing update equations at the check nodes
that is based on ordering the reliability values of the incom-
ing messages. Specifically, these messages are split into the
set of a few least reliable messages and the set of all other
messages, which are treated as being fully reliable. In this
way, the complexity of the update equations can essentially
be reduced to the case of only a few incoming messages.
This reduction in complexity is most pronounced for high-
rate LDPC codes, where each check node is connected to
a large number of symbol nodes. The proposed simplifica-
tion does not rely on reduced-complexity approximations
of the core operations; therefore, one can achieve additional
complexity reductions by applying such approximate core
operations [3-5].

A critical performance issue of all turbo-like codes is
the decoding delay that is inherent in iterative decoding of
block codes. Following [4, 6], we devote special attention
to low-delay implementations, which are based on balanced
tree topologies for maximum parallel processing.

The paper is organized as follows. In Section 2, the SPA
is reviewed, and the complexity of the different parts dis-
cussed briefly. In Section 3, different implementations for
the check-node updates are considered in terms of special
factor graphs that are binary trees. Section 4 is devoted
to the use of ordered statistics of the incoming messages at
the check nodes and to simplifications of the factor graph,
both of which result in a reduction of the delay as well as of
the total complexity. In Section 5, simulation results com-
paring the full SPA with the proposed simplified versions
are shown. Finally, in Section 6, the key features of the
proposed simplified algorithm are summarized.

II. The Sum–Product Algorithm in the

Log-Likelihood Domain

The SPA is an efficient iterative algorithm for decod-
ing LDPC codes. In particular, given a received word
y = [y1, y2, . . . , yN], which corresponds to some transmit-
ted binary codeword [x1, x2, . . . , xN], the SPA updates in
each iteration step its “temporal beliefs” about the compo-
nents xn of the transmitted codeword given y, and, even-
tually, makes a decision as to which codeword components
were sent.

We describe the SPA in the log-likelihood domain using
similar notations as in [7]. For a given binary sparse parity-

check matrix H, we denote by M(n) the set of check nodes
that are connected to symbol node n, i.e., the set of indices
that are “1” in the n-th column of the parity-check matrix
H. Similarly, we denote by L(m) the set of symbol nodes
that participate in the m-th parity-check equation, i.e., the
set of indices that are “1” in the m-th row of H. We de-
note by L(m)\n the set-theoretic difference of L(m), from
which the n-th symbol node is excluded. Similarly, for the
check-node sets, we introduce the set-theoretic difference
M(n)\m. We denote by L(qn→m) the message that sym-
bol node n sends to check node m, which corresponds to
the log-likelihood ratio (LLR) of some temporal likelihood
that the n-th symbol is “0” or “1”. Similarly, L(rm→n)
denotes the message that the m-th check node sends to the
n-th symbol, which again is an LLR expressing the tem-
poral belief that the m-th check node has about the n-th
symbol being “0” or “1”. The SPA that is based on log-
likelihood messages can be stated as follows.

1. Initialization

Each symbol node n is assigned an initial LLR L(pn). In the

case of equiprobable inputs on a memoryless AWGN channel,

L(pn) =
2

σ2
yn,

where the σ2 is the noise variance, and yn the corrupted value

of input symbol xn. For every incidence pair (m,n), i.e., pair

of indices satisfying Hm,n = 1, the messages L(qn→m) and

L(rm→n) are initialized as follows:

L(qn→m) = L(pn),

L(rm→n) = 0.

2. Check-node update

Each check node m gathers the incoming messages L(qn→m),
and updates the belief on symbol n based on the information

from all other bits connected to check node m:

L(rm→n) =

2 tanh−1

∏

n′∈L(m)\n

tanh[L(qn′→m/2)]

. (1)

The outgoing message L(rm→n) is referred to as extrinsic
information because it does not depend on the incoming
message L(qn→m).

