
RZ 3487 (# 99302) 01/06/03
Computer Science 10 pages

Research Report

On Autonomic Computing Architectures

Jana Koehler, Chris Giblin, Dieter Gantenbein and Rainer Hauser

IBM Research
Zurich Research Laboratory
8803 R̈uschlikon
Switzerland
{koe,cgi,dga,rfh}@zurich.ibm.com

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available
at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich



On Autonomic Computing Architectures

JanaKoehler ChrisGiblin DieterGantenbein RainerHauser
IBM Zurich ResearchLaboratory

CH-8803Rueschlikon,Switzerland
email: koe

�
cgi

�
dga

�
rfh @zurich.ibm.com

Abstract

We discussthekey featuresof autonomiccomputingandtheir relationshipto AI systems.Wepresenta generic
architecture for autonomiccomputingsystemsandproposea computationalmodelbasedon communicatingau-
tomatanetworksto implementsuch architectures.We illustratethis approach with an intelligentdevicediscovery
tool thatanalyzestheinventoryandtopology of large computernetworks.

Technical Report RZ 3487

January, 6th2003



1 Introduction

Over the last few decades,computershave revolutionizedandautomatedmany of our work processes,allow-
ing humansto addressever morechallengingtasksandleaving routinetasksto machines.But an unavoidable
byproductof evolution via automationis complexity, asdemonstratedespeciallyby computingsystems.In a re-
centdocument[8], IBM identifiedthecomplexity of currentcomputingsystemsasamajorobstacleto thegrowth
of IT technologies:

“ ����� incredibleprogressin almosteveryaspectof computing—microprocessorpowerupbya factor
of 10,000,storage capacityby a factor of 45,000,communicationspeedsby a factor of 1,000,000—
but at a price. Alongwith that growthhascomeincreasinglysophisticatedarchitecturesgovernedby
software whosecomplexity now routinelydemandstensof millions of lines of code. ����� Evenif we
couldsomehowcomeup with enoughskilledpeople, thecomplexity is growingbeyondhumanability
to manage it. As computingevolves,the overlappingconnections,dependencies,and interacting
applicationscall for administrativedecision-makingandresponsesfasterthananyhumancandeliver.
Pinpointingroot causesof failuresbecomesmore difficult, while finding waysof increasingsystem
efficiencygeneratesproblemswith more variablesthananyhumancanhopeto solve.” [8]

The answerto this problemlies in moreintelligent systemsandcomputinginfrastructurescalledautonomic
computing(AC) thatfacilitateandautomatemany systemmanagementtaskscurrentlydoneby humans.

2 Vision of Autonomic Computing

Autonomiccomputingcanbeseenasa holistic vision thatenablesa computingsystemto “deliver muchmore
automationthanthesumof its individually self-managedparts”.A systemis consideredacollectionof computing
resourcesworking togetherto performaspecificsetof functions.

“It’ s timeto designandbuild computingsystemscapableof runningthemselves,adjustingto varying
circumstances,and preparingtheir resourcesto handlemostefficiently the workloadswe put upon
them. Theseautonomicsystemsmustanticipateneedsandallow users to concentrate on what they
want to accomplishrather than figuring how to rig the computingsystemsto get themthere. ����� It
is theself-governingoperation of theentire system,andnot just partsof it, that delivers theultimate
benefit.” [8]

Eight key featurescharacterizeany AC system,cf. [8]:

1. An AC systempossessessystemidentity, i.e., it hasknowledgeof its components,currentstatus,functions,
andinteractionswith theenvironment.

2. An AC systemhasthe ability of self-configuration and reconfiguration, i.e., it canautomaticallyperform
dynamicadjustmentsto itself in varyingandunpredictableenvironments.

3. An AC systemperformsconstantself-optimization, i.e., it monitorsits constituentpartsandadaptsits be-
havior to achieve predeterminedsystemgoals.

4. An AC systemis self-healing, i.e., it is ableto discover thecausesof failuresandthenfindsalternative ways
of usingresourcesor reconfiguringthesystemto keepfunctioningsmoothly.

5. An AC systemis capableof self-protection, i.e.,it detects,identifies,andprotectsitself againstvarioustypes
of attacksto maintainoverall systemsecurityandintegrity.

