
RZ 3482 (# 99522) 09/29/2003
Computer Science 60 pages

Research Report

Enhancements and Prototype Implementation of the

ForCES Netlink2 Protocol

Guillaume Goutaudier

IBM Research
Zurich Research Laboratory
8803 Rüschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has
been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher,
its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside
publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports
are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich

“report”
2003/9/9
page iii

i
i

i

i
i

i
i

This document is the professional thesis I submitted to the Eurecom Insti-
tute and the École Doctorale STIC in partial fulfillment of the requirements
for the degree of telecom Engineer. It describes the Netlink2 protocol I imple-
mented during the 6 months I spent at the IBM Zurich Research Laboratory.
This work was based on the background knowledge I obtained at the Ecole Na-
tionale Supérieure des Télécommunications de Bretagne, the Eurecom Institute,
and the Université de Nice Sophia Antipolis.

It was supervised by Robert Haas (IBM supervisor) and Ernst Biersack
(Eurecom Professor). My manager at IBM was Patrick Droz (IBM Network
Processors manager).

I thank all members of the IBM Network Processors team for their useful advice,
as well as the authors of the Netlink2 ForCES IETF draft, Jamal Hadi Salim
(Znyx Networks) and Steven Blake (Ericsson IP Infrastructure).

ii

“report”
2003/9/9
page iiii

i
i

i

i
i

i
i

– Abstract –

The emergence of off-the-shelf network processor devices has created the need
for standard mechanisms to allow these components to be combined into func-
tional wholes. ForCES aims to define a framework and associated mechanisms
for standardizing the exchange of information between the logically separate
functionality of the control plane and the forwarding plane.

In the Unix world, Linux Netlink already addresses some ForCES require-
ments: Netlink2 intends to extend Netlink so that it is more compliant with
the ForCES requirements. After describing ForCES and Netlink, this paper ex-
plains some Netlink2 design choices. A description of our GPL Netlink2 Linux
implementation is also given. This description is followed by performance mea-
surements. Before concluding, we point out some open issues which should be
addressed in future.

iii

“report”
2003/9/9
page ivi

i
i

i

i
i

i
i

iv

“report”
2003/9/9
page vi

i
i

i

i
i

i
i

Contents

Abstract iii

1 ForCES 1
1.1 ForCES working group . 1
1.2 ForCES framework . 2
1.3 ForCES requirements . 3

2 Netlink 7
2.1 Netlink overview . 7
2.2 User applications view . 7
2.3 Kernel view . 9
2.4 Messages format . 10
2.5 Acknowledgments . 11
2.6 Two-phase commit . 12

3 Netlink2 15
3.1 Why use Netlink? . 15
3.2 Missing features . 17
3.3 Netlink2 overview . 18

3.3.1 Aims . 18
3.3.2 Netlink2 in the network stack 19
3.3.3 Message format . 19

3.4 Addressing: from Netlink to Netlink2 21
3.4.1 Related work . 21
3.4.2 Netlink addressing . 22
3.4.3 Netlink2 addressing . 23
3.4.4 Example . 24

3.5 SYN message . 26
3.6 Redundancy . 26

3.6.1 FE High Availability . 27
3.6.2 CE High Availability . 27

3.7 Capability query . 28
3.8 Loss detection . 30
3.9 Batching . 30

3.9.1 Related work . 30
3.9.2 Netlink2 batching . 31

v

“report”
2003/9/9
page vii

i
i

i

i
i

i
i

4 Linux implementation 33
4.1 Architecture . 33
4.2 Netlink2 daemon . 34

4.2.1 Interfaces . 34
4.2.2 Big picture . 35
4.2.3 Running threads . 37

4.3 Terminology . 39
4.4 Underlying protocol(s) . 40

4.4.1 Requirements . 40
4.4.2 State-of-the-art . 40
4.4.3 Retained solution . 42

5 Evaluation 43
5.1 Testbed description . 43
5.2 Unicast box-oriented groups . 44
5.3 Multicast service-oriented groups 45
5.4 Throughput analysis . 47
5.5 Performance boost . 48

6 Future Work 53
6.1 Message format . 53
6.2 Multiple-ACK format . 55
6.3 Kernel patch . 55
6.4 Have Netlink2 kernel-native? . 56

Conclusion 57

vi

“report”
2003/9/9
page 1i

i
i

i

i
i

i
i

Chapter 1

ForCES

This chapter introduces ForCES. It provides the main background to further
understand the context in which Netlink2 was designed and the topics Netlink2
addresses. First, we describe the ForCES IETF working group, then a descrip-
tion of the ForCES framework and requirements is given. A complete description
may be found in [1] and [2].

1.1 ForCES working group

ForCES stands for Forwarding and Control Element Separation. An IETF work-
ing group in the Routing Area, its chairs are Patrick Droz and David Putzolu.
This working group was created with the following observation in mind:

The emergence of off-the-shelf network processor devices that imple-
ment the fast path or forwarding plane in network devices such as
routers, along with the appearance of a new generation of third party
signaling, routing, and other router control plane software, has cre-
ated the need for standard mechanisms to allow these components to
be combined into functional wholes. ForCES aims to define a frame-
work and associated mechanisms for standardizing the exchange of
information between the logically separate functionality of the con-
trol plane, including entities such as routing protocols, admission
control, and signaling, and the forwarding plane, where per-packet
activities such as packet forwarding, queuing, and header editing
occur. By defining a set of standard mechanisms for control and
forwarding separation, ForCES will enable rapid innovation in both
the control and forwarding planes. A standard separation mecha-
nism allows the control and forwarding planes to innovate in parallel
while maintaining interoperability.

The ForCES working group was created in 2002, and the drafts it has submitted
provide standard definitions as well as a framework and requirements for future
ForCES protocols.

1

“report”
2003/9/9
page 2i

i
i

i

i
i

i
i

FORCES FRAMEWORK 1. FORCES

1.2 ForCES framework

A complete description of the ForCES framework can be found in [1]. Here we
give just a quick introduction to provide a basic understanding of the terms
used:

An IP network element (NE) appears to external entities as a
monolithic piece of network equipment, e.g., a router, NAT, firewall,
or load balancer. Internally, however, an IP NE (such as a router)
is composed of numerous logically separated entities that cooperate
to provide a given functionality (such as routing). Two types of NE
components exist: control elements (CE) in the control plane and
forwarding elements (FE) in forwarding plane (or data plane). FEs
are typically ASIC, network-processor, or general-purpose processor-
based devices that handle data path operations for each packet. CEs
are typically based on general-purpose processors that provide con-
trol functionality such as routing and signaling protocols.

ForCES aims to define a framework and associated protocol(s)
to standardize information exchange between the control and for-
warding planes. Having standard mechanisms allows CEs and FEs
to become physically separated standard components. This physi-
cal separation accrues several benefits to the ForCES architecture.
Separate components would allow component vendors to specialize
in one component without having to become experts in all compo-
nents. Standard protocol also allows the CEs and FEs from different
component vendors to interoperate with each other and hence it be-
comes possible for system vendors to integrate the CEs and FEs
from different component suppliers. This interoperability translates
into many more design choices and greater flexibility for the sys-
tem vendors. Overall, ForCES will enable rapid innovation in both
the control and forwarding planes while maintaining interoperabil-
ity. Scalability is also easily provided by this architecture in that
additional forwarding or control capacity can be added to existing
NEs without the need for forklift upgrades.

Figure 1.1 shows the logical components of the ForCES architecture and their
relationships. The exact CE and FE definition is the following:

Addressable Entity (AE) An entity that is directly addressable given some
interconnect technology. For example, on IP networks, it is a device with
which we can communicate using an IP address; on a switch fabric, it is a
device with which we can communicate using a switch fabric port number.

Physical Forwarding Element (PFE) An AE that includes hardware used
to provide per-packet processing and handling. This hardware may consist
of (but is not limited to) network processors, ASICs (application-specific
integrated circuits) or general processors installed on line cards, daughter
boards, mezzanine cards, or in stand-alone boxes.

Physical Control Element (PCE) An AE that includes hardware used to
provide control functionality. This hardware typically includes a general-
purpose processor.

2

“report”
2003/9/9
page 3i

i
i

i

i
i

i
i

1. FORCES FORCES REQUIREMENTS

Figure 1.1: ForCES architecture.

Forwarding Element (FE) A logical entity that implements the ForCES pro-
tocol. FEs use the underlying hardware to provide per-packet processing
and handling as directed by a CE via the ForCES protocol. FEs may be
a single blade (or PFE), a partition of a PFE or multiple PFEs.

Control Element (CE) A logical entity that implements the ForCES proto-
col and uses it to instruct one or more FEs how to process packets. CEs
handle functionality such as the execution of control and signaling proto-
cols. CEs may consist of PCE partitions or whole PCEs.

The framework allows multiple instances of CE and FE inside one NE. Each FE
contains one or more physical media interfaces for receiving and transmitting
packets from/to the external world. The aggregation of these FE interfaces
becomes the NE’s external interfaces. In addition to the external interfaces,
there must also exist some kind of interconnect within the NE so that the CE
and FE can communicate with each other, and one FE can forward packets to
another FE. Figure 1.1 also shows two entities outside of the ForCES NE: the
CE Manager and the FE Manager. These two entities provide configuration
to the corresponding CE or FE. Their task includes distributing identifiers to
CE or FE as well as deciding which CE should manage which FE. The ForCES
protocol is only defined for communication between CE and FE (dashed links on
Figure 1.1). The interface between two ForCES NEs is identical to the interface
between two conventional routers and these two NEs exchange the protocol
packets through the external interfaces. ForCES NEs connect to existing routers
transparently.

1.3 ForCES requirements

A complete description of the ForCES requirements can be found in [2]. Here
we present most of them to elucidate how they are addressed by Netlink2.

First a clear distinction should be made between what should be covered
by the ForCES protocol and what is beyond its scope. It is assumed that the
ForCES protocol is not started from scratch but after a pre-association phase,

3

“report”
2003/9/9
page 4i

i
i

i

i
i

i
i

FORCES REQUIREMENTS 1. FORCES

during which the CE and FE Managers determine which CEs and FEs should be
part of the same network element. As stated above, the CE and FE Managers
are also responsible of distributing identifiers to CE or FE as well as deciding
which CE should manage which FE. As a consequence, all these features do not
have to be supported by the ForCES protocol.

Now let us list the most important ForCES requirements:

1. CEs and FEs must be able to connect by a variety of interconnect technolo-
gies. Examples of interconnect technologies used in current architectures
include Ethernet, bus backplanes, and ATM (cell) fabrics.

2. FEs must support a minimal set of capabilities necessary for establishing
network connectivity (e.g., interface discovery, port up/down functions).

3. A NE must support the appearance of a single functional device.

4. The architecture must provide a way to prevent unauthorized ForCES
protocol elements from joining an NE.

5. A FE must be able to asynchronously inform the CE of a failure or in-
crease/decrease in available resources or capabilities on the FE.

6. The architecture must support mechanisms for CE redundancy or CE
failover.

7. FEs must be able to redirect control packets (such as RIP, OSPF mes-
sages).

8. In a ForCES NE, the FEs must be able to provide their topology informa-
tion (topology by which the FEs in the NE are connected) to the CE(s).

9. The ForCES NE architecture must be capable of supporting (i.e., must
scale to) at least hundreds of FEs and tens of thousands of ports.

