
RZ 3472 (# 93737) 01/13/03
Electrical Engineering

Research Report

Fast and Scalable Packet Classification

Jan van Lunteren and Ton Engbersen

IBM Research
Zurich Research Laboratory
8803 R̈uschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available
at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich

Fast and Scalable Packet Classification
Jan van Lunteren and Ton Engbersen

IBM Research, Zurich Research Laboratory, 8803 Rüschlikon, Switzerland

Abstract

Emerging Internet applications create the need for advanced packet classifiers. We propose a novel multi-field classification scheme,
called P 2C, which exploits the strengths of state-of-the-art memory technologies to provide wire-speed classification performance
for OC-192 and beyond, in combination with very high storage efficiency and the support of fast incremental updates. Key features
of the new scheme are its ability to adapt to the complexity of a classification rule set, whereas the storage requirements and
update dynamics can be tuned at the granularity of individual rules. This makes P 2C suitable for a broad spectrum of applications.

I. INTRODUCTION

The routing and classification of Internet Protocol (IP) pack-
ets is an essential element of the operation of the Internet.
Evolution of the Internet into a high-speed, reliable global
network infrastructure is expected to rely to a large extent
on cost-efficient routing and classification of IP packets at
high speeds. The peculiarities of IP operation require that for
proper routing, at least the 32-bit (for IP version 4 - IPv4)
destination address of an incoming packet is looked up in the
routing table and that precisely the entry in the routing table
that matches the maximum number of bits from the start of
the 32-bit field is used for determining the next-hop address.
This is commonly referred to as longest-prefix match (LPM).
Algorithms that implement this LPM search have been a topic
of research for quite some time [1], [2]. The growing number
of hosts on the Internet have caused a significant growth of
the number of entries in the routing tables [3], and there is no
sign that this growth will come to an end in the near future.
On the contrary, current practices to connect hosts via multiple
service providers to the Internet in order to enhance reliability
is causing an exponential growth of the number of routing
entries in backbone Internet routers. Approaches that mini-
mize the use of memory for storing these routing tables have
been one of the focus areas of recent research efforts [4], [5].
Initiatives such as “Integrated Services” (IntServ) and “Dif-
ferentiated Services” (DiffServ) aim at introducing multiple
qualities of service (QoS) in the Internet infrastructure, so that
it will become possible to use the network for traffic types that
have fundamentally different requirements (e.g., voice versus
e-mail). These initiatives require that IP packets be classified
into their appropriate class (e.g., high priority, low priority)
at the edges of the network. The structure of the Internet, in
which multiple Internet service providers (ISPs) interface with
each other to create the larger Internet, results in edges being
located at every interface point between ISPs. Furthermore,
it is in the interest of every Internet user that unwanted traf-
fic (e.g., “hackers”) be prevented from penetrating his or her
computer or own network. This means that all packets need
to be filtered at the entrance point to this network, commonly
also referred to as the “edge”. The “firewall” technology used
for this filtering is characterized by a fast dynamic change
in the filter rules because for every outgoing connection the
corresponding return path needs to be dynamically established,
using IP source and destination addresses from a pool at the
firewall’s disposal. Combining all these requirements, classifi-
cation algorithms have to be optimized over three basic param-
eters: (1) classification performance, (2) storage requirements,
and (3) update performance. Although there have been many
recent contributions to classification algorithms, this contri-
bution focuses on presenting an algorithm that optimizes all
three requirements and allows trade-offs amongst the three
parameters to be made, depending on the specific application.

The remainder of this paper is organized as follows: Sec-
tion II outlines the design objectives; Section III analyzes
state-of-the-art classification schemes; Section IV introduces a
novel scheme for packet classification, called Parallel Packet
Classification (P 2C); the performance of P 2C is evaluated in

Section V; Section VI presents experimental results, which are
compared with the performance of existing schemes in Sec-
tion VII; Section VIII discusses scalability issues; Section IX
concludes the paper.

II. DESIGN OBJECTIVES

A. Basic Requirements

The most important design requirements that new genera-
tions of packet classifiers have to meet are:

1) Wire-speed classification performance: The classifier must
be able to process the highest possible packet arrival rate
as determined by the link speed in combination with
the minimum packet size (see Table I). Its worst-case
performance must be independent of the rule set and
traffic characteristics [6].

2) Storage requirements: The amount of memory needed
to store and search the classification-rule base should
be small for cost reasons and to allow the use of faster
but typically more expensive memory technologies for
achieving higher performance (see Section II-B).

3) Update performance: Emerging applications such as QoS
involve increasingly dynamic rule sets, in contrast to cur-
rent firewall applications that have a more static nature
[7]. Next-generation classifiers must therefore support
fast (incremental) updates of the rule base.

4) Classification rules: The classifier must support rule sets
involving exact-, prefix-, and range-match conditions on
various packet header fields, typically including source
and destination addresses as well as port numbers, pro-
tocol number and type of service (an overview of the
fields and match conditions used in actual classification
rules is given in [8]). Furthermore, the classifier must
be able to select the rule with the highest priority, in the
case that multiple rules can match the same packet.

5) Rule-set scalability: The classifier must be able to scale
the number of rules, the number of fields, and the field
sizes that it supports in order to avoid being outdated by
future Internet developments. One such development is
the possible transition from IPv4 to IPv6 addresses.

Besides these five requirements, further constraints can arise
from implementation limitations such as maximum power dis-
sipation and chip-area costs.

B. Overcoming the Memory-Bandwidth Bottleneck

The link speeds have increased much faster than the band-
width of SDRAM and other memory technologies over the
past few years. This poses two additional challenges to packet
classifiers:

• The available memory bandwidth has to be used more
efficiently: search and update operations must use fewer
memory accesses and exploit memory system charac-
teristics (e.g., burst modes, wide on-chip data buses) to
increase bandwidth utilization.

• The available memory capacity has to be used more effi-
ciently. Only in this way can faster technologies such as
SRAM and on-chip DRAM, which are substantially more

1

expensive and have significantly smaller storage capacity,
be used to realize wire-speed performance for link speeds
of 10 Gbs and beyond.

C. Exploiting Rule-Set Characteristics

Analysis of several firewall rule sets has revealed some
important characteristics [8]:

• The number of unique match conditions for each field
tends to be much smaller than the total number of rules
because several rules share the same match conditions.

• The maximum number of rules that can match the same
packet is very small, typically less than four.

Several emerging applications can also be expected to involve
specific rule set properties. It therefore makes sense that packet
classifiers exploit these characteristics to optimize their per-
formance and improve their storage efficiency, but only to the
extent that they do not lose their general applicability. This
does not apply to the worst-case classification performance,
which should be rule-set independent as indicated above.

III. STATE-OF-THE-ART CLASSIFICATION SCHEMES

This section examines existing multi-field classification schemes
based on the criteria discussed above. Three categories of
classification schemes are distinguished, and will be discussed
in the following subsections. Actual performance figures will
be presented and compared in Section VII.