3. Symbol-node update

Each symbol node n propagates its likelihood information to

all the check nodes that connect to it. The outgoing messages

are calculated as

L(qn→m) = L(pn) +
∑

m′∈M(n)\m

L(rm′→n).

4. Decision

The decoder obtains the total temporal a-posteriori informa-

tion for symbol n by summing the likelihoods from all the

2

check nodes that connect to bit n:

λn = L(pn) +
∑

m∈M(n)

L(rm→n).

The algorithm iterates until a valid codeword has been
found, i.e., the hard decision of the temporal a-posteriori

vector [λ1, . . . , λN] satisfies the parity-check matrix H, or
a preset maximum number of iterations has been reached.

Obtaining an efficient implementation of the symbol-
node updates is obvious. By forming first the a-posteriori

information λn, the extrinsic information terms are given
by L(qn→m) = λn − L(rm→n). Thus, the total compu-
tational load for a symbol-node update is only 2|M(n)|
additions, where the cardinality |M(n)| denotes the degree
of the variable node n.

The check-node update is the most complex part of the
SPA. Two issues influence its computational complexity:
the topology of the multiple outgoing messages and the
implementation of the core operation. Consider a regular
LDPC code of rate R ≥ 1 − j/k, where j and k are the
column and the row weight of its parity-check matrix, re-
spectively. If this code is of high rate, then it consists of
check nodes that are connected to many variables. For in-
stance, the check nodes of LDPC codes with R ≥ 0.9 and
a column weight j = 4 are connected to more than 40 vari-
ables, i.e., k > 40. For an irregular LDPC code, the largest
number of row weights can be even larger.

The core operation of the check-node update in (1) is
the hyperbolic tangent function, which apparently seems
difficult to implement in digital hardware. Analog realiza-
tions of the hyperbolic tangent function have been investi-
gated in [8, 9], with the aim of facilitating extremely high-
speed applications. The main difficulty in analog circuits is
not the complexity of the hyperbolic tangent function but
rather stability and synchronization issues. In Gallager’s
approach [1], the core operation of the check-node update
in (1) was transformed into another form, i.e.,

2 tanh−1 (tanh(λ/2) tanh(µ/2)) =

signλsignµ·f(f(|λ|) + f(|µ|)),

where

f(x) = ln
ex + 1

ex − 1

is an involution for x > 0. By introducing the involution
f(x), one can run check-node updates efficiently from both
the computational- and time-complexity viewpoints in a
way similar to the efficient implementation of symbol-node
updates described above. However, it is not evident how to
implement the involution function f(x) efficiently in either
analog or digital circuits because of its singularity at 0.

III. Binary Trees for the Check-Node

Constraints

The motivation to consider binary trees is based on
the fact that the complexity-intensive computation of the

check-node update can be obtained by repeated application
of the identity

2 tanh−1 (tanh(λ/2) tanh(µ/2)) = log
1 + eλ+µ

eλ + eµ
. (2)

Moreover, as noted in [10], the right-hand side in (2) is
the LLR of the binary sum of two statistically independent
binary random variables U and V , where λ = L(U) and
µ = L(V) are their LLRs, i.e.,

L(U ⊕ V) = log
1 + eL(U)+L(V)

eL(U) + eL(V)
. (3)

For the right-hand side in (3), which is a function of L(U)
and L(V), we will use the well-established notation L(U)�
L(V) [10]. The domain of the �-operation can be extended
to the set of real numbers together with ±∞. In this way,
one obtains a monoid with ∞ as neutral element [10]. With
this notation, the check-node update (1) can be rewritten
as

L(rm→n) = �n′∈L(m)\nL(qn′→m/2) , (4)

where �n′=1...kL(Un′) denotes the k-fold �-sum.
Without loss of essential generality, we will focus on a

single check node, say m = 1, and assume that it checks
the binary input symbols x1, x2, . . . , xk. The factor graph
for the check equation x1 ⊕ . . . ⊕ xk = 0 is a tree with k
leaves, in which the root corresponds to check node m = 1
and the k symbols represent the leaves. To reduce the
check-node updates (1), operating on k − 1 arguments, to
a repeated application of the 2-argument formula (3), we
transform the k-ary tree into a factor graph, which is a
binary tree, by using suitable state variables Sν . Two trees
that achieve this task are shown in Fig. 1.

