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Abstract

We developed a prototype called WideBridge that dynamically transforms Linux TC (traffic control)
commands into PowerNP APIs calls using the kernel netlink interface. In this report, we first de-
scribe the Linux TC and PowerNP models used as well as the generic model used by our function.
Then, we describe how WideBridge was implemented and tested for typical DiffServ edge and core
routers scenarios. WideBridge makes it particularly easy for Linux developers to start using the
PowerNP. WideBridge will also serve in the ForCES context (IETF effort to decouple forwarding
elements from control elements), as the means to perform the equivalent of ”impedance matching”
between a control point and a network processor (NP).
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Chapter 1: Introduction 
 
The need for quality of service (QoS) in the Internet for applications such as IP telephony 
and other multimedia applications is increasing considerably. The currently used best-
effort service is not able to satisfy this need because it cannot offer QoS capabilities. 
Differentiated Services (DiffServ) were proposed in an effort to fill this gap. 
 
A multitude of programming models for networking components such as DiffServ is 
likely to coexist in the future. To address this, we introduce a new function that serves as 
a bridge between the models used by application-level programmers to those used for 
network processors. To develop such a function, a deep understanding is required of each 
model's capabilities, limitations, and, most importantly, their common properties, before 
the widest bridge between these models can be built. 
 
We developed a prototype called WideBridge that dynamically transforms Linux TC 
(traffic control) commands into PowerNP APIs calls using the kernel netlink interface. In 
this report, we first describe the Linux TC and PowerNP models used as well as the 
generic model used by our function. Then, we describe how WideBridge was 
implemented and tested for typical DiffServ edge and core routers scenarios. WideBridge 
makes it particularly easy for Linux developers to start using the PowerNP. WideBridge 
will also serve in the ForCES context (IETF effort to decouple forwarding elements from 
control elements), as the means to perform the equivalent of "impedance matching" 
between a control point and a network processor (NP). 



 2

Chapter 2: Differentiated services architecture 
 
The differentiated services architecture lays the foundation for implementing service 
differentiation in the Internet in an efficient and scalable way. The IETF DiffServ 
Working Group charter states: 
 
The differentiated services approach to providing quality of service in networks employs 
a small, well-defined set of building blocks from which a variety of aggregate behaviors 
may be built. A small bit-pattern in each packet, in the IPv4 TOS octet or the IPv6 Traffic 
Class octet, is used to mark a packet to receive a particular forwarding treatment, or per-
hop behavior, at each network node. A common understanding about the use and 
interpretation of this bit-pattern is required for inter-domain use, multi-vendor 
interoperability, and consistent reasoning about expected aggregate behaviors in a 
network. 
 
The IPv4 packets' Type-of-Service header field byte is split into two parts. Two bits (bits 
7-6) are currently not used and can be ignored (set to zero). The rest (bits 5-0) are used as 
the differentiated service codepoints (DSCP). The codepoints are divided into three 
pools. One is for standards and the other two are for experimental or local use. It is 
possible that one of these two pools for experimental or local use will be quoted for 
standardization, too. 
 

 
Figure 1: Class selector codepoint field. 

 
 
Best-effort service 
 
Best-effort is the currently used service in the Internet. This service has the code point 
000000 � Default codepoint, default PHB. 
 
Expedited forwarding service 
 
The recommended codepoint for EF PHB is 101110. The expedited forwarding service has the 
following properties: 

• Peak bit rate (of flows or aggregated flows) guarantee. 
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• No bursts (only within the peak bit rate). 
• Low queuing delay (for real-time applications). 

 
Assured forwarding service 
 
Assured forwarding (AF) service dedicates a certain amount of bandwidth to the customers. Four 
AF service classes are defined. Each of these classes has three levels of dropping precedence 
(low, medium and high).  
 
Table 1: Assured forwarding codepoints 

 
 
 
 
 
 
 
 
 
 
2.1 Traffic control in the Linux kernel 
 
The two main elements of the DiffServ conceptual model are traffic classification and 
traffic conditioning as shown in Figure 2.  

 
Figure 2: Logical view of a traffic classifier and conditioner. 

 
 
When packets arrive at the ingress interface of a DiffServ router they are typically 
classified and actions are performed. Then the packets are forwarded to the next hop. 

Table 2: IXIA traffic generator TOS usage 

NOTE: The IXIA traffic generator uses the TOS bits instead of the DSCP bits to 
mark packets. The DSCP value should be shifted to the left by 2 bits for use with 
the IXIA, e.g. 0x22 becomes 0x88.   
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Linux supports for many advanced networking features, such as firewalls, QoS etc., in 
the form of queues, classes and filters, traffic conditioning, etc. 
 
Network traffic that is received by a host from the network is either destined to that host 
or should be sent on to the next hop in case it acts as a router (or is discarded if neither of 
these cases are applicable). If packets are forwarded, which is often a kernel-level 
process, numerous actions have to be carried out: selection of the output interface, 
selection of the next hop, encapsulation, etc. When this has been done, packets are 
queued at the respective output interface. This is the point where Linux network TC 
comes into play. 

 
Figure 3: Processing of network traffic in Linux. 

 
 
The important features of the TC model are : 
 

• Qdisc defines general semantics   
• Classes implement different behavior 
• Packets are attributed to classes by filters 
• Classes in turn may contain queuing disciplines. 

