
RZ 3461 (# 93871) 11/11/02
Computer Science 8 pages

Research Report

Creating Services with Hard Guarantees from Cycle-Harvesting
Systems

Chris Kenyon and Giorgos Cheliotis

IBM Research
Zurich Research Laboratory
8803 R̈uschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available
at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich

SUBMITTED TO CCGRID2003, 30 OCTOBER 2002 1

Creating Services with Hard Guarantees from
Cycle-Harvesting Systems

Chris Kenyon and Giorgos Cheliotis

Abstract— Cycle-harvesting software on commodity com-
puters is available from a number of companies and a sig-
nificant part of the Grid computing landscape. However,
creating commercial service contracts based on resources
made available by cycle-harvesting is a significant challenge
for two reasons. Firstly, the characteristics of the harvested
resources are inherently stochastic. Secondly, in a com-
mercial environment, purchasers can expect the providers
of such contracts to optimize against the quality of service
(QoS) definitions provided. These challenges have been suc-
cessfully met in conventional commodities, e.g. Random
Length Lumber, traded on financial exchanges and we draw
inspiration from there. The essential point for creating com-
mercially valuable QoS definitions is to guarantee a set of
statistical parameters for each and every contract instance.
In statistical terms this is the difference between guaran-
teeing the properties of what is delivered versus the source
from which the delivery will be made. In this paper we de-
scribe an appropriate QoS definition, Hard Statistical QoS
(HSQ), and show how this can be implemented for cycle-
harvested resources using a hybrid stochastic-deterministic
system. We present an architecture and algorithms to sup-
port HSQ contracts. We analyze algorithm behavior an-
alytically using a distribution-free approach versus the ex-
pected proportion of deterministic resources required for an
HSQ specification. For example, where slot lengths are log-
Normally distributed we find that for hard guarantees on 8
quantiles with contract sizes 16 to 1024 slots, from 13% to
1% deterministic resources are required. Permitting over-
sampling is relatively inefficient leading to up to 61% of the
stochastic resources being wasted in a typical case. Includ-
ing downwards substitution reduces deterministic resource
requirements by roughly half. We conclude that commercial
service contracts based on cycle-harvested resources are vi-
able both from a conceptual point of view and quantitatively
for contracts of sufficient size.

Keywords— Cycle-stealing, cycle-scavenging, QoS, Grid
computing.

I. Introduction

BUSINESS models in Grid computing around buying
and selling resources across budget boundaries (within

or between organizations) are in their very early stages.
Cycle-harvesting (or -scavenging, or -stealing) is a signif-
icant area of Grid and cluster computing with software
available from several vendors (e.g. Platform Comput-
ing, Avaki, Data Synapse, United Devices, Entropia)1.
However, creating commercial contracts based on resources
made available by cycle-harvesting is a significant challenge
for two reasons. Firstly, the characteristics of the harvested
resources are inherently stochastic. Secondly, in a com-
mercial environment, purchasers can expect the sellers of
such contracts to optimize against the quality of service

The authors are both with IBM Research, Zurich Research Labo-
ratory, Rüschlikon, Switzerland. E-mail: {chk|gic}zurich.ibm.com.

1www.platform.com, www.avaki.com, www.datasynapse.com,
www.ud.com, www.entropia.com

(QoS) definitions provided. These challenges have been
successfully met in conventional commodities, e.g. Random
Length Lumber (RLL), traded on financial exchanges (the
Chicago Mercantile (CME, www.cme.com) in this case)
and we draw inspiration from there. The essential point
for creating a commercially valuable QoS definition is to
guarantee a set of statistical parameters of each and every
contract instance.

In this paper we describe an appropriate QoS definition,
Hard Stochastic QoS (HSQ), and show how this can be
implemented for cycle-harvested resources using a hybrid
stochastic-deterministic system where dedicated resources
are added. We give an analytic quantification of the ef-
ficiency of our implementation algorithm in terms of the
proportion of deterministic resources required, and also an-
alyze two extensions offering potential advanages. Thus we
offer support for transforming what today is a process of
saving wasted cycles to a process of offering these cycles as
a new commercial service with QoS guarantees. This new
business model also enables resource trading in an impor-
tant area of Grid computing.

For RLL the contract definition used on the CME is
shown in see Figure (2). The definition does include some
error tolerance in the statistical metrics guaranteed at the
contract level. We include an analysis of this in terms of
a distance metric ‖.‖ between a vector of guarantees and a
realization together with a permitted error d.

