RZ 3459 (# 93845)
Electrical Engineering 14 pages

Research Report

Complexity analysis of Fourier-transform decoding of LDPC Codes
over GF(q)

Edward Ratzer

IBM Research

Zurich Research Laboratory
8803 Rischlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available
at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

Research
=T Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo - Zurich

Complexity analysis of Fourier-transform decoding

of LDPC Codes over GF(q)

Edward Ratzer
August 11, 2000

Abstract

The complexity of Fourier-transform decoding of Low-Density Parity-Check
(LDPC) codes over a finite field GF(27) is studied. The Fourier algorithm is
found to have improved performance over GF(2) when column weight > 3.

1 Introduction

LDPC codes are a class of linear block codes. A binary LDPC code is defined
by its sparse parity-check matrix, H, often constructed to have particular column
and row weights. Codes constructed in this manner are known to have intrinsically
good performance using a maximum likelihood decoder. See [5] for a comprehensive
coverage of LDPC codes.

One can instead define an LDPC code over GF(q)! (see [4] for an introduction to
finite fields). Each symbol in H and hence s and t (the message and the transmitted
codeword respectively) is then a member of the finite field. However for many
channels (including hard disc drives) binary transmissions are needed, hence this
form of t is not very useful. We therefore want to be able to define the mapping
GF(q) — {0,1}?, ¢ = 27 is chosen as we can then carry out this mapping without
wasting transmitted data bits and this always forms a field.

Current decoding algorithms use H to define a bi-partite graph on which an
iterative message-passing decoding algorithm can be used. However this algorithm
is not known to be optimal, one reason is the presence of cycles. By using an H
defined over a larger field than GF(2) we can eliminate some cycles that would
otherwise be present in the equivalent H defined over GF(2) [1] — this can then be
expected to increase the performance of the decoding algorithm.

By enlarging the field size the computation required at each node of the graph
increases. Fourier transform decoding as suggested by Richardson and Urbanke [6]
is expected to reduce this complexity. The aim of this work was to quantify this
result.

2 Decoding on a graph

A parity-check matrix fragment:
1 10
a=| 0 1 1

will create the graph fragment shown in figure 1.

ITanner [7] first suggested having more complex constructions than binary check nodes.

Figure 1: A graph fragment corresponding to Equation 1. The check nodes and
symbol nodes are the filled and open circles respectively. The row and column
weights can be seen to be 3 and 2 respectively

2.1 Check Node Computation

Each check node 4 sends to symbol node j a message R;;(a) that is an approximation
to the probability of check i being satisfied if the symbol node j is in state a:

Rij(a) = Pr(}, Hyx; = 0|z; = a) (2)
> Pr(Y, Hyw = 0|a) Pr(z|z; = a) (3)
~ > Pr(X, Hym =0l) [[Qixlax) (4)

m::z:j:a k;é‘]

Q

> Qi) (5)

xeCi:xj=a k#j

where Q;;(a) are the messages received from the symbol nodes (an approximation
to the probability that symbol node j is in state a according to the other check
nodes) and C; is the set of all the valid code words of the check node. This can
then be evaluated by the forward-backward algorithm [2]. In the binary case one
can simply use a small trellis, figure 2(a).

Over larger finite fields the trellis becomes more complicated, figure 2(b), making
the process computationally demanding. However by using a Fourier representation
one can reduce the complexity as follows:

Rij(a) = Z 6(z; = a) H Qir (1) (6)

xecC; k#j
— e X A=l [[Fu 6
x'eC;- k#j
= 23 > (@ ali(e; = o) [[FlQi] (1)
a:’ECiL T k#j
= 13" da,2)) [] F Qi (a1)
@ et k#j
FRi)(d) = 2> (a,d) Y (aa) [7 [Qinl (2)
a x'€CF k#£j
= 13 g@)=a) [[FlQik] (=3)
x'eC;- k#j

0 0 0 0 0

(c) C* over GF(8)

Figure 2: Example trellises

= F[Rijl(a’) = Y I 7Qulh) (8)

z'eCt :c’] =a’ k#j

where in going from equation 6 to equation 7 we have applied the Poisson summation
formula as suggested by Forney [3] to get to a summation over the dual code (C;)
and we can split up the Fourier transform as each term is in a separate dimension.
Note equation 8 has the same structure as equation 5 and hence can similarly be
evaluated by the sum-product algorithm, but instead over the dual code with Fourier
transformed messages.