 
 
 
2.1.1 Note about queuing disciplines 
 
In a system with one or more network interface cards, each of these devices has a 
queuing discipline (qdisc) attached to it. A qdisc determines in what manner packets 
enqueued for that device are treated. 
 
Linux supports a hierarchy of qdiscs for any interface. Such sophisticated qdiscs use a 
filter to assign a class, which in turn determines whether to forward the packet as fast as 
the interface permits or to enforce a specific maximum traffic rate, depending on the 
originating IP address of the packet, hence possibly giving priority to one packet over 
another. 
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Figure 4: Hierarchy of queuing disciplines with filters. 

 
Figure 4 shows a root qdisc with filters and classes. The classes in turn have inner qdiscs 
associated with them. Typically one qdisc is associated with a class. If no qdisc is 
specified, FIFO is taken as the default.  
Whenever a packet is enqueued at this interface, the root qdisc matches it against the 
filters and assigns a CLASSID. Based on the value of the CLASSID, the packet is 
enqueued to the class or more specifically to the qdisc associated with it. 
 
Figure 5 outlines the relationship between the elements of the DiffServ architecture and 
those in the Linux network TC. The three main functions (classification, metering and 
queuing/scheduling) are performed by different elements in the two architectures, as is 
highlighted by the gray boxes. An imminent conclusion is that the DiffServ architecture 
has not been designed specifically for Linux, nor has the Network Traffic Control code 
been tailored for DiffServ. 
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Figure 5: DiffServ versus TC architecture. 

There is one TC command for each entity in the TC model. Furthermore, there is a one-
to-one mapping between a TC command and a netlink message. An important thing to 
note here is that the DiffServ blocks overlap one or more TC blocks, implying that the 
complete information about the DiffServ block is scattered across the same or different 
kinds TC blocks. 
 
 
2.1.2 Note about policing in Linux 
 
In the Linux kernel, metering is done at the ingress. The concepts of special color-aware 
or color-blind and single or double-rate policer do not exist. Instead, a different model of 
single-rate meters, associated with filters, exists that meters the traffic at the given rate 
and burst size. But a combination of these meters could act as the standard policers 
defined by IETF RFC 2697 and RFC 2698.  
 
The following is an excerpt from a TC script for a two-rate, color-blind policer: 
 
TC filter add dev reth1 parent 1:0 protocol ip prio 1 u32 \ 
match ip src 10.20.3.12/32 \ 
police rate 1000kbit burst 90k \ 
continue flowid :1 
TC filter add dev reth1 parent 1:0 protocol ip prio 3 u32 \ 
match ip src 10.20.3.12/32 \ 
police rate 2000kbit burst 90k \ 
continue flowid :2 
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TC filter add dev reth1 parent 1:0 protocol ip prio 5 u32 \ 
match ip src 10.20.3.12/32 \ 
continue flowid :3 
 
All traffic coming on the interface reth1 from ip source is 10.20.3.12 policed and 
assigned a DSCP color value based on the policing result. The filters are matched in 
sequence based on their defined priority. If the traffic matches the profile of the meter, it 
is assigned the corresponding flowid that is later converted into the DCSP value at the 
egress. Otherwise the �continue� action to match the next filter is executed. 
 
 
2.2 TC vs. NP model � limitations and capabilities  
 
We do not describe the intrinsic details of the NP model but only cite its capabilities and 
limitations compared to the TC model. 
  

1. The TC model is modular to a greater extent than the NP model. That is to say 
that the building blocks in the TC model constitute of small part of DiffServ 
blocks. It provides a lot more flexibility in terms of possible DiffServ scenarios. 

2. The TC model is versatile in terms of dynamic changes in configuration. Owing 
to its modularity, changes at a very small scale are possible. The building blocks 
in the case of NP are larger and thus mapping small changes in the TC model 
might be fatal. For example, it is possible to change a single-rate policer to a two-
rate policer in Linux by using a single command, whereas on NP it would require 
first deleting the original single-rate policer and replace it with a two-rate one. 

3. TC supports a hierarchy of qdiscs at its interfaces. Individual queues at the egress 
in the TC model might be scheduled differently. The packet handling at an egress 
might involve processing in a complex structure of qdiscs, which is impossible to 
map on the NP model. 

4. The number of scheduling algorithms in the Linux kernel is far greater than those 
on the NP. But NP supports BAT for the flow control, which has no equivalent on 
Linux. 

5. The TC model provides flexibility in terms of policing the incoming traffic at the 
ingress. The NP on the other hand supports only the standard policers. The heart 
of Linux policing is the meter element that can meter the traffic for a given rate 
and a burst. Other complex policers can be built using this meter element.  

6. The NP model supports scheduling at the ingress before the packet is enqueued at 
the switch. NP could have WRED or SARED as the ingress flow control 
algorithm. This facility is completely missing in the TC model. 

7. The NP supports flow control of packets before they are enqueued at the target 
port. More explicitly it allows flow control of the traffic on a flow basis rather 
than a port basis. In Linux everything is on an interface basis. 