10. The ForCES architecture must allow FEs AND CEs to join and leave NEs
dynamically.

11. The ForCES NE architecture must support multiple CEs and FEs.

12. The CE must understand how the FE processes packets. Therefore, an FE
model be created that can express the logical packet processing capabilities
of an FE. The FE model must define both a capability model and a state
model, which expresses the current configuration of the device.

13. The protocol must provide a means for the CEs to control all the FE
capabilities that are discovered through the FE model.

14. ForCES architecture must select a means of authentication for CEs and
FEs.

15. The ForCES protocol must provide a means to express the protocol mes-
sage priorities.

16. Mission-critical payloads must be delivered in a robust reliable fashion,
but ForCES must not be restricted to strict reliability.

4

“report”
2003/9/9
page 5i

i
i

i

i
i

i
i

1. FORCES FORCES REQUIREMENTS

17. The ForCES protocol must be able to group an ordered set of commands
to an FE. Each such group of commands should be sent to the FE in as few
messages as possible. Furthermore, the protocol must support the ability
to specify whether a command group must have all-or-nothing semantics.

18. The ForCES protocol must provide a means for the CE to query statistics
(monitor performance) from the FE. The ForCES protocol must provide
mechanisms for controlling FE capabilities that can be used to protect
against denial-of-service Attacks.

We will see below how Netlink2 fulfills these requirements.

5

“report”
2003/9/9
page 6i

i
i

i

i
i

i
i

FORCES REQUIREMENTS 1. FORCES

6

“report”
2003/9/9
page 7i

i
i

i

i
i

i
i

Chapter 2

Netlink

This chapter presents background information about Netlink. We describe how
user applications should use Netlink sockets, how these sockets are implemented
in the Linux kernel, and the messages format.

2.1 Netlink overview

The concept of IP control and forwarding separation was first introduced in the
early 1980s by the BSD 4.4 routing sockets. The focus at that time was to
provide a simple IP(v4) forwarding service and allow the control plane, either
via a command line configuration tool or a dynamic route daemon, to control
forwarding tables for that IPv4 forwarding service. The IP world has evolved
considerably since then. Linux Netlink takes routing sockets one step further
by breaking the narrow focus on IPv4 forwarding.

More precisely, Netlink is used to transfer information between kernel mod-
ules and user space processes. It provides kernel/user space bidirectional com-
munication links. It consists of a standard sockets-based interface for user pro-
cesses and an internal kernel API for kernel modules. When used to configure
IPv4 forwarding, Netlink interfaces with the following Linux networking layers:

Linux supports numerous advanced networking features, including firewalls,
QoS support in the form of queues, classes and filters, traffic conditioning, etc.
Since the Linux 2.1 kernel, Netlink has been providing the IP service abstraction
for a few additional services other than classical RFC 1812 IPv4 forwarding. In
practice, different netlink families can be defined on top of Netlink. Thus,
Netlink provides a unified way to configure these services. Netlink is now fully
included in the Linux kernel. The Netlink code was written by Alan Cox and
Alexey Kuznetsov.

2.2 User applications view

Netlink sockets are created using the standard BSD socket interface:

// e.g. socket_type = SOCK_ROW;

// netlink_family = NETLINK_ROUTE;

netlink_socket = socket(AF_NETLINK, socket_type, netlink_family);

7

“report”
2003/9/9
page 8i

i
i

i

i
i

i
i

USER APPLICATIONS VIEW 2. NETLINK

Figure 2.1: Netlink sockets.

netlink family selects the kernel module or netlink group to communicate with.
The currently assigned netlink families are:

NETLINK ROUTE Receives routing updates and may be used to modify
the IPv4 routing table.1

NETLINK FIREWALL Receives packets sent by the IPv4 firewall code.

NETLINK ARPD Manages the ARP table in user space.

NETLINK ROUTE6 Receives and sends IPv6 routing table updates.

NETLINK TAPBASE...NETLINK TAPBASE+15 are the instances of
the ethertap device. Ethertap is a pseudo network tunnel device that
allows an Ethernet driver to be simulated from user space.

NETLINK SKIP is reserved for ENskip.

NETLINK USERSOCK is reserved for future user space protocols.

As with IP sockets, the Netlink socket then has to be bound to a given sockaddr
address. In the case of Netlink, the address should be of type:

struct sockaddr_nl

{

sa_family_t nl_family; /* AF_NETLINK */

unsigned short nl_pad; /* zero */

__u32 nl_pid; /* process pid */

__u32 nl_groups; /* multicast groups mask */

};

nl_pid is used to represent the process id; nl_groups is used to represent the
1NETLINK ROUTE refers to RT netlink sockets. Most of the time, it is included in the

Linux kernel and prints the Initializing RT netlink socket message while booting.

8

“report”
2003/9/9
page 9i

i
i

i

i
i

i
i

2. NETLINK KERNEL VIEW

multicast groups the process belongs to. Once the Netlink socket has been cre-
ated and bound, one may send a Netlink message issuing the simple send (or
sendmsg) call:

send(netlink_socket,buffer,buffer_length,0);

Buffer has to contain a Netlink message in the format described later in this
chapter.

2.3 Kernel view

Netlink sockets are registered during kernel initialization:

struct net_proto_family netlink_family_ops = {

PF_NETLINK,

netlink_create

};

static int __init netlink_proto_init(void)

{

...

sock_register(&netlink_family_ops);

...

}

The sock_register() function makes the association between the AF_NETLINK
socket family and netlink_create() Netlink socket creation function, so that
this function is called when a user wants to create a Netlink socket. But how is
the communication with kernel modules actually performed? A key structure
in the Netlink architecture is the nl_table (see Figure 2.2).

Figure 2.2: Netlink message passing table.

This table is indexed by the Netlink protocol, e.g. NETLINK_ROUTE. Each
entry is a list of processes that communicate using this protocol. The list is made

9

“report”
2003/9/9
page 10i

i
i

i

i
i

i
i

MESSAGES FORMAT 2. NETLINK

up of sk structures containing data such as the PID, GROUPS, and handling
function. These data are created either by the netlink_create() function in
the case of a call issued by a user process, or by the netlink_kernel_create()
function in the case of a call issued by a kernel module. In the first case, the
handling function is set to NULL, so that a listening process has to make a
read-like call on the socket. In the second case, the handling function is called
directly. Each time a process issues a send-like call on a Netlink socket, Netlink
delivers the message to the proper receiver that performs a lookup on this table.

For a deeper understanding, one may look directly into the kernel code,
which is in the net/netlink and net/core directories of the kernel tree.

2.4 Messages format

A complete description of Netlink IP Service templates can be found in [3].
There are three levels to a Netlink message: The general Netlink message header,
the IP service-specific template, and the IP service-specific data.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| |

| Netlink message header |

| |

+-+

| |

| IP Service Template |

| |

+-+

| |

| IP Service specific data in TLVs |

| |

+-+

The Netlink message header is generic for all services, whereas the IP Service
Template header is specific to a service. Each IP Service then carries parameter-
ization data. These parameterizations are in TLV (Type-Length-Value) format
and are unique to the service.

The Netlink message header is in the following format:
0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Length |

+-+

| Type | Flags |

+-+

| Sequence Number |

+-+

| Process ID (PID) |

+-+

Length The length of the message in bytes, including the header.

10

“report”
2003/9/9
page 11i

i
i

i

i
i

i
i

2. NETLINK ACKNOWLEDGMENTS

Type Describes the message content. The three special values NLMSG_NOOP,
NLMSG_ERROR, and NLMSG_DONE correspond to a message which has to be
ignored, an error, or the end of a multipart transaction. All others are
used to identify the IP Service Template that follows the Netlink message
header.

Flags Additional information on how the message should be processed. Exam-
ples are the NLM_F_REQUEST flag, which must be set on all request mes-
sages, the NLM_F_ACK flag, which requests an acknowledgment on success,
or the NLM_F_ECHO flag which ask the kernel to echo the request.

Sequence number The sequence number of the message.

Process ID (PID) The PID of the process sending the message. PID is set
to zero on messages coming from the kernel.

Different IP service templates exist for each Netlink protocol. We will not
enter into the details here.

If these IP service templates accept optional arguments, they are given in
the generic TLV format:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| TLV Type | variable TLV Length |

+-+

| Value (Data of size TLV length) |

+-+

The TLV type field indicates the type of data encapsulated within the TLV. The
TLV length field indicates the length of this TLV including the TLV type, TLV
length, and the TLV data. If the total size of the message is known, TLV pro-
cessing is easy: one need only look at the successive lengths, calculate each time
the beginning of the next TLV, and stop when the sum of the lengths equals
the length of the message.

2.5 Acknowledgments

Netlink has built-in acknowledgment messages (ACKs). This message is actu-
ally used to denote both an ACK and a NACK. The format of the ACK message
is the following:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Netlink message header |

| type = NLMSG_ERROR |

+-+

| Error code |

+-+

| OLD Netlink message header |

+-+

An error code of zero indicates that the message is an ACK response. An ACK

11

‘‘report’’

2003/9/9

page 12i
i

i
i

i
i

i
i

TWO-PHASE COMMIT 2. NETLINK

response message contains the original Netlink message header, which can be
used for comparison.

A non-zero error code message is equivalent to a Negative ACK (NACK). In
such a situation, the Netlink data that was sent down to the kernel is returned
appended to the original Netlink message header.

Netlink uses a cumulative ACK policy, i.e. an ACK with a given sequence
number acknowledges all messages with a lower sequence number. It is impor-
tant to note that cumulative ACK only applies to “positive” ACK, i.e. ACKs
with error code set to 0. A NACK in the sequence would turn off the cumulative
ACK method. To illustrate this, let us take the example of the ACK/NACK
sequence to be sent:

ACK ACK ACK NACK ACK ACK
(1) (2) (3) (4) (5) (6)

One may think of sending the following sequence:

- - ACK NACK - ACK
(1) (2) (3) (4) (5) (6)

But what if the NACK is lost? The receiver will think everything was right from
(1) to (6)! Actually when an irregular event occurs, the receiver sends a NACK
(step 4) and stops processing any message until that message has been taken
care of. This helps the sender because it does not have to rely on a timeout to
retransmit, and leading to shorter delays.

2.6 Two-phase commit

Netlink provides all the semantics to make two-phase commit operations, but
they are not used. A two-phase commit transaction should be made using the
NLM_F_MULTI and NLM_F_ATOMIC flags as well as the NLMSG_DONE message type.
The NLM_F_MULTI flag indicates that the Netlink message is part of a longer
message sequence. The NLM_F_ATOMIC flag indicates that the operations from
the multipart message have to be done using an “all-or-nothing” policy. An
empty message of type NLMSG_DONE should be sent at the end of the two-phase
commit transaction.

Let us take the example of two routes that have to be updated using the two-
phase commit functionality and that require acknowledgments. The sequence
of messages would be:

1. Send 1st Netlink message to add a route:

type = RTM_NEWROUTE;

flags = NLM_F_REQUEST | NLM_F_CREATE | NLM_F_ACK | NLM_F_MULTI | NLM_F_ATOMIC;

2. Await ACK.

3. Send 2nd Netlink message to add a route:

type = RTM_NEWROUTE;

flags = NLM_F_REQUEST | NLM_F_CREATE | NLM_F_ACK | NLM_F_MULTI | NLM_F_ATOMIC;

12

“report”
2003/9/9
page 13i

i
i

i

i
i

i
i

2. NETLINK TWO-PHASE COMMIT

4. Await ACK.

5. Send empty Netlink message to close the transaction:

type = NLMSG_DONE;

flags = NLM_F_ACK;

The received ACKs merely indicate that the command has been received
but they are committed only after the last NLMSG_DONE message.

