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Unifying Simulatability Definitions in Cryptographic Systems under
Different Timing Assumptions?

Michael Backes

IBM Zurich Research Laboratory, Rüschlikon, Switzerland
mbc@zurich.ibm.com

Abstract. The cryptographic concept of simulatability has become a salient technique for faithfully analyzing and
proving security properties of arbitrary cryptographic protocols. We investigate the relationship between simulata-
bility in synchronous and asynchronous frameworks by means of the formal models of Pfitzmann et. al., which
are seminal in using this concept in order to bridge the gap between the formal-methods and the cryptographic
community. We show that the synchronous model can be seen as a special case of the asynchronous one with re-
spect to simulatability, i.e., we present an embedding between both models that we show to preserve simulatability.
We show that this result allows for carrying over lemmas and theorems that rely on simulatability from the asyn-
chronous model to its synchronous counterpart without any additional work. Hence future work can concentrate on
the more general asynchronous case, without having to neglect the analysis of synchronous protocols.

1 Introduction

In recent times, the analysis of cryptographic protocols has been getting more and more attention, and the
demand for general frameworks for representing cryptographic protocols and the security requirements of
cryptographic tasks has been rising. Existing framework are either motivated by the complexity-theoretic
view on cryptography, which aims at proving cryptographic protocols with respect to the cryptographic
semantics, or they are motivated by the view of the formal-methods community, which aims at capturing
abstractions of cryptography in order to make such protocols accessible for formal verification. Frameworks
built on abstractions will be further dealt with in the related literature along with a discussion on the crypto-
graphic justification of these abstractions.

For living up to the probabilistic nature of cryptography, a framework for dealing with actual cryp-
tography necessarily has to be able to deal with probabilistic behaviors. The standard understanding in
well-known, non security-specific probabilistic frameworks like [38, 41] is that the order of events is fixed
by means of a probabilistic scheduler that has full information about the system. In contrast to that, the
standard understanding in cryptology (closest to a rigorous definition in [10]) is that the adversary schedules
everything, but only with realistic information. This corresponds to making a certain subclass of sched-
ulers explicit for the model from [38]. However, if one splits a machine into local submachines, or defines
intermediate systems for the purposes of proof only, this may introduce many schedules that do not corre-
spond to a schedule of the original system and therefore just complicate the proofs. The typical solution is
a distributed definition of scheduling which allows machines that have been scheduled to schedule certain
(statically fixed) other machines themselves.

Based on these requirements, several general definitions of secure protocols were developed over the
years, e.g. [15, 28, 7, 23, 35, 18, 11, 37, 12], which are all potential candidates for such a framework. To al-
low for a faithful analysis of cryptographic protocols, it is well-known that such models not only have to
capture probabilistic behaviors, but also complexity-theoretically bounded adversaries as well as a reactive
environment of the protocol, i.e., continuous interaction with the users and the adversary. Unfortunately,
most of the above work does not live up to these requirements in spite of its generality, mainly since it
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concentrates on the task of secure function evaluation, which does not capture a reactive environment. Cur-
rently, the models of Pfitzmann et. al. [35, 37] and Canetti [12], which have been developed concurrently
but independently, stand out as the standard models for sound protocol analysis and design.

Regarding the underlying definition of time, such models can be split into synchronous and asyn-
chronous ones. In synchronous models [35], time is assumed to be expressible in rounds, whereas asyn-
chronous scenarios [37, 12] do not impose any assumption on time. This makes asynchronous scenarios
attractive since no assumption is made about network delays and the relative execution speed of the parties.
Moreover, the notion of rounds is difficult to justify in practice as it seems to be very difficult to estab-
lish them for the Internet for example. This attractiveness is substantiated by a large body of literature on
asynchronous cryptographic protocols, e.g., [8, 14]. However, time guarantees are sometimes explicitly de-
sired, e.g., on when a process can abort. Hence assumptions have to be made in this case, which induce a
certain amount of synchrony again. This sometimes makes a synchronous assumption of time nevertheless
necessary in practice, e.g., in Kerberos [30].

Hence researchers usually restrict their attention to one definition of time, or they are driving double-
tracked by maintaining two separate models. However, this presupposes proving every theorem for both
models. This is not nice. An alternative approach, taken in this work, is to show that the synchronous model
can be regarded as a special case of an asynchronous one, and hence does not have to be considered sepa-
rately, but still can be used to conveniently express synchronous protocols.

Although this idea might not be surprising, it is very difficult to achieve since it turns out that carrying
over results from the asynchronous to the embedded synchronous model presupposes the possibility of (at
least partially) reversing the considered embedding. Recall that suitable frameworks, especially the frame-
works of Canetti and Pfitzmann et. al., have a distributed scheduling which significantly complicates this
reversion.

Formally, a special case means that there is an embedding into the asynchronous model that preserves a
desired property. Which property has to be preserved depends on the goals to strive for. For cryptographic
protocols, the property of simulatability stands out. Simulatability captures the notion of a cryptographically
secure implementation and serves as a link to the formal-methods community, which typically only hold a
top-level view of cryptography, where cryptographic primitives are replaced by deterministic abstractions.
A more comprehensive discussion of simulatability and its relationship to protocol verification work done
by the formal-methods community is given in the paragraph on related literature below.

In the following, we investigate the synchronous and asynchronous models of Pfitzmann et. al. [35, 37],
which are seminal in using the concept of simulatability to bridge the gap between the formal-methods and
the cryptographic community. We show that the synchronous model can be embedded in the asynchronous
model such that simulatability is preserved by this embedding, i.e., if two systems fulfill the simulatability
relation in the synchronous model, their respective images fulfill the relation in the asynchronous model and
vice versa. We show that this result allows for carrying over lemmas and theorems from the asynchronous
case to the synchronous case without proving them twice. Hence future work can concentrate on the more
general asynchronous case without neglecting the analysis of synchronous protocols. We are confident that
this result helps to make future protocol analysis in these models more convenient and more efficient.

Moreover, we believe that our approach for establishing the embedding and its properties can be suc-
cessfully used for other models with only minor changes. Especially the asynchronous model of Canetti
is surely worth to be investigated. However, his corresponding synchronous model [11] is still specific for
secure function evaluation; hence adopting it to a reactive environment is a necessary prerequisite for this
future work. The lack of such a reactive synchronous model was – besides the fact that the models of Pfitz-
mann et. al. are more rigorously defined than the one of Canetti – our main reason why we decided to base
our work on the model of Pfitzmann et. al.
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Related Literature. If cryptographic protocols should be verified using formal methods, some kind of ab-
straction is needed as the underlying reduction proofs of cryptography are still out of scope of current
verification techniques. This abstraction is usually based on the so-called Dolev-Yao abstraction [13], which
considers cryptographic primitives, e.g., E for encryption and D for decryption, as operators in a free al-
gebra where only predefined cancellation rules hold. For instance, twofold encryption of a message m does
not yield another message from the basic message space but the term E(E(m)). A typical cancellation rule
is D(E(m)) = m. This abstraction simplifies proofs of larger protocols considerably, and it gave rise to
a large body of literature on analyzing the security of protocols using techniques for formal verification of
computer programs (a very partial list of work includes [29, 26, 20, 9, 27, 21, 24, 33, 39, 1]).

Since this line of work turned out to be very successful, the interesting question arose whether these
abstractions are indeed justified from the view of cryptography, i.e., whether properties proved for the ab-
stractions are still valid for the cryptographic implementation. Abadi et. al. showed in [3, 2] that the Dolev-
Yao model is cryptographically faithful at least for symmetric encryption and synchronous protocols. There,
however, the adversary is restricted to passive eavesdropping. Consequently, it was not necessary to choose
a reactive model of a system and its honest users, and the notion of simulatability could be replaced by
the weaker notion of indistinguishability [43]. Another interesting approach has been presented by Guttman
et. al. [17] which show that the probability of two executions of the same protocol – either executed in a
Dolev-Yao-like framework or using real cryptographic primitives – may deviate from each other at most for
a certain bound. However, their results are specific for the Wegman-Carter system so far. Moreover, as this
system is information-theoretically secure, its security proof is much easier to handle than primitives with
security guarantees only against computationally bounded adversaries since no reduction proofs against un-
derlying number-theoretic assumptions have to be made. Some further approaches for special security goals
or primitives are [40, 22]. However, there is evidence that the original Dolev-Yao model is not justified in
the presence of active attacks, even if provably secure cryptographic primitives are used, cf. [34] for an
(admittedly constructed) counterexample. This exemplifies the demand for “better” abstractions which the
models of Canetti and of Pfitzmann et. al. want to establish using the concept of simulatability.

Simulatability bridges this gap by serving as a cryptographically sufficient relationship between ab-
stract specifications and cryptographic implementations, i.e., abstractions which can be shown to simulate
a given implementation in a particular sense are known to be sound with respect to the security definitions
of cryptography. Simulatability was first invented for multi-party function evaluation [42, 15, 7, 28, 11], i.e.,
systems with only one initial input set and only one output set. An extension to a reactive scenario, where
participants can make new inputs many times, e.g., start new sessions like key exchanges, was first fully de-
fined in [34], with extensions to asynchronous systems in [37, 12]. Each of the three considered models was
already successfully used to built up sound abstractions of various cryptographic primitives and all of them
enjoy a composition theorem, i.e., large protocols can be refined step-wise without destroying the already
proven properties.

