
RZ 3484 (# 93950) 02/24/03
Electrical Engineering 8 pages

Research Report

Multi-Layer Intermediate Representation for ASIP Design and
Critical-Path Optimization

Gero Dittmann and Andreas Herkersdorf

IBM Research
Zurich Research Laboratory
8803 R̈uschlikon
Switzerland
Email: ged@zurich.ibm.com

LIMITED DISTRIBUTION NOTICE

This report will be distributed outside of IBM up to one year after the IBM publication date.
Some reports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich

Multi-Layer IntermediateRepresentationfor ASIPDesignand
Critical-PathOptimization

GeroDittmannandAndreasHerkersdorf
IBM Research,ZurichResearchLaboratory

8803Rüschlikon,Switzerland�
ged,anh� @zurich.ibm.com

Abstract

Existing methods for the designof application-specific in-
structionsetprocessorsare tailored to the domain of data-
dominatedapplications,whicharecharacterizedby extensive
computationsandfew branches.In this paper we proposeto
combine a selectionof currentdata-dominateddesignmeth-
odsto form anintegrateddesignmethodology.

Designmethodsfor thecontrol-dominatedarearequirean
extendedsetof informationon application characteristics in
order to effectively handle many branches intersectedwith
only smalldata-flow blocks. Therefore,weintroduceamulti-
layer application representation that captures control, data,
and timing dependenciesas well as further annotations, to
form a basisfor transferringthemethodology to thecontrol-
dominateddomain. Basedonthisrepresentation, wepropose
a methodto resolve scheduling conflicts between tight dead-
lines.Thismethoddemonstratesthepotentialof thenew rep-
resentation.

1 Introduction

Most researchpublications on application-specificinstruc-
tion setprocessors(ASIPs)concentrateon thedesignof dig-
ital signalprocessors(DSPs). Somepublicationson micro-
controllersandPrologprocessorsexist [9], but they tendto
focusmoreon implementation detailsthanonalgorithmsfor
automatic instruction-setconstruction.

DSParchitecturesaredata-dominatedin that their appli-
cationshave long arithmeticsectionsbetween control-flow
boundaries,i.e. betweenbranches.

Examples of ASIPsin the control-dominateddomainare
the building blocks of network processors(NPs),suchasa
header parser[7], which extractsfields out of packet head-
ers,or a protocol engine, which implementsprotocol FSMs.
Both tasksconsistmainly of branchdecisionswith only few
computations.Implementationof suchFSMshasbeen inves-

tigatedfor ASIC high-level synthesis(HLS),mainlyfor auto-
motiveapplications[4], but not for programmablecores.The
maindifferencebetween thesetwo approachesis thefactthat
HLS optimizesthe circuits for a singleapplication whereas
anASIPmustsupport avarietyof applications,including fu-
tureapplicationsthathave not been specifiedat designtime,
which introducesaflexibility factorthatis hardto quantify.

Onahigher abstractionlevel of asystem-on-a-chip(SoC),
considerableresearchhasbeen conducted in the communi-
cations area. An approach to quickly implement new com-
munication protocols in a mixed hardware/softwaresystem
canbefoundin [15]. Thesystemis not supposedto run any
otherprotocol after implementation,but optimizes the cost-
performance trade-off. Approachesfor more flexible NPs,
but alsoon a rathercoarse-grainedSoClevel, aredescribed
in [3, 16, 21]. In contrast,we focuson thecomputer-assisted
generationof a fine-grained instructionsetfor a specialized
processingcoreasonebuilding block of anSoC.

In this paper we contribute threeconceptsthat form the
basisfor furtherresearch:First of all, in Section2 we intro-
duce an integrated approach for the designof ASIPs. Sec-
tion 3 summarizesexisting solutionsfor individual stepsof
this designmethodology. Secondly, in Section 4 we present
our application representation that is particularlysuitedfor
the control-dominateddomain. Finally, the useof this rep-
resentationis demonstratedin Section5 by an optimization
techniquewecall branch postponing thatresolvesscheduling
conflicts betweendeadlines.Section 6 concludesthepaper.