(a)

(b)

S
m

S
m

U
m

U
m

V
m

V
m

Fig. 1. Two factor graphs representing the single parity check x1 ⊕
. . . ⊕ xk = 0 (for k = 8): (a) a maximally unbalanced and (b) a
balanced tree.

In Fig. 1, the double circles represent binary state vari-
ables. Each state variable, say Sν , is the modulo-2 sum of

3

the two symbol or state nodes, say Uν and Vν , checked by
the binary check node leading towards state node Sν (start-
ing from the leaves towards the root), i.e., Sν = Uν ⊕ Vν .
The check-node updates (1) can be computed by making
a forward and a backward pass on either of these factor
graphs using the core function (3) or some approximation
thereof [3-5]. For both factor graphs in Fig. 1, the total
computational load for check node m = 1 consists of the
forward recursive computation of L(Sν) for the k − 2 state
variables, the backward recursion for the latter, and the fi-
nal backward recursion step to the leaves, which amounts to
3(k−2) core operations L(U)�L(V) (see [11] for the com-
plexity computation on the maximally unbalanced tree).

The factor graph in Fig. 1(a) will be referred to as the
maximally unbalanced tree (note that this factor graph is
topologically equivalent to a binary tree obtained by delet-
ing all state variables). Various simplifications of the SPA
have been derived from this maximally unbalanced tree [3,
5]. The other factor graph, Fig. 1(b), which is a balanced
tree, has been proposed in [6] and implicitly in [4]. For
the design of parallel algorithms, the balanced tree clearly
results in a much smaller delay, i.e. about 2 log k core op-
erations, compared with a delay of about k consecutive
core operations for the maximally unbalanced tree (when
running the forward and backward passes in parallel).

In this paper, we propose an algorithm that operates on
a strongly reduced factor graph for each single parity-check
equation. This simplified balanced factor graph is obtained
by searching for the z (z ≥ 2) least reliable symbol nodes
in each parity-check equation.

IV. Ordered Statistics for Check-Node Updates

This section is devoted to simplifying the balanced tree
factor graph by using the ordered statistics of the relia-
bility values of the symbol nodes. An example of such a
simplification is given by a parallel min-sum version of the
SPA as described in the following subsection.

A. Parallel Min-Sum Check-Node Updates

We consider the SPA on the balanced tree with a simpli-
fied core function based on the well-known minimum ap-
proximation [10]

L(U) � L(V) ≈ sign(L(U))sign(L(V))

·min{|L(U)|, |L(V)|}. (5)

This simplified SPA is known as the “min-sum algo-
rithm” [6]. By performing the min-sum update rule on the
factor graph for the check equation x1 ⊕ . . . ⊕ xk = 0 [see
Fig. 1(b)], one obtains approximate values for the extrinsic
LLRs L(r1→n), n = 1, . . . , k, which are given by

L(r1→n) ≈

sign[L(S)]sign[L(un)]Lm

if Lm < |L(un)|

sign[L(S)]sign[L(un)]Lm′

otherwise.

(6)

Here S = x1 ⊕ . . . ⊕ xk, and Lm and Lm′ denote
the LLRs of the least and second least reliable sym-
bol node, respectively. In particular, Lm and Lm′ are
obtained by partially sorting the reliability magnitudes
|L(u1)|, |L(u2)|, · · · , |L(uk)| to obtain the two symbol nodes
with the two smallest values.

