
RZ 3458 (# 93844) 11/04/02
Computer Science 11 pages

Research Report

Token-based Web Single Signon with Enabled Clients

Birgit Pfitzmann, Michael Waidner

IBM Research
Zurich Research Laboratory
8803 R̈uschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available
at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich



Token-based Web Single Signon
with Enabled Clients

Birgit Pfitzmann, Michael Waidner

{ bpf,wmi} @zurich.ibm.com, IBM Zurich Research Lab

Abstract. We study a type of web single signon recently introduced by one of four
proposed standard protocols of the Liberty Alliance. In contrast to the other three Liberty
protocols and prior protocols like Microsoft Passport and the SAML standard, the client
is not only a browser, but aware of the protocol, for instance a web-service client. We
investigate how this protocol differs from standard three-party authentication, and
possible benefits. We call the new protocol class token-based web single signon with
enabled clients. We show a man-in-the-middle attack on the original Liberty V1.0
protocol and countermeasures against it. (Such a countermeasure was now added as an
erratum, and no deployed implementation will use V1.0.) We also give general guidance
for designing secureprotocols in this class.1

Key words. Authentication, web singlesignon, man-in-the-middleattack, Liberty, token

1 Introduction

A web single-signon protocol allows a person to log in to many different services
offered on the Internet whileneeding to authenticate only once, or at least always in
the same way. The naive approach at simplifying web signon is that a user chooses
the same username and password with all these services. There are two problems
with this:

1. Each service can impersonate the user towards the others. This is not acceptable
for a user’s overall web experience. Even among the services of one enterprise,
one often prefers asmaller trust core.

2. Servicesneeding an initial identification of the user with respect to a preexisting
name still all have to perform this identification.

Single signon protocols aim at solving at least one of these problems. Typically the
user registers with one party only, called identity provider by Liberty, who becomes
the only party to directly authenticate the user later.

Well-known prior protocols for web single signon are Microsoft Passport,
SAML, an OASIS standard in the voting phase, and the Internet2 project Shibbo-
leth [Mic01, SAM02, Shi02]. In July, the Liberty Alliance published its widely
awaited proposals. They contain message formats extending those of SAML, a
classification of authentication classes, and four concrete protocols in a six-part
specification starting with [Lib02]. Because of the strong membership in this
alliance, these protocols have a good chance of becoming important in practice.

1 This erratum in [Lib02f] is a reaction on our vulnerability notification to Liberty on Sept. 4. Before
theerratapublication, theproblem was found independently by Jonathan Sergent of Sun.



2

Here we concentrate on the fourth of the concrete protocols, the Liberty-
Enabled Client and Proxy Profile, now abbreviated LEC protocol [Lib02d]. Its
specific aspect is that it assumes a special client aware of this protocol, while the
first three Liberty protocols and the prior proposals we mentioned assume an
unmodified web or WAP browser as the client. Thus essentially we are looking at
three-party authentication and channel establishment in the standard setting, where
all three parties (client, identity provider and service provider) run specific protocol
engines. However, the LEC protocol uses a novel technique, which we call token-
based. Its main benefit is not to require cryptography in the client beyond secure
channels, such as SSL or TLS, used through their standard interfaces.

We focus on the protocol security and efficiency of this new protocol class. We
show that the original LEC protocol (Version 1.0) is vulnerable against a man-in-
the-middle attack. We discuss generally how to design secure protocols in this
class, including the particular countermeasure selected in the Liberty errata. We
also discuss the applicability of this protocol class, because the Liberty Alliance
simply proposed the protocol without publicly identifying a class or weighing its
benefits. At the end, we briefly discuss the man-in-the-middle security of prior web
single-signon protocols such as Passport.

Outside our focus topics of protocol security and efficiency, there are serious
other concerns about web single signon. They have even led to political and judicial
debates. For general security discussions, in particular operational and user-
interface security, see [KR00, Sle00]. While some of these topics are specific to
Microsoft Passport, many apply to browser-based protocols generally. Several of
these concerns can disappear with an enabled client as in the LEC protocol, if its
operational and user-interface aspects are well designed. Privacy requirements and
their consequences on better protocol design are treated systematically in [PW02].
A third concern is that a large identity provider may gain a tollbooth position and
be a single point of failure. This was an explicit motivation for the Liberty alliance,
which focuses on many small federations with one or more identity providers.
However, so far the specification only covers each federation individually and does
not scale easily.