2 ASIP Design Methodology

To derive an ASIP from applications in the target domain,
we combine a number of techniquesinto a designmethodol-
ogy for ASIPsasshown in Figure1. Thedesigner specifies
a suiteof applications or partsof applications that arechar-
acteristicfor thetargetapplication-domain. This is donein a
high-level language,suchasC. A compilerfront-endtrans-

Dittmann,Herkersdorf: Multi-Layer IR for ASIPDesignandOptimization

latesthisspecification to anintermediaterepresentation(IR),
whichcanusuallybevisualizedasagraph,e.g.acontrol/data
flow graph(CDFG),of basicinstructions,suchasadd, sub-
tract,shift, multiply, divide, etc.

Application
Specification

Intermediate
Representation

Compiler
Front End

Optimizer,
Scheduler,

Pattern Finder

Patterns,
Statistics

e.g., C

e.g., CDFG

Instruction Set
Definition

ASIP
Description

Basic
Processor

Architecture

Tool
Generator

AssemblerSimulator Compiler

H/W Implementation

su
bs

tit
ut

es
 fo

r
re

fin
em

en
t l

oo
p

Figure1: ASIPdesignmethodology

Basedonanarchitecturetemplate,thisgraphis optimized,
employing methodsfoundin thecompiler literature[1], and
graphnodesarescheduledinto timesteps.Recurring instruc-
tion patternsare identifiedthat arecandidatesfor hardware
implementationto rendercodeexecutionmoreefficient. Op-
timizations,scheduling, andpatternfinding haveasignificant
impacton each otherandarethusinterwoven. Theresultof
this processis a setof candidatepatternsalongwith statisti-
cal informationabout theiroccurrenceandtheirbenefit. This
is also the point whereinformationfrom the individual ap-
plicationsin thesetis mergedbecausethevalueof a pattern
is independent of theapplicationin which it appears. Based
on the statistics, patternsareselectedto be implemented as
instructions,andaprocessordescriptionis generated.

Thecompletemethodologycanbeiteratedby feedingthis
processordescriptionback into the patternfinder. Oncethe
designer is satisfiedwith theoutcome,thedescriptionis im-
plemented.Retargetable tool suitesareusedto quickly build
a development environmentaroundthe processor, including

simulator, assembler, compiler, anddebugger [13]. A recent
development is that tools can even be generatedautomati-
cally for thenew processorfrom a formal processordescrip-
tion [14, 8].

3 State-of-the-Art Ingredients

In this sectionwe give an overview of existing methods for
individual stepsof our designmethodology. A compiler
front-endtransformsprograms from ahigh-level languageto
an IR. Possibletypesof IRs are the subjectof Section3.1.
Innumerablewaysto optimizeprogramsandscheduleopera-
tionscanbefoundin thecompiler literature[1]. Section3.2
summarizesstrategiesfor patternfinding in programs.Ow-
ing to the lack of automatic estimatesof implementation
complexity andtuningopportunities, thedefinition of a new
instructionset is still a largely manual task. The designof
compilers for new ASIPsis thesubjectof Section 3.3.

3.1 Intermediate Representation

A crucial point for the designmethodology is the interme-
diaterepresentation (IR) of applications, which is analyzed
to find optimizationsandinstructionpatterns.Restrictionsof
the IR inadvertentlyresultin deficienciesfor theentirepro-
cessbecausethe effectivenessof optimizations depends on
thesetof available information.

TheinformationthatanIR for ourtargetdomain mustcon-
vey is

� control flow aswell asdataflow;

� concurrency and sequentiality;

� timing constraints,and

� asmuchof theapplicationdeveloper’sexpertiseaspos-
sible.

An overview of the models commonly used in hard-
ware/software co-design (HSC) at systemlevel is given in
[5]: FSMs, discrete-event systems,Petri nets, data-flow
graphs, communicatingprocesses,andsynchronous/reactive
models, aswell asseveral derivatives thereof.

In [4], anFSM notationspecialized for control-dominated
models is introduced,calledco-design FSMs (CFSMs).Fur-
thermore, for the software part a directed acyclic graph
(DAG) model is reduced to a software graph, which is sup-
posedto allow somespecialoptimizations impossiblewith
control-flow graphs.TheCFSMapproachwasthenextended
into Function Flow Graph (FFG)models [17]—anFSMwith
datamanipulation code in each node, wherethe FSM rep-
resentsthe control flow and the code representsthe data

2

Dittmann,Herkersdorf: Multi-Layer IR for ASIPDesignandOptimization

flow. An FFG can be described in a C-Like Interchange
Format (CLIF). In [18], anFFG is annotatedwith designer-
provided additional information—mainly visit probabilit ies
of nodes—whichmakesit an attributed FFG (AFFG). Sev-
eraloptimization strategiesfor thosegraphsaresuggestedin
[17, 18].