A. Conversion into Single-Field Search

A multi-field search can be converted into a single-field
search by combining the various fields into one search key.
The main advantage of this concept is that well-known single-
field search algorithms can be used, several of which support
fast incremental updates. An important limitation, however,
is that the efficiency strongly depends on how well the field
conditions can be combined into match conditions on the com-
posite search key that are supported by a single-field search
algorithm. “Good” combinations that are commonly applied
are the use of hashing for exact matches [9] and TCAMs
for exact and prefix matches [10]. Other combinations result
in reduced efficiency, which can be acceptable if the number
of “problematic” match conditions is small. For example, the
tuple-space search scheme [11] supports prefix-match condi-
tions using a separate hash table for each combination of prefix
lengths (tuples), and TCAMs support arbitrary range-match
operators by using multiple entries per range. However, this
will only work well for rule sets with a relatively small number
of tuples and arbitrary range-match conditions, respectively.

A major disadvantage of this concept is that the individual
fields are no longer visible and that all fields must be processed
using the same search algorithm. This precludes the exploita-
tion of rule-set characteristics occurring at the granularity of
individual fields. A second disadvantage is the large size of
the composite search key, which renders an efficient search
more difficult. For SRAM-based classifiers, it typically results
in larger and less predictable latency because of the increased

number of (interdependent) memory accesses needed to pro-
cess the entire search key. For TCAM-based classifiers, it
results in larger chip-area costs and increased power consump-
tion owing to the wider associative cell array. Examples of
other schemes applying this concept are described in [12]-
[14].

B. Dependent Field Searches

Hierarchical tries, also called multi-level tries, are an exam-
ple of a multi-field search algorithm involving dependent field
searches, i.e., the result of already searched fields affects the
way subsequent fields are searched. The main advantage of this
concept is that well-known and relatively simple tree-search
algorithms can be used. The main disadvantage is that it only
seems possible to achieve fast search times by replicating parts
of the tree structure (e.g., set-pruning tries [15]), by embedding
additional link information in the data structure (e.g., grid-
of-tries [16]), and/or by careful preprocessing (e.g., HiCuts
[17]), all of which result in increased storage requirements
and a more complex and slow update operation. A second
disadvantage is that the numerous memory accesses necessary
to process all the fields are interdependent, which can result in
a large and less predictable latency. Examples of other schemes
applying dependent field searches can be found in [18]- [20].

C. Independent Field Searches

Figure 1 shows the concept of a classifier in which the
various fields are searched independently in a first phase, and
the classification result is determined by a multi-dimensional
search on the intermediate search results in a second phase.
The rationale behind this concept is that the multi-dimensional
search shown in Fig. 1 can be simplified and its performance
improved by proper encoding of the intermediate search re-
sults, as compared with the multi-dimensional searches dis-
cussed above. The independent field searches can, in this re-
spect, be regarded as a “preprocessing” step. Examples of
schemes applying this concept are the bitmap-intersection scheme
[21], the recursive flow classification (RFC) scheme [8] (here
the boundaries between the single-field and multi-field searches
as shown in Fig. 1 are less obvious because all searches are
implemented as several stages of parallel table lookups), and
the cross-production method [16]. An important advantage of
the concept shown in Fig. 1 is that the field searches can
be performed more efficiently because of the relatively small
search keys and by exploiting specific field characteristics. An-
other advantage is that the memory accesses related to different
field searches are independent and can be performed in parallel
or in a pipelined fashion, which reduces the latency and allows
a better utilization of the available memory bandwidth.

The overall performance, however, strongly depends on the
encoding of the intermediate search results and the corre-
sponding impact on the multi-dimensional search. The bit-map
intersection and RFC schemes can be regarded as extremes
in this respect: the bit-map intersection scheme encodes all
rule information in the intermediate result vectors, whereas
the RFC scheme encodes no rule information whatsoever. As
a consequence, the bit-map intersection scheme involves only

2

a simple “multi-dimensional search,” basically consisting of
a logical AND operation, whereas the RFC scheme involves
a complex multi-dimensional search that needs to retrieve all
rule information from its data structure. Both encoding styles,
however, share the same important drawback that the storage
requirements grow exponentially with the number of rules
and that fast incremental updates are not supported. Other
schemes applying the concept of independent field searches,
the cross-production method and a modified version of the
bitmap-intersection scheme presented in [22] have the same
disadvantage.

IV. PARALLEL PACKET CLASSIFICATION

The Parallel Packet Classification (P 2C) scheme employs
the concept of independent field searches as shown in Fig. 1.
The word parallel emphasizes the parallelism available be-
tween the independent field searches. The key element of the
P 2C scheme is a novel encoding of the intermediate search
results, which overcomes the disadvantages discussed in the
previous section by significantly reducing the storage require-
ments and minimizing the dependencies within the search struc-
tures, thus enabling fast incremental updates. The P 2C encod-
ing involves several styles that can be applied simultaneously
and allow several performance aspects to be balanced at the
granularity of individual rules. The P 2C scheme can be used
with a variety of search algorithms and memory technologies.
This paper will focus on a configuration in which the fields
are searched using the BART scheme [5] in SRAM, and the
multi-dimensional search is implemented using a TCAM. A
configuration entirely based on SRAM technology is described
in [23].

A. Primitive-Range Hierarchy

The P 2C encoding is based on the concept of so-called
primitive ranges, which are intervals of field values for which
the match conditions specified for a given field apply. The
intermediate result vectors are encoded such that each prim-
itive range can be identified by one match condition. This
match condition is typically a ternary match; however, it is
also possible to encode for prefix- and exact-match condi-
tions (see [23]). Both the intermediate search results and the
corresponding match conditions are generated by organizing
the primitive ranges into a hierarchical structure, denoted as
primitive-range hierarchy. This concept will now be explained
by illustrating how it can be used to generate intermediate re-
sult vectors similar to those of the bitmap-intersection scheme
(discussed in Section III-C) for the two-dimensional classifier
shown in Fig. 2, which is a variation on an example presented
in [21]. Four rules are represented as rectangles in a two-
dimensional space, where the ranges covered by the rules
in each dimension result from the match conditions on the
corresponding field. Higher-priority rules are drawn “on top”
of lower-priority rules. The sets of non-overlapping intervals
X0 to X8 and Y0 to Y6 are obtained by projecting the rectangle
boundaries onto the corresponding axes.

Figure 3(a) shows four primitive ranges, which equal the
ranges covered in the X-dimension by the four rules in Fig. 2.

The primitive ranges are organized in a hierarchical structure,
comprised of four layers that each correspond to one bit po-
sition in the result vector (this bit position is shown between
brackets to the right of each layer). Each primitive range is
assigned an identifier equal to 1 (binary). The remaining part
of each layer, which is not part of a primitive range, is assigned
a zero identifier (not shown in Fig. 3). The intermediate result
vectors are now obtained by determining the set of primitive
ranges in which each interval is located, and then substituting
the primitive range identifiers at the bit positions associated
with the corresponding layers. For example, the result vector
corresponding to interval X2 equals 0101 because X2 is part
of the primitive range at layer 1 (resulting in the set bit at
bit position 0 - the rightmost bit position) as well as of the
primitive range at layer 3 (the set bit at bit position 2). Table II
(first row) lists all result vectors derived in this way (note that
the zero result vectors corresponding to intervals X0 and X8

are omitted).
A set bit in the result vector indicates that the interval is part

of a primitive range and that the corresponding rule applies
for that interval. This can be tested using a ternary-match
condition. For example, the ternary-match condition xx1x
for the primitive range related to rule 2 (also at layer 2 in
Fig. 3(a)) will only match the result vectors corresponding to
the intervals that are part of this primitive range: X4, X5, X6,
and X7. Table III lists the ternary-match conditions for all
rules. Note that with the actual bit-map intersection scheme,
the bits are ordered according to rule priorities in the result
vectors. Although priority information could be encoded in the
primitive-range hierarchy as well, the P 2C scheme typically
stores it in the multi-dimensional search structure.