The two-phase commit feature should be implemented in Netlink2.

13

“report”
2003/9/9
page 14i

i
i

i

i
i

i
i

TWO-PHASE COMMIT 2. NETLINK

14

“report”
2003/9/9
page 15i

i
i

i

i
i

i
i

Chapter 3

Netlink2

In the previous chapters, we have presented ForCES and Netlink. ForCES
and Netlink have been conceived with different objectives in mind: ForCES
was designed to unify network element design, whereas Netlink was linked to
Linux kernel architecture. In this chapter, we show which ForCES requirements
Netlink already addresses and the features Netlink lacks. Then we present
Netlink2 and how it addresses these missing features.

3.1 Why use Netlink?

Looking at how Netlink currently works, one may identify a CE to a user ap-
plication and an FE to the Linux kernel. As is, Netlink already addresses some
ForCES requirements (see ForCES chapter). Let us examine them one by one.

• Requirement 2 – FEs must support a minimal set of capabilities neces-
sary for establishing network connectivity (e.g., interface discovery, port
up/down functions).
Having identified an FE to the Linux kernel, this requirement is obviously
fulfilled (Linux is well known for its high network connectivity features).

• Requirement 3 – A NE must support the appearance of a single functional
device.
If the NE only contains a single CE (user application) and a single FE
(kernel), an NE would be seen by external entities as a single Linux box.
In the case of multiple FEs, the control Linux allows on the data flow
would allow it to emulate a single functional device.

• Requirement 4 – The architecture must provide a way to prevent unautho-
rized ForCES protocol elements from joining an NE.
Netlink provides no means of authentication because it is to be run on a
single box and allows only logged users to create Netlink sockets. More-
over, it is not because a user succeeded in creating a Netlink socket that all
his requests will be accepted by the kernel: most of the commands would
actually require root privileges.1 This requirement should be fulfilled in
Netlink2 while allowing remote applications to send Netlink messages.

1Note that to use the group multicasting Netlink feature, root rights are also required.

15

“report”
2003/9/9
page 16i

i
i

i

i
i

i
i

WHY USE NETLINK? 3. NETLINK2

• Requirement 5 – A FE must be able to asynchronously inform the CE of
a failure or increase/decrease in available resources or capabilities on the
FE.
Kernel modules are able to broadcast a failure message on a given Netlink
channel.

• Requirement 7 – FEs must be able to redirect control packets (such as RIP,
OSPF messages).
Again, if we identify an FE to the Linux kernel, such a redirection would
be done easily: the CEs simply have to listen on the port reserved for
OSPF messages (which is actually 89), just as an OSPF daemon would
do.

• Requirement 9 – The ForCES NE architecture must be capable of support-
ing (i.e., must scale to) at least hundreds of FEs and tens of thousands of
ports.
FEs are represented in Netlink by a 32 bits PID and a 32 bits GROUPS
identifiers. This potentially allows thousands of FEs. Note that the se-
mantics of these identifiers is different in Netlink2 (see the Addressing
section).

• Requirement 10 – The ForCES architecture must allow FEs AND CEs
to join and leave NEs dynamically. The way Netlink currently works,
CEs (user applications) would join the NE creating netlink sockets or
listing on routing dedicated port, and FEs (kernel modules) would join
the NE calling the netlink_kernel_create() function. Likewise, to leave
the NE, the Netlink socket should be closed or the netlink_release()
function should be called.

• Requirement 11 – The ForCES NE architecture must support multiple CEs
and FEs. See requirement 9.

• Requirement 12 – The CE must understand how the FE processes packets.
Therefore, an FE model be created that can express the logical packet pro-
cessing capabilities of an FE. The FE model must define both a capability
model and a state model, which expresses the current configuration of the
device.
This is the major advantage of building a ForCES protocol on Netlink:
Netlink already defines many IP service templates (see previous chapter)
which enables a CE to interface with numerous services. These services
define a complete FE model, including features such as IPv4/IPv6 for-
warding, classification, QoS, packet redirection, and IPsec. Each individ-
ual Linux-based running router contributes to validating the wideness and
consistency of this model.

• Requirement 13 – The protocol must provide a means for the CEs to control
all the FE capabilities discovered through the FE model.
Again, FE capabilities are well defined and each type of service can be
controlled by means of a dedicated IP Service Template.

• Requirement 14 – ForCES architecture must select a means of authentica-
tion for CEs and FEs.
See requirement 4.

16

“report”
2003/9/9
page 17i

i
i

i

i
i

i
i

3. NETLINK2 MISSING FEATURES

• Requirement 18 – The ForCES protocol must provide a means for the CE
to be able to query statistics (monitor performance) from the FE. The
ForCES protocol must provide mechanisms for controlling FE capabilities
that can be used to protect against Denial of Service Attacks. The IP Ser-
vice Templates already define messages for querying statistics. Moreover,
any given module is allowed to broadcast statistics on a given Netlink
channel.

3.2 Missing features

• Requirement 1 – CEs and FEs must be able to connect by a variety of
interconnect technologies. Examples of interconnect technologies used in
current architectures include Ethernet, bus backplanes, and ATM (cell)
fabrics.
Netlink is designed for communication between user-space applications
and kernel modules. Netlink messages are not carried by IP packets.
But Netlink is built on BSD sockets. In Netlink2, an effort has been
made to convert Netlink into an independent Layer 4/5 protocol,
which may rely on various underlying technologies. This is an
important issue because some of the following requirements should now
be taken into consideration.

• Requirement 4 – The architecture must provide a way to prevent unautho-
rized ForCES protocol elements from joining an NE.
This issue should be taken into consideration to enable Netlink to run in
a distributed environment. Any security mechanism can be used in the
underlying protocol. In the case of IP, one may think of taking advantage
of all IPsec security features.

• Requirement 6 – The architecture must support mechanisms for CE redun-
dancy or CE failover.
The new addressing semantics introduced in Netlink2 enables CE redun-
dancy or CE failover (see Redundancy section).

• Requirement 8 – In a ForCES NE, the FEs must be able to provide their
topology information (topology by which the FEs in the NE are connected)
to the CE(s).
This requirement has not yet been addressed by Netlink2, but is work-in-
progress. However, we will see in this chapter that the high flexibility of
Netlink2 would allow such queries easily.

• Requirement 10 – The ForCES architecture must allow FEs AND CEs to
join and leave NEs dynamically.
In Netlink2, new messages have been introduced to allow FEs and CEs to
join and leave NEs dynamically (see next section).

• Requirement 15 – The ForCES protocol must provide a means to express
the protocol message priorities.
In Netlink2, new messages have been introduced to allow FEs and CEs to
set message priorities (see next section).

17

“report”
2003/9/9
page 18i

i
i

i

i
i

i
i

NETLINK2 OVERVIEW 3. NETLINK2

• Requirement 16 – Mission-critical payloads must be delivered in a robust
reliable fashion, but ForCES must not be restricted to strict reliability.
Netlink is to be run between user-space and the Linux kernel, i.e. in a re-
liable channel. Netlink then provides no reliability mechanism. However,
to enable Netlink to run in a distributed environment, such a mechanism
should be provided. We saw that Netlink2 should be run on top of a trans-
port protocol. Reliability should be provided by this transport protocol
layer. In the current Netlink2 state, no specific message has been created
to select the reliability level, which could be chosen statically or derived
from the message priority.

• Requirement 17 – The ForCES protocol must be able to group an ordered
set of commands to an FE. Each such group of commands should be sent
to the FE in as few messages as possible. Furthermore, the protocol must
support the ability to specify if a command group must have all-or-nothing
semantics.
See the section on batching.

3.3 Netlink2 overview

A detailed description can be found in [4]. Here we give the guidelines fol-
lowed while designing Netlink2, how Netlink2 fits into the network stack and
the Netlink2 message format.

3.3.1 Aims

Netlink2 intends to extend Netlink for greater compliance with ForCES require-
ments. To achieve this, Netlink2 leaves the Linux kernel internals and becomes
an independent protocol that can be used in contexts other than Linux boxes.
More precisely, Netlink2 provides a new addressing scheme as well as Netlink
header extension. Until now we have only talked about CEs and FEs. These
entities could be broken into smaller entities: control plane components and
forwarding engine components.

Control Plane Components (CPCs) Control plane components encompass
signaling protocols ranging from dynamic routing protocols, such as OSPF,
to tag distribution protocols, such as CR-LDP. Classical management
protocols and activities also fall in this category. These include SNMP,
COPS, and proprietary CLI/GUI configuration mechanisms. The purpose
of the control plane is to provide an execution environment for the above-
mentioned activities with the ultimate goal of configuring and managing
the second NE component: the FE. The result of the configuration defines
the way packets traversing the FE are treated.

Forwarding Engine Components (FECs) The FE is the entity of the NE
that incoming packets (from the network into the NE) first encounter.
The FE’s service-specific component massages the packet to provide it
with a treatment to achieve an IP service, as defined by the Control Plane
Components for that IP service. Different services will utilize different
FECs. Service modules may be chained to achieve a more complex service.

18

“report”
2003/9/9
page 19i

i
i

i

i
i

i
i

3. NETLINK2 NETLINK2 OVERVIEW

If built to provide a specific service, the FE service component will adhere
to a forwarding model.

Note that CPCs and FECs are also called control element components (CECs)
and logical forwarding blocks (LFBs). The aim of Netlink2 is to enable these
entities (which may be part of a distributed system) to communicate with the
means Netlink already provides in the Linux kernel.

3.3.2 Netlink2 in the network stack

While designing Netlink2, it was difficult to use the IP addressing model “as
is”: ForCES elements from a given service group could be on different hosts
(i.e. have different IP addresses), and ForCES elements on a given host do
not necessarily belong to the same service group. We then introduced a new
addressing scheme to provide a new addressing abstraction layer over the IP
layer. As Netlink2 provides an addressing scheme, it may be regarded as a
Layer 3/4 protocol, even if it already relies on a Layer 3 protocol. The following
comparison with TCP could be drawn:
Netlink2 takes full advantage of the features offered by the TCP/IP stack, but

Figure 3.1: Netlink2 in the Network stack.

addresses CECs and LFBs rather than applications bound to a given TCP port.
Also note that Netlink2 does not necessarily have to be run on top of TCP or
IP.

3.3.3 Message format

The exact message format has been subject to modifications. Here we give
the initial Netlink2 message format we implemented. A discussion of possible
changes is given in Chapter 6.

As with Netlink, the Netlink2 message format is divided into sublayers, with
the addition of optional Netlink2 extended TLVs:

19

“report”
2003/9/9
page 20i

i
i

i

i
i

i
i

NETLINK2 OVERVIEW 3. NETLINK2

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| |

| Netlink2 message header |

| |

+-+

| |

| Netlink2-extension TLVs (optional) |

| |

+-+

| |

| IP Service Template |

| |

+-+

| |

| IP Service specific TLVs |

| |

+-+

The Netlink2 message header is shown below:
0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Version | Flags_E | Length |

+-+

| Type | Flags |

+-+

| Sequence Number |

+-+

| Source PID |

+-+

| Destination PID |

+-+

A quick comparison with the Netlink message format shows that the Length
field has been reduced to 16 bits. These 16 bits are replaced in Netlink2 by
the Version and Flags_E. The new Destination PID field has also been in-
troduced. The meaning of the fields is the following:

Version The version field is split into major:minor (4:4 bits) subfields. The
value for Netlink2 is 0x20.