The approximations (6) can be computed directly from
sign[L(S)], which is obtained from the forward pass, and no
backward recursion is needed, provided that the LLRs Lm

and Lm′ of the two least reliable symbol nodes are known.
The computation of Lm and Lm′ is a partial-sorting prob-
lem, which can be done efficiently in log2(k) time. Note
that sign[L(S)] is obtained by a simplified forward pass,
which requires only sign computations. Furthermore, this
forward pass and the partial sorting can be done in par-
allel on two trees of depth log2(k). Hence, the min-sum
algorithm for the check-node updates runs in time log2(k),
where the core operations are either comparisons or mul-
tiplications of two signs. The total number of operations
required is about k log2(k) comparisons and k sign opera-
tions.

B. Sorting-Based Check-Node Updates

By carrying the sorting idea of the preceding subsec-
tion further, we will obtain a family of reduced-complexity
algorithms that approximate the check-node updates in
the SPA. The balanced tree for the forward recursion can
also be considered as a diagram for the sorting algorithm
often referred to as merge-sorting [12] that is based on
merging two ordered lists. Starting with the magnitudes
|L(x1)|, |L(x2)|, · · · , |L(xk)| at the leaves of the tree, these k
nonnegative values can be ordered within a time complex-
ity of about log2(k) comparison operations. The sorting
algorithm determines a permutation

π =

(

1 2 . . . k
i1 i2 . . . ik

)

(7)

of the k symbols such that the permuted reliability values
are ordered, i.e., |L(xi1)| ≤ |L(xi2)| ≤ · · · ≤ |L(xik

)|.
The key idea of the new algorithm is to select a fixed

number, say z, of least reliable symbol nodes xi1 , . . . , xiz
,

and to treat all remaining symbol nodes as being fully re-
liable, i.e.,

|L(xiz+1
)| = |L(xiz+2

)| = · · · = |L(xik
)| = ∞. (8)

This amounts to keeping the original soft values for the z
least reliable symbol nodes and approximating the original
soft values for the other k − z symbol nodes by the hard
decisions ±∞.

The distinction of symbol nodes with soft and hard de-
cisions can be reflected in the construction of a partially
balanced binary factor graph for the updates of the check
node corresponding to x1 ⊕ . . . ⊕ xk = 0 (see Fig. 2).
This partially balanced binary tree, which we will call a
reliability-based balanced tree, is obtained as follows. From
the soft value symbols xi1 , . . . , xiz

, we form a balanced bi-
nary sub-tree with the root given by the binary state vari-

4

xi6

xi1
x i2

x ik

xi3

xik-1
xi5

xi4

S’ S ’’

Fig. 2. Reliability-based balanced tree separating the z = 4 least
reliable and the k − z most reliable symbol nodes in parity check
x1 ⊕ . . . ⊕ xk = 0.

able S′ = xi1 ⊕ . . .⊕ xiz
. Similarly, a balanced binary sub-

tree with the root S′′ = xiz+1
⊕ . . . ⊕ xik

is formed from
the hard-decision symbol nodes xiz+1

, . . . , xik
. Eventually,

the two sub-trees are connected via a binary parity-check
node, which becomes the root of the reliability-based bal-
anced tree.

The complexity of the SPA on the partially balanced
factor graph is mainly determined by the complexity on
the left sub-tree emanating from state node S ′ because full
soft reliability values are computed only on this sub-tree.
On the right sub-tree, which emanates from state S ′′, the
forward pass of the SPA needs only sign computations be-
cause all leaves have LLRs that are ±∞ (note that ∞ is
the neutral element with respect to the �-operation).

To obtain a low-latency implementation of the check-
node updates, we simplify the partially balanced tree of
Fig. 2 further by keeping only the left sub-tree with the
root S′. The binary value of the symbol node at the root,
S′ = σ, is determined by the hard-decision symbols, i.e.,

(−1)σ =
k

∏

n=z+1

sign(L(xin
))

= sign(L(S))

z
∏

n=1

sign(L(xin
)). (9)

The resulting factor graph is shown in Fig. 3. Note that
this graph can be further simplified by removing the state
node S′ and by incorporating the constraint S ′ = σ into
the check node at the root. The SPA on this simplified
factor graph can either be carried out in its full version or
by using some simplification for the �-operations (see e.g.
[4]).