B. P 2C-Encoding Styles

The set P denotes all primitive ranges in a primitive-range
hierarchy, whereas Li ⊆ P represents the primitive ranges
located at layer i within the hierarchy.

The first P 2C-encoding style involves primitive ranges that
equal the unique ranges corresponding to the match conditions
specified by the classification rules for the dimension being
encoded. For the X-dimension of the classifier in Fig. 2 this
results in: P = {r1, r2, r3, r4}, with r1 = [X2,X5], r2 =
[X4,X7], r3 = [X1,X2], and r4 = [X5,X6]. Note that no
primitive range will be created for a “wildcard” on an entire
field. For rules involving such a condition, a ternary-match
condition is created that is entirely “don’t care” (xx...x).

This encoding style constructs a primitive-range hierarchy
by distributing the primitive ranges over the various layers
such that: (1) the primitive ranges at the same layer are non-
overlapping, and (2) the total number of layers is minimized.
As a consequence, the number of layers in the hierarchy will
equal the maximum number of match conditions that all over-
lap each other. Figure 3(b) shows a primitive-range hierarchy
obtained by applying the first encoding style to the previous
example. The hierarchy is described by L1 = {r1}, L2 =
{r2}, and L3 = {r3, r4}. The (minimum) number of three
layers is determined by the three primitive ranges r1, r2 and
r4 that all overlap each other, and therefore have to be assigned
to different layers.

3

To allow all primitive ranges at the same layer to be assigned
unique non-zero identifiers, a total of �log(|Li|+1)� bits of the
intermediate result vector will be associated with each layer i,
where |Li| represents the number of primitive ranges at that
layer. This results in one bit being associated with each of
layers 1 and 2, and two bits with layer 3 in Fig. 3(b), which
also shows the identifiers assigned to the four primitive ranges.
These primitive range identifiers are used to derive the result
vectors and ternary-match conditions listed in Tables II and III
(second row), as described in Section IV-A. The size of the
result vectors and match conditions equals the total number of
bits associated with all layers in the hierarchy, which is four
in this example.

The first encoding style yields shorter intermediate result
vectors and ternary-match conditions for rule sets with many
non-overlapping ranges, because the number of layers will de-
crease linearly with the number of primitive ranges “grouped”
at each layer, whereas the number of result-vector bits per
layer will only increase logarithmically. In the case shown,
the result-vector size remained four bits, owing to the small
number of rules in this example. However, as can be seen,
there would be room for a fifth (non-overlapping) primitive
range at layer 3, which could be assigned identifier 11 without
increasing the result-vector size. A fifth rule would always
require an additional layer and result-vector bit in Fig. 3(a).

The second P 2C-encoding style differs from the first one
only in the way that the primitive-range identifiers are as-
signed; the primitive-range hierarchy is constructed in the same
way. This encoding style further reduces the size of the inter-
mediate result vector by exploiting relations between primitive
ranges: Two primitive ranges at the same layer can be assigned
a common identifier if both ranges are subsets of two disjoint
primitive ranges at other layers and the (non-identical) iden-
tifiers of the latter ranges are inserted into the corresponding
ternary-match conditions in addition to the common identifier.
This is illustrated in Fig. 3(c), in which the primitive ranges
r3 and r4 at layer 3 are assigned a common identifier 1.
Primitive range r4 is a subset of primitive range r2 at layer 2
with identifier 1, whereas range r3 is a subset of the “empty”
portion of layer 2, which will be treated as a primitive range
with identifier 0. Table II (third row) lists the result vectors
corresponding to Fig. 3(c), which are determined in the same
way as with the first encoding style. The ternary-match con-
dition for primitive range r4 now contains both the common
identifier 1 and the identifier 1 of primitive range r2 (at the
bit positions associated with the respective layers) resulting
in a ternary vector 11x. It can be verified in Table II that
this condition will only match the result vectors corresponding
to intervals X5 and X6. In a similar way, a ternary-match
condition 10x can be derived for primitive range r3, which
will only match the result vectors corresponding to intervals
X1 and X2.

The third P 2C-encoding style reduces the number of layers
by converting overlapping primitive ranges at different layers
into a larger number of non-overlapping primitive ranges at the
same layer. For example, the two overlapping primitive ranges
r1 = [X2,X5] and r2 = [X4,X7] can be converted into three
non-overlapping ranges ra = [X2,X3], rb = [X4,X5], and

rc = [X6,X7]. These can be used to create a primitive-range
hierarchy consisting of only two layers, L1 = {ra, rb, rc}
and L2 = {r3, r4}, which is shown in Fig. 3(d) with the
corresponding result vectors listed in Table II (fourth row).
One aspect of this encoding style is that the two value ranges
for which the match-conditions specified by rules 1 and 2
apply are now each comprised of two primitive ranges, ra and
rb, and, rb and rc, respectively. As a result, two ternary-match
conditions are needed to identify each of these value ranges
from the intermediate result vectors, as shown in Table III.
Repeated application of this approach will ultimately lead to a
primitive-range hierarchy consisting of a single layer as shown
in Fig. 3(e), which corresponds to the RFC-scheme type of
encoding and clearly shows the position of the P 2C-encoding
styles between the extremes of the bitmap-intersection and
RFC schemes.

P 2C-encoding style I creates the smallest number of de-
pendencies within the data structures and will therefore pro-
vide the highest update performance of the three encoding
styles. P 2C-encoding styles II and III, however, can achieve
smaller intermediate result vectors, and, thus, have smaller
storage requirements by introducing additional dependencies
at the cost of lower update performance. A key feature of the
P 2C scheme is that all three encoding styles can be applied
simultaneously for the same rule set and can be selected sep-
arately for each rule, which makes P 2C suitable for a broad
variety of applications and implementation environments. The
following use of the encoding styles is currently envisioned.
P 2C-encoding styles I and II are regarded as the standard
encoding styles applied during normal operation, and can be
used to balance update dynamics and storage efficiency at
the granularity of individual rules. An example is a firewall
involving both “long-lived” static rules as well as dynamic
rules that only exist during the lifetime of a connection. The
former type of rules would then be encoded according to
encoding style II, whereas the latter type of rules would be
encoded using encoding style I.

Encoding style III is currently only used in exceptional cases
to enforce the data structures to meet certain implementation
limits, in order to facilitate implementation and to more ef-
ficiently support larger classification rules sets for which the
storage capacity limits are being approached. For example, this
encoding style can be used to limit the maximum number of
primitive ranges that can match a given field value, in order to
simplify the on-the-fly construction of the intermediate result
vector (see Section IV-C). Encoding style III can also balance
the TCAM width and depth requirements, in order to stay
within the physical limits imposed by the TCAM implementa-
tion. It can do so by reducing the size of the intermediate result
vectors, and, thus, reducing the TCAM width requirements at
the cost of requiring more ternary-match conditions, and, thus,
increasing the number of TCAM entries (see Section IV-D).