The trellis for the dual code of each check node becomes trivial (the dual code
is one-dimensional), figure 2(c), due to the multiplication properties of the finite
field. Hence the addition in equation 8 is only over one term. There are only
now ¢ connections per symbol node in the middle of the trellis, rather than ¢ as
previously. This leads to an important reduction in complexity as one increases the
field size.

2.2 Symbol Node Computation

We need to evaluate both the messages to be passed back to the check nodes Q;;(a)
and a tentative decoding for that symbol node. Q;;(a) is an approximation to the
probability that symbol node j is in state a according to check nodes other than i:

Qij(a) = Pr(z; = a|check nodes other than i satisfied) (9)
= Z;; Pr(z; = a) Pr(check nodes other that i satisfied|z; = a) (10)
Zijtj(a) [[Re;(a) (11)

ki

%

where f;(a) is the prior probability that node j is in state a and Z;; is a normalizing
constant.
The tentative decoding for that symbol in a similar manner is:

t; = max (Pr(z; = alcheck nodes satisfied)) (12)
a

maax (fj ((L) HRk](a)> (13)
k

Q

2.3 Iteration

Qi; (@) are first initialized to the channel probabilities of symbol node j being in state
a. Then messages are passed on the bi-partite graph in chosen manner (typically all
check nodes are updated, followed by all symbol nodes and this is then repeated)
until a successful decoding results or a maximum number of steps has been taken.

3 Complexity of the GF(2) Non-Fourier algorithm

We will aim to express things in terms of parameters of the H matrix. This will
be an M x N matrix — this then forms a graph with M check nodes and N symbol
nodes. This matrix will also be defined to have fixed column and row weights of m
and n. In other words each check node is connected to n symbol nodes and each
symbol node is connected to m check nodes.

3.1 Check Node

We will start by evaluating the number of calculations needed at a single check node
i. To do this the forward-backward algorithm will be used on a trellis like figure
2(a).

The forward « and backward (§ probabilities will be defined as follows:

ozij(a) = Pr ZHikxk:af (14)
k<j

Bij(a) = Pr ZHikxkza (15)
k>j

a can be seen as representing the level on the trellis in this case. These probabilities
can then be easily calculated on the trellis by iteration, for example:

aij(1) = Qu(0)as;-1(1) + Qi;(1)evi,j—1(0) (16)
Bij(1) = Qij+1(0)Bij+1(1) + Qi j+1(1)Bi j+1(0) (17)

a;;(0) and (3;;(0) do not need to be evaluated explicitly due to the normalization
condition. Therefore we can instead express equations 16 and 17 as:

a;i(1) = (Qi(0) — Qij(1))evij—1(1) + Qis(1) (18)
Bi;(1) = (Qij+1(0) = Qijr1(1))Bi+1(1) + Qi (1) (19)
The boundary conditions are:
ai0(0) = Bin(0) = 1 (20)
aio(1) = Bin(1) = 0 (21)

We need the o and values on n — 2 non-trivial states, this takes 2(n — 2) multi-
plications and 4(n — 2) additions in total.
We can then obtain the R;; values by multiplication and addition:

Rij(1) = ai;j-1(1)Bi5(0) + aij—1(0)Bi5(1) (22)
@i j-1(1) + Bij(1) — 20 j—1(1) B (1) (23)
Rij(0) = 1-Ry(1) (24)

To do this most efficiently we only need to apply the full equation 23 to n — 2 states
— over the two remaining states the boundary conditions make the equation trivial.
Equation 24 needs to be applied to all n states. Calculation of all R;; values hence
takes 2(n — 2) multiplications and 3n —4 additions. It should be noted though that
(n — 2) of these multiplications are easy as they are just multiplication by 2 — on
a computer this can quickly be done just using a bit shift or addition of 1 to the
exponent of a floating point number.

Therefore each check node in total requires 4(n — 2) multiplications and 7n — 12
additions.

3.2 Symbol Node

We will again use forward-backward algorithm to evaluate Q;; and fj. An additional
state will be used to deal with the f; term, as shown in figure 3. We define the
forward and backward probabilities to be:

ajj(a) = ti(a) [] Ruj(a) (25)

k<i

Bij@ = T Bes(a (26)

k>1

A AB ABC ABCD ABCDE

CDE DE E 1
Figure 3: The forward-backward algorithm at an m = 4 symbol node. The linear
structure for just one particular member of GF(q) is shown. ‘A’ represents the
additional state for f; and ‘B’-‘E’ the Ry;(a) messages. The top row shows the o/

values and the bottom row the (3’ values. The dotted lines represent the needed
multiplications to obtain values of Q;;(a) from these.