2



6. An AC systemusesself-adaptationto find waysto bestinteractwith neighboringsystems,i.e., it cande-
scribeitself to othersystemsanddiscover thosesystemsin theenvironment.

7. An AC systemis a non-proprietary opensolutionbasedon standards thatprovide thebasisfor interoper-
ability acrosssystemboundaries.

8. An AC systemhashiddencomplexity, i.e., it automatesIT infrastructuretasksandrelievesusersof admin-
istrative tasks.

In thefollowing weintroduceagenericarchitecturethatprovidesaverygeneralframework for thedevelopment
of AC systems.

3 Generic AC Architecture

The designof technicalsystemsusuallyfocuseson the intendedfunctionality of the systemandoften obeys
the “design follows function” principle. Consequently, a systemis organizedinto componentsthat implement
the application-specificfunctions. Sucha systemis thenembeddedinto someruntime environmentthat deals
with executionfailuresandcapturesexceptions.We believe thatsucha designcannotsatisfytherequirementsof
AC systemsandthereforeintroducea genericarchitecturethat introducessystemcomponentsnot at the level of
application-specificfunctionalities,but at thelevel of functionalitiesderivedfrom thekey featuresof AC systems,
seeFigure1.

Figure 1. A generic AC architecture.

EachAC systemis situatedin someenvironmentor context. The interactionbetweenthesystemandits envi-
ronmentoccursthroughthreesystemcomponents:negotiation, execution, andobservation.

Thenegotiation componenthasa two-wayinteractionwith theenvironmentthatallows thesystemto receive
requirementsfrom theenvironment,negotiatethefulfillment of therequestedrequirements,make itself known to
othersystems,or communicateits own requirementsto otherAC systemsit is awareof. The main purposeof
thiscomponentis to receive andactively constructa targetbehaviorspecificationbasedon its interactionwith the
environment.This targetbehavior specificationis addedto thesharedknowledgeof thesystemcomponents.

3



Ourarchitecturehighly abstractsfrom theknowledgecontentsandformat,andthesharingmechanismsbetween
thevariousAC systemcomponents.Weonly assertthattheknowledgebasecontainsarepresentationof theactual
systembehavior, thesystemitself andtheenvironmentasperceived by thesystem.Whena new targetbehavior
is addedto thesharedknowledge,which differs from theactualbehavior, a deliberation processis triggeredthat
will produceanew behavior. Weexplain this deliberation processin moredetailbelow. Thedeliberation process
sendsthenew behavior to thenegotiationcomponentthatdecideswhetherthis behavior shouldbeexecuted.The
decisioncanfor examplebebasedonwhethernew requirementshavebeenreceivedthatmakethebehavior already
obsolete.

Theexecutioncomponenthasa one-wayoutputinteractionwith theenvironmentto executeany behavior that
was determinedby the deliberation componentand forwardedby the negotiation component. The execution
componentconcentratessolelyon executingthebehavior in a specificenvironment,e.g.,on expandinghigh-level
actiondescriptionsin sequencesof lower-level systemcommands.

Theobservationcomponenthasaone-wayinput interactionto receivestatusinformationfrom theenvironment.
Thecomponentobservestheeffect of what theexecutioncomponentis executingwithout knowing whatwasac-
tually executed.It addsits observationsto thesharedknowledgeandproducesarepresentationof its observations
for analysisby thefailure recoveryprocess.

Limiting the interactionbetweenthe AC systemandits environmenthelpsto addressthe key factorsof self-
protectionandhiddencomplexity. A systemwith a controlledinteractionis lessvulnerableto attacksandhides
its internalcomplexity by exposingonly clearlydefinedinterfacesto its environment.Thetypesof interactionwe
introduced(one-way, two-way) emphasizethepredominant,notnecessarilytheonly flow of information.

Two componentsthatdo not interactdirectly with theenvironmentoccurin this architecture:deliberation and
failure recovery. As discussedbriefly above, the deliberation componentcomputesnew behaviors for the AC
systemandencapsulatesthe “normal” application-specificfunctionalcomponents.It is responsiblefor fulfilling
thekey factorsof self-adaptivityandself-optimization. Two major fields of AI will play a dominantrole in the
developmentof deliberation components:machinelearningandAI planning.