Comparing the models of Canetti and Pfitzmann et. al., we can state that Canetti’s work enjoys a more
general composition theorem and has moreover addressed more cryptographic primitives so far. On the other
hand, the models of Pfitzmann et. al. are more rigorously defined and early examples of tool-supported
proofs in their models exist [5, 4], using PVS [32]. Moreover, the recently published universally composable
cryptographic library [6] may pave the way to formal verification of large security protocols within their
models.

Outline. In Section 2 we review the reactive models for synchronous and asynchronous time. In Section 3,
we explain how the embedding works and give a rigorous definition. Starting with a proof sketch of the first
embedding theorem in Section 4 (there will be two of them) and some lemmas capturing essential steps in
the theorem’s proof, we fade to the embedding theorems in Section 5. In conjunction, both theorems allow
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for carrying over theorems from the asynchronous to the synchronous case, which is shown in Section 6 by
means of an example. For the sake of readability, most occurring proofs are postponed to the Appendix.

2 Review of the Reactive Models in Synchronous and Asynchronous Networks

In this section we briefly review the synchronous and the asynchronous model for probabilistic reactive
systems as introduced in [35] and [37], respectively. Several definitions are only sketched, whereas those
that are essential for understanding our upcoming results are given in full detail.

2.1 General System Model

In the following we consider a finite alphabet Σ and some special symbols !, ?,↔ ,/ 6∈ Σ that will be used to
express different ports of machines. For s ∈ Σ∗ and l ∈ N0, we define sdl to be the l-letter prefix of s.

Our machine model is probabilistic state-transition machines, similar to probabilistic I/O automata as
sketched by Lynch [25]. Communication between different machines is done via ports which are divided
into input and output ports. Inspired by the CSP-Notation [19] we write input and output ports as q? and q!.

Ports will later be connected by naming convention, i.e., a port q! always sends messages to q?. In the
asynchronous model, a special machine called a buffer will further be inserted in each connection to ensure
asynchronous behavior. A buffer stores all of its inputs in an internal list. If a machine wants to schedule the
i-th message of buffer q̃ (this machine must have the unique clock-out port q/!), it simply sends i at q/!, cf.
Figure 1. The buffer then schedules the i-th message and removes it from its internal list. Neither buffers
nor clock ports occur in synchronous machines; they are just included to establish a distributed scheduling
in the asynchronous case.

As the low-level complement qc of a port q (either in- or output port) we denote the port with which it
connects according to Figure 1, i.e., q/!c := q/?, q!c := q↔?, q↔!c := q?, and vice versa. The high-level
complement qC of a port q denotes the connecting port without the buffer, i.e., q!C = q? and vice versa. For
a set or a sequence P of ports, let in(P) and out(P) denote the subset or subsequence of P consisting of the
input ports or the output ports of P , respectively.

After introducing ports, we now focus on the definition of machines. A machine has a sequence of ports,
containing both input ports and output ports, and a set of states, comprising sets of initial and final states.
If a machine is switched, it receives an input tuple at its input ports and performs its transition function
yielding a new state and an output tuple in the deterministic case, or a finite distribution over the set of states
and possible outputs in the probabilistic case. Furthermore, each machine has a bound on the length of the
considered inputs which allows time bounds on the computation time independent of the environment. The
parts of an input that are beyond the length bound are ignored, i.e., incoming strings are only processed up
to a predefined length. In particular, this is used to ensure polynomial runtime of individual machines.

Definition 1. (Machines) A machine is a tuple

M = (nameM,PortsM,StatesM, δM, lM, IniM,FinM)

of a name nameM ∈ Σ+, a finite sequence PortsM of ports, a set StatesM ⊆ Σ∗ of states, a probabilistic
state-transition function δM, a length function lM : StatesM→ (N∪{∞})|in(PortsM)|, and sets IniM,FinM ⊆
StatesM of initial and final states. Its input set is IM := (Σ∗)|in(PortsM)|; the i-th element of an input
tuple denotes the input at the i-th input port. Its output set is OM := (Σ∗)|out(PortsM)|. The empty word, ε,
denotes no in- or output at a port. δM maps each pair (s, I) ∈ StatesM × IM to a finite distribution over
StatesM × OM. If s ∈ FinM or I = (ε, . . . , ε), then δM(s, I) = (s, (ε, . . . , ε)) deterministically. Inputs
are ignored beyond the length bounds, i.e., δM(s, I) = δM(s, IdlM(s)) for all I ∈ IM, where (IdlM(s))i :=
IidlM(s)i

for all i. 3
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In the text, we often write “M” also for nameM. For a set M̂ of machines, let ports(M̂ ) denote the set of ports
of all machines M ∈ M̂ . Machines usually start with one initial input, i.e., the starting state is parameterized.
Complexity is measured in terms of the length of this initial input, usually a security parameter k given in
unary representation; in particular, polynomial-time is meant in this sense. We only briefly state here, that
these machines have a natural realization as a probabilistic interactive Turing machine as introduced in [16].
We call a machine M a black-box submachine of a machine M′ if the machine M′ has access to the state-
transition function δM of M, i.e., it can execute δM for the current state of the machine and arbitrary inputs.

In order to cope with specific inputs and outputs of a machine M, we introduce some additional notation
which is not contained in the original model. Let P := (p1?, . . . , pn?) ⊆ in(PortsM) be a subsequence of
the input ports of M and (vi)i∈{1,...,n} ∈ (Σ∗)n. Then Ip1?=v1,...,pn?=vn

denotes the input with pi? = vi

for all i and p′? = ε for all p′? ∈ in(PortsM) \ P . In the special case pi? = ε for all i, i.e., in case of an
all-empty input, we write Iε. Outputs are defined similarly.

A collection C of machines is a finite set of machines

Receiving
machine

Sending
machine

Scheduler for
buffer q~

q!

q   !

q?

Buffer q
~

q   ?

q↔!

q↔?

1

Fig. 1. Ports and buffers.

with pairwise different machine names and disjoint sets of
ports. In the asynchronous model, the completion [C] of a
collection C is the union of all machines of C and the buffers
needed for every channel. A port of a collection is called
free if its connecting port is not in the collection. These port
will be connected to the users and the adversary. The free
ports of a collection C are denoted as free(C). In the asyn-
chronous model, a collection C is called closed if its com-
pletion [C] has no free ports except a special master clock-in port clk/?, i.e., free([C]) = {clk/?}. When we
define the interaction of several machines, this port will be used to resolve situations where the interaction
cannot proceed. In the synchronous case, we demand free(C) = ∅.

For security purposes, special collections are needed, because an adversary may have taken over parts
of the initially intended system, e.g., different situations have to be captured depending on which and how
many users are considered as being malicious. Therefore, a system consists of several possible remaining
structures.

Definition 2. (Structures and Systems) A structure is a pair struc = (M̂ ,S ) where M̂ is a collection of
non-buffer machines called correct machines, and S ⊆ free(M̂ ) is called specified ports. If M̂ is clear from
the context, let S̄ := free(M̂ ) \ S . We call forb(M̂ ,S ) := ports(M̂ ) ∪ S̄C the forbidden ports, i.e., those
ports that the honest user is forbidden to have. A system Sys is a set of structures. It is polynomial-time iff
all machines in all its collections M̂ are polynomial-time. 3

The separation of the free ports into specified ports and others is an important feature of the upcoming
security definitions. The specified ports are those where a certain service is guaranteed.

Note that this definition is valid for both the synchronous and the asynchronous case. In particular,
buffers do not have to be explicitly included in the specification of a system, e.g., in the specification of a
cryptographic protocol that one wants to analyze. The different timing assumption stem from the different
definitions of runs which we will introduce in the following.

A structure can be completed to a configuration by adding machines H and A, modeling the joint honest
users and the adversary, respectively. The machine H is restricted to the specified ports S , A connects to the
remaining free ports of the structure and both machines can interact, e.g., in order to model active attacks.
In the asynchronous case, buffers are additionally added to close the collection.

Definition 3. (Configurations) A configuration of a system Sys is a tuple conf = (M̂ ,S ,H,A) where
(M̂ ,S ) ∈ Sys is a structure, M̂ ∪ {H,A} is a closed collection, and ports(H) ∩ forb(M̂ ,S ) = ∅. The
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set of configurations is written Conf(Sys). The set of configurations of Sys with polynomial-time user H

and adversary A is called Confpoly(Sys). The index poly is omitted if it is clear from the context. The initial
states of all machines in a configuration are a common security parameter k in unary representation. 3

2.2 Capturing Asynchronous Runs

For a configuration, both models define a probability space of runs (sometimes called traces or executions).
In the asynchronous model, scheduling of machines is done sequentially, so we have exactly one active
machine M at any time. If this machine has clock-out ports, it is allowed to select the next message to be
scheduled as explained at the beginning of Section 2.1. If this message exists, it is delivered by the buffer and
the unique receiving machine is the next active machine. If M tries to schedule multiple messages, only one
is taken, and if it schedules none or the message does not exist, the special master scheduler is scheduled.
This is formally captured as follows.