For z = 2, the algorithm essentially corresponds to the
min-sum approximation. However, there is the following
slight difference: in the min-sum algorithm the reliability of
the messages for the hard-decision nodes are approximated
by the minimum |L(xi1)| in contrast to the approximation

xi1
x i2

xi3
xi4

S ’

Fig. 3. Balanced subtree of the z = 4 least reliable symbol nodes.

|L(xi1)| � |L(xi2)| in the new algorithm.
For high-rate LDPC codes, the sorting-based check-node

updates provide substantial savings in complexity: com-
pared to the k − 2 �-operations in the full version, the
simplified version needs only z − 2 �-operations, to which
the small overhead for searching and for the sign operations
has to be added.

Note that the partial sorting idea can also be applied
to Gallager’s decoding approach as described in Section 2.
The reliability values for the outgoing messages are then
computed from the z-fold �-sum L(xi1) � L(xi2) � . . . �

L(xiz
).

C. Fast Partial Sorting

The partial-sorting problem, which finds the z smallest
elements in a set of k real values, is a problem whose worst-
case complexity is difficult to analyze [12]. Here, we give
a simple algorithm that provides a simple upper bound on
the number of comparisons needed. The algorithm is based
on merge-sorting as described above but with the following
modification: in the ordered list obtained from the merging
of two smaller ordered lists, only the z smallest values are
kept and all other (larger) values are deleted from the list.
As a result, the maximum list size at each stage of the
algorithm is z. A balanced tree with k leaves contains a
total of k − 1 inner nodes (that are not leaves). At these
inner nodes, at most z comparisons have to be done. Hence,
the total complexity of partial sorting is upper-bounded by
z(k − 1) comparisons.

Note that when the comparisons are done in parallel at
each level in the tree, the run time of the algorithm corre-
sponds to about log2(k) comparison operations.

V. Simulation Results

For simulations on the AWGN channel, we have con-
sidered an LDPC code of length N = 4489 and rate
4158/4489, which is defined by M = 335 parity checks.
Fig. 4 shows the bit-error-rate performance of this code.
The following LDPC decoding algorithms have been used:
the full SPA, the ordered-statistics-based approximations
of the SPA with z = 2, 3, and 4 least reliable values.
The results are obtained using Monte Carlo simulations,
in which the maximum number of iterations is fixed to 80

5

in all cases. For the core operation �, we use Eq. (3) in its
full accuracy.

We observe that the simple min-sum approximation,
which essentially corresponds to the ordered-statistics-
based approximation of the SPA with only z = 2 least
reliable values, suffers a performance penalty of about 0.3
dB at a bit-error rate of 10−6. It is apparent from Fig. 4
that the loss in performance is recovered by increasing the
number z of remaining least reliable values. For instance,
for z = 3 the performance loss falls within 0.1 dB of the
the full SPA, and for z = 4 it is only 0.04 dB from the full
SPA.

Fig. 5 shows the bit-error-rate performance of another
MacKay’s LDPC code of length N = 1008 and rate 1/2
on an AWGN channel. Again we see that the simple min-
sum approximation suffers nonnegligible performance loss
relative to the full SPA, which can be regained by using
z = 3 or z = 4.

Fig. 4. Performance of the SPA and its simplifications using z = 2, 3,
and 4 least reliable values for a rate-4158/4489 code on the AWGN
channel.

Fig. 5. Performance of the SPA and its simplifications using z = 2, 3,
and 4 least reliable values for a rate-1/2 code (1008, 504) on the
AWGN channel.