We focus here more on the resources themselves rather
than user jobs. Parallel or single-job scheduling versus
stochastic resources is also important (e.g. [1], [2], [3], [4],
[5]) but here we address the complementary question of re-
source characterization, i.e. QoS of resources rather than
of jobs. This is significant when trade is at the resource
rather than at the job level. Markets and busines models
supported at different levels (of the software stack in this
case) are to be expected just as in other fields and we focus
on one of the lower layers here.

Implementations of Hard Stochastic QoS are important
for cycle-harvesting because they offer a way to provide
commercially valuable guarantees about these resources.
(The definitions and terms used in this paper are collected
together in the next section.) However, implementing HSQ
by adding dedicated resources offers advantages beyond the
basic guaranteeing at the sample level of population-level
QoS metrics. Two extensions are possible: the QoS-metric-
shaping and QoS-metric-extension. Shaping refers to offer-
ing HSQ on a metric that is different but still feasible from
the cycle-harvesting population. Extension refers to offer-
ing HSQ on a metric that is not feasible from the cycle-
harvesting population. We illustrate these concepts with a

SUBMITTED TO CCGRID2003, 30 OCTOBER 2002 2

8'

12
'

16
'

20
'

24
'

Population

Shaped

Extended

0

20

40

60

P
er

ce
n

t

Value

Fig. 1. Probability distribution functions (pdf) for example resource.
The Population entry gives the observed pdf for the whole resource
population. The Shaped and Extended pdfs describe possible addi-
tional pdfs that can be guaranteed via HSQ (see text for details).

simple example.
Consider a population-level QoS metric which has a

(long-run observed) probability distribution function (e.g.
length of uninterrupted time on a machine, which we call
a ”slot”) as shown in Figure (1), ”Population” entry. A
simple HSQ implementation would guaranteed this distri-
bution, say at an appropriate level of quantization, for each
sample (of a specified number of slots, i.e. a contract). An
HSQ implementation capable of shaping could also guar-
antee the distribution shown as ”Shaped”, again for every
sample (i.e. contract). An HSQ implementation capable of
extension could also guarantee the pdf ”Extended”. This
is possible by using added dedicated resources noting that
the infeasible slots from the population are fulfilled wholly
from these dedicated resources. Whereas the feasible slots
are in general fulfilled from a combination of both sources.

Time and deadlines play an important part in resource
contract guarantees. With a sufficiently loose deadline
HSQ can be supported with only cycle-harvested resources.
However in general this is extremely inefficient because re-
sources must be provisionally used and then if they do not
fit the requirements, discarded. We will analyze this in
detail.

This paper is organized as follows: in the next section
we define the notion of resource and HSQ; after that pre-
vious work; the following section contains quantifies the
need for HSQ; after we describe the method for supporting
HSQ including system architecture, algorithms and algo-
rithms quantification and examples; and the last section
concludes.

II. Terms and Definitions

We collect together some concepts used throughout the
paper in this section:

• Stochastic resource: cycle-harvested machine (time avail-
able only when machine is idle)
• Deterministic resource: dedicated machine (time avail-
able upon request)

• Slot: uninterrupted time on a machine, sometimes also
called simply resource
• Population: the entire set of slots on stochastic resources
• Sample: a set of slots taken from the population to fulfil
a contract

Definition 1 (Stochastic QoS) [SQ]. This is a QoS pa-
rameter or set of QoS parameters that is based on statisti-
cal properties of some QoS metric.

Definition 2 (Hard Stochastic QoS) [HSQ]. This is a
QoS parameter or set of QoS parameters that:

1. is based on statistical properties of some QoS metric and
that

2. is guaranteed with certainty

Note that in the implementation we will focus on guar-
anteeing quantiles of a non-deterministic QoS property.
Guaranteeing quantiles versus moments of a distribution
has the advantage that any given distribution can be de-
scribed intuitively. Our proposed method can also be ap-
plied towards guaranteeing moments of a distribution, al-
though this is not addressed in this paper.