C. Independent Field Searches

The bitmap-intersection and RFC schemes search the non-
overlapping intervals formed by the boundaries resulting from
the match conditions (e.g., X0 to X8, and Y0 to Y6 in Fig. 2)

4

in which the field values are located, and output the corre-
sponding intermediate result vectors, which are precomputed
and stored separately for each interval. Significant drawback
of this approach is that information related to a single rule
can be distributed over many result vectors, resulting in poor
update performance.

The P 2C scheme overcomes this problem by having the
field searches determine the actual primitive ranges in which
the field values are located, followed by an on-the-fly construc-
tion of the intermediate result vectors based on the matching
primitive-range identifiers and associated bit-position informa-
tion. This improves both storage efficiency and update perfor-
mance, because the information related to each primitive range
is typically stored only once.

The on-the-fly construction can be implemented in vari-
ous ways. One possibility would be to store the primitive-
range identifiers at the corresponding bit positions in vectors
of the same size as the intermediate result vector, in which
the remaining bits are zero. The intermediate result vector is
then constructed by performing a logical OR operation on all
vectors corresponding to the matching primitive ranges found.
This is illustrated in Table IV for the result vectors obtained
by applying the first P 2C-encoding style on the X-dimension
of Fig. 2 (Table II, second row). Note that the primitive-range
identifiers are underlined in each vector. For example, if the X-
field value were located within interval X2, then two primitive
ranges will be found to match: [X1,X2] and [X2,X5]. The
intermediate result vector is then constructed on-the-fly by de-
termining the logical OR product of the corresponding vectors
0100 and 0001, resulting in 0101, which is identical to the
result vector listed in Table II for interval X2. Table IV also
shows the intervals and corresponding results for the situation
that precomputed result vectors would have been used, in
which case a total of nine intervals would have been searched
with eight different results, versus only four ranges with four
different results in the case of on-the-fly construction.

The on-the-fly construction of the result vectors is slightly
more complex than the concept of precomputed result vectors,
because it requires the field-search algorithm to find multiple
primitive ranges instead of only one interval. However, several
algorithms exist that have this capability or can achieve it after
small modifications. One such algorithm is the BART scheme
[5], which will be discussed below.

BART is a scheme for exact- and prefix-match searches that
achieves high search performance, suitable for OC-192 link
speeds and beyond, by efficiently processing the search key
in segments of about 8 bits, requiring in the worst case only
four memory accesses to search a 32-bit IP address and two ac-
cesses for a 16-bit port number, all of which can be performed
in a pipelined fashion. BART applies a novel compression
technique that provides high storage efficiency in combina-
tion with fast incremental updates. The BART compression
is based on a special hash function for exact- and prefix-
match conditions. The hash index is formed by a subset of
bits from a search key segment that are selected such that the
maximum number of collisions for any hash index is limited
by a configurable bound P . The value of P is based on the
memory access granularity to ensure that each hash table entry,

containing at most P match conditions, can be read using a
single memory access. Collisions for a given hash index are
then resolved by at most P parallel comparisons. For a detailed
description of the BART scheme, including the incremental
update function, see [5].

The original version of BART used for routing table lookups
as described in [5] needs a small modification to facilitate
the on-the-fly construction of the intermediate result vectors.
Instead of determining the longest-matching prefix condition
in each search step by (at most P) parallel comparisons, and
taking the one found by the last search step as the overall
search result, an intermediate result vector has to be con-
structed based on all matching conditions in all search steps. If
the on-the-fly construction is based on a logical OR operation
as described above, than this modification even simplifies the
BART implementation: the multiplexer function in the original
version used to select the longest prefix condition from all
matching conditions is replaced by a logical OR function that
simply “combines” the results of all matching conditions.

For typical rule sets, most primitive ranges will relate to
exact- and prefix-match conditions, which are directly sup-
ported by BART. Arbitrary range-match conditions are han-
dled by converting them into prefix-match conditions as de-
scribed, for example, in [15].

D. TCAM-based Multi-dimensional Search

In order to implement the multi-dimensional search using
a TCAM, it must be converted into a single-field search. The
problems associated with this approach, described in Section III-
A, are overcome by the preprocessing step comprised of the
independent field searches, which results in a smaller com-
posite search key, and, consequently, a smaller TCAM and
less power consumption. The TCAM contents are obtained by
concatenating all combinations of ternary-match conditions for
all fields that relate to the same rule, and storing these in the
TCAM ordered according to the rule priorities. The input for
the TCAM search consists of the concatenated result vectors
of the independent field searches. The rule corresponding to
the matching TCAM entry with the highest priority becomes
the classification result.

Figure 4 shows the primitive-range hierarchy for the Y-
dimension of Fig. 2 obtained by applying P 2C-encoding style I.
This hierarchy involves the following result vectors: 001 (Y1),
011 (Y2), 111 (Y3), 110 (Y4), 010 (Y5), and the following
ternary-match conditions: xx1 (rule 1), x1x (rule 2), and
1xx (rules 3 and 4). Concatenating the match conditions for
the X-dimension (Table III, second row) with those given
above for the Y-dimension provides the following TCAM en-
tries:

rule 1: xxx1xx1 rule 3: 01xx1xx
rule 2: xx1xx1x rule 4: 10xx1xx

If the corresponding field values were located, for example, in
intervals X4 and Y2, then concatenation of the result vectors
would produce a vector 0011011. The TCAM entries for
rules 1 and 2 match this vector, indicating that both rules apply
as can be verified in Fig. 2. The rule priority then determines
the classification result.

5

Note that P 2C-encoding styles I and II result in exactly one
TCAM entry per rule, whereas encoding style III can result
in multiple entries. The latter encoding style, however, allows
the size of a TCAM entry (the TCAM width) to be balanced
with the total number of TCAM entries (the TCAM depth).

E. Incremental Updates

Insertion and removal of classification rules from the rule
base requires modification of the primitive-range hierarchies,
followed by corresponding updates of the field-search struc-
tures (based on BART) and the TCAM contents. Algorithms
for fast incremental updates on the latter two search structures
are described in [5] and [24], respectively. The remainder of
this section will address the update of the primitive-range
hierarchies.

With P 2C-encoding style I, the insertion of a primitive
range into a hierarchy consists of (1) checking whether this
primitive range already exists, or, if that is not the case, (2)
finding a layer with primitive ranges that do not overlap, and
(3) assigning the new primitive range an identifier that is
unique for that layer. The first two steps can be performed
efficiently by organizing the primitive ranges of each layer
in a separate search structure (based on BART) that is used
to determine whether a range already exists or whether any
overlap occurs. The third step is realized by maintaining a list
with unused identifiers for each layer as well as the way these
identifier bits are mapped onto the TCAM bit positions (see
Fig. 3). If this list becomes empty, implying that the maximum
number of primitive ranges has been reached for the given
identifier size, than the identifier size is increased to create
new identifiers by allocating an additional unused TCAM bit
position to this layer. This is relatively simple because iden-
tifier bits do not have to be mapped onto consecutive TCAM
bits. For this purpose, a list with “free” (unallocated) TCAM
bit positions is maintained.

Removing a primitive range from a hierarchy consists of the
following steps: (1) locating the primitive range, (2) checking
whether there are still rules associated with it, and, if that is
not the case, (3) removing it, and (4) returning its identifier to
the “free” identifier list. The second step is necessary because
a primitive range can be associated with multiple rules. This
step can be implemented by registering the number of these
rules in the data structure for each primitive range.