Definition 4. (Asynchronous Runs and Views) For a given configuration conf = (M̂ ,S ,H,A) with master
scheduler X ∈ M̂ ∪ {A}, set Ĉ := [M̂ ∪ {H,A}]. The probability space of runs is defined inductively by
the following algorithm. It has a variable r for the resulting run, an initially empty list, a variable MCS

(“current scheduler”) over machine names, initially MCS := X, and treats each port as a variable over Σ∗,
initialized with ε except for clk/? := 1. Probabilistic choices only occur in Phase (1).

1. Switch current scheduler: Switch machine MCS, i.e., set (s′, O)← δMCS
(s, I) for its current state s and

input port values I . Then assign ε to all input ports of MCS.
2. Termination: If X is in a final state, the run stops.
3. Buffer messages: For each simple output port q! of MCS, in their given order, switch buffer q̃ with input

q↔? := q!, cf. Figure 1. Then assign ε to all these ports q! and q↔?.
4. Clean up scheduling: If at least one clock-out port of MCS has a value 6= ε, let q/! denote the first such

port and assign ε to the others. Otherwise let clk/? := 1 and MCS := X and go back to Phase (1).
5. Scheduled message: Switch q̃ with input q/? := q/! (cf. Figure 1), set q? := q↔! and then assign ε to all

ports of q̃ and to q/!. Let MCS := M′ for the unique machine M′ with q? ∈ ports(M′). Go back to Phase
(1).

Whenever a machine (this may be a buffer) with name nameM is switched from (s, I) to (s′, O), we add a
step (nameM, s, I ′, s′, O) with I ′ := IdlM(s) to the run r, except if s is final or I ′ = (ε, . . . , ε). This gives a
random variable for each value of the security parameter denoted as run conf ,k, hence we obtain a family of
random variables

runconf = (runconf ,k)k∈N.

The view of a subset M ⊂ Ĉ in a run r is the restriction of r to M , i.e., the subsequence of all steps
(nameM, s, I, s′, O), where nameM is the name of a machine M ∈ M . This gives a family of random
variables

viewconf (M ) = (view conf ,k(M ))k∈N.

For a singleton M = {H} we write view conf (H) instead of view conf ({H}). 3

This rather informal definition of runs can naturally be formalized using transition probabilities, which
induce probability spaces over the finite sequences of steps similar to Markov Chains. The extension to
infinite sequences can then be achieved using well-established results of measure theory and probability
theory, cf. Section 5 of [31]. It is further easy to show that views of polynomial-time machines are of
polynomial size.
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2.3 Capturing Synchronous Runs

In the synchronous model, ports, machines, collections, structures, and systems are defined similar to the
asynchronous model. The only exception is that there are no clock ports and no buffers, which have only
been included to model asynchronous timing, i.e., corresponding ports p? and p! are directly connected.
The main difference is the definition of runs. Instead of our asynchronous run algorithm (cf. Definition 4),
runs are defined using rounds which is the usual concept in synchronous scenarios. Every global round is
again divided into n so-called subrounds, and there is a mapping κ, called clocking scheme, from the set
{1, . . . , n} into the powerset of considered machines, i.e., the machines of the structure, the user, and the
adversary. κ(i) denotes which machines switch in subround i. After finishing the n-th subround, the run
starts the first subround of the next global round. At the beginning of each subround, all messages from
the previous subround are transported from the output ports to the connected input ports. After that, each
machine of κ(i) switches with its current inputs yielding a finite distribution over the set of states and the
set of possible outputs.

Definition 5. (Clocking Scheme) A clocking scheme κ for a configuration (M̂ ,S ,H,A) and n ∈ N is a
mapping from the set {1, . . . , n} to the powerset of M̂ ∪ {H,A}, i.e., it assigns each number a subset of the
machines. 3

Definition 6. (Synchronous Runs and Views) Given a configuration conf = (M̂ ,S ,H,A) along with a
clocking scheme κ for n ∈ N, runs are defined as follows: Each global round i has n subrounds. In subround
[i.j] all machines M ∈ κ(j) switch simultaneously, i.e., each state-transition function δM is applied to M’s
current input yielding a new state and output (probabilistically). The output at a port p! is available as
input at p? until the machine with port p? is switched. If several inputs arrive until that time, they are
concatenated. This gives a family of random variables

runconf = (runconf ,k)k∈N.

More precisely, each run is a function mapping each triple (M, i, j) ∈ M̂ ∪ {H,A} × N × {1, . . . , n} to a
quadruple (s, I ′, s′, O) of the old state, inputs (with I ′ := IdlM(s) again), new state, and outputs of machine
M in subround [i.j], with I ′ ≡ ε, O ≡ ε, and s = s′ if M is not switched in this subround. The view of a
subset M ⊂ M̂ ∪ {H,A} in a run r is the restriction of r to M × N × {1, . . . , n}. This gives a family of
random variables

viewconf (M ) = (view conf ,k(M ))k∈N.

3

Again, the view of a polynomial-time machine can easily be shown to be of polynomial size.

Remark 1. Alternatively, we can consider runs as a sequence of seven-tuples (M, i, j, s, I ′, s′, O) for as-
cending values of i and j. More formally, we first have all tuples (M, 1, 1, s, I ′, s′, O) for M ∈ κ(1). The
order of these tuples can be chosen arbitrary since they switch simultaneously and do not influence each
other. After that, we have the steps (M, 1, 2, s, I ′, s′, O) for all M ∈ κ(2) and so on, until we finally have
steps of the form (M, 1, n, s, I ′, s′, O) for all M ∈ κ(n). We then continue with (M, 2, 1, s, I ′, s′, O) etc.
Obviously, this characterization of runs is equivalent to the original one (we just expanded the function), but
it is better suited for our upcoming proofs.

Instead of arbitrary clocking schemes as in the above definition of runs, the authors of [35] focus on only
one special clocking scheme κ, given by (M̂ ∪ {H}, {A}, {H}, {A}). Clocking the adversary between the
correct machines is the well-known model of “rushing adversaries”. In [35], it has been shown that this
clocking scheme does not restrict the possibilities of the adversary, hence we can use it without loss of
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generality. Moreover, we restrict ourselves to those configurations where the honest user and the adversary
are only connected via one duplex channel. This is indeed no restriction to generality in the synchronous
model, because outputs at several ports to the same machine can simply be concatenated using a separation
symbol and decomposed again, respectively. In the following, we give these two channels fixed names pA H

and pH A, i.e., pA H! sends messages from A to H and vice versa.

2.4 Simulatability

The definition of one system securely implementing another one is based on the common concept of sim-
ulatability. Simulatability essentially means that whatever might happen to an honest user in a real system
Sys real can also happen in an ideal (abstract) system Sys id: For every structure struc1 ∈ Sys real, every user
H, and every adversary A1, there exists an adversary A2 on a corresponding ideal structure struc2 such that
the view of H is indistinguishable in the two configurations. Indistinguishability (“≈”) is a well-defined
cryptographic notion from [43]. We only give the definition of computational indistinguishability; a more
comprehensive definition is given in the Appendix.

Definition 7. (Computational Indistinguishability) Two families (vark)k∈N and (var′k)k∈N of random vari-
ables (or probability distributions) on common domains Dk are computationally indistinguishable (“≈”) if
for every algorithm Dis (the distinguisher) that is probabilistic polynomial-time in its first input,

|P (Dis(1k, vark) = 1)− P (Dis(1k, var′k) = 1)| ∈ NEGL.1

Intuitively, given the security parameter and an element chosen according to either vark or var′k, Dis tries to
guess which distribution the element came from. 3

Corresponding structures in the simulatability definition are designated by a function f from Sys real to the
powerset of Sys id. The function f is called valid if it maps structures with the same set of specified ports.
We only give the definition of simulatability based on computational indistinguishability, which captures
the most common case when applying simulatability to cryptographic protocols. A more comprehensive
definition based on the remaining notions of indistinguishability is again postponed to the Appendix; our
results hold as well for this more general definition.

Definition 8. (Simulatability) Let systems Sys 1 and Sys2 with a valid mapping f be given. We say
Sys1 ≥

f Sys2 (at least as secure as) if for every polynomial-time configuration conf 1 = (M̂1,S ,
H,A1) ∈ Conf(Sys1), there exists a polynomial-time configuration conf 2 = (M̂2,S ,H,A2) ∈ Conf(Sys2)
with (M̂2,S ) ∈ f(M̂1,S ) (and the same H) such that view conf 1

(H) ≈ view conf 2
(H). 3

This is shown in Figure 2. In the following, we
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Fig. 2. Overview of the simulatability definition.

augment ≥ with a subscript sync or async to distin-
guish the definition of the synchronous and asyn-
chronous case. In a typical ideal system, each
structure contains only one machine TH called
trusted host, which serves as an ideal functional-
ity of the real system. The machine TH is usually
deterministic and maintains a very simple transi-

tion function, hence validation based on this ideal functionality is in scope of current verification techniques.

3 Idea and Definition of the Embedding

The informal idea of the embedding ϕSys is to add an explicit master scheduler that should simulate the syn-
chronous run induced by the given clocking scheme. However, due to the general distributed scheduling (cf.