III. Previous Work

In many IT fields, most notably networking, it is com-
mon to design QoS mechanisms that are based on statisti-
cal measurements, but the most popular approaches either
target statistical guarantees for aggregates of demand (net-
work flows) [6] or require the reservation of resources for
each individual flow [7]. The difference here is that the
statistical properties are guaranteed at the contract level
where contracts are for small numbers of entities and inde-
pendently for every single contract, with certainty. In net-
working statistical guarantees commonly deal with packets
and hence only consider large samples, say 106, whereas
we are interested in guarantees for samples three or more
orders of magnitude less.

Outside of IT metrics the idea of guaranteeing sta-
tistical parameters is known. For example, in com-
modity markets this is found. Consider the section
of a contract for Random Length Lumber (RLL) from
the Chicago Mercantile Exchange Inc. (CME) rulebook
(http://www.cmerulebook.com)

The CME gives no advice as to how this is to be guar-
anteed, only that it must be. This is an example of the
sort and strength of guarantees required for commodities
to have tradable value in a commercial environment.

In simulation there are various variance reduction tech-
niques known that we build on here and adapt in several
ways [8], [9]. These describe mathematical methods of how
to reduce the variance of various measurements of inter-
est (e.g. output simulation parameters), or to increase re-
peatability or comparability, in a stochastic setting. It is
not known today how to apply, implement, or adapt these
for cycle scavenging. Nor have these techniques been previ-
ously applied in the area of guaranteeing quality of service.
This is what the current paper addresses.

SUBMITTED TO CCGRID2003, 30 OCTOBER 2002 3

0

10

20

30

40

50

60

8' 10' 12' 14' 16' 18' 20'

Length

P
er

ce
n

t

Fig. 2. Probability distribution function (pdf) guaranteed under
Chicago Mercantile Exchange rules for Random Length Lumber (see
http://www.cmerulebook.com for full details). The pdf is discrete
with guaranteed minimum and maximum percentages in each length
category. For the 16’+18’+20’ combined category there are additional
limits (45% and 60%) complementing the individual category limits.

IV. Problem Quantification

We have stated that HSQ is valuable but we have not
yet quantified the mismatch between sample-level guaran-
tees (i.e HSQ) and population level guarantees. Is special
support for HSQ necessary or is random sampling from
a guaranteed population close enough to HSQ anyway?
Clearly we can find situations at both extremes if we look
hard enough. Given a large enough sample size one would
imagine that we could provide any arbitrary level of HSQ.
However, this is only correct provided the HSQ required is
not taken relative to the sample size — if it is then quite
the opposite result holds. For an HSQ that is not defined
relative to the sample size the interesting question is: what
sample size is sufficient?

What we will do is show first that the problem arises
with very high probability when quantiles are guaranteed
(as for the RLL definition that is in commercial use) and
we will do this using a distribution-free analysis method.
Secondly, for a given example distribution, we will plot
the magnitude of the mismatch for the first two moments
against the sample size.

A. Existence

Suppose that q quantiles are guaranteed and the sam-
ple size is also q. What is the probability that we have
one sample in each quantile of the distribution? This is
equivalent to the famous Birthday Problem (given a class
of students, what is the probability that any two have the
same birthday) where the number of quantiles is the num-
ber of students and the number of days in a year. The
probability of providing the required HSQ (i.e. 1 sample
in each quantile) is thus:

P [success] =

(

q!

qq

)

(1)

2 4 6 8 10 12 14 16
Number of Quantiles

1

0.001

P
[S

uc
ce

ss
]

1.x10-6

s=16
s=64

s=256

s=1024

Fig. 3. Probability of successfully guaranteeing quantiles by random
sampling for increasing contract size s = 16, . . . , 1024 with an error
tolerance d of 1% of the contract size (Equation(4)). We may expect
HSQ creation methods to be required for all probabilities less than,
say, 95%. Note that the plot is semi-logarithmic.

If we have more samples than quantiles, say nq samples
and q quantiles and we allow a difference d between the
actual vector of quantiles and the desired vector of quan-
tiles (which is just n entries in each quantile) as measured
according to some norm ||.|| then the probability of success
is

P [success] =
∑

||~k−~n||≤d

(nq)!

k1!k2! . . . kq!qnq
(2)

≈

∫

||~k−~n||≤d

N(~n, n{i=j} − n/q) (3)

= IG(q/2, (d2/(n − n/q))/2) (4)

where of course
∑

ki = nq, we are simply summing over the
cases of interest, using a least-squares (L2) norm, and using
a multinomial probability with equal probabilities of suc-
cess for each outcome, i.e. quantile (the reader can check
that it reduces to the previous formula for n = 1, ki =
1 ∀i).