3.2 Pattern Finding

A simpleapproachfor ASIP instructionsetdesignproposed
in [20] is to analysethedata-flow graphs (DFGs)in a CDFG
to find frequently recurringinstructionsequences. Appropri-
atehardware resourcesthat implement thesesequencesare
thenmanually addedto speedupprogramexecution,andthe
codeis modified to makeuseof thenew resources.Thesetwo
steps,sequenceanalysisandadding corresponding resources
to thehardware,areiterateduntil theresultis satisfactoryfor
thedesigner.

Theapproachpresentedin [10] doesthesameconsidering
parallel operationsratherthensequences,andis targetedfor
pipelined processors.Paralleloperations in DFGsaresched-
uled into time steps,and operationsin the sametime step
form aninstruction.A simulatedannealingalgorithm is then
usedto modify theoriginal operationscheduling to find bet-
ter instructionsets. Moreover, differentoperandencodings
are tried out in order to meet a given instruction-sizecon-
straint.

Insteadof startingfrom the most simple instructionset,
otherapproachesarebasedonexistingprocessorcores,asde-
scribedin e.g.[9], in anattemptto keepdesigncostandtime-
to-market low. Thesecoresarethenmanually extendedwith
application-specificinstructionsto speedupcritical codesec-
tions.

In [2], partsof the above approachesarecombined: Ex-
isting processorsareextendedfor anapplication domain by
finding two-dimensionalpatterns(i.e. consistingof sequen-
tial and parallel operations)that shareat leastoneoperand
andimplementing themasspecialinstructions.Applications
arenot representedby thecompiler output directlybut by ex-
ecutiontraces,thusallowing thedetection of patternsacross
control-flow boundaries,and a betterestimateof their fre-
quency of occurrence.

The pattern-matching algorithm that works on thesetra-
cesdevelops its patternlibrary on the fly: It startswith a
library of basicoperationsandtheniteratively addsall possi-
ble combinationsof eachoperationnodewith its neighbors,
i.e. othernodes thatshareat leastoneoperand with it. This
library is thenusedto cover the applicationgraphsuchthat
eachoperationis covered by exactly onepattern. A varia-
tion of dynamic programmingis employed to minimize the
implementationcostof thecover.

Thepatternsfoundaresortedby thenumber of timesthey
occur in the application graphsand by their popularity for
covering. From this list, patternsare manually selected,
grouped,andimplemented.

3.3 ASIP Compiler Design

Thedesignof a compiler for anASIP is tightly coupledwith
the designof the ASIP itself because the approachesused
in instruction-setgenerationaresimilar to instructionselec-
tion in compilers. Furthermore, theautomatic generationof
compilers from processordescriptionsis anactivefield of re-
search[14, 8].

In [22], theimplementationof aC compilerfor aparticular
network processoris described. The focusis on operations
on variable-lengthbit-vectorsthatarenot aligned on register
boundariesand may even spanacrosstwo registers. Also,
support for arraysof bit vectorsis proposed.

4 Multi-Layer Intermediate
Representation

In [2] it was found that the compiler output is not a good
application representation to work on because it provides
no informationabout the probabilit y with which individual
branchesaretaken. The consequence wasto useexecution
tracesinstead. In order to reveal even moreof the seman-
tics lostenroutefrom thedeveloper’sexpertiseto theassem-
bly code,we go to a higherabstractionlevel andintroduce a
programrepresentationthat allows programmersto express
moreof their application expertise,suchasrangesfor loop
countersandtiming constraints.

We startwith the intermediaterepresentation (IR), which
is thedatastructureon which compilerswork, becauseit de-
terminesthe set of possiblemethods to derive information
about the application, possibleoptimizations andultimately
about advantageousprocessorstructures. From an IR that
allows all desiredmethods it can thenbe concludedwhich
annotationsahigh-level languagehasto provide.

IRs have a graphstructurewith nodes anddirectededges
thatrepresentdependenciesbetween nodes. Nodesandedges
are annotated with information that is useful for the pro-
cess. Dependencies that should be expressedfor control-
dominatedapplicationsare

� data dependencies for computations using results of
othercomputations,

� control dependencies that determinethe control-flow
throughanapplication,and

3

Dittmann,Herkersdorf: Multi-Layer IR for ASIPDesignandOptimization

� time dependencies to expresstiming constraintsand
synchronizationwith theenvironment.