1 The class NEGL denotes the set of all negligible functions, i.e., g : N → R≥0 ∈ NEGL if for all positive polynomials Q,
∃k0∀k ≥ k0 : g(k) ≤ 1/Q(k).
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Definition 4), leaving the actual machines unmodified leads to non-simulatable situations, as these machines
can clock themselves without ever giving control to this explicit master scheduler.

Hence, we first define a mapping ϕM that surrounds single synchronous machines (i.e., machines that
are designed for a synchronous environment) with an “asynchronous coat”. More precisely, if a synchronous
machine makes a transition, it obtains all inputs at once that arrived since its last scheduling, whereas in
asynchronous scenarios, these inputs come one by one and have to be processed in several transitions. Thus,
the surrounding asynchronous machine stores all inputs internally, until it is asked to perform the transition
of its synchronous submachine. It then schedules this submachine with the collected inputs and forwards its
outputs. As these asynchronous machines do not produce any clock outputs, the master scheduler can try to
simulate the synchronous time by a suitable scheduling strategy.

Definition 9 (Mapping ϕM). ϕM is a mapping on single synchronous machines that assigns every machine
Msync an asynchronous machine Masync := ϕM(Msync) by the following rules:

– The ports of Masync are given by PortsMasync
:= PortsMsync

◦ (pMsync
?), where ◦ denotes concatenation

of sequences.
– Internally, Masync maintains arrays (input storeMsync,p?)p?∈in(PortsMsync )

over Σ∗ initialized with ε ev-
erywhere, which are used for storing incoming messages at each port of Msync.

– Masync has the machine Msync as a blackbox submachine, i.e., it has its transition function δMsync
.

– Internally, Masync maintains exactly the states of Msync. Moreover, the initial and final states of both
machines are equal.

– On input i at p? 6= pMsync
?: It concatenates i to the element of input storeMsync,p?, i.e., it stores all inputs

until the machine Msync is eventually switched.
– On input i at pMsync

?: It applies the state transition function δMsync
on the contents of the arrays

input storeMsync,p? yielding a tuple (s′,O). Masync now assigns ε to input storeMsync,p? for all p? ∈
in(PortsMsync

), switches to the state s′ and outputs the tuple O. This case corresponds to the scheduling
of the synchronous machine; the port pMsync

? will be connected to the explicit master scheduler.

Obviously, Masync is polynomial-time by construction iff Msync is polynomial-time, since both machines
always stay in the same state after a transition and their final states are equal. Moreover, we define the
function ϕM on a set M̂ of synchronous machines by ϕM(M̂ ) :=

⋃
Msync∈M̂

ϕM(Msync). 3

Based on this definition, we now formalize the desired mapping ϕSys on synchronous systems.

Definition 10 (Mapping ϕSys ). Let an arbitrary synchronous system Sys sync = {(M̂sync,Ssync) | sync ∈ I }
for a finite index set I and a clocking scheme κ be given. We then define

ϕSys(Sys sync) := {(ϕM(M̂sync) ∪ {Xsync,κ},Ssync) | sync ∈ I }.

The machine Xsync,κ is an explicit master scheduler that has to be added to the considered structure to model
the synchronous clocking scheme κ in the asynchronous system. Its ports are given by

– {clk/?}: The master clock-in port.
– {p/! | p! ∈ Ports

M̂sync
}: Ports for clocking all output ports of the given structure.

– {p/! | p? ∈ free(M̂sync)}: Ports for clocking inputs of the systems (either made by H or A).
– {pA H

/!, pH A
/!}: Ports for clocking the connection between A and H.2

– {pM!, pM
/! |M ∈ (M̂sync ∪ {H,A})}: Ports for clocking, i.e., giving control to, each machine.

2 Note, that Xsync,κ is defined independent from the honest user H and the adversary A, so it cannot know their ports. We therefore
restricted the configuration to a fixed number and fixed names of ports between H and A (cf. Section 2.3).
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Internally, it maintains a variable local rnd over {1, . . . , n} and a variable global rnd over N both initialized
with 1. For the sake of readability, we describe the behavior of Xsync,κ using “for”-loops. This is just a
notational convention that should be understood as follows: every time Xsync,κ is scheduled, it performs the
next step of the loop.

1. Schedule Current Machines: For all machines M ∈ κ(local rnd ) output (global rnd , local rnd) at
pM!, 1 at pM

/!. The order of the switched machines can be chosen arbitrary.
2. Schedule Outgoing Buffers: For all M ∈ κ(local rnd) output 1 at every port p/! with p! ∈ PortsM.

Here, the order of the switched machines can only be chosen arbitrary with the restriction that output
ports of the adversary are scheduled first if A ∈ κ(local rnd).3

3. Switch to next Round: Set local rnd := local rnd + 1. If local rnd > n, set global rnd :=
global rnd + 1 and local rnd := 1. Go to Phase (1).

3

To put it all into a nutshell, the specific master scheduler simulates the clocking scheme κ by first scheduling
the machines that ought to switch in the particular subround (Step 1) and afterwards scheduling all buffers
that could be influenced by outputs of these machines (Step 2). Finally, it switches to the next subround
(Step 3) and continues with the first step again.

Moreover, we define a mapping ϕconf on synchronous configurations of a system Sys , i.e., configura-
tions which consist of synchronous machines only, by

ϕconf (M̂sync,Ssync,H,A) := (ϕM(M̂sync) ∪ {Xsync,κ},Ssync, ϕM(H), ϕM(A)),

with Xsync,κ given as in ϕSys for the particular structure. We will in the following simply write ϕ instead of
ϕSys , ϕM, and ϕconf if its meaning is clear from the context.

4 Preliminary Work for the Embedding Theorems

We now have to prove that the function ϕ has the desired properties with respect to simulatability, i.e.,

ϕSys(Sys sync,1) ≥async ϕSys(Sys sync,2)⇒ Syssync,1 ≥sync Syssync,2.

This captures the content of our first embedding theorem. Unfortunately, the converse direction does not
hold, but our second embedding theorem will state a weaker version that is still sufficient for our purpose.

4.1 Proof Overview

Before we turn our attention to the auxiliary lemmas for the embedding theorems we exemplarily present
an informal description of the proof of the first embedding theorem. The proof consists of four steps. A
graphical illustration is given in Figure 3.

1. Starting with a synchronous configuration confsync,1 ∈ Conf(Sys sync,1), we apply our embedding func-
tion ϕconf which yields an asynchronous configuration confasync,1 ∈ Conf(ϕSys(Sys sync,1)). We now
define a mapping φ on the runs of the asynchronous system yielding runs of the synchronous system.
Intuitively, φ “compresses” an asynchronous run to its synchronous counterpart, which consists of much
less steps. We then show in Theorem 1 that view confsync,1

(Hsync) = φ(view confasync,1
(ϕ(Hsync))).

3 Without this restriction, the behavior of the adversary at its switching time could depend on outputs of machines scheduled in
the same subround, which would lead to non-simulatable situations.
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Fig. 3. Synchronous Simulatability derived by Asynchronous Simulatability.

2. We can now apply our precondition ϕSys(Sys sync,1) ≥
f
async ϕSys(Sys sync,2) yielding an indistin-

guishable configuration confasync,2 ∈ Conf(ϕSys(Sys sync,2)), written view confasync,1
(ϕ(Hsync)) ≈

view confasync,2
(ϕ(Hsync)). We then show that φ(view confasync,1

(ϕ(Hsync))) ≈ φ(view confasync,2
(ϕ(Hsync))).

3. We finally reverse the function ϕ by removing the coating of the user and the machines of the structure.
Since we do not know anything about the newly derived adversary Aasync,2, i.e., it is not forced to fit the
structure imposed by the mapping ϕ, we define a new adversary Async,2 using Aasync,2 as a black-box
submachine, and we will show in Theorem 2 that φ(view confasync,2

(ϕ(Hsync))) = viewconfsync,2
(Hsync).

4. Altogether, transitivity of the relation ≈ implies view confsync,1
(Hsync)) ≈ view confsync,2

(Hsync).

We first take a look at the runs in a synchronous system Sys sync and in its asynchronous counterpart
Sysasync := ϕ(Sys sync). In the following, we will simply write S instead of Ssync, because the set of speci-
fied ports is not influenced by the mapping ϕ.

4.2 Compressing asynchronous runs to synchronous counterparts

In the following, let an arbitrary synchronous system Sys sync with a clocking scheme κ and an arbitrary

configuration confsync = (M̂sync,S ,Hsync,Async) ∈ Conf(Sys sync) be given. Moreover, let an asynchronous

configuration confasync be given which fits the form confasync = (ϕ(M̂sync) ∪ {Xsync,κ},S , ϕ(Hsync),A
′)

(i.e., ϕ(confsync) but with an arbitrary adversary).4

First of all, note that runs of confasync always have a prescribed structure induced by the behavior of
the master scheduler Xsync,κ: they are built by “blocks”. The steps (Msync, i, j, s, I, s

′,O) of the machines
Msync ∈ M̂sync ∪ {Hsync} switched in round [i.j] in the synchronous run are represented by the following
two blocks in the asynchronous run.