We approximate Equation (2) first with a multi-
Normal(mean, variance) in Equation (3)[10] and then ex-
press the probability volume within ||.|| < d using an in-
complete Gamma function IG(a, x) = γ(a, x)/Γ(a) to ob-
tain Equation (4)[11]. Note that the last step is valid what-
ever the covariance structure of the multi-Normal.

Figure (3) gives examples of Equation (4). We consider
the probability of satisfying HSQ for different contract sizes
from s = 16 through s = 1024 guaranteeing increasing
numbers of quantiles. The error level d permitted is taken
as 1% of the contract size. Clearly 1% of contract sizes of
16 or 64 is non-integer but the multi-Normal approxima-
tion can handle this. Note however that for small numbers
of samples per quantile that the multi-Normal is only ap-
proximate. As expected larger contracts (more samples
per quantile) make it easier to attain the fixed QoS re-
quirement. However the probability of satisfying the qual-
ity requirements with random sampling is basically zero.
Interested readers can use Equation (4) to generate other
examples as needed.

SUBMITTED TO CCGRID2003, 30 OCTOBER 2002 4

200 400 600 800 1000
Contract Size

0.1
0.2

0.5
1
2

5
10

ecn airaV

oita
R

Fig. 4. Variance of the observed variance for random sampling from
a Normal(4,1) distribution, Equation(5). The ideal variance ratio is
zero.

This analysis is valid when quantiles are guaranteed for
any distribution: the analysis has no dependence on the un-
derlying distribution. However it does treat different quan-
tiles as though no substitution between them were possible.
Whilst this is certainly true in some cases, in other cases
getting a longer time a machine may be perfectly accept-
able: i.e. downward substitution will be acceptable in some
situations.

B. Magnitude

In the section above we showed how often we may ex-
pect HSQ to be required in a distribution-free manner.
In this section we examine, for a particular distribution,
the magnitude of the error for a distribution-sensitive met-
ric. Specifically, if the underlying population distribution
is Normal and we take a sample at random what can we
expect of the first two moments as opposed to what we
would like to guarantee in this example, i.e. the popula-
tion moments.

We can calculate the variances of the observed quan-
tities under random sampling since analytic formulae are
available for the first two moments of the Normal distri-
bution. Ideally, with HSQ, the variances of the moments
of the samples would be zero: all samples would have the
guaranteed moments exactly. However in practice we will
have:
• variance of the observed mean

= σ2/n
• variance of the observed variance

= 2(n − 1)(µ4 + 2nµ2σ2 + nσ4)/n3 (5)

The variance of the observed mean converges linearly
to that of the population and that of the observed vari-
ance does so quadratically. However, although the rates
of convergence are encouraging it is worthwhile to plot
Equation(5) for an example. Let us take the case where
we have a mean of 4 with a variance of 1, see Figure (4).

If the value of the cycle-scavenged resource slots is sensi-
tive to the observed variance (or spread) then just relying
on random sampling is potentially a very poor approach,

HSQ Controller Contracts

CHS Monitor Deterministic ControllerCHS Controller

CHS Resources Deterministic Resources

Fig. 5. HSQ System Architecture combining Cycle Harvested System
with deterministic (dedicated) resources with appropriate monitoring
and control.

as shown by Figure (4). The variance of the observed vari-
ance is high, even with relatively large sample sizes (n=256)
and a relatively tight underlying distribution (coefficient of
variation 0.25, this is ratio of standard deviation to mean).
We need something better.

V. Method

In the previous section we quantified the size of the prob-
lem, i.e. the ability of non-HSQ systems to provide HSQ.
In this section we describe: a system architecture for sup-
porting HSQ; algorithms for implementing HSQ; and a per-
formance analysis of the HSQ algorithms.

A. HSQ System Architecture

The objective of this architecture is to provide hard
stochastic quality of service for cycle harvesting systems in
order to make their offerings (packages of available time)
more commercially valuable. An architecture like this, at
least to the point of combining stochastic and dedicated
resources (but without the controller features as described
here) is already present in some Grid systems such as Con-
dor and an offering from Platform Computing. Thus this
system is practically realizable provided the controller is
implemented and the control and monitor functions are
put in place with an appropriate scheduler.