Again we will break the computation down into steps:

1. Evaluation of o’ and 3’ We need to know all the values of o’ (taking 2m
multiplications) and mgq values of 8’ (taking 2(m — 2) multiplications). This
takes a total of 4(m — 1) multiplications.

2. Evaluation of unnormalized Q;; We simply multiply values of o’ and j'
separated by one, as shown in figure 3, this takes 2(m — 1) multiplications.

3. Normalization This is done by adding up each pair of probabilities and then
dividing each probability by the result — this takes m additions, m multiplica-
tive inverses and 2m multiplications (note the inverses and multiplications
could be replaced by 2m divisions but we will again assume that multiplica-
tion is preferable).

4. Evaluation of #; We just need to compare ap,;(1) and a,;(0) and find the
maximum. This takes 1 comparison.

This comes to a total of 2(4m —3) multiplications, m additions, m multiplicative
inverses and 1 comparison.

Alternatively one could multiply all the Rj; terms and then use division to
remove the unneeded ones — this takes less operations in total however it is likely
that division will be significantly slower than multiplication and hence be slower
overall.

3.3 Syndrome check

After calculating all the fj we then want to check whether this is a valid decoding.
To do this we just test whether

aer T

tH =0.
H is sparse and hence the entire matrix multiplication does not need to be carried

out, instead we can just concentrate on the non-‘0’ entries. This will take Mn
binary multiplications, M (n — 1) binary additions and M comparisons.

3.4 Total complexity per iteration

In each iteration we will update all the check nodes, all the symbol nodes and then
do a syndrome check. There are M check nodes and N symbol nodes — hence we
can calculate the total number of operations per iteration, this is shown in table 1.

Table 1: Complexity per iteration for non-Fourier algorithm

Operation Number

Real multiplications AM(n —2) + 2N (4m — 3)
Real additions M(7n—12) + Nm
Binary multiplications Mn

Binary additions M(n—1)

Multiplicative inverses Nm

Comparisons N+ M

(a) Complexity in terms of parameters of the H matrix

Operation Number

Real multiplications 4(3m+2R) — 14
Real additions 8m +12(R—1)
Binary multiplications m

Binary additions m+R-—1
Multiplicative Inverses m

Comparisons 2—R

(b) Complexity per transmitted bit in terms of
rate

However it is useful to express things in terms the rate of the resultant code.
Assuming linearly independent rows in H this gives:

N-—-M

Also the total number of connections in the graph must be the same both from the
point of view of the check nodes and the symbol nodes; we can therefore remove
the dependency on the row weight:

m

Manm:>n71_R (28)

Then to get a complexity per transmitted bit per iteration, as shown in table 2(b),
we need to divide by N.

It is worth remembering that m might be a function of the blocklength so the
complexity might not scale linearly with block length. Also meaningful comparisons
are only possible if we assume the number of iterations required are similar for all
codes.

4 GF(q) Fourier-Decoding Implementation

As a test of concept, the Fourier-transform decoding over GF(2P) was implemented
in form of a MatLab program.

4.1 Representation of GF(2P)

Internally in the program each element of the finite field was given two representa-
tions:

F: F(h17 h2) = Z F(h1>h2)7(91,92)f(91792)

(17_1) (Ll) <_1’1) (_1’_1)
(1,-1) -1 -1 1 1
(1,1) -1 1 -1 1
(-1,1) 1 -1 -1 1
(-1,-1) 1 1 1 1

Figure 4: Fourier transformation matrix F

Logarithmic The elements excluding the ‘0’ element were given in terms of powers
of a generating element for this cyclic sub-group. Hence multiplication of
elements becomes simple. The ‘0’ element was represented by ¢ - this was so
the representation could be used as the index of an array in MatLab.

GF(2)P A look-up table (indexed by the previous representation) of vectors was
used. By choosing the vectors appropriately addition could then be carried
out using vector addition modulo 2.

4.2 Fourier transformations

The Fourier transformation is defined as:

F(h’la h’27 o) = f[f](hlv h27 o) é (71)hlgl+h2g2+“.f(glag?a o)

(91,92,)€GF(2)P
(20)
where we have mapped GF(2P) — GF(2)? and used the character of GF(2) that
maps the elements on to {—1,1}.
We can view this process as the application of a matrix similar to a Hadamard
matrix, for example figure 4.