Note that primitive ranges can be organized in various ways
in a hierarchy, and, therefore, the order in which primitive
ranges are inserted and deleted will influence the construc-
tion of the hierarchy and the allocation of the various re-
sources (e.g., the TCAM bit assignment). However, this does
not appear to be a problem because of the limited amount
of overlapping occurring in actual rule sets (see Section II-C),
which results in only a small number of layers (see Section V).
Simulations have revealed that the simple strategy of locating
all primitive ranges related to exact-match conditions at one
layer is sufficient to limit the fluctuation in the intermediate
result-vector sizes (see Section VI). If future rule sets would
emerge involving increased overlapping, then this issue can be
resolved by applying efficient resource management schemes

similar to, for example, buffer management algorithms in-
tended to avoid memory fragmentation.

Application of P 2C-encoding styles II and III involve a
more complex modification of the primitive-range hierarchies,
because dependencies between ranges have to be found and
resolved as described in Section IV-B. For these encoding
styles, the same search structures are used as described above,
extended with additional information related to the dependen-
cies between primitive ranges.

V. PERFORMANCE EVALUATION

A. Classification Performance

The P 2C scheme searches all fields in parallel, resulting in
a total classification time determined only by the maximum
field-search time and the TCAM search time, which typically
equals one clock cycle. With the BART scheme, the maximum
search time will occur for the largest field, thus resulting in a
worst-case classification time that depends only on the maxi-
mum field size and that is independent of the number of fields
and the sum of all field sizes. BART processes a search key
in segments of s bits, with a typical value of s = 8 bits. This
results in an overall classification-time complexity equal to
O(W ′s−1 + 1), where W ′ is the largest field size.

The 32-bit IPv4 source and destination addresses are typi-
cally the largest fields in current rule sets, and can be searched
by BART using at most four SRAM accesses [5]. Conse-
quently, the maximum latency for classifying a packet equals
the time it takes to perform four SRAM accesses and one
TCAM access plus some additional time used by the search
logic. Because the BART scheme involves only a few memory
accesses and does not use backtracking, it is very suitable for
a pipelined implementation. If this is applied to all searches,
then the classification rate will depend mainly on the longest
cycle time of either the SRAM or the TCAM. This allows
wire-speed classification for OC-192 and OC-768 links, which
require maximum cycle times of approx. 37 and 10 ns, re-
spectively, and hence are feasible with state-of-the-art memory
technologies.

B. Storage Requirements

The low storage requirements of BART in combination with
the on-the-fly construction of the intermediate result vectors
make the TCAM the predominant factor determining the over-
all storage complexity. Worst-case figures will now be derived
for P 2C-encoding style I, which has the largest storage re-
quirements of all three encoding styles. First, an upper bound
will be derived for the intermediate result-vector size Ii (in
bits) in the i-th dimension if the match conditions in this
dimension are characterized by the following two parameters:

• The number of unique match conditions: qi.
• The maximum number of match conditions that all over-

lap each other: ki.
For example, for the classifier shown in Fig. 2, these param-
eters have the following values: qx = 4, kx = 3, qy = 3,
ky = 3.

Both parameters directly impact the organization of the primitive-
range hierarchy: The number of primitive ranges equals the

6

number of unique match conditions, qi, and the number of
layers equals the maximum number of match conditions that
all overlap each other, ki. The latter applies, because P 2C-
encoding style I groups as many non-overlapping primitive
ranges at the same layer as possible. This is verified in Figs. 3
and 4.

The result-vector size equals the total number of bits as-
sociated with all the layers in the primitive-range hierarchy.
If there are n primitive ranges at a given layer, then a total
of �log(n + 1)� bits will be associated with that layer, which
is necessary to assign a unique non-zero identifier to each
primitive range. The largest result-vector size will be obtained
when all ranges are distributed equally over all layers, resulting
in a maximum intermediate result-vector size equal to

Ii,max = ki

⌈
log

(
qi

ki
+ 1

)⌉
bits. (1)

Both qi and ki can in theory vary between one and the total
number of rules, N : 1 ≤ qi ≤ N and 1 ≤ ki ≤ N . However,
analysis of actual rule sets has revealed that in practice only
the value of qi varies within this entire interval, whereas ki is
typically very small (see Section II-C). The result-vector size
will be minimal if there are no overlapping primitive ranges;
ki = 1. This results in the following absolute lower bound:

Ii,min = �log (qi + 1)� bits. (2)

P 2C-encoding style I implies that the number of TCAM en-
tries equals the number of rules, whereas the TCAM-entry
size equals the sum of all intermediate result-vector sizes. This
results in worst-case TCAM storage requirements equal to:

N

d∑
i=1

Ii,max = N

d∑
i=1

ki

⌈
log

(
qi

ki
+ 1

)⌉
(3)

with N being the number of rules in the rule base, and d the
number of fields.

C. Update Performance

Updating the rule base requires modification of the primitive-
range hierarchies, the field-search structures and the TCAM
contents as described in Section IV-E. Because the latter data
structures can be updated in parallel and each structure can
sustain (incremental) update rates of the order of millions
per second (see [5] and [24]), the overall update performance
will depend mainly on the modification of the primitive-range
hierarchies. Section IV-B indicated that the highest update
performance is achieved with P 2C-encoding style I, and that
the other two encoding styles are intended for more static
rules. This subsection will therefore focus on the first encoding
style.

Section IV-E described how the primitive-range hierarchies
can be modified efficiently using a (BART) search structure for
each layer. The highest update performance will be achieved
if these searches are performed in parallel, and each search
is performed in a pipelined fashion. However, this is gener-
ally not necessary because the update performance require-
ments are usually a few orders of magnitude smaller than

the classification performance, and the number of layers, and
consequently the number of searches, is typically very small.
Therefore, sufficiently high update rates can be achieved by
storing the search structures for all primitive-range hierarchies
in one memory bank and searching these sequentially.

For example, if for a typical rule set based on the popular “5-
tuple”, the primitive-range hierarchies related to the addresses
and port numbers consisted of four layers, and the hierarchy
for the protocol number consisted of a single layer, then a
maximum of 4*4+1=17 BART searches would be needed to
update all these hierarchies. Because BART needs one mem-
ory access to search the protocol number and a maximum of
two and four accesses to search the 16-bit port numbers and
the 32-bit addresses, respectively, the 17 BART searches will
require at most 49 memory accesses. If all search structures
are stored in one SRAM with a cycle time of 10 ns, then the
maximum time it takes to update all primitive-range hierar-
chies equals 490 ns, which corresponds to a worst-case update
rate of about 2 M updates/sec. As indicated above, pipelining
techniques and faster memories can be used to achieve much
higher update rates. Because an update rate of 2 M updates/sec
already exceeds the requirements for most applications, the
hierarchies can also be stored in cheaper and slower SDRAM.
For example, an SDRAM having a cycle time of 50 ns achieves
an update rate of approximately 400 K updates/second using
the same calculation.