Data dependencies areexpressedusingdata-flow graphs
(DFGs), where nodes representthe operations, incoming
edges theoperands,andoutgoingedgestheresults.

Control dependencies arerepresentedin a Petri-netnota-
tion. The nodes (“places”) representblocks of operations,
i.e., they contain DFGs.Theedges (“relations”) show where
thecontrolflow (“token”) leads,andcanbeunconditionalor
conditional. Conditional edgesoriginatein a datanodeof a
DFG internal to a control node. The false-edgeis taken if
the resultof thedatanodeis zero. The true-edge is taken if
the result is not equal zero. Moreover, the model not only
allows the expressionof if-then constructsbut alsoof case
statements.For this purpose,the edgesareannotatedwith
the valuefor which they aretaken. A default edgemustbe
providedto preventdeadlocks.

To expressparallel threadsof controlin a Petri-netmodel,
thecontrolflow cansplit upatbars(“transitions”)with more
thanoneedge leaving a bar. Threads arejoined whentheir
control edgesenter the samebar. Control only proceedes
pasta bar when the control flow of a threadhasarrived at
eachincomingedge.This providessynchronizationbetween
threads.Thecontrol flow of aprogramstartsataSTART bar
andendsatanEND bar.

As theDFGsin control nodes(Petriplaces)relyoncompu-
tation resultsof othercontrol nodes, datadependenciesalso
exist betweencontrolnodes, formingasecondlevel of DFG.
This meta-DFG overcomestheimperative to storeall results
of computationsatevery control-flow boundaryin eitherreg-
istersor memory, andallowsoptimizationrunsto movecom-
putationnodesacrosscontrol-flow boundaries.Thisis partic-
ularly usefulfor control-dominatedapplicationsin which the
sizeof DFGsin control nodesis often very small andonly
their extensionacrosscontrol-flow boundarieswill allow an
effective optimization.

A control node, however, may be reached by more than
onecontroledgeandeach of thesecontroledgesmayrequire
a differentsetof meta-DFGedges to beusedfor thecompu-
tationin thecontrolnode. Hence,sourcesmustbeselectable
by the control edges. This is represented by a multiplexer
consistingof onebox per arriving control edge. Eachbox
joinsacontroledgewith themeta-DFGedges it requires.

Finally, a way of representingtime dependencies areout-
put transition graphs(OTGs) as introduced for controller
FSMs in ASICs [12], whereedges are annotated with the
minimumandmaximum time betweennodes andscheduled
nodes areannotatedwith thedeterminedtime step,given for
instancein processorcycles.

We combine DFG, Petri net, meta-DFG, andOTG into a
multi-layer IR with asinglestartnodeandasingleendnode.

Existing optimization runsthat have been proposed for one
of the original graphs canstill be usedby working only on
thecorresponding layer. Figure2 shows thedifferentlayers
in asimpleexamplegraph.

As graph operations needmore information, nodes and
edges can be further annotated,e.g., scheduled datanodes
will have an associatedtime step,conditional control edges
maybeannotatedwith theminimumandmaximum number
of timesthey aretaken in onerun, or DFG edges may have
ranges of legal values imposedon the variables they repre-
sent.

Sequentiality is expressedwith data-dependency andtim-
ing edges. Concurrency canbefoundonseveral levels:

� Nodesin aDFGthatcannotreachtheother(obeying the
directionof edges)canbeexecutedin parallel.

� DFGsin thesamecontrol noderepresentparallelism.

� An controledgecansplit upatabarandleadto multiple
control nodes.

Hence, themulti-layerIR fulfills all requirementspostulated
at thebeginningof this section.

4.1 Nodes for Data-Dependent Delay

In control-dominatedapplications timing constraintsareof-
tendata-dependent,i.e.,therequiredtimebetweentwo nodes
is determinedby a systeminput. Onesuchproblemin a net-
work processoris thetaskof finding thebeginning of a TCP
packet header after a variable lengthIP header. The length
is encodedin aheaderfield andthisvaluecorrespondsto the
numberof inputwordsto bidebeforetheTCPheaderappears
at thenetwork interface.