4.3 Binary communication

It is assumed that the sender, receiver and channel all want data in a binary form.
Therefore the GF(2)P representation was used, first to initially convert the data to
be sent to elements of GF(2P) and then also in reverse after encoding to get back
to binary form. A similar process was done during the decoding however one now
needs to keep track of probabilities. For example if symbol a(is represented by
00 then Pr(z = ag) = [[;_; , Pr(z; = 0). The individual bit probabilities can be
obtained by a Bayesian calculation based on the channel properties and the received
data.

4.4 Messages

In the binary case only R;;(0) and Q,;(0) were sent to save memory as, for example,
R;;(1) =1 —R;;(0). Over GF(¢) we need to send a vector of probabilities — all the
elements were sent for simplicity of programming.

The update routine used was kept the same as in the original program. Q;;(a)
were first initialized to the channel probabilities of node j being in state a. All the
R;;(a) were updated, followed by all the Q;;(a). This was then repeated until a
successful decoding resulted or the maximum number of iterations had been reached.

4.5 Creation of H and G

To use the program we needed to generate valid H and G (the generator for the
code) matrices. Initially H was created by using a binary construction to obtain
regular toy LDPC codes (of size 14 x 49) and replacing all the links by random g¢-ary
values. A generator matrix G in systematic form was obtained from H by applying
Gaussian elimination.

5 Complexity of the Fourier Decoding algorithm

In in similar manner to section 3 we will calculate the complexity of the Fourier
decoding algorithm, but we generalize the result to be over field size q. The rest of
the notation will be the same as used before. The major changes are the Fourier
transformation and the way the probability distributions are normalized. All of the
messages will now be unnormalized and the normalization will be done once per
iteration in the check nodes. This leads to a reduction in complexity as explained
below.

5.1 Check Node

Again the forward-backward algorithm will be used to carry out the calculations in
Fourier space, our trellis now looks like figure 2(c). The trellis is not time-invariant
and hence one needs to be careful with how the forward and backward probabilities
are defined. We label the kth symbol of dual code word j for check node i as di»“j.
The forward and backward probabilities then are defined as:

ofi(a) = J[FlQil(ds,) (30)
k<j

B =[] FlQil(df,) (31)
k>j

We can then recursively evaluate these in the similar manner to section 3.2. To
obtain the Fourier transformed R;; we then just have to multiply these:

FRij)(d,) = af j_1(a) 3} (a) (32)
The algorithm breaks down into several steps:

1. Fourier Transformation Using the method in figure 4 we are multiplying
a n X ¢ matrix (there are n rows as we will Fourier transform the messages
from all connected symbol nodes at the same time) by a ¢ x ¢ matrix (F,
which can be pre-calculated) and so we would expect that ng? multiplications
and ng? — ng additions are needed. However the matrix F consists of only
1 and —1 entries so we can expand the calculation out into instead ng? — ng
additions or subtractions only.

The biggest saving can be gained though by seeing that our matrix is a per-
mutation of a Hadamard matrix. We can then split the calculation up into
pairs and additions and subtractions. For example in figure 5 it can be seen
that four additions or subtractions are repeated and hence need only be done
once. In general this then gives us nqlog, ¢ additions or subtractions?. This

2This was not implemented in the MatLab sample program so the size of the finite field could
more easily be changed, instead a fast code-generating program was developed for later incorpo-
ration into C++.

b FO) = [f(0)+ fU] + [£(2)+ F(3)

I FO) = [f(0)~ fO]+ @) - f3)]
11 o1 F2) = [J0)+fQ)] - [f2) + /(3)

F3) = [f(0)~ f)] - [£(2) ~ /(3)

Figure 5: An example Fourier transform (after [1])

result stems from the fact that at each level of pairing there are ¢ additions
or subtractions and there are log, ¢ levels of pairing.

It should be noted that this does not increase the memory usage as the in-
puts (or previous level of calculations) can be discarded once each pair of an
addition and subtraction is done3.

. Normalization We will normalize each row in the resultant n x ¢ matrix
now as this is the most efficient time to do it. This is because the ‘0’ element
of each Fourier transform is just the required normalization factor for that
row and hence we do not need to reevaluate it. This takes n multiplicative
inverses and n(g — 1) multiplications.

. Evaluation of o” and (3’ The forward and backward probabilities each
require (n — 2)(¢ — 1) multiplications (the first and last state is either known
or not needed in later calculations and the ‘0’ row of the trellis is trivial as all
o' and 8" values are just 1).