8. The netlink messages are based on the TC model. Hence mapping them to an 
entirely different NP model involves a certain amount of adaptation. An attempt 
has been made to map the intersecting region between the two models with 
respect to the DiffServ capabilities onto the NP.  



 8

 
Figure 6: Datapath diagram of the PowerNP. 
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Chapter 3: Netlink 
 
ForCES aims to define a framework and associated mechanisms for standardizing the 
exchange of information between the logically separate functionality of the control plane, 
including entities such as routing protocols, admission control, and signaling, as well as 
the forwarding plane, where per-packet activities such as packet forwarding, queuing, and 
header editing occur. By defining a set of standard mechanisms for control and 
forwarding separation, ForCES will enable rapid innovation in both the control and 
forwarding planes. A standard separation mechanism allows the control and forwarding 
planes to innovate in parallel while maintaining interoperability. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The proposal is to reuse the framework of the Linux netlink messaging protocol and 
extend it to ForCES. The motivation behind adopting netlink as the framework for 
ForCES is to enable users to use Linux TC API to configure QoS parameters on the NP. 
Currently, Linux TC uses netlink messages to configure QoS parameters in the kernel. 
Netlink is the messaging protocol between the user space and the kernel space for setting 
up route entries, filtering rules, QoS parameters, etc.  

 
PowerNP

FE 

 
XXX 
FE 

 
CE

ForCES protocol (netlink)

app

Figure 7: ForCES protocol from the CE to FE.
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TC uses Netlink messages to configure filtering rules and QoS parameters in the Linux 
kernel. There is a one-to-one mapping between the TC command and the netlink 
messages. The QoS features are configured and controlled using a netlink socket 
interface. Routing messages, called rtnetlink, are special netlink messages to control the 
routing behavior of Linux. The bidirectional communication link consists of a standard 
socket-based interface for user processes and an internal application program interface 
(API) for the kernel. Netlink sockets are raw, but it is a datagram-oriented service. 
 
The pseudo-code for the communication over the netlink socket of the TC commands is 
as follows: 
 

• User process 
o parse TC command 
o construct configuration message  
o open netlink socket 
o send message over netlink socket (with RTM_GROUP=0, meaning that it 

is only for the kernel module which is listening for the group). 
• Kernel module 

o receive and parse message 
o find necessary information in internal data 
o check for existing configuration 
o add default fields to the message 
o send message over netlink socket (with RTM_GROUP=8, the groups ID 

for traffic controller messages.  

OSPF,RIP, User 
Applications 

IPv4 
API TC Service 

APIs 

NPCP  
User space 

process

NP 
APIs

KERNEL 

NETLINK (ForCES)

Control 
Element 

Figure 8:  Control element architecture with netlink. 
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The various kernel modules process the netlink messages as described above. The 
processing has been verified to hold true for all cases but one. The module for the tcindex 
filter has a bug in messages processing. For details see table below. 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DiffServ-specific traffic control messages (RTM_QDISC, RTM_TCLASS and 
RTM_TFILTER) contains a tcmsg after the initial header, structured as follows: 
 
struct tcmsg 
{ 
unsigned char tcm_family;   /* NETLINK or UNSPEC */ 
int tcm_ifindex;   /* Interface index */ 
__u32 tcm_handle;    /* Handle */ 
__u32 tcm_parent;     /* Handle of parent */ 
__u32 tcm_info; /  * Additional information */ 
}; 

Linux Kernel Bug: There is kernel bug in the processing of the tcindex 
messages by the linux kernel module. Here is an excerpt from the 
examples in iproute2 DiffServ distribution. 

 
$TC qdisc add $EGDEV handle 2:0 root dsmark indices 64 
# 
# The class mapping 
# 
 
$TC filter add $EGDEV parent 2:0 protocol ip prio 1 \ 
          handle 1 tcindex classid 2:1 
$TC filter add $EGDEV parent 2:0 protocol ip prio 1 \ 
          handle 2 tcindex  classid 2:2 
$TC filter add $EGDEV parent 2:0 protocol ip prio 1 \ 
          handle 3 tcindex  classid 2:3 
$TC filter add $EGDEV parent 2:0 protocol ip prio 1 \ 
          handle 4 tcindex  classid 2:4 
 
When parsing the tcindex filter messages the handle and the classid 
information is found to be missing. Only the default values that are set by 
the kernel for mask, shift and fall_through could be seen. 
  >> hash 64 mask 0xffff shift 0 fall_through 
 
But >> tc filter ls dev eth0 parent 2:0, returns all the handle - classid 
pair I have instantiated. There is something wrong in the way the tcindex 
filter messages are being processed by the kernel. The handle and classid 
information is no longer there in the message when it is put back on the 
netlink socket by the kernel module. 

Table 3: Information about bug in the TC kernel module 
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<linux/netlink.h> and <linux/rtnetlink.h> header files on a Linux system. 
 
 
 
 
 
 
 
 
 
 
 
 
 

JrSniffer: JrSniffer is a user space sniffer that opens a netlink socket to listen to all 
kinds of messages. It prints out the details associated with the traffic control 
messages. Given the scarcity of documentation about netlink and rtnetlink, it is a 
handy tool to know all about the information carried by the netlink messages. 
To use the JrSniffer set the parameter netLinkSockaddr.nl_groups = 
RTMGRP_LINK | RTMGRP_IPV4_ROUTE | RTMGRP_IPV4_IFADDR | 
RTMGRP_NEIGH | RTMGRP_TC | RTMGRP_NOTIFY in the source file to listen 
to specific kinds of messages. The message group RTMGRP_TC is for the DiffServ-
specific traffic control messages. The JrSniffer prints all the details carried by the 
traffic control messages RTM_QDISC, RTM_TCLASS and RTM_TFILTER.  