2 Token-based Web Single Signon with Enabled Clients

We first describe the protocol that motivated our work, and then define a class of
similar protocols and discuss how they might be used.

2.1 Overview of the Liberty-Enabled Client Protocol

Figure 1 gives an overview of the LEC protocol. It corresponds to Figure 5 from
[Lib02d], except that we abbreviate some elements and show some additional
details for reference. The client application is called Liberty-enabled client, abbre-
viated LE client. The gaps in the step numbers are for compatibility among all
Liberty protocols.



3

1. HTTP Request, LEH

User Service
Provider

Identity
Provider

LE
Client

4. SOAP POST: <AuthnReq>

3. 200 OK <AuthnReqEnv>=(<AuthnReq>, <SP-ID>, <SP-URL>)

5. Process

11. HTTP Response

6. OK SOAP: <AuthnResEnv>
= <AuthnRes>

7. POST <SP-URL>; <AuthnRes>

10. Process

Possible user interaction

Figure 1. LEC (Liberty-enabled client and proxy) protocol

1. Initially, the client is interacting with a serviceprovider via HTTP, e.g., the user
is browsing in a normal way. The client indicates by a specific header LEH that
it is Liberty-enabled. In the figure we omit that all further messages also have
this fixed header.

3. When the service provider wants to authenticate the client, or typically the user
at this client, and if it understands the LEH header, it sends an authentication
request <AuthnReq> to the client in an envelope <AuthnReqEnv>. The main
other elements of this envelope are an identity <SP-ID> of the service provider
and the address <SP-URL> where the service provider wants to receive the
response.

4. The client takes the request from the envelope and forwards it to its identity
provider in a SOAPmessage [SOA00].

5. The identity provider ascertains the user’s identity (this may involve user
interaction) and prepares a response <AuthnRes> for the service provider. It
sends this to the client in a response envelope <AuthnResEnv>, where it is the
only relevant element.

7. The client takes the response from the envelope and posts it to the URL <SP-
URL> of the serviceprovider.

10., 11. The service provider processes the response and continues the interaction
depending on it.

2.2 Generalization

We can generalize the LEC protocol in several ways. For instance, the protocol can
be based entirely on web services if the client and the service provider also interact
via SOAP. Or it can be based entirely on classical Internet standards if the client
and the identity provider also interact via HTTP. The authentication request and
response formats might be slightly different from the formats defined by Liberty
[Lib02b], e.g., original SAML [SAM02], and similarly the envelopes might be



4

slightly different. What, however, is the really distinguishing feature from other
authentication and key-exchange protocols?

Classical three-party authentication protocols like Kerberos and Needham-
Schroeder start with a key-exchange or key-confirmation phase (see, e.g.,
[MOV97]). The client application then uses the new or confirmed key for
encryption and authentication. (Thus with symmetric keys only, the identity
provider is a key-distribution center, otherwise an online certification authority.)
No such three-party key exchange is present in the LEC protocol. Instead, the
authentication response <AuthnRes>, which serves as an authentication token, is
sent over an independently established secure channel in Step 7. In other words, a
secure channel is established without an authenticated client key, just as SSL/TLS
is usually used with browsers, and then an authentication token is sent in this
channel without conveying a key.

2.3 Token-based versus Key-exchange Protocols

The main advantage of token-based protocols is that they can work with the only
ubiquitous cryptographic infrastructure of today, SSL/TLS. In particular:

− a majority of service providers already has SSL server certificates,

− via the browsers, a suitable cryptographic implementation is available on all
client machines; this offers easy transition if the enabled client is a slight
variation of abrowser, and

− many servers have specific front-ends for dealing with SSL connections effi-
ciently, up to hardware accelerators.