Thefailurerecoverycomponentaddsself-healingandself-protectioncapabilityto theAC system.Interestingly,
it doesnot interactdirectly with the environment,but interactswith the executionandobservationcomponents
only. The reasonfor this designprinciple lies againin the needto reducethe complexity of the systemand
enhanceits robustnessat the sametime. The failure recovery receives informationaboutthe intendedbehavior
of the systemfrom the execution, i.e., the executioncomponenttells it, for example,what actionor command
it intendsto executenext. This information is usedby the failure recovery to build an internalexpectationof
whatwill happennext in thesystemenvironment. Theobservationcomponenttells the failure recovery what it
actuallyobserved happeningin theenvironment.As executionandobservationarecompletelydecoupledin this
architecture,they cannotinadvertentlyinfluenceeachother. Thefailure recoveryanalyzesthedeviationsbetween
theintendedandtheindependentlyobservedchangesoccurringin theenvironment.For minimal deviations(that
needto be preciselydefinedwhenimplementingthis architecture),it computessimple recovery behaviors that
it sendsto the executioncomponentfor immediaterecovery. In the secondpart of this paper, we will sketch
concreteexamplesof recovery behaviors. If greaterdeviationsoccur, it updatesthesharedknowledgewith anew
actualbehavior. This will triggeranactual/targetcomparisonandanew deliberation processthatmayleadto the
replacementof thebehavior in theexecutioncomponent.

A particularAC systemwill bebasedon a sophisticatedimplementationof thegenericarchitecture.In partic-
ular, thesharingof knowledgeor informationbetweenthevariouscomponentswill usuallydistinguishbetween
globally sharedknowledgebetweenall componentsand locally sharedknowledgebetweenonly selectedcom-
ponents.Furthermore,we canexpectto seemorethanoneinstanceof eachcomponentor complex components
that areAC systemsthemselves. In particular, the deliberation componentwill probablyinvolve a hierarchical
decompositioninto application-specificfunctionalcomponents,which is alreadycommonin realisticapplication
systems.Self-configuringAC systemscanbeexpectedto involve several deliberationcomponents—specialized

4



in computingsystembehaviors or computingnew systemconfigurations.We regardthis architecturemorein the
senseof a generaldesignprinciplethatwill alwaysrequirerefinementsandevenmodificationswheninstantiated
for aparticularIT application.

4 Computational Model for AC Architectures

When implementinga specificAC system,we needto provide computationalmodelsto wrap eachof the
components(or theimplementationthereof)andto modeltheinterfacesandtheinteractionamongthecomponents
andbetweenthesystemandits environment.Our mainconcernis thereliability androbustnessof anAC system,
becausewe needto provide guaranteesconcerningthebehaviors generatedby thesystem.Consequently, simple
andprecise,yetpowerful computationalmodelswouldbeideal.

Agent-basedsystemsprovide a very appealingsolution.Eachagentwould (1) encapsulatea specificreasoning
methodthatimplementsoneof thesystemcomponentsand(2) provide thecommunicationandinteractionmech-
anismswith the otheragents.Although powerful approachesexist, the adaptiveagent architecture [10] or the
openagent architecture [11], thereexist no methodsthatwould allow us to formally verify that sucha complex
agent-basedsystemindeedimplementstheintendedbehavior. Furthermore,theuniquequalitiesof agents—their
autonomy, mobility, andadaptivity—canimply seriouslegal consequences[6]. Similar considerationsalsoapply
tocognitiveandbehavioral architectures[14, 2], whichhaveamuchbroadercoveragethanourgenericarchitecture
thatweespeciallytargetatAC systemsin technicalenvironments.

An AC systemwill often be a distributed systemcomprisingcommunicatingprocessesencapsulatedas the
systemcomponents.Suchacomplex systemcanonly becontrollableif we considercomponentswith limited ca-
pabilitiesandafinite spaceof internalstates.Wethereforeproposetheuseof communicatingfinitestatemachines
(CFSM)[1] asa computationalmodelfor AC systems.DeterministicCFSMasthesimplestautomatamodelto-
getherwith asetof communicationchannels,whicharesharedby themachinesandcarrymessagesof aparticular
type,wereoriginally usedto specifyandverify protocolsbetweenconcurrentprocesses.Later, thebasicCFSM
modelwasextendedto networksof powerful automatamodels,for examplenondeterministic,pushdown or timed
automata.Automatamodels,whichcaneveninstantiatenew communicationchannelsor otherautomatathatthen
run concurrentlywith thealreadyexisting automata,have alsobeenproposedtogetherwith powerful verification
toolsto analyzethebehavior of theautomatanetworks[7]. Thiscomputationalmodelhasbeenshown to subsume
generalPetrinets[13] andto implementprocessalgebraicapproaches[15, 9].1