The HSQ system architecture comprises five things:

1. a HSQ controller
2. a pool of stochastic (harvested) resources
3. a pool of deterministic (dedicated) resources
4. monitoring of the stochastic pool of resources
5. control of the stochastic resource pool

We assume that monitoring and control of the determin-
istic resources is present. This system is used to fulfill
contract obligations as described by HSQ terms. We will
next describe each part of the system shown in Figure (5)
in detail.

The basic idea is that the HSQ Controller monitors the
Cycle Harvesting System (CHS) resources, using the CHS
Monitor, as applied to each Contract and takes one or more
of two possible actions:

1. Sends an artificially ”harvested resource end” to a par-
ticular CHS resource. Thus execution ends on that re-

SUBMITTED TO CCGRID2003, 30 OCTOBER 2002 5

source.
2. Diverts contract obligations from the CHS resources to
the Deterministic Resources, under control of the Deter-
ministic Controller, with appropriate instructions for their
execution.

This system can deliver HSQ with 100% certainty for
an arbitrary collection of contracts provided the HSQ con-
troller is used as the access control for contracts. In addi-
tion it can deliver a parameterized approximation, where
this is parameterized by the certainty level desired. Both
of these can be delivered in a much cheaper fashion than
would be possible with system designs that did not com-
bine stochastic and of deterministic resources appropri-
ately. This ”appropriate” is described by the HSQ con-
troller design.

To give a simple example the HSQ Controller can moni-
tor obligations of contracts and when it realizes that a con-
tract cannot be completed with certainty before the dead-
line specified in the contract (we assume that all contracts
have a finish-by time defined) using the cycle scavenging
system it transfers the rest of the contract fulfillment to
the deterministic resources under its control. These re-
sources are called deterministic precisely because they are
under the exclusive control of the HSQ Controller. In gen-
eral each statistical QoS metric that is guaranteed with
certainty will result in at least one constraint, often sev-
eral. When the HSQ Controller observes that any of the
constraints resulting from a contract is reached, it transfers
the contract fulfillment as described earlier. In general the
constraints will be dynamic, i.e. they will change as time
and events occur so they must be continuously calculated
and updated.

Given that each contract results in a set of dynamic con-
straints the application to contract acceptance is direct.
For a potential contract calculate the constraints that it
gives rise to and if they are unfeasible do not accept the
contract. If there is a window of possible acceptance for
the contract then continue to monitor the dynamic con-
straints of the contract until either the window closes or
the contract can be accepted.

B. HSQ Examples and Algorithms

In this section we provide examples of HSQ guarantees
and the algorithms to deliver them. We pick two exam-
ples: a very simple case where only the number and aver-
age length of slots in a contract are guaranteed; a general
case where the number and the quantiles of the distribu-
tion of slots are guaranteed. The first case serves to build
intuition and the second as a realistic example.

B.1 Average Length Guarantee

The contract guarantees that for a set of s time-slots:
the average of the time available per slot will be at least
A; the contract will be fulfilled before T ; and zero-length
slots are permitted.

To fulfil the contract start up slots as soon as possible
until s slots have been started. However, if at any point
we have:

if (time left before T) = (sA/minimum(s, total number of
slot instances available on deterministic resources)) - time

made available)

then transfer to deterministic resources. When the total
time made available = sA) finish. The contract has been
fulfilled.

Basically what we do is to keep starting slots until the
only way to satisfy the contract with certainty is to use
deterministic resources — at which point they are used.

B.2 Quantile Guarantee

For simplicity we assume that the quantiles guaranteed
reflect the population distribution, we are not considering
shaped or extended distributions here. We assume that
q quantiles are guaranteed, the contract (”sample”) size
is s = nq with deadline T . harvest stochastic resources
from and md dedicated machines. We consider here only
resources from these machines that are not already com-
mitted to other contracts.

The following algorithm (Q1, next page) is one of the
simplest possible, it just keeps starting slots up to a max-
imum number s until either it realizes it won’t finish in
time or its used up all its permitted slot starts and then
finishes off with deterministic resources. Note that s may
be different from n × q, to allow for oversampling.