Table 4: Netlink sniffer tool 
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Chapter 4: WideBridge  
  
WideBridge aims to bridge the gap between the TC and the PowerNP models. It provides 
the framework to enable the use of TC API on Linux to configure QoS parameters on the 
NP. But it does not restrict itself to the NP and TC models. It merely translates the netlink 
messages into an intermediate representation based on the DiffServ model and then 
converts them into API calls for the NP. Hence it is easily portable to other systems, both 
on the TC as well as the NP side.  
 
4.1 Implementation architecture 
  
The ForCES protocol aims to standardize the exchange of information between the 
control element (CE) and the forwarding element (FE). In the ideal case the native 
ForCES protocol should be running between the CE such as a Linux-based machine and 
the FE such as the PowerNP. The design architecture is shown in Figure 9 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
But the implementation in the real case is different. See Figure 10 for details. In this 
design the ForCES protocol runs within the CE between the user space and the kernel 
space instead of between the CE and the FE. The ForCES messages are interpreted by a 
process that maps them into NP API calls. Thus the flow of information between the CE 
and FE is in the form of the guided cells. The rationale behind such a model is that the 
NP can only interpret guided cells and not ForCES messages. Another advantage of this 

Figure 9: Ideal case ForCES architecture. 

Power
NP 
FE

TC model 

RSVP 
app

PowerNP FE 
capabilities: 

WFQ, RED, BAT 

ForCES
native 

CE
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design is that configurations that are not supported by the FE can be identified in the CE 
itself, which reduces the number of queries between the CE and the FE.   
 
Our design based on this architecture is still portable to the ideal case. Once the NP is 
capable to interpret ForCES messages, the kernel process for convert these messages into 
API calls and in turn into guided cells can be transferred to run on the NP.     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.2 Evolution of the Design 
 
Having enough knowledge about QoS, TC, netlink and the NP model, let us now 
examine the development of the WideBridge project. The design consists of two essential 
components. 
 

1. Translations � This is the process of mapping the TC-based API calls into the NP 
API calls. Ideally the mapping should be done in real time. Each netlink message 
should be mapped into an NP API call. But because of the distributed nature of 
information about the API calls across many netlink messages, the logical 
solution is to buffer the messages and then make the NP API call.  

2. Adaptation � As stated above, the DiffServ capabilities of the NP and TC model 
are different. Only the intersecting subset can be mapped perfectly. But for other 
cases there is some degree of adaptation involved, i.e. the mapping of one model 

Power
NP 
FE 

TC model 

RSVP 
app

PowerNP FE 
capabilities: 
WFQ, RED, 

BAT ForCES

NP APIs 
GC 

GC

needs translation

CE 

Figure 10: Real case ForCES architecture. 
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to another on a best-effort basis. Even after this adaptation there is a set of 
features that are supported on the TC model and not on the NP and vice versa.  

 
 
4.2.1 DESIGN ONE:  TC-parameterized target models 
Initial design focused on the TC model as the core. An attempt was made to parameterize 
the TC model to express its DiffServ capabilities. Other models then simply describe 
their capabilities in terms of these parameters. Any application that uses the TC model to 
configure features on some NP would have to declare upfront its requirements based on 
these TC model parameters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.2.1.1 Advantages 
 
The advantage of this model are that once the requirements have been declared by the 
user application, they can be matched against the capabilities of the NP, making it 
possible to decide whether the configuration is acceptable. It would avoid runtime errors 
arising due to incompatible models.    
  

Power
NP 
FE

PowerNP FE 
capability 

model 

XXX FE 
capability 

model 

Application model: 
TC model 

TC model 
adaptation 

to PowerNP

TCmodel 
adaptation 

to XXX

XXX
FE 

RSVP 
app 

Figure 11: Parameterized TC model design. 
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4.2.1.2 Disadvantages 
 
The major drawback of this approach is that the DiffServ capabilities are restricted to the 
TC model. Any other NP model is just a subset of the TC model. The TC model is 
adapted as the standard for the implementation of QoS. Second, applications need to 
know the parameterization of the TC model and how to express their capabilities based 
on the TC model. This is not always possible to decide upfront. Even all this does not 
rule out the possibility of run-time errors. 
 
4.2.2 DESIGN TWO: Real-time netlink to NP 
 
The second design is based on converting netlink messages into NP API calls on the fly. 
The idea behind this design is to demonstrate that QoS features could be configured on 
the NP by TC API calls. The design is very simplistic because the underlying logic to 
make the NP API calls assumed a certain set of netlink messages for certain API calls. 
Below is the pseudocode for the design logic: 

o While(1){ 
o Listen to the netlink messages 
o Interpret the kind (RTM_NEWTCLASS, RTM_NEWTQDISC, 

RTM_NEWTFILTER, etc)  
o Extract relevant information 
o Store information in usable format 
o If  ( information == complete) 

! Make NP API call 
o } 

 
Here is a TC configuration script example mapped into NP API calls. The information in 
red is about the interface and the semantic action. The information in blue is the policer 
information and the information in green is the classifier information. 
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4.2.2.1 Advantage 
 
This prototype is just to demonstrate the various configurations on the NP with user space 
TC API calls. This system maps the netlink messages to NP API calls in real time. It 
exposes the drawback of a real-time system to serve the purpose of mapping and lays the 
foundation of the next design phase. 
  