In orderto provide anexpressionfor this dependency, we
furtherextend themulti-layerIR by a typeof operationnode
that connectsthe DFG layer with the timing layer. We call
this node a delay node. It hasone DFG edgeas an input
whosevaluedeterminesthe delay that the noderepresents,
given in the sametime unit asthe edges in the timing layer
of themulti-layerIR. Furthermore, to bemeaningful, adelay
node must have an incoming and an outgoing timing edge
becauseits purposeis to provide a particulardelaybetween
two othernodes.

The delaynode is a virtual node in that it doesnot trans-
latedirectly to aprimitiveprocessorinstruction.Instead,it is
transformedinto oneof two possibleimplementation types.
It canbeimplemented

1. entirelyin softwareby moving astartvalueinto aregis-
ter andthenexplicitly decrementingthis registerin ap-
propriateintervals andbranching when it reaches zero,
or

4

Dittmann,Herkersdorf: Multi-Layer IR for ASIPDesignandOptimization

���
���

��	

��

��
���

���
���

���
���

���
���

���
���

 �!
"�#

$�%
&�'

(�)
*�+

,.- /0- 1324658794

:6;=<6>.? ;A@BDC9E8FHG

IKJMLDNPO

Q R9S0T UV W9XZY\[

]A^_M`a^

baced

f�g
h�i

j�k
l�m

n�o
p�q

r�s
t�u

v�w
x�y

za{e|~}

�0�6�

�Z�\� �D� �~�3��6�8�9�

���=���P�����P�� �9�P�P�

� �
¡�¢

£�¤
¥�¦

§�¨
©�ª

«�¬
�®

¯�°
±�²

³9´\µ ´¶D·9¸8¹Hº

»�¼P½¾ ¿=ÀÂÁPÃ

ÄAÅÇÆaÈÊÉÊÅÇËÌ Í=ÎÂÏPÐ

ÑÓÒ ÔÕÒ ÖÂ×Ø Ù9ÚPÛPÜ

Figure2: Exampleof multi-layerIR graph

2. partially in hardware by providing a counter register
that is implicitly decrementedby a constant value—
typically by one—and comparedto zero in eachclock
cycle. Whenthecounter reacheszerothentheprogram
counterof theprocessoris setto anaddressthatis stored
in asecond specialregister.

Thesoftwareimplementationmayrequirequitea number
of instructionsin the applicationcodefor the repeatedsub-
tractionandtestfor zero.Eachadditional instructioncompli-
catestheinstructionscheduling process.

In comparison,the hardwaresolutionrelieson additional
infrastructure.Moreover, a counter canbeusedfor only one
delay nodeat a time. Starting the counter in the applica-
tion coderequiresat mosttwo move instructions—oneto set
the start value of the counter and one to set the jump ad-
dressin the second register. Writing the start value to the

counter, however, needs to bescheduled in preciselythecy-
cle requiredby thetiming edges that leadto thedelaynode.
Otherwise,thecounterwouldnotgooff at theintendedpoint
in time.

We canachieve the freedomto schedule the counter start
earlieror laterby introducing another add or subtract node,
respectively, to adjustthestartvalue accordingly. This addi-
tionalnodemaybearithmeticallymergedwith othernodesin
thedelaycomputationby appropriateoptimizationmethods.

Notethattheadjustment valuedependson thefinal sched-
uling of the instructionthat startsthe counter. Hence, the
valuecanonly bedetermined afterthefinal instructionsched-
uling andmight theneven be zero. In orderto performthe
correctadjustmentthescheduler needs to beawareof oper-
ationsthat implement delay nodes in the application. It is

5

Dittmann,Herkersdorf: Multi-Layer IR for ASIPDesignandOptimization

the scheduler which decideswhether an adjustmentnodeis
introduced or not.

The scheduling freedomof the counter start furthermore
dependson theminimumpossiblestartvalueof thecounter.
The minimum value determines the time after which the
counter mustbe testedfor zerofor the first time andcorre-
spondsto the latestpossiblestarttime of thecounter—even
with adjustments.This calls for the afore-mentioned value
ranges to beannotatedwith DFG edges.

For a software implementation of a delay node,an enu-
merationof thelegal delayvaluesoffersanoptimization op-
portunity. Gapsbetween thevaluescorrespond to scheduling
slotsin which theregisterusedfor thecount-down does not
have to bedecrementednor testedfor zero. To compensate,
it only hasto bedecrementedby ahigher value lateron.