VI. Conclusions

A family of low-complexity and low-latency algorithms
that approximate the sum–product algorithm has been pro-
posed. The main feature of the simplification consists in
ordering the reliability of the incoming message at each
check node. The complexity of the simplified algorithm
depends on the number z of least reliable messages that
are selected. When keeping only z = 2 least reliable mes-
sages, the algorithm essentially reduces to the well-known
min-sum algorithm, which has the least complexity. Sim-
ulation results have shown that for increasing values of z,
the performance of the algorithm quickly approaches the
performance of the full SPA. By suitably selecting the pa-
rameter z, the algorithm provides the flexibility to improve
performance at the cost of increased complexity. Moreover,
one can simplify the �-core operation by some reduced-
complexity implementation of one’s own choice.

Acknowledgments

We would like to thank Evangelos Eleftheriou and Sedat
Ölçer for helpful discussions and comments on an early ver-
sion of the paper. Moreover, we would like to acknowledge
David MacKay of the University of Cambridge for provid-
ing the length-4489 and length-1008 LDPC codes.

References

[1] R. G. Gallager, “Low-Density Parity-Check Codes,” IRE Trans.
Inform. Theory, pp. 21–28, 1962.

[2] S.-Y. Chung, G. D. Forney, Jr., T. Richardson, and R. Ur-
banke, “On the Design of Low-Density Parity-Check Codes
within 0.0045 dB of the Shannon limit,” IEEE Commun. Lett.,
Vol. 5, No. 2, pp. 58–60, Feb. 2001.

[3] M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced Complexity
Iterative Decoding of Low–Density Parity–Check Codes Based
on Belief Propagation,” IEEE Trans. Commun., vol. 47, pp.
673-680, May 1999.

[4] X.-Y. Hu, E. Eleftheriou, D.-M. Arnold, and A. Dholakia, “Ef-
ficient Implementations of the Sum-Product Algorithm for De-
coding LDPC Codes,” in Proc. Globecom 2001, San Antonio,
TX, USA, pp. 1036A–1036E.

[5] E. Eleftheriou, T. Mittelholzer, and A. Dholakia, “A Reduced-
Complexity Decoding Algorithm for Low-Density Parity-Check
Codes,” IEE Electron. Lett., Vol. 37, pp. 102–104, Jan. 2001.

[6] F. R. Kschischang, B. J. Frey, H.-A. Loeliger, “Factor Graphs
and the Sum-Product Algorithm,” IEEE Trans. Inform. Theory,
Vol. 47, No. 2, Feb. 2001, pp. 498–519.

[7] D. J. C. MacKay, “Good Error-Correcting Codes Based on Very
Sparse matrices,” IEEE Trans. Inform. Theory, vol. 45, pp. 399–
431, Mar. 1999.

[8] J. Hagenauer, M. Moerz, and E. Offer, “Analog Turbo-Networks
in VLSI: The Next Step in Turbo Decoding and Equalization,”
in Proc. 2nd Intl. Symp. Turbo Codes & Related Topics, Brest,
France, Sept. 2000, pp. 209–218.

[9] H.-A. Loeliger, F. Lustenberger, and M. Helfenstein, and F.
Tarkoy, “Probability Propagation and Decoding in Analog
VLSI,” IEEE Trans. Inform. Theory, vol. 47, pp. 837–843, Feb.
2001.

[10] J. Hagenauer, E. Offer, and L. Papke, “Iterative Decoding of
Binary Block and Convolutional Codes,” IEEE Trans. Inform.
Theory, vol. 42, pp. 429–445, Mar. 1996.

[11] S. M. Aji and R. J. McEliece, “ The Generalized Distributive
Law,” IEEE Trans. Inform. Theory, Vol. 46, No. 2, pp. 325–
343, Mar. 2000.

[12] D. E. Knuth, The Art of Computer Programming: Sorting and
Searching, Vol. 3, Addison-Wesley, 1973.