The algorithm uses two extra methods which we do not
describe here since they depend on the existence and fea-
tures of an external scheduler for the deterministic re-
sources. Method isSchedFeasible() just asks the determin-
istic scheduler whether it can finish off successfully in the
time remaining (returning either True or False). Method
RunSched() commands the deterministic scheduler to ac-
tually deliver the remaining slots in the contract. ε is used
as a safety measure, to aim to finishing just before the
deadline given that we have the loop still to do before we
next check this condition. Both methods also use the error
metric and the permitted error to choose the cheapest way
to finish the contract but we have not brought out these
details explicitly.

C. HSQ Algorithm Performance Analysis

We motivate our performance analysis with a business
question. Given that resource packages are being traded
and the owner of the HSQ system sees an Ask (i.e. a request
for resources) with a price and a deadline what is the cost
to support that request? If it is below the price then the
HSQ system owner can respond directly to the Ask. If not
then the owner can post an alternative price.

There are two interesting performance metrics: percent-
age of deterministic resources required relative to the whole
contract; and percentage of stochastic resources wasted
because of duplication. In our setup and with the algo-
rithm Q1 we have little direct control of the second met-
ric because we do not permit downward substitution, this
would be a useful extension (but outside the current scope).
Thus we will concentrate on the first metric which we call
R(s, T), clearly this is a random variable and we calculate

SUBMITTED TO CCGRID2003, 30 OCTOBER 2002 6

Algorithm 1 [Q1](s) To provide q quantiles of distribu-
tion D with n entries per quantile, before deadline T tol-
erating an error level d as measured by metric ‖.‖ using at
most s stochastic resources

Set number of started, finished slots to zero, ns = 0,
nf = 0
if NOT(isSchedFeasible(T − (elapsed time + ε), s − nf ,

~n − ~k)) then
Report “Schedule infeasible”
Stop

end if
while isSchedFeasible(T − (elapsed time + ε), s − nf ,

~n − ~k)) do
if A slot is available and (ns ≤ s − 1) then

Start a slot, ns++
end if
if A slot finishes then

nf ++, record which quantile the slot populated,
discarding excess: ki++

end if
end while
RunSched(T − elapsed time, s − nf , max(~n − ~k,~0)
Stop.

its expected value E[R(s, T)]. This expectation is most
important metric when a system is supporting many con-
tracts and thus benefits from the lack of correlation be-
tween them. At least for simple algorithms in the style of
Q1 the correlation between their effects will be low thus
making this the main figure of merit.

Clearly, for a sufficiently tight deadline only determin-
istic resources will be used, for example where the dead-
line is equal to the length of a slot in the last quantile, so
R(s, T)max(Q1) = 1. A mixture could be used but this
would require a modification of Q1 which we are not con-
sidering.

For a sufficiently loose deadline we can run Q1(s) and
it will even have spare time. This gives the proportion of
deterministic resources required for Q1, R(s, T)min(Q1):

E[Rmin] =
∑

P [observation]R[observation]

∑

(

s!

qs
∏

kj !

)

(

∑

j max(n − kj , 0)lj
∑

j nlj

)

(6)

where the first sum is taken over all {k1, . . . , kq|
∑

kj = s},
i.e. over all possible observations where there are s samples,
an observation is just a set of s random samples; lj is the
length of the slot for the jth quantile.

We can evaluate Equation (6) for a specific example dis-
tribution to get an idea of the average loose deadline be-
havior of algorithm Q1. This should not be taken as the
minimum proportion of deterministic resources since Q1 is
a very simple algorithm. Hence the average loose dead-
line behavior of Q1 may be usefully indicative of what is
achievable in practice even with tighter deadlines for more
sophisticated algorithms. Of course deadline tightness is

also relative to the number of machines (or slots processes)
dedicated to each contract etc. Examining the loose dead-
line behavior factors out these influences.

We model stochastic resource slot length as having a log-
Normal distribution with parameters (1.0,0.4) so the mean
is 3.0 and the variance is 1.5. Figure (6) plots the expected
proportion of deterministic resources required to support
increasing QoS requirements for increasing contract sizes.
For, say, 8 quantiles the required proportion varies from
4% to 25% for contract sizes of 1024 and 16 respectively.

One simple modification of algorithm Q1 is to take more
samples (oversample) than are numerically required in or-
der to attempt to satisfy QoS requirements and reduce the
quantity of deterministic resources needed. Figure (7), top

line shows how oversampling reduces the determinitic re-
source requirements: the relationship is roughly linear on
semi-log axes. For 8 quantiles and a contract size of 64 the
deterministic resource requirements can be reduced from
about 13% to 1% by oversampling 60%. This does how-
ever imply that roughly 61% of the stochastic slot time is
wasted. Depending on the relative value of stochastic and
deterministic resources this may be a viable strategy.