4.2.2.2 Disadvantages 
 
The disadvantages with this approach are: 

• Not generic � limited to only a few DiffServ scenarios 
• Fails to map TC model to the NP � maps only a small subset 
• Fails if the sequence of messages is changed 
• Static configuration of NP. 

! TC qdisc add dev $INDEV handle ffff: ingress 
 
! TC filter add dev $INDEV parent ffff: protocol ip prio 1 u32 match ip src 10.2.0.0/24 
$meter1 continue flowid :1 
! >TC filter add dev $INDEV parent ffff: protocol ip prio 3 u32 match ip src 10.2.0.0/24 
$meter2 continue flowid :2 
! >TC filter add dev $INDEV parent ffff: protocol ip prio 5 u32 match ip src 10.2.0.0/24 
$meter3 drop flowid :3 
! >TC filter add dev $INDEV parent ffff: protocol ip prio 7 u32 match ip src 0/0 $meter5 
drop flowid :4 
! >TC qdisc add $EGDEV handle 1:0 root dsmark indices 64 
! >TC class change $EGDEV classid 1:1 dsmark mask 0x3 value 0x88 
! >TC class change $EGDEV classid 1:2 dsmark mask 0x3 value 0x90 
! >TC class change $EGDEV classid 1:3 dsmark mask 0x3 value 0x98 
! >TC class change $EGDEV classid 1:4 dsmark mask 0x3 value 0x0 
!>TC filter add $EGDEV parent 1:0 protocol ip prio 1 handle 1 tcindex classid 1:1 
!>TC filter add $EGDEV parent 1:0 protocol ip prio 1 handle 2 tcindex  classid 1:2 
!>TC filter add $EGDEV parent 1:0 protocol ip prio 1 handle 3 tcindex  classid 1:3 
!>TC filter add $EGDEV parent 1:0 protocol ip prio 1 handle 4 tcindex  classid 1:4 

Table 5: Example : TC to NP API calls (relevant information in color). 



 18

4.2.3 DESIGN THREE: Parser-based netlink to NP mapping 
 
The next proposed design is not a real-time mapping between models. It is based on the 
language parsing techniques to parse the netlink messages and make the API calls. The 
parser was based on the grammar of the NP. The grammar defined the capabilities of the 
NP in terms of the netlink messages. The basis structure of the design is as follows: 
 

• Buffer all netlink messages before making an API call 
• Store in a tree structure 
• Walk through the tree to find interrelationships and dependencies 
• "Reorder" the tree if necessary 
• Input netlink messages as tokens to PARSER 
• Grammar rules of the PARSER corresponds to API calls to NP PARSER - FSM 

with final state >> API call. 
•  

4.2.3.1 Advantages 
 
The highlight of this design is that it attempts to map the NP model to the TC model 
rather than the other way round. This design preserves all the original netlink messages in 
a tree structure. So the information available to map the configuration into the NP API 
calls is complete when the first API call is made. The advantage is the accuracy of 
mapping the configuration onto the NP. The design was versatile because of its ability to 
accommodate new grammar rules at any time to expand NP to TC mapping. This design 
served as the framework for the final design of WideBridge.  
  
4.2.3.2 Disadvantages 
 
The major drawback of this design is the complexity of the parser. As the intermediate 
buffering is done in a tree structure of netlink messages, the accurate maintenance and 
parsing of such a structure is difficult. Second, the parser is specific to the FE, so for 
every FE a new parser has to be hard-coded. 
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Chapter 5:  WideBridge � XML-based TC to NP mapping 
 
Based on the parser approach, this design replaces the netlink tree structure with an 
XML-based intermediate representation (IR). The DiffServ model described in the RFC 
3289 has been selected as the schema for the intermediate representation. The DiffServ-
based intermediate representation of the QoS configuration is generic, standard and 
extensible. The first step of the design is to map netlink messages into IR and the second 
step is to convert the IR to NP API calls. The complexity in this case has been distributed 
over two separate processes. The design is described in detail in the following sections.      
 
5.1 Architecture 
 
The architecture of the design is centered around the XML-based intermediate 
representation. The implementation architecture of the design is shown in Figure12. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There are two phases of the mapping from the netlink messages to the NP API calls. The 
first phase converts the netlink messages into the XML-based intermediate 
representation. The process opens a netlink socket, parses all traffic control messages 
over the socket and writes the IR configuration file.  
 
Ideally the Linux kernel should mirror the configuration on the NP, so a netlink message 
should only reach the kernel after an equivalent NP API call is successful. To achieve this 
a two-level adaptation is involved. 