Flags E This field contains flags specific to Netlink2. It provides support for
new features. The already defined values are:

NLM F SYN Set on the first message. Interpreted as a boot message.
NLM F FIN Set on the last message. Interpreted as a departure mes-

sage.
NLM F PRIO Message priority: 1 for high and 0 for low. Additional

QoS level set in QOS TLV.
NLM F ASTR Set the ACK strategy: 1 for partial ACKs and 0 for full

ACKs.

20

“report”
2003/9/9
page 21i

i
i

i

i
i

i
i

3. NETLINK2 ADDRESSING: FROM NETLINK TO NETLINK2

NLM F ETLV Extended TLVs on. This flag indicates whether optional
TLVs are used or not.

The NLM F SYN and NLM F FIN flags address requirement 10. The
NLM F PRIO addresses requirement 16. The NLM F ASTR helps avoid
the ACK implosion problem when many FEs are involved in a Netlink2
transaction. An example showing how this flag should be used in given in
Chapter 5.

Length The length of the Netlink2 message in bytes including the header.

Type This field describes the message content. The semantic is exactly the
same as in Netlink.

Flags This field provides more information about the way the message should
be treated. The semantic is exactly the same as in Netlink.

Source PID Netlink2 address of the sender.

Destination PID Netlink2 address of the destination of the message. The
Source PID and Destination PID are explained in detail in the next sec-
tion.

3.4 Addressing: from Netlink to Netlink2

In this section we give some background on addressing in distributed systems,
explain Netlink addressing internals, and then we present the Netlink2 address-
ing. An example is given at the end of the section for clarity.

3.4.1 Related work

Before presenting the addressing format we chose for Netlink2, let us see how
global addressing is managed in two distributed systems: CORBA and TIPC.

In the latest version of CORBA, the concept of interoperable object reference
(IOR) has been introduced for object request broker (ORB) interoperability.
When a client wants to call a method from a remote object, it makes requests
using a simple object reference (e.g. a string) advertised by a naming service.
Then the ORB embeds object key information in the IOR as well as the IP+Port
of the remote object host. Given this information, the ORB is able to forward
the call to the correct server, and this server is able to retrieve the correct
object from the object key. This procedure is summarized in Figure 3.2. More
information about CORBA addressing can be found in [5].

TIPC is a high-speed, message-oriented communication service designed for
cluster environments. It provides location transparency using a logical address-
ing and maintaining a hot address translation table. The logical address has
the format:

21

“report”
2003/9/9
page 22i

i
i

i

i
i

i
i

ADDRESSING: FROM NETLINK TO NETLINK2 3. NETLINK2

Figure 3.2: CORBA IOR.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type |

+-+

| Instance |

+-+

The type identifies a certain service type, and the instance is used as a qualifier
for accessing a certain instance of the requested service. These logical addresses
are converted internally by TIPC into volatile addresses, which have the follow-
ing format:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Random number |

+-+

| Zone | Subnetwork | Processor |

+-+

These fields indicate the processor localization. More information about TIPC
addressing can be found in [6].

3.4.2 Netlink addressing

Looking at the Netlink header, it seems that no information about the message
destination is given. A Netlink message is actually delivered using the following
pieces of information:

• While creating a Netlink socket, a Netlink protocol is specified in the call
to socket: socket(AF_NETLINK,SOCK_RAW,NETLINK_ROUTE). Here, for ex-
ample, the protocol is NETLINK_ROUTE.

• As for Internet addresses which are represented by sockaddr_in struc-
tures, sockaddr_nl structures are used to represent Netlink addresses.
One may send a Netlink message by calling the well-known sendmsg()
function, and passing to it a sockaddr_nl structure as an argument.

22

“report”
2003/9/9
page 23i

i
i

i

i
i

i
i

3. NETLINK2 ADDRESSING: FROM NETLINK TO NETLINK2

The sockaddr_nl structure contains the destination pid as well as the
destination groups to which the Netlink message has to be delivered. The
destination groups is a 32-bit mask of the groups to be reached. For
instance, if the destination groups has a value of 0x0009, the message will
be received by groups 0x0001 and 0x0008. The destination pid is the Unix
PID of the receiver.

It is important to note that the previous data is not mapped into Netlink
header fields, but is used directly by the kernel to dispatch the message. The
message is delivered using the protocol, destination groups, and destination pid
following these three steps:

1. The set of receivers having registered the Netlink protocol is selected.

2. If the destination groups is not null, then the message is delivered to all
receivers in the selected set belonging to one of the groups indicated by
the destination groups.

3. If the destination groups is null, then the message is delivered to the pro-
cess having the Unix PID destination pid.

3.4.3 Netlink2 addressing

While designing Netlink2, it was impossible to retain Netlink addressing. A one-
to-one mapping between Netlink and Netlink2 identifiers was also impossible for
two reasons:

1. Netlink addressing relies on information that is not present in the Netlink
header.

2. Extra information is required to make Netlink2 distributed.

In Netlink2, we introduce the concept of logical address to embed the previ-
ous data. Two logical addresses are present in the Netlink2 header: the logical
source address and the logical destination address. The logical source address
is the logical address of the sender. This field replaces the previous Process ID
Netlink header field. The logical destination address is the logical address of the
receiver. Both the logical source address and the logical destination address have
the same structure and are composed of two subfields: the logical group subfield
and logical PID subfield. The Netlink2 header then contains the following fields:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

...

+-+

| Logical Source Group | Logical Source PID |

+-+

| Logical Destination Group | Logical Destination PID |

+-+

The semantics of this fields is the following:

• Logical Destination Group. This 16-bit subfield is to be compared with
the destination groups field used in Netlink, but it no longer represents a

23

“report”
2003/9/9
page 24i

i
i

i

i
i

i
i

ADDRESSING: FROM NETLINK TO NETLINK2 3. NETLINK2

bit mask of groups to reach. Instead, it now has a more general meaning,
and represents a “set of receivers”. The meaning of a “set of receivers”
depends on the NE topology and could represent:

– each entity belonging to a protocol, e.g. NETLINK ROUTE.

– a CE or FE in the NE.

– any logical set of Netlink2 receivers. To enable a hierarchical ad-
dressing, a group can be a set of groups.

Groups may be built to map the existing Netlink protocols (e.g. NETLINK_ROUTE,
NETLINK_FIREWALL), but no special values are currently reserved. The
0xFFFF special value is reserved for broadcast delivering.

Thus, the Logical Destination Group field could have different meanings.
This design choice is driven by the aim to keep the addressing simple as
well as to provide high flexibility to an NE designer.

• The Logical Destination PID. This 16-bit subfield is to be compared with
the old Netlink destination pid. It uniquely identifies a Netlink2 receiver.
The 0xFFFF special value is reserved for broadcast delivering. The 0x0000
special value is reserved for targeting a group itself instead of a PID inside
a group. This value is useful to address CEs/FEs directly. Typically,
this special value will be used to address an FE having a given Logical
Group and containing a single component. On most *nix systems, process
identifiers do not have values greater than 32767, so a direct mapping
between the Logical Destination PID and the Unix process identifier is
possible. However, while running Netlink2 between different hosts, one
should keep these values globally unique. The 0xDFFF special value is
reserved for CE broadcast delivering. The 0xEFFF special value is reserved
for FE broadcast delivering.

The Logical Source Group and Logical Source PID are dual to the Logical
Destination Group and Logical Destination PID: they have the same meaning
but they refer to the sender.

To have a consistent addressing, it is recommended that each host in the
NE SHOULD be assigned a Logical Group so that any Netlink2 end point has
a unique Logical Source Address, namely the Logical Group of its host plus its
Logical PID. Also note that it is up to the implementer to reserve subsets of the
Logical Group address space to a particular type of group.

The fields presented here only aim to represent a logical addresses. The ac-
tual group location addresses, which could be Unicast or Multicast IP addresses,
are part of the Netlink2 implementation internals. For this purpose, one may
think of maintaining a “hot translation table”, either centralized or distributed,
keeping track of the Logical Address / Real Address translation.

3.4.4 Example

In this example, we take an NE having the following topology:
Logical pids: the OSPF daemon has logical pid 0x0001, the BGP4 daemon

has logical pid 0x0002, the Scheduler daemon has logical pid 0x0003. The

24

“report”
2003/9/9
page 25i

i
i

i

i
i

i
i

3. NETLINK2 ADDRESSING: FROM NETLINK TO NETLINK2

Figure 3.3: Example of an NE.

Ingress police component has logical pid 0x0004, the Forwarder component has
logical pid 0x0005, the QoS scheduler has logical pid 0x0006.

Logical groups: CE1, CE2, FE1, FE2 are represented by logical groups
0x0001, 0x0002, 0x0003, 0x0004. The NETLINK_ROUTE group has logical group
0x0005. The QoS group has logical group 0x0006. The broadcast group has
logical group 0xFFFF. Here we clearly see that logical groups could have differ-
ent meanings: for example, the logical group 0x0001 represents the CE1 host,
whereas the logical group 0x0005 represents all end points interested in routing
information.

The previous information defines the addresses:

Element Address(es) Attached group
OSPF daemon 0x00010001 CE1

0x00050001 NETLINK ROUTE
BGP4 daemon 0x00010002 CE1

0x00050002 NETLINK ROUTE
Scheduler daemon 0x00020003 CE2

0x00060003 QoS
Ingress police 0x00030004 FE1

Forwarder 0x00030005 FE1
0x00050005 NETLINK ROUTE

QoS Scheduler 0x00040006 FE2
0x00060006 QoS

CE1 0x00010000 CE1
CE2 0x00020000 CE2
FE1 0x00030000 FE1
FE2 0x00040000 FE2
All 0xFFFFFFFF All

25

“report”
2003/9/9
page 26i

i
i

i

i
i

i
i

SYN MESSAGE 3. NETLINK2

Imagine the OSPF daemon sends a route update to the forwarder. It will
use as the logical source address the concatenation of its host logical group (i.e.
0x0001) and its logical PID (i.e. 0x0001) so the logical source address will be
0x00010001. Symmetrically, the logical destination address of the message will
be the concatenation of the forwarder logical group and the forwarder logical
PID (i.e. 0x0005). If the OSPF daemon knows that the forwarder belongs to
FE1 having logical group 0x0003, it could send the message to the logical PID
0x00030005. Instead, it could send the message to the NETLINK_ROUTE group,
i.e. to the logical PID 0x00050005.

Another example is the QoS scheduler having buffer overflow: it might send
a message to 0x0006FFFF, so that each member of the QoS group will receive
it.

Open questions:

• Logical addresses should be unique. An open issue is to know whether
this means that each PID should be globally unique, or whether two CEs
or FEs may have the same PID has long as they do not belong to the
same group. With the latter option, an FE dynamically joining a group
containing an FE with its PID should be assigned a new one. For reasons
of simplicity, the first option is preferable.

• At current Netlink2 state, all addresses are assigned statically, and the
exact joining procedure has not yet been well defined. The question is to
know whether the address request should be handled in the pre-association
phase, in the reply to the NLM_F_SYN (which should be sent when an FE
joins the NE, see next section), or in a separate message.

3.5 SYN message

At NE startup, or when an FE joins an NE, a SYN message with the ACK flag
set should be sent. The exact procedure has not yet been defined, but we may
follow the guidelines below:

• The SYN message should be sent to all CEs, i.e. to the 0xFFFFDFFF ad-
dress, so that all CEs know that this new FE is joining the NE. Only its
“master” CE should reply to the SYN message. The “master” CEs (i.e.
which CE should control which FE) are chosen during the pre-association
phase.