A further modification of algorithm Q1 is to permit
downwards substitution as well as oversampling, i.e. a
longer slot is an acceptable substitute for a shorter one
(but not vice versa). This is shown by the bottom line in
Figure (7). In general downwards substitution reduces the
deterministic resource requirements by roughly half.

We have stated that we are analysing the loose dead-
line case: this raises the question ”what is a sufficiently
loose deadline?” which we can answer using renewal the-
ory. Suppose that the inter-arrival finishing time of slots
has a pdf F (y), then the pdf for the sth finish is given by
the s-fold convolution of F (y) with itself. The remaining
time that the deterministic resources require is a function
of the number of dedicated machines and their free time,
say DR(requirements). However we can work out the dis-
tribution of the remaining slots from terms in the formula
above to obtain for the special case of memoryless distri-
butions (e.g. Poisson arrival processes) the total as:

Tloose = F ∗ . . .∗F +
∑ s!

qs
∏

kj !
DR(max(~n− ~kj ,~0)) (7)

In an intermediate situation between loose and tight
deadlines we are interested in how many samples the algo-
rithm is actually able to take before it turns to determin-
istic resources and of these samples how many are useful
and what their distribution is. In this case the number of
slots to get from the stochastic resources s was overopti-
mistic given the deadline of the contract. Clearly if we get
a lot of samples within a given time we expect their average
length to be low and vice versa. This is a straightforward
extension of the analysis here using simulation.

VI. Summary and Conclusions

The motivation for this paper was the desire to see
whether it was possible to turn cycle-harvested resources
into something commercially valuable. Was it possible to

SUBMITTED TO CCGRID2003, 30 OCTOBER 2002 7

2 4 6 8 10 12 14 16
Number of Quantiles

0.1

0.2

0.3

0.4

E
[R

] s=16

s=64

s=256
s=1024

Fig. 6. Expected proportion of Deterministic resources required
(E[R], linear scale) to support hard QoS guarantees on delivered
quantiles for increasing numbers of quantiles and increasing contract
size

0.2 0.4 0.6 0.8 1
Oversampling Proportion

0.001

0.01

0.1

E
[R

]

s=64
q=8

Fig. 7. Expected proportion of Deterministic resources required
(E[R], semi-log scale) to support hard QoS guarantees on delivered
quantiles with oversampling for contract size s = 64 and q = 8 quan-
tiles. Oversampling proportion of 1.0 means that 2×s = 128 samples
are used. Lower line shows the requirements when downwards sub-
stitution is permitted (see text for details).

define a contract that was valuable given that the underly-
ing resources are inherently stochastic and that in a com-
mercial environment we can expect the provider of a QoS
guarantee to optimize against it? We wanted to avoid all
arguments based on long term reputation because we were
interested in having valuable (tradeable) individual con-
tracts for cycle harvested resources — not the question of
how to create valuable reputations for the providers.

In this paper we presented an appropriate QoS definition
for cycle-harvested resources, Hard Statistical QoS (HSQ),
based on statistical QoS metrics guaranteed at the contract
level. That is, these metrics are guaranteed for each and
every contract. Statistically this is the difference between
guaranteeing the properties of a sample versus guarantee-
ing the properties of the population from which the sample
was drawn. In business terms this means that each con-
tract can have a consistent value — not just a collection of
contracts or a particular provider.

We have shown how HSQ can be implemented for cycle-

harvested resources using a hybrid stochastic-deterministic
system. We presented an architecture, and algorithms, to
support HSQ contracts. We analyzed the algorithm behav-
ior analytically using a distribution-free approach in terms
of the expected proportion of deterministic resources re-
quired to support a given HSQ level. Thus our analysis
can be applied whatever the details of a particular system.

For a particular HSQ example where time slot lengths
were log-Normally distributed we found that to provide
hard guarantees on 8 quantiles for contract sizes of 16
to 1024 slots from 13% to 1% additional deterministic re-
sources were required. Permitting oversampling, for exam-
ple for a contract size of 64, was relatively inefficient, lead-
ing to up to 61% of the stochastic resources being wasted.
Including downwards substitution (i.e. accepting longer
time slots as valid substitutes for shorter ones) reduced
deterministic resource requirements by roughly half.