NETLINK 

User Space 
TC API 

Intermediate 
Representation 

NP APIs 
GC 

Phase I 

Phase II

Figure 12: Design overview. 
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• TC sends netlink messages to the kernel module for processing with the 
NL_GROUP field set as 0, which in turn, after processing, put the message back 
on the socket with NL_GROUP = 8 (8 for traffic control messages). Hack the 
kernel module and intercept the message before they are processed. For messages 
that are not supported by the NP, send an error to the user and discard the 
message. This way the netlink message that does not contribute to the 
configuration on the NP is discarded before the kernel module processes it. This 
feature has not been incorporated in the present design. 

• There are some messages that are supported by the NP but not all possible 
combinations of them are necessarily supported. The kernel module then 
processes these messages. Once processed, the messages are put back on the 
netlink socket with the correct NL_GROUP. The phase I process to convert 
netlink message to IR reads this message from the socket and extracts the relevant 
information to be written in the XML file. Once the configuration is complete, the 
phase II process tries to map the IR XML file into NP API calls. When an API 
call fails, this process immediately deletes the configuration from the kernel, 
hence maintaining perfect mirroring. 

 
5.2 Implementation details 
 
As stated earlier, the intermediate representation is the highlight of this design. The 
framework of the document-type definition of the IR is shown below. 
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Phase I � Netlink to Intermediate Representation 
 
This program creates from scratch a new DOM document in memory. The schema to 
verify of the document is described above. It opens a netlink socket to listen to traffic 
controller messages of the type RTMGRP_TC. Each netlink message is parsed for its 
useful information contents, which are stored as values in nodes attached to a DOM tree. 
After the first netlink message is received, the process starts a timer. We assume that one 
particular configuration would be complete in a specified period of time. Once the timer 
expires the process serializes the DOM tree, writes the XML-based IR file and initiates 
the Phase II process to configure the NP. The value of the timer has been set to 60 
seconds but could be changed depending on the speed of the CPU. The timer has not 
been added in the present prototype. 
 

Table 6: Framework XML DTD of the intermediate representation. 

<?xml encoding="ISO-8859-1"?> 
  <!ELEMENT IR      (Classifier)+> 
  <!ELEMENT Classifier (Filter, Action)> 
  <!ELEMENT Filter  (Ingress?, Egress?, SrcAdd?, DestAdd?, TOS?)> 
  <!ELEMENT Action  (Policer | Qdisc | Marker | Dropper)+> 
  <!ELEMENT Policer (PRate, PBurst, Marker)> 
  <!ELEMENT Qdisc   (Queue, Scheduler?)> 
  <!ELEMENT Marker  (Maction | Dropper)> 
  <!ELEMENT Queue   (CBQ|PFIFO|CSZ|FIFO|TBF|RED|SFQ|GRED)> 
  <!ELEMENT CBQ     (MinRate, MaxRate, MaxBurst)> 
  <!ATTLIST FIFO    theshold CDATA #REQUIRED> 
  <!ELEMENT Scheduler (WFQ|WRR)> 
  <!ELEMENT WFQ     (Weight)> 
  <!ELEMENT WRR     (Weight)> 
 

• One XML file can have one or more classifier elements 
• Each classifier element contains a filter and an action 
• A filter element contains one ingress, egress, source address, destination address 

and DSCP 
• An action element can be to police, flow control, mark DSCP or drop 
• Policing is done with one or more meters with a specified rate and a burst 
• Flow control is done using a qdisc and scheduler. Here the IR defines the 

scheduler for individual qdiscs, which is possible to have on TC but not NP 
• Qdisc can be of a number types such as CBQ, PFIFO, etc. But currently only a 

mapping from a CBQ to a egress queue on NP has been successfully implemented
• Scheduler is represented by weighted round robin or a weighted fair queuing type 

and a weight associated with it  
• For a complete DTD or a schema, refer to the source code of WideBridge 
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The process parses the netlink traffic controller messages of type RTM_NEWTCLASS, 
RTM_NEWQDISC and RTM_NEWTFILTER for information about the TC class, qdisc 
and filter, respectively. The following example illustrates the working of this first phase 
script. The information in red from the TC messages is utilized to create the green nodes 
of the DOM tree.  

•  

 
Table 7: Step-by-step generation of IR by TC API calls. 

TC command Evolution of XML DOM tree 
TC qdisc add dev reth3 
handle ffff: ingress 

<?xml version="1.0" encoding="UTF-8" standalone= "no" ?> 
<IR><Classifier><Filter> 
<Ingress value=�reth3�/></Filter> 
<Action></Action></Classifier></IR> 

TC filter add dev reth3 
parent ffff: protocol ip 
prio 1 u32 match ip 
src10.20.3.12/32 police 
rate 1000 burst 90 
continue flowid :1 

<?xml version="1.0" encoding="UTF-8" standalone="no" ?> 
<IR><Classifier><Filter><Ingress value="reth3"/> 
<SrcAdd><Value value="0c03140a" /><Mask value = 
"ffffffff" /> </SrcAdd></Filter> 
<Action><Policer><PRate value="1000"/> <PBurst 
value="2483" /> <Marker value = "1"/>  </Policer> 
</Action> </Classifier> </IR> 