• The SYN message could also be used as an address request message. The
SYN message might contain as source logical address the host logical group
of the FE and the PID it would like to use. The CE should ACK this mes-
sage or return a NACK. In the latter case, the error code inside the NACK
may represent either a rejection of the FE by the CE or an acceptance
with a free PID the FE could use.

3.6 Redundancy

The Netlink2 addressing features can be used to provide high availability at
either the CE or the FE level. Here we give two examples of how this could be
done.

26

“report”
2003/9/9
page 27i

i
i

i

i
i

i
i

3. NETLINK2 REDUNDANCY

3.6.1 FE High Availability

Figure 3.4 shows a scenario with one CE and two FEs: an active FE and a
backup FE. The CE could send all its messages with the following source and

Figure 3.4: FE high availability.

destination addresses:
0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| 0xFFFF | 0xFFFF |

+-+

| 0x0001 | 0xFFFF |

+-+

The group 0x0001 contains the two FEs. At the IP layer, it could be a multicast
address on which these two FEs listen. After receiving the command, the FE
will reply to address 0xFFFFFFFF, i.e. to everyone, so that the backup FE will
also receive the ACK. Obviously, the backup FE should be configured not to
send an ACK back to the CE and should interpret the ACK it receives from
the FE as a commitment. In this scenario, the CE does not have to be aware of
the backup CE’s existence. The backup FE could detect an FE failure (e.g. no
longer receiving ACKs from it) and choose to replace it transparently. In such
a case, the recovery process has to be fixed by the NE designer.2

3.6.2 CE High Availability

Figure 3.5 shows a scenario with one FE and two CEs: an active CE and a
backup CE. The CE could send all its messages with the following source and
destination addresses:

2In this example, one could have used the 0xFFFFEFFF special value to target all FEs.

27

“report”
2003/9/9
page 28i

i
i

i

i
i

i
i

CAPABILITY QUERY 3. NETLINK2

Figure 3.5: CE high availability.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| 0xFFFF | 0xDFFF |

+-+

| 0x0001 | 0xFFFF |

+-+

The group 0x0001 contains the FE and the backup CE. At the IP layer, it could
be a multicast address on which the FE and backup CE listen. After receiving
the command, the FE will reply to address 0xFFFFDFFF, i.e. to all CEs, so that
the backup CE will also receive the ACK. Obviously, the backup CE should
be configured to interpret the previous messages so that it does not interpret
them in the standard way but rather use them to be aware of the CE and FE
states. The backup CE could detect a CE failure (e.g. the CE not responding
to heartbeat messages), and choose to replace it transparently. In such a case,
the FE does not have to be informed of the CE changes. The exact recovery
process has to be fixed by the NE designer.

3.7 Capability query

This section only contains ideas which have not been yet been included in the
Netlink2 draft.

While initiating a connection between a CE and an FE, the ForCES frame-
work requires a way for the FE to advertise its capabilities:

The FE needs to inform the CE of its own capability and its
topology in relation to other FEs. The capability of the FE is rep-
resented by the FE model.

...

The model would allow an FE to describe what kind of packet pro-
cessing functions it contains, in what order the processing happens,
what kinds of configurable parameters it allows, what statistics it
collects and what events it might throw, etc.

Linux Netlink has no capability query features, since the capabilities are implic-
itly advertised by kernel modules, which register a particular Netlink protocol.

28

“report”
2003/9/9
page 29i

i
i

i

i
i

i
i

3. NETLINK2 CAPABILITY QUERY

To enable capability query in Netlink2, we may introduce three new netlink
types:

• CAP_GETFAMILY: this message type is issued by a CE to get a CE family
(e.g. NETLINK FIREWALL).

• CAP_GETTOPOLOGY: this message type is issued by a CE to ask which FEs
the FE is connected to.

• CAP_REPLY: this message is issued by an FE in response to one of the
previous messages. The data contained by this message is in TLV format.
It could either contain a 32-bit integer indicating the FE protocol (in
the case of a CAP_GETFAMILY query) or a list of FEs to which the FE is
connected (in the case of a CAP_GETTOPOLOGY query).

The first reply has the following format:
0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

...

+-+

| Type = FAMILY_REPLY | Length = 8 |

+-+

| FAMILY |

+-+

The second reply contains two parts: the list of upward FE(s) and the list of
downward FE(s), according to the data path.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

...

+-+

| Type = TOPOLOGY_UP_REPLY | Length |

+-+

| FE1 logical address |

+-+

| FE2 logical address |

+-+

| ... |

+-+

| Type = TOPOLOGY_DOWN_REPLY | Length |

+-+

| FE3 logical address |

+-+

| FE4 logical address |

+-+

Note that it is assumed that a data path has already been defined. If this is
not the case, the FE may reply with another format that does not distinguish
between upward and downward FEs:

29

“report”
2003/9/9
page 30i

i
i

i

i
i

i
i

LOSS DETECTION 3. NETLINK2

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

...

+-+

| Type = TOPOLOGY_REPLY | Length |

+-+

| FE1 logical address |

+-+

| FE2 logical address |

+-+

| ... |

+-+

Open question: One may wonder whether the capability query message
should be interpreted at the FE or the LFB level. At the FE level, it could have
no meaning if the NE is composed of a single LFB (e.g. a Linux box) containing
different LFBs. At the LFB level, the Netlink family may not be sufficient to
describe the LFB capabilities.

3.8 Loss detection

One of the ForCES requirements is CE redundancy and CE failover:

The ForCES protocol MUST support mechanisms for CE redun-
dancy or CE failover. This includes the ability for CEs and FEs to
determine when there is a loss of association between them.

To provide such a mechanism, as mentioned in [3], one could create a heartbeat
protocol between the FE and CE by using the ECHO flags and the NLMSG_NOOP
message.

3.9 Batching

Batching enables grouping series of operations. The main objective is to improve
performances. Here we show what is done in the Network File System Version 4
(NFSv4) protocol, and specify some possible ways batching could be performed
in Netlink2. A complete description of the NFSv4 protocol may be found in
[12].

3.9.1 Related work

The newly designed NFSv4 protocol has some common properties with Netlink.
Although old NFS versions were defined only in terms of remote procedure calls
(RPCs), NFSv4 introduces a new COMPOUND procedure:

The COMPOUND procedure provides the opportunity for better
performance within high latency networks. The client can avoid cu-
mulative latency of multiple RPCs by combining multiple dependent
operations into a single COMPOUND procedure. A compound op-
eration may provide for protocol simplification by allowing the client
to combine basic procedures into a single request that is customized
for the client’s environment.

30

“report”
2003/9/9
page 31i

i
i

i

i
i

i
i

3. NETLINK2 BATCHING

While receiving a COMPOUND request, the server processes it by evaluating
each of the operations within the COMPOUND procedure in order. The results
of each operation are then returned to the client in a single message. As in
Netlink, results are represented with an error code (0 for an ACK). If an opera-
tion results in a non-zero status code, the evaluation of the compound sequence
will halt and the reply will be returned. Again, Netlink behaves in the same
way.

3.9.2 Netlink2 batching

Batching could be performed in many different ways. Let us take the example
of a CE wanting to update 10,000 routes to a remote FE. To perform this we
have tested the three following methods:

1. No batching:

send Netlink2 message #1 in a single packet, wait for ACK #1

send Netlink2 message #2, wait for ACK #2,

...

send Netlink2 message #10,000, wait for ACK #10,000

2. Do the same as method 1, but send multiple messages per packet. If we
send 10 messages per packet, we would:

send first 10 messages (packet #1), wait for ACKs #1 to #10

...

send last 10 messages (packet #1,000), wait for ACKs #9,991 to

#10,000

3. Have multiple IP service templates in a single Netlink2 message. If we
have 10 IP services templates per Netlink2 message, we would:

send Netlink2 message #1 (packet #1), wait for ACK #1,

...

send Netlink2 message #1,000 (packet #1,000), wait for ACK #1,000

4. Do the same as method 2, but use a cumulative ACK policy. If we send
10 messages per packet, we would:

send first 10 messages (packet #1), wait for ACKs #1 of message #10,

...

send last 10 messages (packet #1,000), wait for ACK #1,000 of

message #10,000

The first two methods correspond to Netlink normal behavior. Methods 3 and
4 could be done by introducing new flags to turn on batch mode or to set
the cumulative ACK policy. The performance of these methods is studied in
Chapter 5.

31

“report”
2003/9/9
page 32i

i
i

i

i
i

i
i

BATCHING 3. NETLINK2

32

“report”
2003/9/9
page 33i

i
i

i

i
i

i
i

Chapter 4

Linux implementation

The previous chapter presented the Netlink2 protocol. Here we present our
Linux implementation, explaining the design choice we made.

4.1 Architecture

We had the choice between two opposite architectures:

• Handle new Netlink2 functionalities inside the kernel.

• Handle new Netlink2 functionalities inside a daemon.

Figure 4.1 and Figure 4.2 illustrate those two approaches.

Figure 4.1: Netlink2: Architecture 1, kernel modification.

The fist solution (Figure 4.1) consisted of making the kernel support new
Netlink2 features. As mentioned above, one of those features was support for
a distributed Netlink2 broadcast wire. It implied that the kernel would have
to deal with connection management with remote CEs/FEs. Moreover, this
architecture was deeply linked to Linux, and interoperability with proprietary

33

“report”
2003/9/9
page 34i

i
i

i

i
i

i
i

NETLINK2 DAEMON 4. LINUX IMPLEMENTATION

Figure 4.2: Netlink2: Architecture 2, daemon.

CEs/FEs would be difficult. Indeed, interoperability would be simple if we
succeed in extracting the Netlink protocol from Linux internals. This implied
limiting the number of “Linux-dependent” system calls and generalizing Netlink
so that it no longer relies on a particular type of socket (see chapter 2). Even
if this solution were feasible, it rapidly turned out not to be the most simple
nor the most appropriate. The main reason is that it would break Netlink’s
backward compatibility. Another reason is that it would lead solving a Linux
system call on a remote host, which would cause significant security problems.

The second solution was disconnected from the kernel: a daemon is in charge
of interfacing with CEs (which most of the time will be user applications) and
with FEs (which could be local or remote kernel services). Figure 4.2 shows
the path taken by a message issued by a CE in a given host, which has to be
transmitted to an FE in a remote host. The protocol between the CE and the
daemon is Netlink2. After receiving the Netlink2 message, the daemon forwards
it to the correct host/port so that the remote daemon can process it. The remote
daemon has to ensure backward compatibility with Netlink to be able to send
appropriate message to the remote kernel. With this solution, interoperability
is possible: the daemon can send/receive Netlink2 messages to/from different
architectures. Moving Netlink to a distributed environment is also easier since
location information is handled by the daemons.

For all the previous reasons, we based our implementation on the second
solution. In the rest of this chapter, we will explain it in detail.

4.2 Netlink2 daemon

4.2.1 Interfaces

Figure 4.3 shows the Netlink2 daemon interfaces:

Local application interface This interface enables local applications to con-
nect to the Netlink2 daemon. These applications typically represent CEs.
The protocol used through this interface is Netlink2.