Our analysis and method relies on being able to dis-
card time slots that fall outside a contract definition. Most
jobs currently run on cycle-harvesting systems are self con-
tained (even when, for example, created by parameter
sweep scripts) so this is valid. If each job changed some
global state in an unpredictable and irreversible way then
this would not be a correct analysis. Examples of this
nature include certain transaction processing and web ap-
plications which do not have roll-back facilities.

We have not fully exploited the potential interactions
between contracts, nor have we considered any structure
within a contract as may be required for particular classes
of parallel programs. Instead we have simply considered
a situation where a provider is supporting many contracts
so that the provider only needs to have the average quan-
tity of deterministic resources for HSQ on a per contract
basis. This assumes that the slot lengths of the stochas-
tic resources are not correlated. In practice we will ex-
pect correlation when considering short time-windows, e.g.
situations like ”overnight” or ”morning” or ”afternoon”.
However for longer time-windows, or time-windows within
a single situation the correlation structure may be unim-
portant. A further analysis could extend the current work
to cases where there are arbitrary correlation structures,
modelling and simulating these in a copula framework [12].

We conclude that commercial service contracts with hard
statistical QoS guarantees (HSQ), based on cycle-harvested
resources are viable both from a conceptual point of view
and quantitatively with only small (1% – 10%) require-
ments for deterministic (dedicated) resources.

References

[1] A.L. Rosenberg, “Optimal schedules for cycle-stealing in a net-
work of workstations with a bag-of-tasks workload,” IEEE
Trans. Parallel and Distributed Systems, vol. 13, no. 2, pp. 179–
191, February 2002.

[2] E. Heymann, M.A. Senar, E. Luque, and M. Livny, “Evaluation
of strategies to reduce the impact of machine reclaim in cycle-
stealing environments,” IEEE 1st International Symposium on
Cluster Computing and the Grid, May 2001, pp. 320–328.

[3] K.D. Ryu and J. Hollingsworth, “Exploiting fine grained idle
periods in networks of workstations,” IEEE Transactions on
Parallel and Distributed Systems, vol. 11, no. 7, pp. 683–699,
2000.

SUBMITTED TO CCGRID2003, 30 OCTOBER 2002 8

[4] A.L. Rosenberg, “Guidelines for data-parallel cycle-stealing in
networks of workstations, ii: On maximizing guaranteed out-
put,” IEEE 10th Symposium on Parallel and Distributed Pro-
cessing, April 1999, pp 520–524.

[5] S.T. Leutenegger and X-H. Sun, “Limitations of cycle stealing
for parallel processing on a network of homogeneous worksta-
tions,” Journal of Parallel and Distributed Computing, vol. 43,
pp. 169–178, 1997.

[6] J. Bennet, K. Benson, J-Y Le Boudec, A. Chiu, W. Court-
ney, S. Davari, V. Firoiu, C. Kalmanek, K. Ramakrishnam, and
D. Stiliadis, “An Expedited Forwarding PHB,” Internet Draft,
http://www.ietf.org, 2001.

[7] S. Schenker, C. Partridge, and R. Guerin, “Specification of Guar-
anteed Quality of Service,” Internet Draft, http://www.ietf.org,
1997.

[8] A.M. Law and D.W.Kelton, Simulation Modeling and Anal-
ysis, chapter 11, Variance-Reduction Techniques, pp. 581–617,
McGraw-Hill, New York, 3rd edition edition, 1999.

[9] J.C. Hull, Options, Futures, and Other Derivatives, chapter 18,
Numerical proceedures, pp. 414–418, Prentice Hall, New York,
5th edition edition, 2002.

[10] A. Carter, “Le cam distance between multinomial and mul-
tivariate normal experiments under smoothness constraints on
the parameter set,” Technical report, University of California,
Santa Barbara.[http://www.pstat.ucb.edu/carter], 2001.

[11] C. Walck, “Handbook on statistical distribution for experi-
mentalists,” Internal Report SUF-PFY/96-01, Stockholm, 2000,
[http://www4.tsl.uu.se/ tord/Stat Grad/suf9601.ps], pages 96–
102.

[12] R.B. Nelsen, An introduction to copulas, vol. 139 of Lecture
Notes in Statistics, Springer, New York, 1998.