VI. EXPERIMENTAL RESULTS

The P 2C scheme has been validated in two ways: a software-
based simulation model and a hardware prototype implemented
in an FPGA. The latter prototype was realized using a commer-
cially available platform for rapid prototyping [25] based on
a PCI card, with the update function implemented in software
and executed on the host computer. The small storage require-
ments of P 2C allowed several memories to be implemented
in the FPGA, in addition to two external SRAMs available
on the PCI card. Several simulations and experiments have
been performed with three commercial firewall rule sets, the
largest of which contained about 1700 rules. These rule sets
are proprietary, and any details have to be omitted for privacy
reasons (this problem is common to most papers presenting
experimental results for firewall rule sets). The match condi-
tions related to each field were inserted into the data structures
in various orders: at random, by increasing and decreasing rule
priority, and by increasing and decreasing size of the intervals
covered by the match conditions.

Table V shows the numbers of layers observed for the primitive-
range hierarchies for the source (SA) and destination (DA)
addresses and the source (SP) and destination (DP) ports, all
obtained by applying P 2C-encoding style I. These numbers
confirm the assumption that the hierarchies are typically com-
prised of only a few layers. Table V also shows the observed
value ranges for the accumulated intermediate result-vector
sizes,

∑
Ii, which determines the (minimum required) TCAM

width. These value ranges cover the results obtained for the
various rule insertion orders indicated above (see also Sec-
tion IV-E). The fluctuation appears to be small. An absolute

7

lower bound of the accumulated result-vector sizes,
∑

Ii,min,
was calculated using Eq.(2) after determining the number of
unique match conditions in each dimension, qi. Table V shows
that the lower bound of the actual value range is not far away
from the absolute lower bound, especially for the largest two
rule sets. This implies that for these rule sets, the storage
efficiency achieved by P 2C encoding style I is close to opti-
mal, and that not much can be gained by applying the other
two encoding styles. This has been confirmed by simulations
with these encoding styles, which provided almost the same
results. The actual SRAM and TCAM storage requirements are
listed in Table VI. The TCAM requirements appear to scale
almost linearly with the number of rules, whereas the SRAM
requirements appear to scale even better.

The FPGA-based hardware prototype runs at a clock speed
of 33 MHz, corresponding to a clock cycle of 30 ns. The
prototype achieves a classification latency equal to 5 clock
cycles, four of which are used for the longest field-search and
one for the (emulated) TCAM search, which is consistent with
Section V-A. By applying pipelining, the prototype is able to
achieve a classification rate of one packet per clock cycle,
corresponding to 33 Mpps, which exceeds the required rate
for OC-192 (see Table I).

The worst-case number of BART searches needed for up-
dating all primitive-range hierarchies that occurred during the
simulations equaled 9 and involved a total of 30 memory
accesses, which would enable high update performance even if
the primitive-range hierarchies were stored in a single SDRAM,
as discussed in Section V-C. However, it was not possible to
measure a representative update rate for the hardware proto-
type owing to the very slow communication between the PCI
card and the update function executed on the host computer.

VII. COMPARISON

Table VII compares the P 2C scheme with state-of-the-art
classification schemes. The schemes are organized according
to the three categories defined in Section III. The performance
is shown for rule sets involving exact-, prefix- and arbitrary
range-match conditions (unless indicated otherwise) on d packet
fields that have an average size of W bits, whereas the largest
field has a size of W ′ bits. The maximum number of match
conditions that all overlap each other for any field is rep-
resented by k. Several performance figures in Table VII are
based on [15] and [26].

Table VII includes two columns related to classification
performance. The first one lists the worst-case time complexity
related specifically to the classification latency and the second
indicates whether the methods can apply pipelining to achieve
a classification rate that depends mainly on the memory cycle
time. Methods are only considered suitable for a pipelined
implementation if they meet the following three criteria: (1)
they do not apply backtracking techniques, (2) the number
of memory banks is reasonably small and independent of the
rule-set characteristics, and (3) updates do not require data
to be copied or transferred between different memory banks
(e.g., to rebalance a tree structure), because this can “remove”
a significant amount of bandwidth from the search process.

The next two columns in Table VII correspond to the storage
requirements. The first of these columns shows the worst-
case storage complexity and the second indicates whether the
methods exploit the occurrence of identical field conditions
to optimize their storage requirements. The last column in Ta-
ble VII indicates whether the methods support fast incremental
updates.

Only three schemes in Table VII are able to apply pipelining
techniques efficiently (see the criteria defined above) to realize
a classification rate that depends only on the memory cycle
time. Only these schemes will be able to achieve truly wire-
speed performance for OC-192 and OC-768 link speeds by us-
ing sufficiently fast SRAMs and/or TCAMs. Of those schemes,
only the TCAM-based classifier and the P 2C scheme sup-
port fast incremental updates. The main difference between
these two schemes are their storage requirements. Although
the TCAM provides worst-case storage requirements that grow
linearly with the number of rules if these involve exact- and
prefix-match conditions only, it can require significantly more
storage than the P 2C scheme due to (1) the large composite
search key comprised of dW bits, (2) its inability to opti-
mize based on identical field conditions, and (3) its inefficient
support of arbitrary range-match conditions. This is confirmed
by Table VIII, which shows the TCAM storage requirements
for the same three rule sets used to obtain the P 2C storage
requirements listed in Table VI. Both tables reveal that the
TCAM storage requirements of the P 2C scheme are about a
factor 5 smaller than those of a “pure” TCAM-based classifier,
resulting in substantially smaller power consumption and chip-
area costs even if the SRAM storage requirements are taken
into account. Note also that P 2C is the only scheme listed
in Table VII that is able to improve its storage efficiency by
adapting to the complexity of a rule set represented by the
parameter k.

Although several efforts have been initiated to define bench-
marks for network processors, e.g., [27] and [28], these have
not yet resulted in the establishment of reference rule sets that
can be used to compare classifiers. For lack of a better solution,
Table VI also lists some storage requirements published for
several other schemes, but for rule sets for which often only the
number of rules was indicated. These numbers are therefore
intended only to provide an approximate performance indica-
tion.

VIII. SCALABILITY

It is expected that several emerging applications in the near
future will require classification rule sets that are significantly
larger than the ones used today. Furthermore, a possible tran-
sition from IPv4 to IPv6 will introduce 128-bit IP addresses,
thus significantly increasing the field sizes. This section will
discuss the impact of these trends on the field searches and
the TCAM search.

The storage requirements of each field-search structure di-
rectly depends on the number of unique match conditions,
represented by qi for the field in the i-th dimension. For fire-
wall rule sets, we have found that qi is typically much smaller
than the number of rules for most fields, due to the frequent

8

sharing of match conditions by multiple rules and the relatively
large number of “wildcards”. Furthermore, only the numbers
of unique match conditions related to the IP address fields
seem to increase approximately linearly with the number of
rules, whereas the “growth rate” for the other fields is less
or none. Based on the high storage efficiency of BART (e.g.,
BART handles a 72 K entry routing table in less than 500 KB
[5]), it is expected that the field searches will be able to scale to
rule sets involving tens of thousands of rules with no problems.

A transition of IPv4 to IPv6 addresses will only affect the
field searches but not the TCAM search. As the characteristics
of IPv6 routing tables and classification rule sets are not yet
entirely clear, it is difficult to estimate their impact on the
storage requirements and the search performance, especially
latency. However, based on the existence of many fast and
efficient lookup algorithms, including BART, this is not ex-
pected to affect the overall storage efficiency and classification
performance significantly.