34

“report”
2003/9/9
page 35i

i
i

i

i
i

i
i

4. LINUX IMPLEMENTATION NETLINK2 DAEMON

Figure 4.3: Netlink2 daemon: interfaces

Kernel interface This interface ensures Netlink backward compatibility. Typ-
ically, the Netlink2 daemon connects to kernel services using the Netlink
protocol and emulates FEs. The Netlink2 daemon also acts as a gateway
between these FEs and CEs.

Outside world interface This interface allows the sending/receiving of Netlink2
messages with the outside world. The Netlink2 daemon dispatches incom-
ing Netlink2 messages to the appropriate CEs/FEs, and sends outgoing
messages to remote hosts.

Configuration interface This interface does not provide any ForCES func-
tionality, and is only used for “hot” configuration of the Netlink2 daemon.

4.2.2 Big picture

The Netlink2 daemon is implemented in netlink2_daemon.c. Figure 4.4 shows
its internal structure.

The blocks in the figure are explained as follows:

Input Dispatcher The input dispatcher takes care of the incoming Netlink2
messages. It uses the information stored in the LLT to decide whether
the message should be forwarded to a local CE, to the kernel gateway, or
discarded. The input dispatcher is also in charge of interpreting some of
the Netlink2 header flags of the message such as the NLM_F_BATCH flag we
introduced for batching.

Output Dispatcher The output dispatcher takes care of the outgoing Netlink2
messages. It uses the information stored in the GLT to decide whether
the message should be forwarded to a local CE, to the kernel gateway, to
a remote CE/FE, or discarded.

Both the input and output dispatcher are part of the daemon core and are
implemented in netlink_daemon.c.

35

“report”
2003/9/9
page 36i

i
i

i

i
i

i
i

NETLINK2 DAEMON 4. LINUX IMPLEMENTATION

Figure 4.4: Netlink2 daemon: overall picture.

LLT The LLT block represents the local location table. This table stores the
logical addresses of the CEs, which are locally connected to the daemon,
and the logical addresses of the FEs that the kernel gateway emulates. In
the case of CEs, the identifier of the socket by which they are connected
is also stored. The LLT is implemented in llt.c.

GLT The GLT block represents the global location table. This table stores the
logical addresses of the CEs/FEs in the NE and their corresponding IP
address. The GLT is implemented in glt.c.

Kernel Gateway / KAT The kernel gateway is in charge of converting the
Netlink2 messages it receives into Netlink messages that are understand-
able by the kernel. If a message requires an acknowledgment, the kernel
gateway saves the message header and associated sequence number. These
data are used to generate an acknowledgment in Netlink2 format after re-
ceiving the kernel reply. Figure 4.5 illustrates this process. After receiving
the Netlink2 message, the kernel gateway generates a Netlink message and
sends it to the Kernel. It stores the sequence number of the Netlink mes-
sage and the Netlink2 header in the kernel acknowledgment table (KAT).
Then, having received the kernel ACK, it generates a Netlink2 ACK with
the help of the previously stored data. The KAT is implemented in kat.c.
The kernel gateway is implemented in kernel_gw.c.

Controller A controller can connect on a special port to modify the LLT and
GLT while the daemon is running. A controller is implemented in
netlink2_controller.c.

Local CEs Local CEs can connect to the Netlink2 daemon. They can then

36

“report”
2003/9/9
page 37i

i
i

i

i
i

i
i

4. LINUX IMPLEMENTATION NETLINK2 DAEMON

Figure 4.5: Netlink2 daemon: KAT table.

send a Netlink2 message to the daemon, which will either forward the
message locally or to the appropriate IP address.

Remote daemon The standard way of transmitting a Netlink2 message be-
tween two hosts is to use a Netlink2 daemon at each host, which forwards
messages to its connected CEs/FEs.

Remote CE It is also possible for a remote CE to connect directly with the
daemon. In this case, it has to be aware of the IP addresses of the CEs/FEs
in the NE (in a sense, it has to have its own GLT).

A Netlink2 Client implemented in netlink2_client.c is capable of emulating
a local or remote CE.

ACK sender The ACK sender implements the “partial ACKs” ACK strat-
egy. In the context of multiple receivers, one may set the NLM F ASTR
flag to indicate that the receivers should use a partial ACKs strategy.
This strategy intends to avoid the ACK implosion problem: the ACK are
broadcast, and the receivers delay randomly the date at which they broad-
cast the ACK. When a receiver sees the ACK it should later send on the
broadcast wire, it simply cancels it. The ACK sender is implemented in
ack_sender.c.

4.2.3 Running threads

To design the Netlink2 daemon, we were inspired by from the Apache HTTP
daemon. Apache 1.3 and previous versions were “process-based”. Apache 2.0
introduced a Hybrid policy,1 meaning that it mixes forking and thread spawning.
Figure 4.6 illustrates this. However, this new feature is optional and the default
configuration is to handle requests in a non-threaded, pre-forking manner. A

1Here we refers only to the Linux version of Apache!

37

“report”
2003/9/9
page 38i

i
i

i

i
i

i
i

NETLINK2 DAEMON 4. LINUX IMPLEMENTATION

Figure 4.6: Apache 2.0 HTTP daemon: threads.

more complete description of what is done in Apache can be found in [13].
While implementing the Netlink2 daemon, we chose to use threads because we
wanted share data. The deferent Netlink2 daemon threads and their interaction
are shown in Figure 4.7. The daemon has multiple threads. A “Local TCP

Figure 4.7: Netlink2 daemon: threads

Listener” thread listens for local CE TCP connections. After a connection is
accepted, a new thread is spawned to handle the connection. A “Remote TCP
Listener” thread listens for remote CE TCP connections. After a connection
is accepted, a new thread is spawned to handle the connection. Note that the
daemon has no means of knowing whether a connecting CE is local or remote,
so the “Local TCP Listener” and “Remote TCP Listener” run on different
dedicated ports.

The figure also shows a “UDP listener”. Messages coming from the as-
sociated port are treated in FIFO order, regardless of their source address. A

38

“report”
2003/9/9
page 39i

i
i

i

i
i

i
i

4. LINUX IMPLEMENTATION TERMINOLOGY

thread listening to control messages (i.e. a message modifying the local or global
location tables) also listens on a dedicated port but is not represented in the
figure.

4.3 Terminology

ForCES only defines the CE and FE logical entities. Looking at Figure 4.4, one
may ask which block(s) represent(s) a CE or FE.

CE mapping is the easiest: CEs are represented by local applications, which
implement the Netlink2 protocol. If these applications have to be connected to
the Netlink2 daemon, it is only for logical address/real address translation.

FE mapping is more difficult: the services offered by the kernel cannot be
viewed as FEs, because the protocol used is Netlink (and not Netlink2). The
connection point is at daemon level, so the daemon emulates an FE. This FE
may contain different components directly addressable by Netlink2 (i.e. they
have a Netlink2 logical address). In this case, messages could be addressed to a
given FEC but processed at FE level. Note that this is Linux-dependent: one
may easily imagine a remote FE that supports Netlink2.

Figure 4.8 gives an example of a mapping between entities we introduced for
the Linux implementation and the logical entities defined by the ForCES frame-
work. The figure represents a single NE with multiple CEs/FEs. For reasons of

Figure 4.8: Logical entities mapping

simplicity, the role of each CE/FE within the NE is not mentioned. The entities
from the Linux implementation view are represented in black. On the FE side,
there are three connection points. On the first is a Linux kernel+Netlink2 dae-
mon: the daemon emulates two different FEs. On the second is an FE+Netlink2
proxy: the proxy is necessary because this FE does not handle the Netlink2 pro-
tocol. On the third is a single FE, which implements the Netlink2 protocol. On
the CE side, there are two connection points. On the first is a CE+ Netlink2
daemon: the daemon is only there to translate logical addresses into real ones.
On the second is a single CE, which is able to make this translation itself.

39

“report”
2003/9/9
page 40i

i
i

i

i
i

i
i

UNDERLYING PROTOCOL(S) 4. LINUX IMPLEMENTATION

The entities from the logical view are represented in red: they could either
map directly with the previous entities or be emulated by a Netlink2 daemon.

Open question: How should the location table synchronization among all
daemons be handled?

4.4 Underlying protocol(s)

4.4.1 Requirements

Netlink2 relies on a Layer 4 protocol for transportation. Concerning this un-
derlying protocol, the following guideline is given in [1]:

ForCES will make use of an existing RFC2914 compliant L4 pro-
tocol with adequate reliability, security and congestion control (e.g.
TCP, SCTP) for transport purposes.

Even if the Netlink2 header contains fields that could be used to deal with re-
liability, this task should be left to the underlying protocol. TCP offers all the
required features, but may not scale well: imagine an NE composed of a CE
controlling thousands of FEs. Having thousands of TCP connections between
the CE and each FE would add significant overhead and require expensive pro-
cessing time at CE. While sending a message to a given logical group, it would
be more efficient to use a multicast protocol.

We thus need a reliable multicast protocol that should be scalable, have
acceptable overhead, and be implemented under Linux.

4.4.2 State-of-the-art

Reliable multicast has given rise to intensive research during the past few years.
Even if many protocols have been proposed, no standard for Unix systems has
emerged. One may classify these protocols into four types [7]:

ACK-based protocols ACK-based protocols are an extension of the reliable
unicast protocols: each packet sent by the sender (using multicast) is ac-
knowledged by each receiver to ensure reliability. These protocols suffer
from the ACK implosion problem since the sender must process all ac-
knowledgments for each packet sent.

NACK-based protocols In NACK-based protocols, the receivers send non-
acknowledgments (NACK) only when a retransmission is required. By
reducing the number of transmissions from the receivers, the ACK im-
plosion problem can be overcome. However, the NACK-based protocols
require large buffers and must use additional techniques such as polling to
guarantee reliability.

Ring-based protocols In ring-based protocols, a designated site is responsible
for acknowledging packets to the source. Receivers send NACKs to the
sender when a transmission is required.

40

“report”
2003/9/9
page 41i

i
i

i

i
i

i
i

4. LINUX IMPLEMENTATION UNDERLYING PROTOCOL(S)

Tree-based protocols In tree-based protocols, receivers are grouped into sets
where each set contains a leader. The group members send acknowl-
edgments to the group leader, while each group leader summarizes the
acknowledgments within its group and sends the summary to the sender.

Also note that it is possible to design protocols making use of several of the
previous techniques. A theoretical comparison of these protocol can be found
in [8].

The Reliable Multicast Transport Working Group of the IETF has proposed
PGM [9] (Pragmatic General Multicast) as a reliable multicast transport proto-
col. This protocol offers all the required features but it is hard to find a Linux
implementation of it. A complete description of existing protocols is beyond
the scope of this document. Below are the characteristics of the most promising
ones for the Netlink2 appliance: H-RMC [10], PGM [9], LGMP [11], RMTP [14],
and NORM [15].

H-RMC PGM
Type NACK-based Tree-based

Description A hybrid reliable multicast
protocol for the Linux kernel
that combines membership
state maintenance, NACK-based
feedback, updates, probes, and
packet retransmissions.

A reliable multicast transport
protocol for applications that
require ordered or unordered,
duplicate-free, multicast data de-
livery from multiple sources to
multiple receivers. PGM guaran-
tees that a receiver in the group
either receives all data packets
from transmissions and repairs,
or is able to detect unrecoverable
data packet loss.

Implementation Kernel network driver User-space application
API BSD sockets Sockets or API

Availability Kernel 2.2. A port should be
made for 2.4

Talarian test drive

Known tests 30 receivers Thousands of receivers
Comment Well documented Good but not free.