Another advantage is that one can use several unrelated authentication tokens, even
from different identity providers, to provide information about the user in the same
secure channel with theservice provider.

A disadvantage in a closed scenario like intra-enterprise single signon for
employees is that a symmetric-key-only solution can be computationally faster;
recall that SSL has an asymmetric key-establishment phase. In a wider environ-
ment, token-based protocols share the disadvantage of all three-party authentication
protocols of requiring an additional Internet roundtrip to the identity provider
before the interaction can continue. This is typically far more time consuming than
the SSL computations. Once establishing a client certificate into the client
(permanently for a one-user client, and per session from the identity provider after
user authentication for a multi-user client) is then more efficient. Note that the
client must be trusted anyway because it learns the user’s single-signon password.
Also note that browsers already have key-loading capabilities. An enabled client
could simplify that further and additionally provide an interface for managing
multiplekeys for different user rolesor pseudonyms.

2.4 Discussion of Enabled Clients

As mentioned, the other Liberty protocols and well-known prior web single-signon
protocols work with usual browsersas clients.

We see the following benefitsof aprotocol with enabled clients:



5

− An enabled client avoidsa further Internet roundtrip between Step 1 and 3 in the
case where the service provider does not know the user’s identity provider. The
enabled client may either know this or ask the user locally. With a browser, the
service provider must ask the user directly in order to prepare Step 3 as a
suitable browser redirect.

− An enabled client can transfer arbitrarily long authentication requests and
responses directly. With a browser, the relation of Steps 3-4, and 6-7, is given
by a browser redirect. The primary way to transfer information is in the search
string of the URL, which should not be longer than 255 bytes. This is not
enough for a signed message, in particular with certificates, and thus back-
channels are typically needed. (POSTs need user interaction or scripting; the
latter already gives an enabled client. Cookies are only possible if identity
provider and service provider are in thesame domain.)

− An enabled client can decrease some security problems. In particular, it may
store authentication tokens particularly securely and out of reach of potential
scripts, and it may improve the user interface, e.g., by specific notice of the
quality of theconnection to the supposed identity provider.

The disadvantage of enabled clients is clear: They have to be installed at the users,
who are very reluctant to install anything, at least additions to make web browsing
simpler or more secure. This was the reason to design browser-based (“zero-
footprint” ) web single signon in the first place. Nevertheless, new functionality
makes its way to large user groups:

− Browser evolution. Only a few browsers have a significant user base, and they
all offer much more than standard HTTP and HTML. In particular, security and
identity-management additions are already common, such as SSL support,
personality settings, and password management. Thus adding related protocols
is conceivable.

− Web services. Browser may soon be web-service enabled anyway, and this may
come with additional security features, such as [WSS02]. Some other client
applications may be web-service enabled even earlier and can run other single-
signon protocols than browsers.

Active content is another possibility, but was attempted before the recent move
towards zero-footprint web single signon; it also makes browsers much more
insecure.

3 A Man-in-the-Middle Attack

We now show a man-in-the middle attack on the original version of the LEC
protocol.

3.1 Setting of the Attack

We consider an impersonation attempt by a dishonest service provider DSP. The
goal of DSP is to impersonate a person (user) who is currently browsing there to



6

another service provider SP. This only makes sense if the person is known at SP,
which an attacker can often guess or find out from other sources. For instance, a
dishonest web shop may want to access the bank accounts of its customers, or their
employers’ intranets.

Given the Liberty focus on small, closed federations, dishonest service
providers are a smaller concern than in a world-wide setting. Nevertheless, Liberty
considers dishonest service providers; this is also shown by the prompt repair of the
vulnerability.

Thedishonest service provider need not even be a federation member, as long as
the user does not notice this. This is likely to happen often even for small
federations, either because the user does not think about it or does not know the
federation members, or because the user is not involved in the protocol (and thus
cannot stop the protocol) because the client application or the identity provider
cache theuser authentication.