4 Note that we investigate the more general case here that A
′ can be chosen arbitrarily instead of being the embedded adversary

ϕM(A). This generality will be helpful during the upcoming proofs.
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1. The first block consists of the steps induced by clocking the machines ϕ(Msync) with Msync ∈ κ(j) and
A′ if Async ∈ κ(j), i.e., Step (1) in the definition of Xsync,κ. More precisely, the block is built by |κ(j)|
sub-blocks, one for every switched machine. Every sub-block is built by the following steps.

– The first step of the sub-block is always given by (Xsync,κ, s1, Iclk/?=1, s
′
1,OpMsync !=(i,j),pMsync

/!=1)

for two arbitrary states s1, s
′
1 of Xsync,κ, i.e., the master scheduler schedules the machine ϕ(Msync)

respectively A′.
– After that, we have the transition of the scheduled buffer.
– We now have to distinguish the following two cases:
• If Msync 6= Async, there is a step (ϕ(Msync), s, IpMsync ?=(i,j), s

′, δMsync
(input storeMsync

)) and
steps for the receiving buffers.
• If Msync = Async, we have a step (A′, s, IpAsync ?=(i,j), s

′,O). If O 6= Oε we have steps for the
receiving buffers. If there are nonempty outputs at ports p! and p/! (which has to be a self-loop
because there are no free clock-in ports in the system), there is furthermore a clocking step for
this particular buffer. In this case, the adversary is scheduled again, so this sub-point of the block
is repeated until the self-loop of the adversary either ends or it is repeated forever in case of
divergence, i.e., we obtain a step (A′, s′, I ′, s′′,O) where I ′ is now given by I ′ := Ip?=Op!

and
so on.

2. The second block consists of the steps induced by clocking the outgoing messages of the switched
machines, i.e., Step (2) in the definition of Xsync,κ. Now the buffers of the output ports are switched by
the master scheduler. This is done similar as in the first part with the restriction that output ports of A ′

are clocked first if Async ∈ κ(j). The block again has |κ(j)| sub-blocks built by the following steps.
– The first step of the sub-block is given by (Xsync,κ, s1, Iclk/?=1, s

′
1,Op/!=1) for the first output port

p! ∈ ports(Msync) and two arbitrary states s1, s
′
1 of Xsync,κ.

– The step of the clocked buffer.
– In case of a nonempty output let M′ denote the unique machine with p? ∈ ports(M′). We now have

to distinguish two cases:
• If M′ 6= A′, there is a step (M′, s, I ′, s′,Oε), where I ′ consists of the output of ϕ(Msync) at p!.
• If M′ = A′, we obtain a step (A′, s, I ′, s′,O), where I ′ consists of the output of ϕ(Msync)

respectively A′ at p!. If O 6= Oε we have steps for the receiving buffers. If O has a clocked
self-loop, we proceed identical to the first block.

– The three previous steps are repeated for every output port of every machine Msync ∈ κ(j).

After this detailed description of the run, (i.e., its blocks) the mapping φ can be defined. Informally, it
combines the blocks of all machines Msync ∈ κ(j) yielding the synchronous steps of every machine Msync

that switches in the j-th subround of the particular global round.

Definition 11. (Mapping φ) Let an arbitrary synchronous system Sys sync with a clocking scheme κ and an

arbitrary configuration confsync = (M̂sync,S ,Hsync,Async) ∈ Conf(Sys sync) be given. For a given asyn-

chronous configuration confasync which fits the form confasync = (ϕ(M̂sync) ∪ {Xsync,κ},S , ϕ(Hsync),A
′),

we define the mapping φ on the runs of confasync by the following algorithm. The algorithm has internal
arrays (inputsM,p?) for M ∈ ϕ(M̂sync) ∪ {ϕ(Hsync),A

′} and p? ∈ in(PortsM). It goes from block to block
modifying them as follows.

1. Every step of a buffer is deleted from the run.
2. The two remaining steps of the first block are modified as follows. If the scheduled machine is

ϕ(Msync) 6= A′, then the block is replaced by (Msync, i, j, s, inputsMsync
, s′, δMsync

(inputsMsync
)). If A′

is scheduled, the block is replaced by (A′, i, j, s, inputsAsync
, s′,OA′). Here, s denotes the state of A′

when it is switched by Xsync,κ, and s′ and OA′ are the state and the output of the last step of the block,
respectively (In case of divergence, the algorithm for defining the mapping φ diverges, too.).
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3. The algorithm starts searching through the second block doing the following. If a machine M ′ receives
a message i at p? in the second block, i is concatenated to the array inputsM′,p?.

4. Finally, every step of the second block is deleted from the run.

3

Note that all necessary information (e.g., Msync, i, j, s, s
′ etc.) is already given by the block except for the

inputs of each machine in the synchronous case. At this point, it also becomes clear why we defined the
master scheduler to schedule each machine specifically with a tuple (i, j) indicating the current global and
local round, since this information would otherwise not be contained in the asynchronous run.

To overcome the absence of the gathered inputs in the run, the algorithms has to collect all “partial”
inputs itself in its third step, and it can use this information to calculate the outputs of each machine (although
for this, it could as well use the information contained in the run). Moreover, the new blocks built by the
mapping φ in one particular subround do not depend on the second block of this subround. The mapping φ
is obviously also defined on the view of arbitrary subsets of machines, because the step in the first block,
carrying the information of the step, and the message-receiving steps in the second block will also be part of
the view of the considered machine. Furthermore, note that the mapping φ is explicitly defined for arbitrary
adversaries A′ (not only for ϕ(Async)) which we will need in Theorem 2. Furthermore, the following lemma
establishes a computational bound on the mapping φ in polynomial-time configurations:

Lemma 1. If confasync is a polynomial-time configuration that fits the form required by Definition 11, then
φ applied to the view of the honest user and the adversary is computable in polynomial-time. 2

4.3 Auxiliary Theorems

The following theorem captures the first step of our proofsketch of Section 4.1.

Theorem 1. Let a synchronous system Sys sync, a clocking scheme κ, and a configuration confsync =

(M̂sync,S ,Hsync,Async) ∈ Conf(Sys sync) be given, and set confasync := ϕ(confsync). Then

view confsync
(Msync) = φ(view confasync

(ϕ(Msync)))

for every Msync ∈ (M̂sync ∪ {Hsync,Async}). confasync is polynomial-time iff confsync is polynomial-time. 2

After performing this first step of the proof, asynchronous simulatability can now be applied. In order to
convert the derived asynchronous configuration into a synchronous configuration again (cf. Step 3 of our
proofsketch), we present the following theorem (again postponing its proof to the Appendix).

Theorem 2. Let an arbitrary synchronous system Sys sync and a clocking scheme κ be given such that
every machine and the honest user are clocked at most once between two successive clockings of the ad-
versary. Furthermore, let an arbitrary configuration confasync ∈ Conf(ϕ(Sys sync)) of the form confasync =

(ϕ(M̂sync) ∪ {Xsync,κ},S , ϕ(Hsync),Aasync) be given. Then there exists an adversary Async using Aasync as
a blackbox such that for confsync := (M̂sync,S ,Hsync,Async), it holds

view confsync
(Msync) = φ(view confasync

(ϕ(Msync)))

for every Msync ∈ (M̂sync ∪ {Hsync}). confasync is polynomial-time iff confsync is polynomial-time. 2

Note, that the standard clocking scheme (M̂ ∪ {H}, {A}, {H}, {A}) fulfills the postulated requirement.
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5 The Embedding Theorems

This section contains our two main theorems. We start with a lemma capturing some simple properties of
indistinguishable random variables. The lemma is well-known and easily proved.

Lemma 2 (Indistinguishability). Indistinguishability of two families of random variables implies indistin-
guishability of any function φ of them. For the polynomial case, the function φ has to be polynomial-time
computable. Moreover, identically distributed variables are indistinguishable and indistinguishability is an
equivalence relation. 2

Theorem 3. (First Embedding Theorem) Let two arbitrary synchronous systems Sys sync,1 and Sys sync,2

with clocking schemes κ1 and κ2 be given such that κ2 fulfills the property that every machine of the sys-
tem and the user is clocked at most once between two successive clockings of the adversary. Furthermore,
ϕ(Sys sync,1) ≥

f
async ϕ(Sys sync,2) should hold for a valid mapping f . Then

Sys sync,1 ≥
f ′

sync Sys sync,2,

where f ′ is derived from f by (M̂2,S2) ∈ f ′(M̂1,S1)⇔ ϕ(M̂2,S2) ∈ f(ϕ(M̂1,S1)). 2

Using the result of the previous theorems, the proof will be rather simple, cf. the illustration in Figure 3.

Proof. Let an arbitrary configuration confsync,1 = (M̂sync,1,S ,Hsync,Async,1) ∈ Conf(Sys sync,1) be given.

1. We apply ϕconf on confsync,1 yielding a configuration confasync,1 = (ϕ(M̂sync,1) ∪ {Xsync,1,κ1
},S ,

ϕ(Hsync), ϕ(Async,1)) ∈ Conf(Sysasync,1). According to Theorem 1, applying the mapping φ to the
runs of confasync,1 yields

view confsync,1
(Hsync) = φ(view confasync,1

(ϕ(Hsync))).