. Calculation of Fourier Transformed Probabilities This multiplication
of o’ and " requires (n — 2)(q — 1) multiplications (the first and last states
are just 8”7 or o respectively and the ‘0’ row is again trivial).

. Inverse Fourier Transform The Fourier transformation used is propor-
tional to an involution (a self-inverse). Thus to obtain unnormalized prob-
abilities this requires the same nqlog, ¢ additions or subtractions as we did
before. The normalizing factor is just ¢ for all the probabilities — this scal-
ing factor does not affect anything apart from the scale of the symbol node
calculations and can be left in the resultant messages.

This leads to a total of 2nqlog, ¢ additions or subtractions and 2(2n —3)(¢—1)

multiplications and n multiplicative inverses per check node.

5.2 Symbol Node

We will use the same technique as before (figure 3 and section 3.2) but now over ¢
field elements rather than just 2. Also the probabilities are now unnormalized but
this does not change the overall calculation.

1. Evaluation of o’ and 3’ This takes 2(m — 1)g multiplications.

2. Evaluation of unnormalized Q,; This takes (m — 1)g multiplications.

3. Evaluation of fj q — 1 comparisons are needed.

This comes to a total of 3(m — 1)g multiplications and ¢ — 1 comparisons per

symbol node.

3Thanks to D.J.C. MacKay for pointing this out.

10

5.3 Syndrome check

We will do exactly the same as in section 3.3. However our additions and multipli-
cations are now over the field GF(q) rather than being binary. This comes to Mn
GF(q) multiplications, M (n — 1) GF(q) additions and M comparisons.

5.4 Total complexity per iteration

As in the binary case the total complexity per iteration is shown in table 2(a) and

(b).

Table 2: Complexity per iteration

Operations Number

Real multiplications 2M(2n —3)(¢g—1)+3N(m —1)q
Real additions 2Mmnqlogs q

GF(q) multiplications ~ Mn

GF(q) additions M(n—1)

Multiplicative inverses Mmn

Comparisons Ng-1)+M

(a) Complexity in terms of parameters of the H matrix

Operation Number
Real multiplications (Tm—9)q+6(R(g—1)+1)—4m
log, ¢
Real additions 2mgq
GF(q) multiplications log 7
sy m+R—1
GF(q) additions Togs
Multiplicative Inverses ==
E;2R‘1

TP, q—

Comparisons Togs 4

(b) Complexity per transmitted bit in terms of rate

As before note that meaningful comparisons are only possible if we assume the
number of iterations are similar for all codes.

6 Discussion

We can now directly compare the Fourier algorithm with the non-Fourier algorithm
in the case of ¢ = 2. This is shown in table 3. It can be seen that the only difference
occurs for real multiplications and additions.

For the Fourier algorithm to be more efficient in multiplications and additions
we therefore respectively require:

m > 1-R (33)
m > 3(1-R) (34)

It is likely that both of these will be satisfied. Any LDPC code will satisfy equation
33 as m always has to be greater than 1. Equation 34 will often be satisfied as m

11

Table 3: Comparison of the complexity of the Fourier and non-Fourier decoding
algorithms over GF(2)

Operation Non-Fourier number Fourier number
Real multiplications 4(3m +2R) — 14 10m — 12+ 6R
Real additions 8m +12(R—1) 4m

Binary multiplications m m

Binary additions m+R-—1 m+ R—1
Multiplicative inverses m m
Comparisons 2—R 2—R

is often greater than 3. Therefore Fourier decoding algorithm is liable to be more
efficient even over GF(2).

As ¢ is increased we can hope for similar behaviour as the Fourier algorithm is
O(q) whereas a traditional algorithm is O(q?/log, q) (as shown by the complexity
of the trellis).

This work does not address the comparative performance of these codes however
[1] (and Appendix A) shows that codes over larger finite fields seem to perform
better than binary codes. Once reliable performance guides are obtained it would
be informative to then study the payoff between performance and complexity.

Another direction for future work would be studying approximations of the
decoding techniques. The traditional decoding algorithm has had several approx-
imations applied to it which reduce the complexity without impacting a code’s
performance too much — finding similar approximations that work in the Fourier
domain would further increase the usefulness of Fourier decoding.

7 Conclusion
Moving to Fourier transform decoding reduces the complexity of the decoding al-

gorithm in the binary case and also allows easier use of larger finite fields as the
decoding algorithm only scales as g.