TC qdisc add dev reth1 
handle 2:0 root dsmark 
indices 64 default_index 
4 

<?xml version="1.0" encoding="UTF-8" standalone= "no" ?> 
<IR><Classifier><Filter><Ingress 
value="reth3"/><SrcAdd><Value value="0c03140a"/><Mask 
value="ffffffff"/></SrcAdd> <Egress value="reth1"/> 
</Filter><Action><Policer><PRate value="1000"/><PBurst 
value="2483"/><Marker 
value="1"/></Action></Classifier></IR> 

TC filter add dev reth1 
parent 2:0 protocol ip 
prio 1 handle 1 tcindex 
classid 2:1 

<?xml version="1.0" encoding="UTF-8" standalone="no" ?> 
<IR><Classifier><Filter><Ingress value="reth3"/>  
<SrcAdd><Value value="0c03140a"/><Mask 
value="ffffffff"/> </SrcAdd><Egress value="reth1"/> 
</Filter> <Action><Policer> <PRate value="1000"/> 
<PBurst value="2483"/> <Marker value="2:1"/> 
</Policer></Action></Classifier></IR> 

TC class change dev 
reth1 classid 2:1 dsmark 
mask 0x3 value 0x88 

<?xml version="1.0" encoding="UTF-8" standalone="no" ?> 
<IR><Classifier><Filter><Ingress value="reth3"/> 
<SrcAdd><Value value="0c03140a"/><Mask 
value="ffffffff"/></SrcAdd><Egress value="reth1"/> 
</Filter><Action><Policer><PRate value="1000"/> <PBurst 
value="2483"/> 
<Marker  value="22"/> 
</Policer></Action></Classifier></IR> 

•  
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The example above is an excerpt from the TC script to configure an edge route to police 
the incoming traffic and mark the DSCP. Once the timer expires, the DOM tree is 
serialized, IR configuration file is generated and the phase II process is initialized to 
configure the NP. 
 
Phase II � Intermediate Representation to NP API calls 
 
The phase II process parses the XML-based IR file either generated by the phase I 
process or generated by some other means and makes equivalent API calls to configure 
the NP.  
 
This process is divided into two parts. One part extracts the filter information from the IR 
and utilizes it to form either the classifier rule or BA table entry depending upon the 
action field of the IR classifier entry. The following example illustrates the concept. 
 
Here is an excerpt from an IR file generated in phase I to configure an edge router to 
police the incoming traffic and mark the DSCP: 

•  
Table 8: Mapping IR to NP classifier API call. 

Intermediate Representation NP API Classifier call parameters 
<Ingress value="reth3"/> Cls_rule.ingress_cntx_mask  

Cls_rule.ingress_cntx_value 
<SrcAdd> 
     <Value value="0c03140a"/> 
     <Mask value="ffffffff"/> 
</SrcAdd> 

Cls_rule.sa_lower  
Cls_rule.sa_upper  

   <Egress value="reth1"/>  Cls_rule.egress_cntx_mask 
Cls_rule.egress_cntx_value 

<DstAdd> 
•    NOT DEFINED 

</DstAdd> 

Cls_rule.da_lower = 0x00000000 
Cls_rule.da_upper = 0xffffffff 

<TOS> 
•    NOT DEFINED 

</TOS> 

Cls_rule.tos_value = don�t care 
• Cls_rule.tos_mask = don�t care 

 
   
The action information of the IR is mapped to one of the following default action types 
for the classifier rules: 

• DIFFSERV_POLICE_ACTION � This action type is defined for policing the 
incoming traffic and marks them as green, yellow or red. The policer can be 
color-aware as well as color-blind and also single and two-rate. This configuration 
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is typical to an edge route to police the incoming traffic and assigns color tokens 
to it based on the profile.   

• DIFFSERV_REMARK_ACTION � This action type is defined for the DSCP-
marked incoming traffic from some other DSCP domain. Owing to differences in 
the DSCPs used across the boundary of the networks, the DSCP value has to be 
rewritten to the locally recognized values. It uses the BA table with the incoming 
DSCP as the key to locate the new DSCP value.  

• DIFFSERV_QDISC_ACTION � The configuration of a core router is different 
from that of an edge router. At the core router, traffic is assumed to be marked 
with a DSCP value and is thus only assigned an appropriate queue at the egress to 
yield the required behavior. The queues to give differentiated behavior to different 
traffic streams have to be configured at the egress. The IR has information about 
the sustainable and peak service rates, which are translated into NP flow queue 
API calls.  

• DIFFSERV_FILTER_ACTION � This action type defines a filter to either permit 
or restrict packets. All packets that match the classifier rule having this action 
type set to restrict are dropped.   

 
The action types could be extended beyond the four defined above to accommodate 
other types of requirements. This is a stand-alone process that connects to the wrapper 
remotely.  
  

5.3 Software dependencies and requirements  
 
The following are the requirements for compilation and running both phase I and phase II 
processes: 
 

• Preferably kernel 2.4 or any other kernel with DiffServ enabled is required. 
Kernel 2.3 and above come with the various traffic controller kernel modules.  

• Xerces C++ is required for creating and parsing XML DOM documents. The 
source code can be downloaded from http://xml.apache.org/xerces-c/  

• Iproute2 package can be downloaded from 
http://snafu.freedom.org/linux2.2/iproute-notes.html    

• The cabtools from the terp/tools/cabtool is required to write the DPT values to the 
CAB memory address. 