In conclusion, the delay nodeoffers the application pro-
grammeranadditionalabstractexpressionandenablesthein-
structionscheduler to selectanoptimalimplementationstrat-
egy for theexpression.

5 Branch Postponing

Onceanapplication suiteof thetargetdomainhasbeencap-
turedin themulti-layerIR it canbeoptimizedandscheduled
to meettiming requirements. By meansof a novel optimiza-
tion algorithmwenow demonstratehow thecombinedinfor-
mationin themulti-layer IR canbeusedto resolve schedul-
ing conflicts that would otherwiseinhibit the timely execu-
tion of analgorithm.

In data-dominatedsystems,suchasDSPs, processingof-
tenstartswith receiving asampleof dataandendswith send-
ing outa resultingsample[6]. Betweenstartandendthereis
nootherI/O to behandled.Hence,thereis only onedeadline
to be met per algorithmrun: The resultingframehasto be
output in time.

In control-dominatedreal-timesystems,suchasNPs,often
thereis not only onedeadline at the endof a run but there
aremany I/O interactions with theenvironmentandmany of
themhave adeadline associatedwith them.

In a high-speed network processor, for instance,mem-
ory bandwidth is a major bottleneck. One way to relieve
this problemis to processpacket headerson-the-flyasthey
comein from alink (data-push processing) insteadof retriev-
ing them from memoryfor eachprocessingstep. But this
means thatevery header word thatcontainsfields to bepro-
cessedhasa deadline associatedwith it becauseit hasto be
processed—orat leastsavedto a stable register—beforebe-
ing overwrittenby thenext incomingheaderword.

With multiple deadlinesin shortsectionsof code theneed
for fine-granulartiming optimizationarises.An exampleof
aproblemthatcanoccur is given in Figure3.

condition
computation

=

TRUE FALSE

branch

then
code
t=X

else
code

time X

time X+1

t_min=1

further
code

condition
computation

=

TRUE
FALSE

branch

then
code
t=X

else
code

time X

time X+1

t_min=1

further
code

Figure3: Branch postponing

On theleft, condition computation,branch, andthen-code
areall scheduled in thesametime stepÝ . Assumethat the
then-codealone needs a full time stepto becomputed.As it
hastheannotatedrequirementtobescheduledin timestepÝ ,
e.g.becauseof input datathat only occurs in this particular
cycle,theothercontrolnodesmustbemoved to another time
step.

Thetechnique we useto achieve this hassimilaritieswith
speculative execution in that it changesthe executionorder
of a conditional branch andfollowing code.Speculative ex-
ecution does this to fill processingslotsbeforethebranchin
orderto minimizetheexecutiontimeof theaveragecaseand
thecritical paththroughtheprogram.For choosingtheright
code to speculate, branch predictionis employed.

In contrast,branch postponingimprovesthe schedulabil-
ity, not the averageexecution-time. It might even grow the
critical path throughthe else-code. But it allows to sched-
ulecode thatotherwisecould notmeet its timing constraints.
This is doneindependently of what the averagecaseis and
hence,noassumptionsaremadeonbranchprobabilities.

6

Dittmann,Herkersdorf: Multi-Layer IR for ASIPDesignandOptimization

Thefirst stepto solve theproblem in Figure3 is to move
thecondition computation to thepreceding time step,asde-
pictedontheright. AssumethattimestepÝßÞáà is now fully
occupied. This means that the branchcannot be moved to
thepreceding time stepaswell. Thentheonly remainingso-
lution is to move thebranch to time Ýãâäà . But thatwould
meanto movethebranch afteracodesectionthatshouldonly
beexecutedif thebranchis actually taken,asalsoshown on
theright.

This transformationdoesnot changetheresultof thepro-
gramif thethen-codeis not“harmful”, i.e.,it doesnotchange
any datathatis usedin theelse-branch. Thiscondition is met
if

� no outputto the ASIP environment occurs in the DFG
nodes of the then-code becausethis communication is
partof theprogramresultthatshouldnot bealteredby
thetransformation;

� no memorywritesoccur in theDFG nodes of thethen-
codebecauseany datawrittenmightbereadin theelse-
branch. Thiscriterioncanbefurtherrelaxed by examin-
ing memoryaccessesmorecloselyandcomparing write
addressesin the then-code with readaddressesin the
else-branch. This can,however, be a complex taskbe-
causeof thememoryaliasproblemof two differentex-
pressionsdenoting thesamememorylocation.