Moreover, if confsync,1 is polynomial-time then confasync,1 is also polynomial-time, and the mapping φ
is polynomial-time computable.

2. Thus, the precondition ϕ(Sys sync,1) ≥
f
async ϕ(Sys sync,2) can be applied yielding a configuration

confasync,2 = (ϕ(M̂sync,2) ∪ {Xsync,2,κ2
},S , ϕ(Hsync),Aasync,2) ∈ Conf(Sysasync,2) with

view confasync,1
(ϕ(Hsync)) ≈ view confasync,2

(ϕ(Hsync))

and ϕ(M̂sync,2,S ) ∈ f(ϕ(M̂sync,1,S )). Moreover, in the computational case, confasync,2 is polynomial-
time, so the mapping φ is polynomial-time computable. Using Lemma 2, this yields

φ(view confasync,1
(ϕ(Hsync))) ≈ φ(view confasync,2

(ϕ(Hsync))).

3. We now apply Theorem 2 to the configuration confasync,2, which yields a configuration confsync,2 =
(M̂sync,S ,Hsync,Async,2) ∈ Conf(Sys sync,2) with

φ(view confasync,2
(ϕ(Hsync))) = viewconfsync,2

(Hsync).

According to Theorem 2, confsync,2 is a polynomial-time configuration iff confasync,2 is polynomial.
4. Putting it all together, we have

– view confsync,1
(Hsync) = φ(view confasync,1

(ϕ(Hsync)))
– φ(view confasync,1

(ϕ(Hsync))) ≈ φ(view confasync,2
(ϕ(Hsync))) and

– φ(view confasync,2
(ϕ(Hsync))) = view confsync,2

(Hsync).
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Using Lemma 2, we obtain view confsync,1
(Hsync) ≈ viewconfsync,2

(Hsync). Hence, confsync,2 is an indis-

tinguishable configuration for confsync,1. Moreover, we have ϕ(M̂sync,2,S ) ∈ f(ϕ(M̂sync,1,S )), i.e.,

(M̂sync,2,S ) ∈ f ′(M̂sync,1,S ) which yields the desired result Sys sync,1 ≥
f ′

sync Sys sync,2.

Note that the theorem is applicable to the standard clocking scheme. So far, we have shown that asyn-
chronous simulatability among these asynchronous representations implies synchronous simulatability, i.e.,

ϕSys(Sys sync,1) ≥async ϕSys(Sys sync,2)⇒ Syssync,1 ≥sync Syssync,2.

We already briefly stated in the previous section that the converse implication does not hold in general. We
had to show that for each configuration confasync,1 ∈ Conf(ϕSys(Sys sync,1)) there exists an indistinguishable
configuration confasync,2 ∈ Conf(ϕSys(Sys sync,2)) provided that Sys sync,1 ≥sync Sys sync,2.

However, both the honest user and the adversary may have clock-out ports and they can alternately
schedule each other (and also the system erratically), which we cannot capture by a fixed synchronous
clocking scheme, so we cannot exploit our assumption Sys sync,1 ≥sync Sys sync,2.

Anyhow, it is sufficient for our purpose to show that the claim holds for at least those configurations
where the honest user Hasync fits the form ϕM(Hsync) for a synchronous machine Hsync. We denote this
version of simulatability for the restricted class of users by ≥async,H in the sequel. Looking at the proof of
the first embedding theorem, it is immediately clear that the theorem also holds for the weaker precondition
ϕSys(Sys sync,1) ≥async,H ϕSys(Sys sync,2), since we only need to derive an indistinguishable configuration
for users of the special form ϕ(Hsync), and the user remains unchanged at simulatability. We can now capture
the content of the second embedding theorem as

Sys sync,1 ≥sync Sys sync,2 ⇒ ϕSys(Sys sync,1) ≥async,H ϕSys(Sys sync,2).

Theorem 4. (Second Embedding Theorem) Let two arbitrary synchronous systems Sys sync,1 and Sys sync,2

with clocking schemes κ1 and κ2 be given such that κ1 fulfills the property that every machine of the sys-
tem and the user is clocked at most once between two successive clockings of the adversary. Furthermore,
Sys sync,1 ≥

f
sync Sys sync,2 should hold for a valid mapping f . Then

ϕ(Sys sync,1) ≥
f ′

async,H ϕ(Sys sync,2)

where f ′ is derived from f by ϕ(M̂2,S2) ∈ f ′(ϕ(M̂1,S1)) :⇔ (M̂2,S2) ∈ f(M̂1,S1). 2

6 Deriving Synchronous Theorems from Asynchronous Ones

Recall that our long-term goal is to avoid proving each and every theorem and lemma for both models. We
now briefly show how our two embedding theorems can be used for circumventing this problem. One of the
most important theorems of both models is transitivity of the relation ≥.

Lemma 3 (Transitivity). If Sys1 ≥
f1 Sys2 and Sys2 ≥

f2 Sys3, then Sys1 ≥
f3 Sys3, where f3 := f2 ◦ f1

is defined as f3(M̂1,S ) being the union of the sets f2(M̂2,S ) with (M̂2,S ) ∈ f1(M̂1,S ). 2

This has been proven in [35] for the synchronous and in [37] for the asynchronous model. We now exem-
plarily show how to derive the synchronous version from the asynchronous one using our previous results.

Lemma 4. (Asynchronous Version of Transitivity implies Synchronous Version) Assume that the asyn-
chronous version of the transitivity lemma (Lemma 3) has already been proven, then the synchronous version
holds as well. 2
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Proof. We omit the superscripts fi for the sake of readability. Let arbitrary synchronous systems Sys 1, Sys2,
and Sys3 be given such that Sys1 ≥sync Sys2 and Sys2 ≥sync Sys3. We have to show that Sys1 ≥sync Sys3

holds, provided that asynchronous transitivity has already been proven. According to our second embedding
theorem, we know that

ϕ(Sys1) ≥async,H ϕ(Sys2) and ϕ(Sys2) ≥async,H ϕ(Sys3).

Obviously, the asynchronous version of transitivity is applicable to the relation ≥async,H instead of ≥async as
well, since it is a special case only, and the honest user remains unchanged at simulatability. Thus, we can
apply our (already proven) asynchronous version of the transitivity lemma, which yields

ϕ(Sys1) ≥async,H ϕ(Sys3).

Now, we use our first embedding theorem in conjunction with its subsequent remarks (stating that the theo-
rem holds as well for the restricted version ≥async,H of simulatability) yielding Sys1 ≥sync Sys3.

This proof technique is applicable to almost all theorems that rely on simulatability. As the most important
example, we name the preservation theorem [36, 4], which states that integrity properties expressed in linear-
time logic are preserved under simulatability. The proof of this theorem is difficult and comprises several
pages for both models. Using our work, the synchronous proof could as well be omitted.

However, this proof techniques is unfortunately not immediately applicable to carry over lemmas dealing
with composition of systems, since it is not immediately clear what the result of composing two systems
with different master schedulers is. This problem can probably be circumvented as follows. First, both master
schedulers are combined to an overall scheduler X for the whole system. Secondly, an intermediate system
can be defined, where this combined master scheduler is split into two separate machines X1 and X2 such
that X1 stays the true master scheduler with the unique master clock-in port clk/?, and X2 is considered as a
“slave” master scheduler, i.e., a usual machine that is explicitly given control by X2 to handle the scheduling
demands of “its” system. Finally, our embedding theorems are applicable in this intermediate system, and the
resulting schedulers can be composed again to an overall master scheduler. However, formally establishing
this result requires additional research.
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A Postponed Definitions

The following definition for indistinguishability of random variables is essentially from [43].

Definition 12. (Indistinguishability) Two families (vark)k∈N and (var′k)k∈N of random variables (or proba-
bility distributions) on common domains Dk are

a) perfectly indistinguishable (“=”) if for each k, the two distributions vark and var′k are identical.
b) statistically indistinguishable (“≈SMALL”) for a suitable class SMALL of functions from N to R≥0 if

the distributions are discrete and their statistical distances

∆(vark, var
′
k) :=

1

2

∑

d∈Dk

|P (vark = d)− P (var′k = d)| ∈ SMALL

(as a function of k). SMALL should be closed under affine addition, and with a function g also contain
every function g′ ≤ g.

c) computationally indistinguishable (“≈poly”) if for every algorithm Dis (the distinguisher) that is proba-
bilistic polynomial-time in its first input,

|P (Dis(1k, vark) = 1)− P (Dis(1k, var′k) = 1)| ∈ NEGL.

Intuitively, given the security parameter and an element chosen according to either vark or var′k, Dis

tries to guess which distribution the element came from. The class NEGL denotes the set of all negligible
functions, i.e., g : N→ R≥0 ∈ NEGL if for all positive polynomials Q, ∃k0∀k ≥ k0 : g(k) ≤ 1/Q(k).

We write ≈ if we want to treat all three cases simultaneously. 3

For reasons of completeness, we now present the extended definition of simulatability, based on the three
different kinds of indistinguishability. Definition 8 was simplified in the sense that only computational indis-
tinguishability of views was covered, which represents the most common case when applying simulatability
to cryptographic protocols.