3.2 The Attack

Figure 2 gives an overview of our attack.
Initially the user is browsing at the dishonest service provider DSP. This

attacker starts a concurrent session to an honest service provider SP (e.g., a bank)
where it wants to impersonate this user. The essential step is Step 3*, where the
attacker combines SP’s request and ID with its own (i.e., the attacker’s) URL
<DSP-URL>. The envelope has no outer signature element which could prevent
this, see Section 3.2.4.1 of [Lib02b]. Thus in Steps 4-6, the identity provider
processes the request as if it came directly from the honest service provider SP, but
in Step 7 the client sends this response to the attacker at <DSP-URL>. The attacker
then forwards it to the honest service provider, thus impersonating the user at this
serviceprovider.



7

1*. HTTP Request*

Honest
SP

Identity
Provider

LE
Client

4. SOAP POST: <AuthnReq>

3*. 200 OK <AuthnReq>, <SP-ID>, <DSP-URL>

11*. HTTP Response*

6. OK SOAP: <AuthnRes>

7*. POST <DSP-URL>; <AuthnRes>

Dishonest
SP

1. HTTP Request

3. 200 OK <AuthnReq>,
<SP-ID>, <SP-URL>

7. POST <SP-URL>;
<AuthnRes>

11. HTTP Response

User

II. Possible user interaction

Figure 2. Overview of the man-in-the-middle attack

To verify that the attack indeed works, we studied the messages and processing
requirements in detail. This is not trivial due to a specification with 4 layers which
are quite intertwined in places. Top down, they are:

a) The specific LEC protocol from Section 3.2.5 of [Lib02d].

b) The common requirements from Section 3.1 and the common interactions and
processing rules from Sections 3.2.1 of [Lib02d].

c) Liberty messages, which extend several SAML types, together with the general
processing rules from Sections 3.1 and 3.2 of [Lib02b].

d) SAML requests and responses [SAM02], with SAML assertions as a lower
sublayer.

We walked through the attack in a concrete LEC protocol derived by top-down
substitution of all these specification parts. This ran to six pages. As the
vulnerability was acknowledged and repaired by Liberty, we need not bore the
reader with these details. Instead, we present the constructive parts of the analysis
in a generalized form as security measures.

4 Securing the Protocols

The goal of an immediate countermeasure against the attack from Section 3 is to
ensure that when the client sends the token meant for the honest service provider
SP to an address <(D)SP-URL> in Step 7, this is indeed a safe address for SP, i.e.,
only SP receives the token. We present such countermeasures in Section 4.2.



8

4.1 Underlying Existing Security Measures

Our countermeasures rely on security measures present in the LEC protocol
(although not all explicit). We also assume them in generalizations.

1. Service-provider-specific token: The token <AuthnRes> is only valid for one
service provider by containing the identity <SP-ID>; in Liberty this is a field
<AudienceRestrictionCondition>. An honest service provider only
accepts an authentication response with its own <SP-ID>. (Liberty does not
specify the content of this field, nor the acceptance restriction, but this is the
natural instantiation.) The identity provider obtains <SP-ID> in the authenti-
cation request <AuthnReq> as a field <ProviderID>. (The outer occurrence
of <SP-ID> in the envelope <AuthnReqEnv>, as shown in Figure 1, has no
security function.)

2. Secure channels: The token is only sent over secure channels. In the LEC
protocol this is realized by requiring <SR-URL> to be https, and by using a
secure channel between client and identity provider.

3. Token authentication: The identity provider authenticates the token
<AuthnRes> for the service provider, at least the user identity and <SP-ID>,
and the service provider verifies this. (In Liberty, the authenticated part is the
contained assertion.)

4.2 Countermeasures

We now present four countermeasures, i.e., four possible ways to attain the goal
that the client sends the token only to a safe address of SP. Given Section 4.1, we
can make the notion of safe address precise: If the identity <SP-ID> in the token
belongs to SP, then the address <SP-URL> used in Step 7 is an https address and is
controlled by SP (i.e., a trusted process of SP), and only SP can get a server
certificate acceptable for this address.

1. Client derives: The client may have a list or infrastructure of safe service-
provider addresses available, and derives<SP-URL> from the service provider’s
identity <SP-ID> with that. This must be the “ inner” <SP-ID> from
<AuthnReq>, because this is the one used by the identity provider. Addi-
tionally, SP may still propose a specific <SP-URL> in the request envelope as a
hint.