In control-dominatedapplications this situationoccurs fre-
quently, for instance,if thebranch testsa terminationcondi-
tion and the else-branch startsan alternative algorithmthat
doesnot useany result from the first algorithm becauseit
handlesaspecialcasefor whichthefirst algorithmis notsuit-
able.

5.1 Applicability and Relevance

For an estimationof the relevanceof branchpostponing in
a real world example,we compiledthe header-compression
codein [11] with thegcccompilerfor IA-32 processorsand
isolatedthecompressanduncompressroutinesin theassem-
bly code. Headercompressionis a typical control-dominated
application. We found that 9% of all assemblyinstructions
areconditional branches,each of which represents a poten-
tial scheduling problemthatbranchpostponing cansolve.

For a closerexamination,we implemented the compress
routine in the multi-layer IR. The target ASIP is a proto-
col engine with a data-pusharchitectureaspartof a network
processor. Thecompressroutinehandlesonly common-case
packets and delegateserror handling to another processing
entity. We foundthat33%of theconditional branchesin the
programare of the above mentioned terminationcondition
typethatbranchoutof thealgorithm between tight deadlines.

This is a typical situationwherebranchpostponing ensures
schedulability within thetiming constraints.It can,however,
beappliedalsoto theremainingconditionalbranches.

Notethatbranch postponing addsonly littl e to thecritical
pathin the else-branch, becausethe else-codewould in any
casehave to wait for time Ýåâæà to arriveowing to thegiven
minimumtimedistanceto thethen-codeof 1. Thetimeadded
by moving the branchto the sametime stepis not critical
in many cases,suchas in the above-mentioned casewhen
it terminatesthe algorithm. The gain, on the otherhand, is
significant asit allows thethen-codeto bescheduled,which
otherwisecouldnot beaccommodated.

Branch postponing makes use of all four layers of the
multi-layerIR:

� Thecontrol layerrepresents thebranch.

� Thetiming layerexpressesthedeadlineproblem.

� TheDFGlayeris usedto analysewhether thethen-code
block is harmfulor not.

� Insteadof assigninga variablename to eachcomputed
value in a control nodewhenleaving the node, like in
a standardCDFG, the meta-DFG layer makesdatade-
pendencies between control nodesobvious. Therefore,
nopossibleconflicts have to beexaminedwhenmoving
thebranch.

This demonstratesthepotential of combining informationin
theannotatedmulti-layerIR.

6 Conclusions and Future Work

In this paper we have proposed a way to link ASIP design
methods to form an integrateddesignmethodology. As part
of the methodology we have combined several approaches
for application representation andextendedthemwith new
expressionsto arrive at our multi-layer IR that allows us
to use optimization techniques defined for one of several
graphtypes. Finally, we presenteda novel optimization for
branchesbetween short-termdeadlinesthatdemonstratesthe
powerof themulti-layerIR by exploiting additional schedul-
ing freedomthanksto timing information.

The next stepwill be to implement the IR and methods
working on it, including branch postponing, in a compiler
framework, suchastheStanfordUniversity IntermediateFor-
mat(SUIF)[19], in orderto furtherquantify therelevancefor
real-lifecases.

Futureuseof themulti-layer IR will includepatternfind-
ing acrosscontrol-flow boundariesandpatternsthat include
branches,which will make theapproacheven morevaluable

7

Dittmann,Herkersdorf: Multi-Layer IR for ASIPDesignandOptimization

for the control-dominated domain, which featuresa large
numberof branches.

For patternfinding in general it would behelpful to find a
betterfigureof merit thanthesumof matchingandcovering
contributions—preferablyonethatconsidersimplementation
costandthe latency of customoperations. This might lead
to the inclusionof two-cycle operations for possiblepattern
implementation.

Once the set of annotationsrequired in the multi-layer
IR hasbeen consolidated, the application specifier mustbe
enabled to expressthis information, including timing con-
straints,in ahigh-level languagethatcanthenbecompiled to
theannotatedmulti-layerIR.

Thegoal is to developa systemthatrelieves theASIP de-
signerof tediousandcomplex taskswhile still providing suf-
ficient control of theprocessto optimizetheresult.