Definition 13. (Simulatability) Let systems Sys 1 and Sys2 with a valid mapping f be given.

a) We say Sys1 ≥
f,perf
sec Sys2 (perfectly at least as secure as) if for every configuration conf 1 = (M̂1,S ,

H,A1) ∈ Conf(Sys1), there exists a configuration conf 2 = (M̂2,S ,H,A2) ∈ Conf(Sys2) with
(M̂2,S ) ∈ f(M̂1,S ) (and the same H) such that

view conf 1
(H) = viewconf 2

(H).
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b) We say Sys1 ≥
f,SMALL
sec Sys2 (statistically at least as secure as) for a class SMALL if the same as in a)

holds with view conf 1,l(H) ≈SMALL view conf 2,l(H) for all polynomials l, i.e., statistical indistinguisha-
bility of all families of l-step prefixes of the views.

c) We say Sys1 ≥
f,poly
sec Sys2 (computationally at least as secure as) if the same as in a) holds with configu-

rations from Confpoly(Sys1) and Confpoly(Sys2) and computational indistinguishability of the families
of views.

In all cases, we call conf 2 an indistinguishable configuration for conf 1. Where the difference between the
types of security is irrelevant, we simply write ≥f

sec, and we omit the indices f and sec if they are clear from
the context. 3

B Postponed Proofs

Proof. (Lemma 1) In case of a polynomial configuration, especially the adversary has to be polynomial-
time. This implies that there cannot be any infinite successive clocked self-loops, so the steps of every
sub-block are bounded by a polynomial in the security parameter k. Moreover, both the adversary and the
honest user will reach final state after a polynomial number of blocks, so the algorithm for φ applied to the
view either of the honest user or the adversary only makes a polynomial number of transition, each one with
a polynomial number of steps.5 This implies that φ is computable in polynomial-time when applied to the
view of the honest user and the adversary if it is used in a polynomial-time configuration.

Proof. (Theorem 1) Note that the view of ϕ(Msync) does only contain the steps of its internal blackbox
function-call after being modified by the mapping φ. Thus, it is sufficient to show that the inputs of the
blackbox call in confasync and the original inputs of Hsync in confsync are equal. It is quite easy to see that
the arrays input storeMsync

and inputsMsync
are always equal if the machine Msync is switched. This can

easily be proven by induction over the number of (sub-)rounds. In the first round, both arrays are empty
yielding a correct start of the induction. Starting with the second round, the contents of these arrays are
totally determined by the inputs at the ports of Msync. However, these inputs only depend on prior outputs
of other machines M . Moreover, these outputs have to be equal because these machines used the same input
tuple in both configurations, since we have input storeM = inputsM by induction hypothesis. Therefore,
the arrays inputsMsync

and input storeMsync
must be equal at replacing the block by construction of the

algorithm, so δMsync
(s, inputsMsync

) = δMsync
(s, input storeMsync

) also holds. We do not have to worry about
the arrangement of the blocks because of the following reasons. First of all, note that we first switch all
machines in a subround and schedule the outgoing messages afterwards. Moreover, messages sent by the
adversary are always scheduled first if the adversary is scheduled in the considered subround. This prevents
that machines which should switch simultaneously in the synchronous system may influence each other in
the asynchronous system in the same subround. If we did not consider this restriction, the adversary would
be able to create a message that is scheduled in this particular subround, but nevertheless depends on inputs
arriving in this subround.

Putting it all together, the runs induced by the mapping φ in confasync and the original runs are equal by
definition of φ, so we finally obtain

view confsync
(Msync) = φ(view confasync

(ϕ(Msync)))

5 Deleting the steps of the buffers of one block needs a constant number of steps, because it is always bounded by the number
of output ports of the considered machine, replacing the block can surely be done using a constant number of steps. Finally,
searching and deleting the second block needs a polynomial number of steps.
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for an arbitrary configuration confsync ∈ Conf(Sys sync), confasync := ϕ(confsync), and an arbitrary Msync ∈

(M̂sync ∪ {Hsync,Async}). As a special case, this implies

view confsync
(Hsync) = φ(view confasync

(ϕ(Hsync)))

which finishes our proof.

Proof. (Theorem 2) We first reverse our function ϕ on the structure (ϕ(M̂sync) ∪ {Xsync,κ},S ) and on the
user ϕ(Hsync) yielding the structure (M̂sync,S ) of Sys sync,2 and the original honest user Hsync. Note, that we
cannot reverse the function ϕ on the new adversary Aasync in the same way, because we did not demand it to
have a similar internal structure, so we construct a new adversary Async for the synchronous configuration
as follows. The ports of Async are given by

{p | pC ∈ (ports(M̂sync) ∪ ports(Hsync)) ∧ p 6∈ (ports(M̂sync) ∪ ports(Hsync))},

i.e., it connects to all remaining free ports of M̂sync and Hsync. Internally, Async maintains an array
(output storep!)p!∈out(ports(Aasync)) of lists over Σ∗ all initially empty.

Async has the adversary Aasync as a blackbox submachine and its behavior is defined as follows. If Async is
clocked in the synchronous system, it gets an input tuple I = (Ip?)p?∈in(ports(Async)). It now tries to restore the
order in which these messages would have arrived in the asynchronous system. More precisely, it knows the
clocking scheme κ, so it know which machines have been clocking after the last clocking of Async. Moreover,
it knows the order in which machines are switched by Xsync,κ in one particular subround. Using the order on
the ports of the asynchronous machines, it can finally decide in which order messages sent by one machine
on different ports would have arrived in the asynchronous system. The only problem which might arise is that
a machine has been clocked more then once since the last clocking of the adversary. This might result in two
inputs at the same port of Async which would be concatenated without any separation symbol. Such an input
would not be restorable into its original form, so we had to include the restriction to the considered clocking
scheme that every machine and the user are at most clocked once between two successive clockings of the
adversary. Note, that our usually used clocking scheme (M̂ ∪{H}, {A}, {H}, {A}) fulfills this requirement.

After restoring both the usual messages and their order, Async uses the blackbox function δAasync
on

the first input yielding an output tuple O. This tuple O is appended to the array output store , i.e. each
component Op! is appended to output storep!. If there is a nonempty output c at a clock-out port p/!, we
would have a clocked self-loop in confasync if output storep![c] 6= ε. In this case, this component is removed
from the array and δAasync

is called again with the new state and I := Ip?=output storep![c]
and so on.

The above steps are repeated with the second input and the new state of Aasync and so on until all inputs
have been considered. Finally, the blackbox function is used with IpAsync?=(i,j) where i denotes the global

round and j denotes the subround the adversary is clocked in.6 This correspond to the clocking signal of
Xsync,κ in the asynchronous system. The output tuple is again concatenated to the same array and possible
clocked self loops are considered again. Finally, Async outputs the first elements of each list of output store p!

with p!C ∈ ports(M̂sync ∪ {Hsync}) as its output tuple O and removes these elements from the lists.
Note, that this newly defined adversary Async is polynomial iff Aasync is polynomial by construction.

Thus, if the original configuration confasync has been polynomial-time (i.e., the user ϕ(Hsync) and the adver-
sary Aasync must be polynomial-time) then the configuration confsync = (M̂sync,S ,Hsync,Async) will also be
polynomial-time, since the runtime of Hsync is always bounded by ϕ(Hsync).

Async “reverse” the function ϕ by construction. The asynchronous adversary would receive many single
inputs, and it would produce outputs every time which would be stored in the outgoing buffers. Possible

6 The adversary obviously knows both i and j because he knows the clocking scheme κ, so he may simply maintain two counters
that he adapts every time he is clocked.
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clocked self-loops are handled by repeated calls of the transition function with correct inputs. If Aasync is
scheduled by Xsync,κ it again performs an arbitrary transition and the first element of its outgoing buffer
would be clocked. The synchronous adversary first splits its input messages into their original order and
uses the blackbox function one by one storing the outputs in output store . The split inputs correspond to
the original inputs of the asynchronous system, so the output tuples are also equal after every step. Therefore,
the contents of output store always correspond to the outgoing buffers in the asynchronous system after a
clocking step of Aasync. If the synchronous adversary is clocked it again calls its blackbox function with the
correct input and stores the output in the array. After that, it outputs the first element of each list of the array
and removes these elements from the lists. In the asynchronous system messages stored in the outgoing
buffers are treated in the same way. More formally we can show the following lemma.

Lemma 5. We denote this “reversion” of ϕM by ϕ̄M and the reversion of the whole configuration by ϕ̄conf

for the moment. Then for an arbitrary configuration confasync = (ϕ(M̂sync)∪{Xsync,κ},S , ϕ(Hsync),Aasync)
we have

viewϕconf (ϕ̄conf (confasync))(ϕ(M)) = view confasync
(ϕ(M))

for every M ∈ (M̂sync ∪ {Hsync}) and

viewϕconf (ϕ̄conf (confasync))(Aasync) = view confasync
(Aasync)

where the view of Aasync in the first configuration is given as a submachine of ϕM(ϕ̄M(Aasync)). 2

Proof. The proof is illustrated in Figure 4. We first show that A′
async := ϕM(ϕ̄M(Aasync)) behaves exactly as

Aasync, i.e., both machines are perfectly indistinguishable for their environment. This is already sufficient to
show that the views of ϕ(M) for every M ∈ (M̂sync∪{Hsync}) are equal in both configurations because they
remain unchanged. We will also show that the view of Aasync is equal in both configurations which finishes
our proof.
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Fig. 4. Overview of the proof of Lemma 5.