2. SP authenticates for client: The honest service provider SP authenticates the
request envelope containing a safe <SP-URL>, and the client verifies the
authenticity with respect to the “ inner” identity <SP-ID> in the request.

3. Identity provider derives: Instead of the client, the identity provider may use a
list or infrastructure of safe service-provider addresses to derive <SP-URL>
from the inner <SP-ID>. The identity provider then includes <SP-URL> in the
response envelope <AuthnResEnv>, from where the client takes it. Again, SP
may propose aspecific <SP-URL> asa hint.

4. SP authenticates for identity provider: The honest service provider SP
includes a safe <SP-URL> in the request <AuthnReq>, which it authenticates



9

for the identity provider. In the LEC protocol this authentication is already
mandatory. Again the identity provider includes <SP-URL> in the response
envelope<AuthnResEnv> for theclient.

The Liberty erratum is Solution 3 without using the SP-provided <SP-URL> as a
hint. Indeed this seems optimal for the Liberty focus of small federations where all
parties exchange information in a set-up phase. For greater scalability, it seems
better to use only a standard server-key infrastructure and to send all other
information in the protocol, i.e., Solutions 2 and 4. Where it is relevant that token-
based protocols only need client cryptography in the form of secure channels,
Solution 4 should be chosen.

4.3 Security Considerations

Security of a single signon protocol means this: If an honest service provider SP
believes that it has a secure channel with a certain honest user U under a name idU,
then this is true. Clearly, we also have to trust the client application, and every
identity provider whom SP trusts to certify a user under this name idU and the
quality of its registration and authentication procedures.

We sketch that the generalized LEC protocol with each countermeasure from
Section 4.2 is secure if all submodules are appropriately instantiated (in particular
the secure channels and user and message authentication), and under a few
additional “ reasonable” processing constraints.

It is easy to see that each countermeasure is correct with respect to the goal of
Section 4.2, i.e., the address<SR-URL> used in Step 7 is safe.

A service provider SP believes that it talks with user idU when it gets a Step-7
token with its own identity <SP-ID> and this user name, and authenticated by an
identity provider it trusts for this identity. The identity provider only issues such a
token (Step 6) when it has a secure channel with the user U whom it originally
registered under this identity. It only sends the token in that same channel, i.e., to
the trusted client acting for U. (Here we assume that all other current and future
Liberty profiles using the same token types do not leak tokens to parties other than
U and SP. We do not see how to demonstrate security without this assumption in
spite of a request ID intended to prevent replay, because its usage in the response is
not secured, and it does not remain secret against a man in the middle.) By the
correctness of the countermeasures, the client only forwards the token to a safe
address <SR-URL>, i.e., an https address of the party whose identity <SR-ID>
included in the token, i.e., to SP. Thus no party except SP and U obtains the token,
which prevents impersonation with this token.

5 Remarks on Related Protocols

Let us briefly discuss man-in-the-middle security in the related class of browser-
based web single signon.



10

We have a security analysis for our privacy-enabling protocol BBAE on about
the same level of detail as Section 4.3 [PW02], and (unpublished) for the SAML
artifact profile [SAM02a].

For the other three Liberty V1.0 profiles, we are neither aware of a protocol
weakness nor do we claim security. They have one explicitly stated user-interface
vulnerability in allowing embedded forms for authentication, which is an invitation
for fake-screen attacks; see Section 5.7.1.3 of [Lib02]. We would prefer that to be
deprecated. The proposed federation contracts do not help, because dishonest
service providers would not adhere to them, and they need not even be federation
members because users will not always verify to what federations their current
serviceprovider belongs.