41

“report”
2003/9/9
page 42i

i
i

i

i
i

i
i

UNDERLYING PROTOCOL(S) 4. LINUX IMPLEMENTATION

LGMP RMTP
Type Tree based Tree based

Description A protocol implementation
based on the ideas defined
by the local group concept
(LGC). It supports reliable and
semi-reliable transfer of both
continuous media and data files.
LGMP is based on the principle
of subgrouping for local error
recovery and for local feedback
processing.

A reliable multicast transport
protocol for the Internet. RMTP
provides sequenced, lossless de-
livery of a data stream from one
sender to a group of receivers.

Implementation Library User-space application
API Library ?

Availability OK ?
Tests ? 18 receivers on multiple Internet

areas
Comment Receivers get nothing No implementation found

NORM
Type Based on MDP2 (NACK based)

Description NORM uses a selective, negative acknowledg-
ment (NACK) mechanism for transport reli-
ability and offers additional protocol mecha-
nisms to conduct reliable multicast sessions
with limited “a priori” coordination among
senders and receivers. A congestion control
scheme is specified to allow the NORM pro-
tocol to fairly share available network band-
width with other transport protocols such as
the transmission control protocol (TCP).

Implementation Library
API Library

Availability Free
Known tests ?
Comment No documentation

4.4.3 Retained solution

In the ForCES context, the protocol should be run under low rate error. More-
over, all CEs/FEs in the NE may be connected to the same Ethernet segment
or the same bus. Thus, protocols designed to be deployed over the Internet are
not well suited. NACK-based protocols such as H-RMC or NORM could be
a good choice. However, the protocol performance depends on the quality of
the implementation. The choice of a given reliable multicast protocol should be
made by the NE designer, taking into account the NE topology and the available
connectivity.

42

“report”
2003/9/9
page 43i

i
i

i

i
i

i
i

Chapter 5

Evaluation

In the previous chapters, Netlink2 and our implementation have been presented.
In this chapter, we check some of the Netlink2 features and we present some
performance measurements.

5.1 Testbed description

The network on which we conducted our tests was composed of three machines,
as described in Figure 5.1. The three machines are PII 250 MHz PCs running

Figure 5.1: testbed description

under Linux (Redhat 7.1 with kernel 2.4.7), connected via a hub and 100 Mb
Ethernet cards. As shown in the figure, the IP addresses of stabio, orta, and au-
gio are 9.4.68.151, 9.4.68.152, and 9.4.68.153, respectively. We used IP multicast
address 239.128.0.1 port 1503 as necessary.

43

“report”
2003/9/9
page 44i

i
i

i

i
i

i
i

UNICAST BOX-ORIENTED GROUPS 5. EVALUATION

5.2 Unicast box-oriented groups

The network configuration of this first test is given in Figure 5.2.

Figure 5.2: Route add using host logical addresses.

In this first test two Netlink2 daemons run at stabio and orta. These dae-
mons communicate using UDP port 1501. The scenario is the following: a CE
at stabio wants to add a route on a FE (which is actually the kernel) at orta.
The CE also requests an acknowledgment. The CE and the FE are not aware
of the network topology. They only know their logical addresses, which are the
following: as shown is the picture, stabio has logical address 0x00040000 and
orta has logical address 0x00050000. The CE has logical address 0x0004XXXX
where XXXX is its Unix PID, say 2344. The FE has logical address 0x00051229
where 1229 has been assigned statically. The mapping between logical addresses
and IP addresses is maintained by global location tables (GLT) in the Netlink2
daemons (cf. Table 5.1).

GLT at stabio
Group Address

5 9.4.68.152:1501
4 localhost

GLT at orta
Group Address

4 9.4.68.151:1501
5 localhost

LLT at stabio
Group logical PID Socket

4 2344 8
LLT at orta

Group logical PID Socket
5 1229 3

Table 5.1: Location tables into Netlink2 daemons.

In this example, the IP addresses associated with groups are unicast. But
one may easily replace them by multicast addresses (cf. next section). At stabio,
the daemon also knows the logical PID of the CE to which it is connected. At
orta, the Netlink2 daemon knows the logical PID of the FE (i.e. the kernel) to
which it is connected. This information is stored in local location tables (LLT)

44

“report”
2003/9/9
page 45i

i
i

i

i
i

i
i

5. EVALUATION MULTICAST SERVICE-ORIENTED GROUPS

(cf. Table 5.1). Some of the values in these tables are only given for illustration
purposes and may change from one experiment to another.

Now, let us analyze the data flow from the CE to the FE and backwards:
at the beginning the CE sends a Netlink2 message requiring a route addition.
The NLM_F_ACK flag is set such that an acknowledgment must be returned on
success. The logical addresses fields of the Netlink2 header are the following:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Logical Source Group = 4 | Logical Source PID = 2344 |

+-+

| Logical Dest Group = 5 | Logical Dest PID = 1229 |

+-+

The netlink2 daemon at stabio uses the Logical Dest Group value to deter-
mine the IP destination address of the message, and forwards it to orta. At
orta, the netlink2 daemon then uses the Logical Dest PID value to forward
the message to the kernel. Having received the acknowledgment from the kernel
in the netlink format, the netlink2 daemon at orta generates an acknowledgment
in the netlink2 format and sends it back to stabio. The logical addresses fields
of this message are the following:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Logical Source Group = 5 | Logical Source PID = 1229 |

+-+

| Logical Dest Group = 4 | Logical Dest PID = 2344 |

+-+

Finally, the netlink2 daemon at stabio receives the acknowledgment and for-
wards it to the CE.

5.3 Multicast service-oriented groups

In this example we take the previous example and add another host: augio with
IP address 9.4.68.153 and logical address 0x00060000. The network configura-
tion of this second test is given in Figure 5.3.

The two FEs are part of the same logical group, e.g. NETLINK_ROUTE, which
has been assigned logical group identifier 7. The scenario is similar to the
previous test, except the CE at stabio now wants to add a route in the routing
table of both FEs (at orta and at augio), requiring an acknowledgment. The
CE knows only that the two FEs are members of the NETLINK_ROUTE group, so
it will use the 0xFFFF logical PID special value to have its messages processed
by each group member. The location tables are given in Table 5.2.

Now, let us analyze the data flow from the CE to the FE and backwards: at
the beginning the CE sends a Netlink2 message requiring a route addition. The
NLM_F_ACK flag is set so that an acknowledgment must be returned on success.
The logical addresses fields of the Netlink2 header are the following:

45

“report”
2003/9/9
page 46i

i
i

i

i
i

i
i

MULTICAST SERVICE-ORIENTED GROUPS 5. EVALUATION

Figure 5.3: Route add using service groups

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Logical Source Group = 4 | Logical Source PID = 2344 |

+-+

| Logical Dest Group = 7 | Logical Dest PID = 0xFFFF |

+-+

The Netlink2 daemon at stabio uses the Logical Dest Group value to deter-
mine the IP destination address of the message, and forwards it to the multicast
address 239.128.0.1:1503 so that the daemons at orta and augio receive the mes-
sage. At orta and augio, the Netlink2 daemons check the Logical Dest PID
value and both process the message because of the 0xFFFF broadcast value.
Having received the acknowledgment from the kernel in the Netlink format,
each daemon generates an acknowledgment in the Netlink2 format and sends it
back to stabio. The logical addresses fields of this message are the following:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|Logical Source Group = 5 or 6 | Logical Src PID=1229 or 1230 |

+-+

| Logical Dest Group = 4 | Logical Dest PID = 2344 |

+-+

Finally, the Netlink2 daemon at stabio receives the acknowledgments and for-
wards them to the CE.

Note that two acknowledgments are received by the CE. In certain cases, e.g.
to avoid the ACK implosion problem, the CE may choose to set the NLM_F_ASTR
flag so that the acknowledgments are multicasted, where each receiver discards

46

“report”
2003/9/9
page 47i

i
i

i

i
i

i
i

5. EVALUATION THROUGHPUT ANALYSIS

GLT at stabio
Group Address

4 localhost
5 9.4.68.152:1501
6 9.4.68.153:1501
7 239.128.0.1:1503

GLT at orta
Group Address

4 9.4.68.151:1501
5 localhost
6 9.4.68.152:1501
7 239.128.0.1:1503

GLT at augio
Group Address

4 9.4.68.151:1501
5 9.4.68.152:1501
6 localhost
7 239.128.0.1:1503

LLT at stabio
Group logical PID Socket

4 2344 8

LLT at orta
Group logical PID Socket

5 1229 3
LLT at augio

Group logical PID Socket
6 1230 3

Table 5.2: Location tables into Netlink2 daemons.

its own acknowledgment if it sees an acknowledgment with the same sequence
number. To enable this mechanism, the logical destination address should be
changed to the following:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Logical Source Group = 5 or 6 | Logical Src PID=1229 or 1230 |

+-+

| Logical Dest Group = 7 | Logical Dest PID = 0xFFFF |

+-+

This situation is illustrated in Figure 5.4: the Netlink2 daemon at orta is the
first to multicast an acknowledgment, whereas the Netlink2 daemon at augio
silently discards its own acknowledgment.

5.4 Throughput analysis

To analyze the performance of the protocol, we take again the configuration
from the first test, and request multiple route addition (with acknowledgment)
and route deletion (with acknowledgment), from 10 to 50000 times. Note that
before initiating a new transaction, the CE waits for the acknowledgment of the
previous one. This test is depicted in Figure 5.5.

We repeated the test three times. For these three simulations, Figure 5.6
represents the execution time as a function of the number of messages. We see
that the execution time is linear as a function of the number of messages. The
average rate is approximately 1000 route modifications / sec.

47

“report”
2003/9/9
page 48i

i
i

i

i
i

i
i

PERFORMANCE BOOST 5. EVALUATION

Figure 5.4: Route add using service groups with another ACK strategy.

Figure 5.5: Performance analysis: messages sent.

5.5 Performance boost

To improve the previous results we first used a “brute force” approach by chang-
ing the testbed to have much more powerful servers (Xeon 2.4 GHz) connected
with 1 GB/s Ethernet links, as described in Figure 5.7.

The test scenario is exactly the same as the previous one. The performances
are approximatively 5 times better, as shown in Figure 5.8. Looking at the
end of the curve, we modified 1,000,000 entries in the routing table (500,000
route addition + 500,000 route suppression) with acknowledgment within 150
seconds, which means more than 6500 route modifications per second. As in the
previous test, the CE waits for the acknowledgment of the previous transaction
before initiating a new one.

It should be noted that one UDP packet containing one Netlink2 header is
required for each single route modification. To reduce this overhead, we intro-

48

“report”
2003/9/9
page 49i

i
i

i

i
i

i
i

5. EVALUATION PERFORMANCE BOOST

Figure 5.6: Performance analysis (1): execution time.

Figure 5.7: Testbed 2.

duced the NLM_F_BATCH Netlink2 extended flag. This flag allows the IP services
requests to be batched using a single Netlink2 header. If an acknowledgment is
required, an “all-or-nothing” policy is applied: this means that an acknowledg-
ment is sent back only if all transactions have been accepted. If not, all of them
should be canceled.

From the Netlink2 daemon view, as many Netlink messages should be gener-
ated as different IP Services data blocks. If an acknowledgment is required, the
daemon should wait until the last Netlink message is acknowledged before send-
ing back a Netlink2 acknowledgment. Otherwise, all the previous modifications
should be canceled. This process is illustrated in Figure 5.9.