The TCAM storage requirements involve one TCAM entry
per rule (assuming encoding style I or II), having a size equal
to the accumulated sizes of the intermediate result vectors cor-
responding to all fields. An upper bound for the intermediate
result vector size is provided by Eq.(1), which is based on the
worst-case assumption that all primitive ranges are distributed
equally over all layers. For practical rule sets, however, it ap-
pears that most primitive ranges are non-overlapping and can
be combined at a single layer, whereas the very few remaining
primitive ranges are located at different layers.

This characteristic will now be taken into account to allow
a more exact investigation of the scalability effects on the
intermediate result vector size. This is done in the following
way. If the number of primitive ranges at layer j is represented
by nj , with

∑ki

j=1 nj = qi, then the actual intermediate result
vector size equals

Ii =
ki∑

j=1

�log (nj + 1)� . (4)

Table IX lists the value of Ii for various combinations of qi and
ki, calculated for the situation that 95% and 99%, respectively,
of the primitive ranges are located at the first layer, and the
remaining primitive ranges are distributed equally over the
remaining layers.

If Wi denotes the field size in the i-th dimension, then Ii

Wi

represents the “compression” achieved for this field compared
to the TCAM-based classifier discussed in Section III-A, in
which the entire field is part of the TCAM entry. For example,
for IPv4 and IPv6 addresses, this results in a compression
equal to 11

32 and 11
128 , respectively, for qi = 1024 and ki = 1.

Table IX shows that the compression decreases for larger val-
ues of qi, which is in accordance with the worst-case storage
complexity of a TCAM growing linearly with the number of
rules, N , whereas the worst-case storage complexity of P 2C
grows approximately according to N log(N) (see Table VII).
However, Table IX clearly shows that P 2C provides consider-
able compression for 32-bit IPv4 addresses for values of qi up
to at least 4 K, and far beyond for 128-bit IPv6 addresses. As
the number of unique match conditions, qi, is often a fraction

of the total number of rules (see above), this implies that P 2C
will very likely be able to scale to at least several tens of
thousands of IPv4 rules and to multiple hundreds of thousands
of IPv6 rules, while providing a more cost-efficient solution
than a pure TCAM-based classifier.

Note that for situations in which no compression is achieved,
Ii

Wi
≥ 1, the intermediate result vector can be replaced by the

original field and the original match condition used as ternary-
match condition (similar to the TCAM search as described
in Section III-A) to limit the size of the intermediate result
vector to the field size. This can be used to enhance efficiency
especially for small fields, including single-bit fields.

IX. CONCLUSIONS

We have proposed a new multi-field classification scheme,
called P 2C, which searches the fields independently in a first
phase, and determines the classification result by a TCAM
search on the intermediate search results in a second phase.
The key element of P 2C is a novel encoding of the inter-
mediate result vectors, which significantly reduces the stor-
age requirements and minimizes the dependencies within the
search structures, thus enabling fast incremental updates. P 2C
involves several encoding styles that can be applied simultane-
ously and allow the storage efficiency and update dynamics to
be tuned at the granularity of individual rules. Furthermore, the
P 2C encoding has the unique property of being able to adapt
to the complexity of classification rule sets. These features
make P 2C suitable for a broad range of applications.

The P 2C scheme has been validated using simulations and
by a prototype implemented in an FPGA. Although this proto-
type runs at a clock speed of only 33 MHz, it is able to achieve
wire-speed classification performance for OC-192, clearly demon-
strating the enormous performance potential of P 2C and its
feasibility for achieving OC-768 performance using current
off-the-shelf technology. P 2C was able to support 1733 rules
of a commercial firewall application using only 2 KB of SRAM
in combination with 5 KB of TCAM. Performance evaluations
have shown that update rates of the order of millions per
second are feasible.

ACKNOWLEDGMENTS

The authors thank Cisco Systems for its valuable help by
providing one of the classification rule sets that was used
for evaluating the P 2C scheme. Special thanks go to Lilli-
Marie Pavka and Charlotte Bolliger for their help preparing
this manuscript.

REFERENCES

[1] M.A. Ruiz-Sánchez, E.W. Biersack, and W. Dabbous, “Survey and
taxonomy of IP address lookup algorithms,” IEEE Network, vol. 15,
no. 2, pp. 8-23, March/April 2001.

[2] H.H.-Y. Tzeng and T. Przygienda, “On fast address-lookup algorithms,”
IEEE Journal on Selected Areas in Communications, vol. 17, no. 6,
pp. 1067-1082, June 1999.

[3] BGP Table, http://bgp.potaroo.net.
[4] A. Brodnik, S. Carlsson, M. Degermark, and S. Pink, “Small forwarding

tables for fast routing lookups,” Computer Commun. Rev., vol. 27, no. 4,
pp. 3-14, October 1997.

[5] J. van Lunteren, “Searching very large routing tables in wide embedded
memory,” Proc. IEEE Globecom, vol. 3, pp. 1615-1619, November 2001.

9

[6] V.P. Kumar, T.V. Lakshman, and D. Stiliadis, “Beyond best effort: router
architectures for the differentiated services of tomorrow’s Internet,”
IEEE Commun. Mag., vol. 36, no. 5, pp. 152-164, May 1998.

[7] C. Macián and R. Finthammer, “An evaluation of the key design criteria
to achieve high update rates in packet classifiers,” IEEE Network, vol. 15,
no. 6, pp. 24-29, November/December 2001.

[8] P. Gupta and N. McKeown, “Packet classification on multiple fields,”
Computer Commun. Rev., vol. 29, no. 4, pp. 147-160, October 1999.

[9] Z. Cao, Z. Wang, and E. Zegura, “Performance of hashing-based
schemes for internet load balancing,” Proc. IEEE Infocom, vol. 1,
pp. 332-341, March 2000.

[10] SiberCore Technologies, SiberCAM application note,
http://www.sibercore.com/pdf/an scan001 1.pdf.

[11] V. Srinivasan, S. Suri, and G. Varghese, “Packet classification using
tuple space search,” Computer Commun. Rev., vol. 29, no. 4, pp. 135-
146, October 1999.

[12] V. Srinivasan, “A packet classification and filter management system,”
Proc. IEEE Infocom, vol. 3, pp. 1464-1473, April 2001.

[13] T.Y.C. Woo, “A modular approach to packet classification: algorithms
and result,” Proc. IEEE Infocom, vol. 3, pp. 1213-1222, March 2000.

[14] J. Xu, M. Singhal, and J. Degroat, “A novel cache architecture to support
layer four packet classification at memory access speeds,” Proc. IEEE
Infocom, vol. 3, pp. 1445-1454, March 2000.

[15] P. Gupta and N. McKeown, “Algorithms for packet classification,” IEEE
Network, vol. 15, no. 2, pp. 24-32, March/April 2001.

[16] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and
scalable layer four switching,” Computer Commun. Rev., vol. 28, no. 4,
pp. 191-202, October 1998.

[17] P. Gupta and N. McKeown, “Packet classification using hierarchical
intelligent cuttings,” Proc. Hot Interconnects 7, August 1999.

[18] A. Feldmann and S. Muthukrishnan, “Tradeoffs for packet classifica-
tion,” Proc. IEEE Infocom, vol. 3, pp. 1193-1202, March 2000.