We show that both adversaries A′
async and Aasync behave identically between two successive clockings.

Moreover, we show that the content of array output store p! of A′
async always equal the outgoing buffers p̃ in

the corresponding asynchronous configuration at every clocking of Aasync as a submachine of A′
async if we
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identify clockings of Aasync in both configurations in the natural way.7 Furthermore, we show that outputs
made by the adversary are always equal in both configurations.

At the start of the run both buffers and arrays are empty which fulfills our claim. Now assume that
A′

async receives an arbitrary input at p? 6= pAsync
?. It stores the message in its array input store p? and gives

the control to the master scheduler. If A′
async receives a non-empty input at pA? it applies the state transition

function δϕ̄M(Aasync) on the arrays input store . Now, the arrays input store are decomposed into single
inputs again preserving their original order, and the function δAasync

is applied to every such input. Since the
inputs are obviously equal in both configuration, we obtain identical outputs, and moreover identical views
for Aasync. By precondition, the arrays output store are mapped to the outgoing buffers. After one call of
δAasync

, every output at p! is stored either in output store p! or in p̃ at the same position, so they remain validly

mapped. Now, either the first component of output store p! or the first entry of p̃ for p!C ∈ (ports(M̂sync) ∪
{Hsync}) are output yielding identical outputs and therefore identical views for the environment in both
configurations, i.e.,

viewϕconf (ϕ̄conf (confasync))(ϕ(M)) = view confasync
(ϕ(M))

for M ∈ (M̂sync ∪ {Hsync}). We already showed that the views of Aasync are equal in both configurations
which finishes our proof.

According to Lemma 5, the function ϕconf ◦ ϕ̄conf yields identical views for ϕ(M) for every M ∈ (M̂sync ∪
{Hsync}) and the asynchronous adversary, i.e.,

– viewϕconf (ϕ̄conf (confasync))(ϕ(M)) = view confasync
(ϕ(M)) and

– viewϕconf (ϕ̄conf (confasync))(Aasync) = view confasync
(Aasync).

We already showed in Theorem 1 that view confsync
(M) = φ(viewϕ(confsync)(ϕ(M))) holds for every

synchronous configuration confsync = (M̂sync,S ,Hsync,Async) and for every machine M ∈ (M̂sync ∪
{Hsync,Async}). If we now set confsync := ϕ̄conf (confasync), we obtain

– view confsync
(M) = φ(viewϕconf (ϕ̄conf (confasync))(ϕ(M)))

Moreover, this implies

– view confsync
(Async) = φ(viewϕconf (ϕ̄conf (confasync))(Aasync)))

since the views of Aasync and ϕ(ϕ̄(Aasync)) are identical. We apply the mapping φ on the first two equations
and, using Lemma 2, we obtain

– φ(viewϕconf (ϕ̄conf (confasync))(ϕ(M))) = φ(view confasync
(ϕ(M))) and

– φ(viewϕconf (ϕ̄conf (confasync))(Aasync)) = φ(view confasync
(Aasync))

Note, that φ is in fact defined on runs of these configuration because both the machines of the structure and
the honest user have the prescribed form. Using transitivity, we immediately obtain the desired result

view confsync
(M) = φ(view confasync

(ϕ(M)))

and
view confsync

(Async) = φ(view confasync
(Aasync))

As a special case we set M := Hsync which yields

view confsync
(Hsync) = φ(view confasync

(ϕ(Hsync))).

7 More precisely, this means that we identify the i-th clocking of Aasync in confasync with the i-th call of δAasync by A
′
async in

ϕconf (ϕ̄conf (confasync)).
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Proof. (Theorem 4) Before we turn our attention to the actual proof, we state the following lemma which
captures that we can “locally reverse” the function φ for the honest user:

Lemma 6. Let a synchronous system Sys sync, a clocking scheme κ and a configuration confsync =

(M̂sync,S ,Hsync,Async) ∈ Conf(Sys sync) be given. Let confasync = (ϕ(M̂sync)∪ {Xsync,κ},S , ϕ(Hsync),A
′)

be an arbitrary asynchronous configuration. If we now have given φ(view confasync
(ϕ(Hsync))) then we can

“locally reverse” the function φ for the view of the user, i.e., we can define a function φ−1
H on the runs of the

synchronous configuration, such that

viewconfasync
(ϕ(Hsync)) = φ−1

H

(
φ(view confasync

(ϕ(Hsync)))
)

holds. If confasync is polynomial-time, then φ−1
H is polynomial-time computable. 2

Proof. (Lemma 6) In order to prove the claim, we present an algorithm which undoes the changes of the
algorithm for deriving the mapping φ: It has an internal list over Σ+ initially empty, which will be used
to construct the desired view. For every subround j, it goes through all tuples (Msync, i, j, s, I, s

′,O′)
modifying them as follows: If Msync = Hsync for one machine of this subround, it appends
(ϕ(Hsync), s, IpHsync ?=(i,j), s

′,O′) to its internal list. Note that this tuple precisely matches the original
asynchronous tuple for switching the honest user ϕ(Hsync) by the master scheduler. After that, it pro-
ceed through all tuples of this subround in precisely the same order they have been scheduled by the
master scheduler (the algorithm is surely allowed to know the clocking scheme). For a given tuple of
the form (Msync, i, j, s, I, s

′,O′), it checks, whether there is a non-empty output at a port p! in O ′ with
p? ∈ ports(ϕ(Hsync)). In this case, the honest user would be clocked in the second asynchronous block,
so we use the state transition function δϕ(Hsync) on the current state s of ϕ(Hsync) and input Ip?=O′

p!
which

yields a new state s′ and an (all-empty) output Oε. We then add a step (ϕ(Hsync), s, Ip?=O′
p!
, s′,Oε). This is

done for all ports of Msync according to their order and for all machines that switch in the consider subround.
Obviously, this algorithm reverses the mapping φ for the honest user by construction. In case of a polyno-
mial configuration, especially the adversary has to be polynomial-time. This implies that there cannot be any
infinite successive clocked self-loops. Moreover, both the adversary and the honest user will reach final state
after a polynomial number of blocks, so the algorithm for φ−1

H applied to the view of the honest user will
only makes a polynomial number of transition, each one with a polynomial number of steps. This implies
that φ is computable polynomial-time applied to the view of the honest user if it is used in a polynomial-time
configuration.

For readability, we again set Sysasync,1 := ϕ(Sys sync,1) and Sysasync,2 := ϕ(Sys sync,2). Let now an

arbitrary configuration confasync,1 = (ϕ(M̂sync,1) ∪ {Xsync,1,κ1
},S , ϕ(Hsync),Aasync,1) ∈ Conf(Sysasync,1)

be given.

1. We apply Theorem 2 on confasync,1 which yields a synchronous configuration confsync,1 = (M̂sync,1,S ,
Hsync,Async,1) ∈ Conf(Sys sync,1) with

φ(view confasync,1
(ϕ(Hsync))) = viewconfsync,1

(Hsync).

Moreover, if confasync,1 is polynomial-time then confsync,1 is also polynomial-time, and the mapping φ
is polynomial-time computable.

2. Now the precondition Sys sync,1 ≥sync Sys sync,2 can be applied yielding a configuration confsync,2 =

(M̂sync,2,S ,Hsync,Async,2) ∈ Conf(Sys sync,2) with

view confsync,1
(Hsync) ≈ view confsync,2

(Hsync)

and (M̂sync,2,S ) ∈ f(M̂sync,1,S ). Moreover, in the computational case, confsync,2 is polynomial-time.
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3. We now apply Theorem 1 to the configuration confsync,2 which yields a configuration confasync,2 =
(ϕ(M̂sync,2) ∪ {Xsync,2,κ2

},S , ϕ(Hsync), ϕ(Async,2)) with

view confsync,2
(Hsync) = φ(view confasync,2

(ϕ(Hsync))).

Moreover, confasync,2 is a polynomial configuration iff confsync,2 is polynomial, according to Theorem 1.
4. Putting it all together, we have

– φ(view confasync,1
(ϕ(Hsync))) = view confsync,1

(Hsync)
– view confsync,1

(Hsync) ≈ viewconfsync,2
(Hsync)

– view confsync,2
(Hsync)) = φ(view confasync,2

(ϕ(Hsync)))
Using Lemma 2, we obtain

φ(view confasync,1
(ϕ(Hsync))) ≈ φ(view confasync,2

(ϕ(Hsync))).

We now finally apply our “reversing” function φ−1
H (cf. Lemma 6) on the above equation. Together with

Lemma 2
viewconfasync,1

(ϕ(Hsync)) ≈ viewconfasync,2
(ϕ(Hsync)).

Hence, confasync,2 is an indistinguishable configuration for confasync,1. Moreover, we have
(M̂sync,2,S ) ∈ f(M̂sync,1,S ), i.e., ϕ(M̂sync,2,S ) ∈ f ′(ϕ(M̂sync,1,S )), which yields the desired result

ϕ(Sys sync,1) ≥
f ′

async,H ϕ(Sysasync,2).
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