Note that the type of the message (e.g. RTM_NEWROUTE) is normally specified
in the type field of the Netlink2 header, and not in the IP service part. It
implies that when using batching, all the IP service blocks should be of the

49

“report”
2003/9/9
page 50i

i
i

i

i
i

i
i

PERFORMANCE BOOST 5. EVALUATION

Figure 5.8: Performance analysis (2): execution time.

same type.

Figure 5.9: Batching inside Netlink2 messages.

We conducted series of tests with different batch values, i.e. with netlink2
messages containing various number of IP service blocks. It turned out that the
best performances were with 10 IP service blocks. In this case, the results were
4 times better than in the previous scenario (cf. Figure 5.10), and ended up
with 1,000,000 route updates within less than 30 seconds, which means around
35,000 route updates / sec. The batching method we used here corresponds
to the 3d method introduced in Chapter 3. Some tests have also been conducted
using method 4, which produced similar results. The 3d method performed
slightly better. The performances ratio was equal to the ratio between the
message sizes.

50

“report”
2003/9/9
page 51i

i
i

i

i
i

i
i

5. EVALUATION PERFORMANCE BOOST

Figure 5.10: Performance analysis (3): execution time.

51

“report”
2003/9/9
page 52i

i
i

i

i
i

i
i

PERFORMANCE BOOST 5. EVALUATION

52

“report”
2003/9/9
page 53i

i
i

i

i
i

i
i

Chapter 6

Future Work

In this chapter, we present some ideas that should be discussed at length before
being integrated into the Netlink2 draft. We also show some possible ways of
using Netlink2 in Linux-based network systems.

6.1 Message format

In the previous chapter, we added the NLM_F_BATCH extended flag to batch
some RTMNEWROUTE commands. This flag indicated that the Netlink2 message
contained multiple commands of the same type. This, however, was merely
a “hack” because the receiving daemon already knew that the IP services tem-
plates were all 28 bytes long. The problem comes from the fact that the length,
type, and flags fields of the Netlink2 headers actually refer to a given IP service
template. To allow multiple IP service templates in a given Netlink2 message,
one may think of moving these fields from the Netlink2 header to the IP service
template.

Another issue is the parsing of optional TLVs. If a Netlink2 message con-
tains multiple optional TLVs, a parser would have no means to separate them
from the beginning of the IP service template because the length field of the
Netlink2 header only indicates the length of the entire message. One may think
of encapsulating all the optional TLVs in another one as indicative of the total
length of the optional TLVs. The parser would:

1. Read the Netlink2 header, which indicates the total length of the message,
and determine whether optional TLVs are in use.

2. If optional TLVs are in use, read the first TLV indicating the length of all
optional TLVs, then each TLV up to this length.

3. Read the IP service templates.

After putting together the two previous ideas, the format below could be
suggested:

53

“report”
2003/9/9
page 54i

i
i

i

i
i

i
i

MESSAGE FORMAT 6. FUTURE WORK

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

(Netlink2 header)

+-+

| Version | Flags_E | Length |

+-+

| Sequence Number |

+-+

| Source PID |

+-+

| Destination PID |

+-+

(Optional TLVs)

+-+

| Type == NL2_OPTIONS | Optional TLVs length |

+-+

| TLV1 type | TLV1 length |

+-+

| TLV1 value |

+-+

| ... |

+-+

| TLVn type | TLVn length |

+-+

| TLVn value |

+-+

(IP Service Template(s))

+-+

| Length 1 |

+-+

| Type1 (e.g. RTM_NEWQDISC) | Flags1 (e.g. NLM_F_EXCL | |

| | NLM_F_CREATE | NLM_F_REQUEST) |

+-+

| |

| IP Service Template1 |

| |

+-+

| IP Service Template1 optional TLVs |

+-+

| ... |

+-+

| Length n |

+-+

| Type n (e.g. RTM_NEWROUTE) | Flags n (e.g. NLM_F_CREATE |

| | | NLM_F_REQUEST) |

+-+

| |

| IP Service Template n |

| |

+-+

| IP Service Template n optional TLVs |

+-+

54

“report”
2003/9/9
page 55i

i
i

i

i
i

i
i

6. FUTURE WORK MULTIPLE-ACK FORMAT

6.2 Multiple-ACK format

In the previous chapter we used an all-or-nothing batching policy: we kept the
ACK format and changed the semantics so that a given ACK acknowledges
all the previous messages. One may think of introducing a new multiple-ACK
format similar to the one used in NFSv4 [12]:

Figure 6.1: Multiple-ACK message format

6.3 Kernel patch

Many applications including iproute2 or tc [16] have already been written for
Netlink. It would constitute a lot of work to rewrite them so that they would
be Netlink2-compliant. A work-around would consist of making the remote FEs
appear in the kernel as local devices. The idea is that Netlink will still be used for
communication between the user space processes and the Linux kernel. There
would be remote network devices of FEs showing up in the CE. So when an FE
joins, its netdevs will be displayed locally. When a local or remote netdev has to
be configured, Netlink is still used because that is what most tools use. When
it gets to the kernel, if the device being referenced is remote, then an exception
handling happens back to user space where the Netlink2 daemon will transmit
using Netlink2 to the remote FE. Communication happens (if Linux is on that
side) via Netlink to the kernel. If all goes well and an ACK was requested the

55

“report”
2003/9/9
page 56i

i
i

i

i
i

i
i

HAVE NETLINK2 KERNEL-NATIVE? 6. FUTURE WORK

response goes back to user space where it gets shipped to the Netlink2 daemon
via Netlink2. Upon receiving the Netlink2 message, the Netlink2 daemon sends
it to the kernel, which may compute it before sending it to user space.1 This
process is illustrated in Figure 6.2.

Figure 6.2: Netlink2 kernel patch

6.4 Have Netlink2 kernel-native?

Netlink2 received good feedback at the 2003 Kernel Developers Summit (July
21 and 22 in Ottawa). It would be possible to have it native. It seems to be a
lot of work to port existing Netlink applications to Netlink2. But most of these
applications use upper-layer libraries to interface with Netlink (e.g. iproute2
uses libnetlink). Moreover, Netlink2 does NOT introduce any changes in the
IP service templates, which represent the biggest part of Netlink. For now, the
code we release is compatible with the brand new linux-2.6.0-test4 Linux
kernel.

Whatever new features Netlink2 includes, the code modularity of our im-
plementation will enable both an easy kernel integration and future tests (e.g.
using the NS-2 network simulator).

1This new way of using Netlink2 can be view as an alternate architecture combining the
ones we detailed in chapter 4

56

“report”
2003/9/9
page 57i

i
i

i

i
i

i
i

– Conclusion –

In this paper, we introduced ForCES and Netlink separately. Then we explained
what make Netlink a good ForCES protocol candidate, and showed how the
Netlink2 protocol extends Netlink to make it more compliant with the ForCES
requirements.

Having presented our Linux Netlink2 implementation, we demonstrate the feasi-
bility of some of the new Netlink2 features. Our main contributions to Netlink2
are the new addressing semantics, the acknowledgment strategy, and the study
of various batching methods.

We tested the above features with a high-performance objective in mind. The
results we obtained showed that Netlink2 may be used in the context of high-
speed processing routers.

Netlink2’s assets are its high flexibility as well as years of Netlink testing in the
open-source community.

Access to the Linux Netlink code enabled us to gain a complete understanding
of its internals, and to build Netlink2 on solid bases. IBM has chosen to release
the Netlink2 code. This would allow for future improvements and keep Netlink2
ForCES-compliant.

57

“report”
2003/9/9
page 58i

i
i

i

i
i

i
i

58

“report”
2003/9/9
page 59i

i
i

i

i
i

i
i

Bibliography

[1] L. Yang, R. Dantu, T. Anderson, Forwarding and Control Element Separa-
tion (ForCES) Framework, draft-ietf-forces-framework-04.txt, De-
cember 2002

[2] H. Khosravi, T. Anderson, Requirements for Separation of IP Control and
Forwarding, draft-ietf-forces-requirements-09.txt, May 2003

[3] J. Salim, H. Khosravi, A. Kleen, A. Kuznetsov, Netlink as an IP Services
Protocol, draft-ietf-forces-netlink-04.txt, December 2002

[4] J. Salim, R. Haas, Netlink2 as ForCES protocol,
draft-jhsrha-forces-netlink2-00.txt, December 2002

[5] OMG Inc., X/Open Co Ltd., The Common Object Request Broker: Archi-
tecture and Specification, CORBA V2.2, February 1998, chap. 11

[6] J. Maloy, Telecom Inter Process Communication, Ericsson, January 2003

[7] R. Lane, A Comprehensive Study of Reliable Multicast Protocols over
Ethernet-Connected Networks, Florida State University, November
2000

[8] B. Levine, A Comparison of Known Classes of Reliable Multicast Protocols,
University of California, Santa Cruz, June 1996

[9] T. Speakman, J. Crowcroft, J. Gemmell, D. Farinacci, S. Lin, D.
Leshchiner, M. Luby, T. Montgomery, L. Rizzo, A. Tweedly, N. Bhaskar,
R. Edmonstone, R. Sumanasekera, L. Vicisano, PGM Reliable Transport
Protocol Specification, RFC 3208, December 2001

[10] P. McKinley, R. Rao, R. Wright, H-RMC: A Hybrid Riliable Multicast
Protocol for the Linux Kernel, IEEE SC99, November 1999

[11] M. Hofmann, Local Group based Multicast Protocol (LGMP),
http://hofmann.us/lgmp/lgmp.html, 1999

[12] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler,
D. Noveck, Network File System (NFS) version 4 Protocol, RFC 3530,
April 2003

[13] Apache HTTP Server Documentation Project, Multi-Processing Modules
(MPMs), http://httpd.apache.org/docs-2.0/mpm.html

59

“report”
2003/9/9
page 60i

i
i

i

i
i

i
i

[14] John C. Lin, Sanjoy Paul, RMTP: A Reliable Multicast Transport Protocol,
IEEE INFOCOM 96, March 1996

[15] B. Adamson, C.Bormann, M.Handley, J. Macker, NACK-Oriented Reli-
able Multicast Protocol (NORM), draft-ietf-rmt-pi-norm-07.txt, June
2003

[16] Mark Lamb, iproute2+tc notes, http://snafu.freedom.org/linux2.2/iproute-notes.html,
1999

60

	rz3482-body.pdf
	Abstract
	ForCES
	ForCES working group
	ForCES framework
	ForCES requirements

	Netlink
	Netlink overview
	User applications view
	Kernel view
	Messages format
	Acknowledgments
	Two-phase commit

	Netlink2
	Why use Netlink?
	Missing features
	Netlink2 overview
	Aims
	Netlink2 in the network stack
	Message format

	Addressing: from Netlink to Netlink2
	Related work
	Netlink addressing
	Netlink2 addressing
	Example

	SYN message
	Redundancy
	FE High Availability
	CE High Availability

	Capability query
	Loss detection
	Batching
	Related work
	Netlink2 batching

	Linux implementation
	Architecture
	Netlink2 daemon
	Interfaces
	Big picture
	Running threads

	Terminology
	Underlying protocol(s)
	Requirements
	State-of-the-art
	Retained solution

	Evaluation
	Testbed description
	Unicast box-oriented groups
	Multicast service-oriented groups
	Throughput analysis
	Performance boost

	Future Work
	Message format
	Multiple-ACK format
	Kernel patch
	Have Netlink2 kernel-native?

	Conclusion