[19] P. Gupta and N. McKeown, “Dynamic algorithms with worst-case
performance for packet classification,” Proc. IFIP Networking, May
2000.

[20] Ching-Fong Su, “High speed packet classification using segment tree,”
Proc. IEEE Globecom, vol. 1, pp. 582-586, November 2000.

[21] T. Lakshman and D. Stiliadis, “High-speed policy-based packet for-
warding using efficient multi-dimensional range matching,” Computer
Commun. Rev., vol. 28, no. 4, pp. 203-214, October 1998.

[22] F. Baboescu and G. Varghese, “Scalable packet classification,” Computer
Commun. Rev., vol. 31, no. 4, pp. 199-210, October 2001.

[23] J. van Lunteren and A.P.J. Engbersen, “Prefix-based parallel packet
classification,” IBM Research Report, RZ 3210, (#93256), 2000.

[24] D. Shah and P. Gupta, “Fast incremental updates on ternary-CAMs for
routing lookups and packet classification,” Proc. Hot Interconnects 8,
pp. 145-153, August 2000.

[25] FPGA-based rapid-prototyping platform Spyder-Virtex-X2/XCV800,
http://www.x2e.de.

[26] P. Gupta, “Routing lookups and packet classification: theory and prac-
tice,” Tutorial at Hot Interconnects VIII, Stanford, August 2000,
http://klamath.stanford.edu/˜pankaj/talks/.

[27] Network Processing Forum (NPF), http://www.npforum.org.
[28] Embedded Microprocessor Benchmark Consortium (EEMBC),

http://www.eembc.org.

single-field search

single-field search
multi-

dimensional
search

single-field search

.
.

.

field 2

field d

intermediate
results

field 1

classification
result

Fig. 1. Independent field searches.

X5X4 X7X6X3X2X1 X8

Y1

Y4

Y6

Y0

Y2

Y3

Y5

rule 3 rule 4

rule 2

rule 1

X0

Fig. 2. Example of a two-dimensional classifier.

1

X5X4 X7X6X3X2X1 X8X0

1

1
layer 2 [1]

layer 4 [3]

layer 1 [0]

layer 3 [2]
1

(a) Encoding according to bitmap-intersection scheme.

10

X5X4 X7X6X3X2X1 X8X0

1

1
layer 2 [1]

layer 1 [0]

layer 3 [3-2]
01

(b) P 2C-encoding style I: independent identifiers.

1

X5X4 X7X6X3X2X1 X8X0

1

1
layer 2 [1]

layer 1 [0]

layer 3 [2]
1

(c) P 2C-encoding style II: dependent identifiers.

10

X5X4 X7X6X3X2X1 X8X0

1110
layer 2 [3-2]

layer 1 [1-0]

01

01

(d) P 2C-encoding style III: reducing the number of layers.

X5X4 X7X6X3X2X1 X8X0

001
layer 1 [2-0]

101010 011 111100 110

(e) Encoding according to RFC scheme.

Fig. 3. Primitive-range hierarchies.

Y3Y2 Y5Y4Y1 Y6Y0

1

1
layer 2 [1]

layer 1 [0]

layer 3 [2]
1

Fig. 4. Primitive-range hierarchy in Y-dimension.

10

TABLE I

WIRE-SPEED PACKET CLASSIFICATION RATES.

link speed maximum packet time available
throughput per packet

1 Gb/s (1 GE) 3 Mpps 333 ns
2.5 Gb/s (OC-48) 6 Mpps 167 ns
10 Gb/s (OC-192) 26 Mpps 37 ns
40 Gb/s (OC-768) 100 Mpps 10 ns

TABLE II

INTERMEDIATE RESULT VECTORS FOR THE PRIMITIVE-RANGE HIERARCHIES IN FIG. 3.

intervals
enc. X1 X2 X3 X4 X5 X6 X7

(a) 0100 0101 0001 0011 1011 1010 0010
(b) 0100 0101 0001 0011 1011 1010 0010
(c) 100 101 001 011 111 110 010
(d) 0100 0101 0001 0010 1010 1011 0011
(e) 001 010 011 100 101 110 111

TABLE III

TERNARY-MATCH CONDITIONS FOR THE PRIMITIVE-RANGE HIERARCHIES IN FIG. 3.

enc. rule 1 rule 2 rule 3 rule 4
(a) xxx1 xx1x x1xx 1xxx
(b) xxx1 xx1x 01xx 10xx
(c) xx1 x1x 10x 11x
(d) xx01, xx10 xx10, xx11 01xx 10xx
(e) 010 .. 101 100 .. 111 010, 011 101, 110

TABLE IV

INTERMEDIATE RESULT VECTOR CONSTRUCTION.

on-the-fly precomputed
range result range result

default 0000 X0 0000
[X2, X5] 0001 X1 0100
[X4, X7] 0010 X2 0101
[X1, X2] 0100 X3 0001
[X5, X6] 1000 X4 0011

X5 1011
X6 1010
X7 0010
X8 0000

TABLE V

PRIMITIVE-RANGE HIERARCHIES.

rule set rules number of layers result vectors
SA DA SP DP

∑
Ii

∑
Ii,min

set 1 37 3 3 1 1 22-24 bits 18 bits
set 2 138 2 2 2 2 24-27 bits 22 bits
set 3 1733 2 2 2 1 23-25 bits 22 bits

11

TABLE VI

P 2C STORAGE REQUIREMENTS.

rule set rules SRAM TCAM
set 1 37 0.25 KB 0.10 KB
set 2 138 0.54 KB 0.45 KB
set 3 1733 2.0 KB 5.1 KB

TABLE VII

PERFORMANCE COMPARISON.

method classification performance storage requirements fast
worst-case time suitable for worst-case exploits identical incremental

complexity (latency) pipelining storage complexity field conditions updates
TCAM1 1 yes NdW no yes
tuple space1 [11] W d−1 no NdW no yes
set-pruning tries [15] dW no NddW no no
grid-of-tries2 [16] dW no NdW no no
HiCuts [17] dW no Nd no yes
RFC [8] ??? yes Nd yes no
bitmap-intersect. [21] W ′ + N

memory width
no dN2 yes no

cross-producting [16] W ′ + 1 no Nd yes no
P 2C W ′

s
+ 1 yes dNk log(N

k
+ 1) yes yes

1 Storage complexity shown for exact- and prefix-match conditions only.
2 Two-dimensional classification rules only (d = 2).

TABLE VIII

STORAGE REQUIREMENTS.

method rules storage
TCAM 37 0.47 KB TCAM

138 3.1 KB TCAM
1733 24 KB TCAM

grid-of-tries [16] 2000 836 KB SRAM
HiCuts [17] 1733 80 KB SRAM
RFC [8] 1733 400 KB SRAM
cross-producting [16] 50 1.5 MB SRAM

TABLE IX

INTERMEDIATE RESULT VECTOR SIZE [BITS].

n1 = 0.95 ∗ qi n1 = 0.99 ∗ qi

ki ki ki

qi 1 2 3 4 2 3 4
32 6 7 7 8 6 6 6
64 7 8 10 9 7 8 9

128 8 10 11 13 8 9 10
256 9 12 14 17 10 12 11

1024 11 16 20 25 14 16 19
4096 13 20 26 33 18 22 24

16384 15 24 32 41 22 28 32
32768 16 26 35 45 24 31 36

12