References

[1] A. V. Aho,R.Sethi,andJ.D. Ullman.Compilers: Prin-
ciples, Techniques, and Tools. Addison-Wesley, 1986.

[2] M. Arnold and H. Corporaal. Designing domain-
specificprocessors.In Proc. of CODES’01, pages 61–
66,April 2001.

[3] M. Benz. An architecture andprototypeimplementa-
tion for TCP/IPsupport. In Proc. of the TERENA Net-
working Conf. 2001, May 2001.

[4] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska,
L. Lavagno, and A. Sangiovanni-Vincentelli. A for-
mal methodology for hardware/software co-design of
embeddedsystems.IEEE Micro, 14(4):26–36, August
1994.

[5] L. A. Cort́es,P. Eles,andZ. Peng. A survey on hard-
ware/softwarecodesignrepresentationmodels.Techni-
cal report,Dept.of ComputerandInformationScience,
Linköping University, June1999.

[6] H. DeMan,I. Bolsens,B. Lin, K. van Rompaey, S.Ver-
cauteren, and D. Verkest. Co-designof DSP sys-
tems. In G. De Micheli andM. Sami,editors,Hard-
ware/Software Co-Design, pages 75–104.Kluwer Aca-
demicPublishers,Dordrecht, 1996.

[7] G. Dittmann. Programmable finite state machines
for high-speed communication components. Mas-
ter’s thesis, Darmstadt University of Technol-
ogy, http://www .zurich.ibm. com/˜ged/
HeaderParse r_Dittmann. pdf , 2000.

[8] F. Engel, J. Nuhrenberg, andG. P. Fettweis.A generic
tool setfor application specificprocessorarchitectures.
In Proc. of CODES 2000, pages126–130,May 2000.

[9] M. Gschwind. Instructionsetselectionfor ASIPdesign.
In Proc. of CODES’99, pages7–11, May 1999.

[10] I.-J. HuangandA. M. Despain.Generatinginstruction
setsandmicroarchitecturesfrom applications. In Proc.
of ICCAD-94, pages391–396,November1994.

[11] V. Jacobson. CompressingTCP/IP headers for low-
speedseriallinks. IETF RFC1144, February1990.

[12] J.A. NestorandV. Tamas.Exploiting scheduling free-
domin controllersynthesis.In Proc. of the Int’l Work-
shop on High-Level Synthesis, pages74–86,November
1992.

[13] P. G.Paulin, F. Karim,andP. Bromley. Network proces-
sors:A perspective on market requirements, processor
architecturesandembedded s/wtools.In Proc. of DATE
2001, pages420–429, March2001.

[14] S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr.
LISA: Machinedescriptionlanguagefor cycle-accurate
modelsof programmableDSParchitectures.In Proc. of
DAC’99, pages933–938,June1999.

[15] J.H. Schiller andG.J.Carle.Semi-automateddesignof
high-performancecommunicationsubsystems.In Proc.
of HICCS’98, pages273–282,1998.

[16] H. Shimonishi andT. Murase.A network processorar-
chitecturefor very high speedline interfaces. Journal
of Communications and Networks, 3(1),March2001.

[17] B. Tabbara, A. Tabbara, and A. Sangiovanni-
Vincentelli. Hardware and software representation,
optimization, andco-synthesisfor embeddedsystems.
Technical Report UCB/ERL M00/7,Universityof Cal-
ifornia at Berkeley, Electronics ResearchLaboratory,
January2000.

[18] B. Tabbara, A. Tabbara, and A. Sangiovanni-
Vincentelli.Taskresponsetimeoptimizationusingcost
basedoperation motion. In Proc. of CODES 2000,
pages110–114,May 2000.

[19] TheStanfordSUIFCompilerGroup.http:// suif.
stanford.e du/ .

[20] J. vanPraet,G. Goossens,D. Lanner, andH. De Man.
Instructionset definition and instructionselectionfor
ASIPs.In Proc. of the IEEE/ACM Int’l Symp. on High-
Level Synthesis, pages11–16,May 1994.

[21] S. Virtanen,J. Lilius, andT. Westerlund.A processor
architecturefor theTACO protocol processordevelop-
ment framework. In Proc. of the 18th IEEE NorChip
Conf., November2000.

[22] J. Wagner andR. Leupers. C compilerdesignfor an
industrial network processor. In Proc. of the ACM
LCTES’2001, pages155–164, June2001.

8