 
5.4 Capabilities 
 
The XML-based generic intermediate representation makes this model versatile. It can 
easily be extended to any other messaging protocol to conFigure QoS parameters. It 
offers ease of verification of the configuration by means of the intermediate XML file. 
Also the same interface to convert netlink messages to IR can be reused for any other 
process, which converts IR to its specific API calls. The capabilities of both processes are 
easily extensible because of the standard representation. 
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5.5 Limitations 
 
The limitations of the design are as follows:  

• The system does not map netlink messages to API calls in real time. 
• Minor changes in the TC model might lead to major changes in the API calls to 

the NP. 
• Hierarchy of qdisc is not supported or mapped equivalently. 
  

5.6 Testing and results 
 
Many of the TC router configuration scripts were tested on the reference platform with 
aso version 132. IXIA was used as the traffic generator in all these cases.  
 

 
Figure 13: Edge and core router. 

 
The different configurations tested are as follows: 

• Edge router as a color blind policer to mark the DSCP, 
• Edge router as a color aware policer to remark the DSCP, 
• Edge router to remark the DSCP from other domain, 
• Core router to give DiffServ behavior. 

 
Linux uses the CBQ classes to give DiffServ behavior to the marked traffic. The qdisc 
attached to this class by default is FIFO, which does a tail drop after the queue length is 
exceeded. To imitate exactly the same behavior on the NP, flow queues with exactly the 
same parameters as the CBQ class is initialized at the egress. The tail drop FIFO is 
mapped by overwriting the drop probability table (DPT) of the NP using the cabtool with 
appropriate values.  
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Chapter 6: WideBridge HOW-TO  
 
Here are some of the problems faced during the development of WideBridge, as well as 
their solutions. 
 
6.1 Problems 
 

• In the case of kernel 2.4 there was a slight change in the method of ARP 
messaging. Out of the box aso (version 132 and 133) compilation do not work on 
kernel 2.4 until a device is enable to listen to ARP messages. This can be done by 

o Bash$ echo  1 > /proc/sys/net/ipv4/neigh/eth1/app_solicit . 
• Use the debugged version of the cabtool present in the tools directory of the 

WideBridge source. 
• As stated earlier there is a bug in the processing of the tcindex filter netlink 

messages. In order to read the original information from the tcindex messages the 
some changes in the TC source code are done. The nl_groups information in the 
/iproute2/lib/ll_rtnetlink.c rtnl_talk() function is changed to 8 for RTMGRP_TC. 
Now we receive two netlink messages, one original and the other processed by the 
kernel module. One of the two messages is used to extract the relevant 
information. 

• There was a problem with the way the pico-code processed the packets in the NP.   
 
 
6.2 Kernel-2.4-HOW-TO 
 
Support for DiffServ is already integrated into 2.4 kernels. In order to enable it, you may 
have to reconfigure and rebuild your kernel, or at least some modules. 
The following kernel configuration options have to be enabled in the section Networking 
options:  

• Kernel/User netlink socket (CONFIG_NETLINK)  
• Network packet filtering (CONFIG_NETFILTER)  
• QoS and/or fair queuing (CONFIG_NET_SCHED)  

 
The following kernel configuration options should be enabled in the section Networking 
options, QoS and/or fair queuing:  

• CBQ packet scheduler (CONFIG_NET_SCH_CBQ)  
• The simplest PRIO pseudo-scheduler (CONFIG_NET_SCH_PRIO)  
• RED queue (CONFIG_NET_SCH_RED)  
• GRED queue (CONFIG_NET_SCH_GRED)  
• DiffServ field marker (CONFIG_NET_SCH_DSMARK)  
• Ingress Qdisc (CONFIG_NET_SCH_INGRESS)  
• QoS support (CONFIG_NET_QOS)  
• Packet classifier API (CONFIG_NET_CLS)  
• TC index classifier (CONFIG_NET_CLS_TCINDEX)  



 27

• Firewall based classifier (CONFIG_NET_CLS_FW)  
• U32 classifier (CONFIG_NET_CLS_U32)  
• Traffic policing (CONFIG_NET_CLS_POLICE)  

 
In some cases, additional elements may be needed. It is therefore recommended to enable 
all options in QoS and/or fair queuing. 
 
Linux traffic control is configured with the utility TC. It is part of the iproute2 package. 
To build TC with DiffServ support, proceed as follows:  

• Extract iproute2  
• Edit iproute2/Config to enable DiffServ support: 

TC_CONFIG_DIFFSERV=y  
• In iproute2/, run make 
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Chapter 7: Conclusion 
 
WideBridge is the first attempt to bridge the gap between the Linux traffic control model 
and the PowerNP model. At present only DiffServ has been implemented, but in the 
future other things such as NAT, firewall, tunneling, etc. might also be implemented 
along the same lines. Moreover, there is a need to extend the information base of the 
netlink messages so that designs could implement the netlink to NP API mapping in real 
time. 
 
Finally the need for standardizing an implementation model needs to be emphasized. The 
multitude of implementation models leads to incompatibility between models and the 
focus thus shifts from translation to adaptation. Once standard implementation models are 
in place, the job of translation will be more accurate and reliable.  
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