By usingcommunicatingautomatanetworkswecanbreaka largesysteminto smallersubsystemsthatcompute
autonomouslyand interactwith eachothervia well-definedinterfacesonly. Interestingly, this vision hasbeen
pioneeredby theAI communityin theseminalpaper[12]. McCarthyandHayesproposedtheuseof interacting
automatato modelintelligentsystems.In contrastto our approachbasedon communicatingautomatanetworks,
they assumeddeterministicautomatawith explicit staterepresentationsandfixed interconnectionsbetweenthe
automatabasedon statetransitions. This modelsufferedespeciallyfrom the stateexplosionproblemandalso
exhibitedlimitationsto modelcomplex behaviors dueto thecompletedeterminism.

Ournetworksof communicatingautomatawith explicit communicationchannelsavoid theselimitations.First,
we usea symbolicrepresentationinsteadof representingstatesexplicitly. This yields a compactrepresentation
thatspecifiescomplex behavior andthat is well suitedfor automaticanalysis,validationandformal verification.
If the capacityof channelsis finite, model checkingcanbe usedto verify propertiesof the automatanetwork
[3]. Although the complexity cannotbe eliminated,it is significantly reduced.Second,insteadof hard-wiring
theautomata,ournetwork is looselycoupledvia communicationchannelscarryingmessagesof aparticulartype.
This approachachieves greaterflexibility in the interactionamongthe systemcomponents,which is no longer

1Thecomputationalmodelof communicatingautomatanetworksalsocomplementsrecentstandardizationefforts. As mentionedabove,
a key featureof AC systemsis that they shouldbeopensolutionsbasedon standards. Webservices[4] provide a first standardizationof
interfacesfor thesynchronousor asynchronousmessage-basedcommunicationbetweenconcurrentprocesses.

5



specifiedexplicitly, but resultsfrom the exchangeof typedmessagesover the communicationchannelsandthe
(possiblynondeterministic)reactionof the systemcomponentsto thesemessages.In the following section,we
will demonstrateourapproachonasystemfor theautomaticdiscovery of devicesin computernetworks.

5 AC Architecture for an Intelligent Device Discovery System

Theanalysisandsurveillanceof largecomputernetworksis acurrentchallengein theIT industry. For example,
whenIT infrastructureis outsourced,it is importantfor the serviceprovider to obtainasmuch informationas
possibleaboutthe differentdevicesin a network, e.g.,mobile andfixed work stations,applicationandnetwork
servers,andthetopologyof thenetwork itself. Veryoften,customerscannotprovideaccurateenoughinformation
abouttheir computerassets,soanintelligentdevice discovery (IDD) tool thatcanfill this informationgapwould
beveryhelpful. WehavedevelopedsuchanIDD tool [5] asanautonomicsystem:it collectsinformationfrom the
unknown network environmentwithoutdisturbingthenetwork operationandit adaptsitself to unknown situations
it encounters.Thetool encapsulatesseveralnetwork scanningutilities, for examplea simpleping commandthat
testswhethera machineis alive or the nmapscanningutility that allows remoteOS identificationby TCP/IP
fingerprintingtheremotestack.

Figure 2. AC architectural view of the IDD tool.

Figure2 shows anAC architecturalview of theIDD tool. Eachof thesystemcomponentsis encapsulatedasa
communicatingautomatonspecifyingthebehavior of thatcomponent.Thecommunicationbetweentheautomata
proceedsvia asetof predefinedchannels.Thetaskspaceandtheworkspacearethemajorglobalcommunication
channelsamongthecomponents.Thetaskspacecontainsthecomplex scantasks,whereastheworkspacecontains
lower-level tasksthataredirectly executableby thescanservicesandalsoaggregatesinformationreturnedfrom
theservices.Localcommunicationchannelsexist in particularbetweentheworkmonitorandthesurveillanceand
taskdispatching components.