12

A Preliminary Performance Guide

For the case m = 2, a few small tests using some toy LDPC code were run in
MatLab to get a feeling of how these codes perform.

Three codes were studied. A GF(4) code was taken as the starting point. This
was then compared to two different GF(2) codes, one with the same graph (and
hence half the block size) and one which would result in the same set of binary code
words being transmitted (each GF(4) symbol in H was replaced with the 2x2 matrix
representation of the element). The results are shown in figure 6. These derive from
small runs in MatLab with a maximum of 10 iterations; they should not be trusted
too much at very low error rates. It does give the indication though that the GF(4)
code is outperforming the two other derivatives. The lower performance of the same
code defined over GF(2) suggests that the decoding algorithm performance increases
as it is defined over larger finite field (as a caveat see [1] for how performance depends
on m). The same structure code is probably performing worse as it has a smaller
block size.

Bit error probability for a GF(4) code and derivatives Bit error probability for a GF(4) code and derivatives
T T T T T T T T T T

0.025

0.1 T

T

GF(4) code ---- GF(4) code —
Same structure GF(2) code (half the block size) Same structure GF(2) code (half the block size) -
Equivalent GF(2) code ---- Equivalent GF(2) code -----

0.001 ¢

Bit error probability
Bit error probability

0.0001 £

0.005

o
2
2
T
T
—
L

o ‘ ‘ ‘ ; -3 1005 ‘ ‘ ‘ ‘ ‘ ‘
2 25 3 35 4 45 5 55 2 25 3 35 4 45 5 55
SNR/dB SNR/dB
(a) Linear Scale Bit Error Probability (b) Log Scale Bit Error Probability
Block error probability for a GF(4) code and derivatives
1 T T T T T T
GF(4) code
Same structure GF(2) code (half the block size)
8 Equivalent GF(2) code -----
TN 2 .
2z o1} NG E
S 3
s
o <
g
S ootf 1
0001 ‘ ‘ ‘ ‘
2 25 3 45 5 55

35 4
SNR/dB

(c) Log Scale Block Error Probability

Figure 6: Preliminary m = 2 performance curves

13

B Minimum Distance

A guide to the performance of a code is the minimum distance?; this is the shortest
Hamming distance between any two code words. As LDPC codes are linear codes
we can instead find the minimum weight code word (the code with the smallest
Hamming distance from the zero code word). All code words have the property
that tHT = 0. This allows us to instead look for the smallest set of linearly
independent columns in H.

For the toy example matrix over the binary field the minimum distance is 4, for
the same matrix with random symbols from GF(4) the minimum distance is also
4. The code generated by the GF(4) matrix is twice as long in binary terms as the
other code — therefore having the same minimum distance is not an ideal property.
Each code can hence only reliably correct 1 bit flipped in the entire block.

Finding the minimum weight codeword is still a computationally hard problem
and over GF(4) takes a long time to complete when a simple search is used. An
upper bound can be found by looking at the H matrix in row-reduced echelon
form. One can combine the minimum weight column—excluding columns of weight
1 or less—with a set of columns of weight 1 to form linearly dependent columns.
Therefore the bound is simply 1 4 the weight of this column. For the two matrices
cited above this upper bound was reached.

References

[1] M.C. Davey. Error-Correction Using Low-Density Parity-Check Codes.
PhD thesis, University of Cambridge, 1999. Available on the web at
http://wol.ra.phy.cam.ac.uk/mcdavey.

[2] R. Durbin et al. Biological sequence analysis: probabilistic models of proteins
and nucleic acids. Cambridge University Press, 1998.

[3] G.David Forney, Jr. Codes on graphs: Generalised state realizations. Submitted
to IEEE Transactions on Information Theory, 1998.

[4] Lidl and Niederreiter. Introduction to Finite Fields and their applications. Cam-
bridge University Press, revised edition, 1994.

[5] D.J.C. MacKay. Good error correcting codes based on very sparse matrices.
IEEE Transactions on Information Theory, 45(2):399-431, 1999.

[6) T. Richardson and R. Urbanke. The capacity of low-density
parity check codes under message-passing decoding. Submit-
ted to IEEE Transactions on Information Theory, available from
http://cm.bell-labs.com/cm/ms/former/tjr/pub.html, 1998.

[7] R.M. Tanner. A recursive approach to low complexity codes. IEEE Transactions
on Information Theory, 27(5):533-547, 1981.

4LDPC codes can often be decoded beyond their minimum distance [5].

14