In Microsoft Passport, security against man-in-the-middle attacks was only
addressed with the security level “Secure Sign-In” of Passport V2.0 [Mic01]. We
believe that the security is not yet optimal. The protocols are not public, but from
the documentation we see the main security measures as follows: Tokens are
specific to one service provider by encryption for the identity <SP-ID>, and sent to
the service provider only over https addresses <SP-URL>. Ensuring that <SP-URL>
belongs to <SP-ID> is done similar to our Solution 4 with a hint from the service
provider. The identity provider verifies that the <SP-URL> provided by the service
provider is under the root of the organization with identity <SP-ID>. Subscribing
serviceproviders register this root as “The top-most domain name of your site” ; see
“Registering Your .NET Passport Site” in [Mic01]. However, this would mean that
every attacker, e.g., an insider, who controls any URL at a site can obtain a token
for the site as such. Registering a special sub-root of a secured service part would
solve that problem.

6 Outlook

We have defined and discussed the benefits of the class of token-based web single-
signon protocols with enabled clients as a generalization of the Liberty LEC
protocol. We showed a vulnerability in the original V1.0 LEC protocol and
countermeasures. They have now been reflected in the Liberty errata. We gave a
brief security analysis of the resulting and generalized protocols. This required a
few more assumptions and processing rules which are reasonable given the
specification, but not fully explicit there.

A general conclusion for the design of XML and web-services security
protocols is that the easy extensibility in almost all places and the resulting
fragmentation of a specification (compare the end of Section 3) can make an
analysis very hard. Implementers face the same difficulty of fitting together the
layers, trying not to forget any general rule from any layer, and to implement the
“reasonable” additional assumptions. We believe that a clearer modularization, i.e.,
modules with a rather small number of extension points and a clear specification
also of the security they provide, would be helpful for the security of both future
protocols and their implementations.



11

Acknowledgements

We thank our colleagues Heather Hinton, Thomas Kretschmer, and Anthony
Nadalin for helpful discussions, and Michael Barrett (American Express) and Gary
Ellison (Sun) for their friendly reaction on the vulnerability report and the prompt
repair.

References

[KR00] David P. Kormann, Aviel D. Rubin: Risks of the Passport Single Signon Protocol;
Computer Networks, Elsevier Science Press 33 (2001) 51-58

[Lib02] Liberty Alliance Project: Liberty Architecture Overview, Version 1.0, 11 July 2002,
http://www.projectliberty.org/

[Lib02b] Liberty Alliance Project: Liberty Protocols and Schemas Specification, Version 1.0, 11 July
2002

[Lib02d] Liberty Alliance Project: Liberty Bindings and Profiles Specification, Version 1.0, 11 July
2002

[Lib02f] Liberty Alliance Project: Liberty Version 1.0 Errata, Edition 00, 11 October 2002

[MOV97] Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone: Handbook of Applied
Cryptography, CRC Press, Boca Raton 1997

[Mic01] Microsoft Corporation: Various .NET Passport documentation (started 1999), in particular
Technical Overview, Sept. 2001, and SDK 2.1 Documentation; http://www.passport.com and
http://msdn.microsoft.com/downloads

[PW02] Birgit Pfitzmann, Michael Waidner: Privacy in Browser-Based Attribute Exchange; accepted
for ACM Workshop on Privacy in the Electronic Society, Washington, Nov. 2002, preliminary
version IBM Research Report RZ 3412 (# 93644), June 10, 2002

[SAM02] Assertions and Protocol for the OASIS Security Assertion Markup Language (SAML);
Committee specification 01, May 2002, http://www.oasis-open.org/committees/security/docs

[SAM02a] Bindings and Profiles for the OASIS Security Assertion Markup Language (SAML);
Committee specification 01, May 2002

[Shi02] Shibboleth-Architecture DRAFT v05; May 2002 (v1 in 2001) http://middleware.internet2.
edu/shibboleth/docs/draft-internet2-shibboleth-arch-v05.pdf

[Sle01] Marc Slemko: Microsoft Passport to Trouble; V1.18, Nov. 2001, http://alive.znep.com/
~marcs/passport/

[SOA00] Simple Object Access Protocol (SOAP) 1.1; W3C Note, May 2000, http://www.w3.org/
TR/SOAP

[WSS02] Web Services Security, draft specifications of the OASIS WSS Technical Committee,
http://www.oasis-open.org/committees/wss/, 2002