A useror a systeminteractswith the IDD tool via the web portal that implementsa simple variant of the
negotiationcomponentfrom thegenericarchitecture.Thewebportal allows usersto defineso-calledcampaign
andpoliciesor invoke predefinedcampaigns,andto accessthereportingdocumentsgeneratedby thetool.

6



Thecampaignandpoliciesdescribetop-level discovery tasks,e.g.,“in vestigatethenetworkcomprisingtheIP
addressrange 10.4.16-17.*” andconstraints,for example“do not scanthesubset10.4.16.*before 5 PM” . The
webportaltranslatestheminto complex scanningtasksthatit addsto the taskspace, which representsoneof two
themajorcommunicationchannelsvia which theIDD componentsinteractwith eachother.

Scanservicesimplementthe executioncomponentfrom the genericarchitecture.A serviceis a concurrent
processexecutinga specificscantaskandworking in parallelwith otherservices.A servicecanwrap a simple
scanningutility or it canencapsulatea complex AC systemthat exhibits a similar architectureasthe IDD tool.
Scanserviceschedulingis a sophisticatedexecutioncomponentthat listensto the taskspaceandderiveslower-
level tasks,e.g., “scan 10.4.16.123”or “walk the domainnametree(DNS)of this network”. It canalso take
a complex task, computean appropriateparallelizationof that task into a set of subtasksand then schedulea
periodicscanof theseparalleltasks,whichwill thenbeexecutedby simplerscanservices.Scanservicescheduling
communicatesthegeneratedlower-level tasksto thework spaceto which thesimplerscanservicesarelistening.
Eachservicewaits for taskmessagesto arrive thatfit its input requirements.Thework spaceis thesecondmajor
communicationchannel.

Scanservicescommunicatetheir statusandresultsdirectly backto thework spaceto which thework monitor
is listening. Thework monitor implementstheobservationcomponentfrom thegenericarchitecture.Thework
monitor hasto listen to the work spacebecauseit cannotobserve the resultsof thescansby observingonly the
network. In fact,noneof thescanservicesis supposedto have a visible impacton thenetwork.

Thework monitorcollectsthescanresultsfrom theservicesanddetermineswhetherthescantaskshave been
correctlyexecuted.The scanresultsandany actual/target deviationsarecommunicatedto the taskdispatching
component,which implementsthedeliberation componentfrom thegenericarchitecture.Thestatusinformation
from thescanservicesis communicatedto thesurveillancecomponent,which enablesit to watchtheprogressof
thescanning.

Thetaskdispatchingcomponentencapsulatesasophisticateddeliberationprocessthatanalyzesandsummarizes
thescanresultsreturnedfrom thevariousscanservices.It generatesthescanningreportandalsodispatchesnew
complex scanningtasksarisingfrom theresults.For example,whenaDNSscanidentifiesaspecificserver, e.g.,a
mail server, a new taskfor a specificmail server scanningserviceis derived andaddedto the taskspace. The
reportingsubcomponentof the taskdispatching is ableto resolve ambiguitiesandcontradictionsin theobserved
data. For example,several servicesscanin parallel to discover the operatingsystemthat runs on a particular
machine,but they canreportdifferent results,which mustbe summarizedinto a mostaccurateanalysisof the
network.

Thesurveillancecomponentimplementsthe failure recoveryprocessenvisionedin thegenericarchitecture.It
mergesthreedifferenttypesof information:

1. It observesthework spaceto tracktasksthathave beenaddedfor execution.

2. It receivesstatusnotificationsaboutthescanservicesfrom theworkmonitor.

3. It receivesprogressinformationfrom thework monitor, which it comparesto thestatusnotifications.

Two main failurescanoccurin the IDD system:First, scanservicescanbecomedisconnectedfrom the IDD
systemandfail to pick up andexecutea taskfrom the taskspace. Second,a scanservicecanstartexecuting,but
fail to returnareasonableresult.Thesurveillanceprocesstakesanaction-orientedapproachto recover from these
failures.Whenataskis addedto theworkspaceit buildsupanexpectationthatit shouldreceivestatusnotifications
from amatchingservice.If thosenotificationsarenot received,it concludesthattheserviceis malfunctioningand
triesto restartit. If a scanservicefails duringexecution,i.e., thestatusinformationandtheprogressinformation
communicatedfrom the resultmonitor do not match,the surveillancecan take action to reconfigurethe setof
servicesthat is currentlyactive by eitheraddinganothertask to the work spacethat will retriggeran existing

7



serviceor triggera scanservicenot yet active or by makinga serviceinactive that is consideredto malfunction.
More sophisticatedreconfigurationsrequiredeliberationandthereforetake placevia the taskdispatching, which
addsnew complex tasksto the taskspace.For example,contradictingscanresultscanleadto the additionof a
differentschedulingservicefor repetitive scans.

TheAC architecturefor the IDD tool providesa consistentinterfacefor interactingwith the tool via theweb
portal componentindependentlyof theconfigurationof servicesthesystemis running.Thepointsof controlare
within thewebportal andthe taskdispatching thataddnew tasksto the taskspace, thescanservicescheduling
thatmapscomplex tasksinto morefine-grainedtasksandaddsthemto thework spacefrom wherethey arepicked
upby thescanservices, andthesurveillancecomponentthatcanmodify theoperationof thescanservices.

Thesubsequentfiguresshow thesimplifiedstatemachinesof a very simpleschedulingservice,a scanservice
anda service-specificsurveillanceprocess.Thestatetransitionsareannotatedwith themessagesthataresentby
thestatemachine.For example,taskspace?complexTaskmeansthata complexTaskmessageis readfrom the task
space, whereasworkspace!taskmeansthatamessagetaskis sentto theworkspace.

Figure 3. State machine for a service generating a nondeterministic set of subtasks for further
processing.

Figure3 shows a non-deterministicstatemachinethat splits a complex scantaskinto several subtasks.How
many subtaskswill have to begeneratedis not known at designtime, but only becomesknown at runtimewhen
thesplittingserviceprocessesthecomplex task.Thenumberof subtasksneededmight for exampleberepresented
asaparameterin thespecificationof thecomplex task.

Figure4 shows a partof theCFSMof ascanservicethatfirst executesaport scancommandandthenexecutes
a morespecificscancommanddependingon theresultof theport scan.After picking up thetaskfrom thework
space, theservicecommunicatesthetask-specificstatusnotificationsandscanresultsbackto thework space.

Figure5 shows astatemachinethatis usedto supervisetheserviceshown in Figure4. Thecyclic surveillance
process(not shown) spawns sucha service-specificstatemachinefor eachtaskthat is addedto thework space.
Thesestatemachineswait for thestatusnotificationscommunicatedfrom theworkmonitor. Thesurveillancealso
instantiatesa specifictimer for eachrunningscanservice. If a statenotificationis not received within a certain
periodof time, this timerwill senda timeoutmessage,whichcausesthesurveilling CFSMto entera failurestate.
Thiswill triggerfurtherrecovery actions.In ourexample,it simply addsthesametaskagainto thework space.

Usingnetworks of communicatingautomataallows us to formally specifythebehavior of eachof thesystem
componentsandformally verify importantpropertiesof their behavior usinganautomaticmodel-checkingtool.
An exampleof sucha behavioral propertyof theIDD systemis thatall componentsshouldterminatein their end
statesonly whenthetaskandwork spaceshave beenemptied.Owing to spacelimitationswe cannotdiscussthe
verificationissuesin furtherdetailnor show theCFSMsin their full complexity.

Currently, theapproachis usedat thedesignlevel to specifyandverify thesystemcomponents.EachCFSMis

8



Figure 4. State machine for an example scan service.

thenimplementedanddeployed in a distributedsystemincludingtheIBM WebspherePlatform. Thesystemhas
beenusedsuccessfullyto analyzelargecomputernetworkscomprisingup to hundredsof thousandsof machines.
In anext step,weplanto developanexecutionenginethatdrivestheentiresystemandallowsusto directlyexecute
systemcomponentsspecifiedat theCFSMlevel.

6 Conclusion

We proposea genericarchitecturefor autonomiccomputingsystemsbasedon communicatingprocessesthat
eachencapsulateaspecifichigher-level functionalitysuchasdeliberation, observation, negotiation, execution, and
failure recovery. Thecomputationalmodelweproposeis anetwork of communicatingautomatato implementthe
autonomiccomputingarchitecture.Sucha network hasseveral advantages:First, communicatingautomataal-
low the complexity of the systemdesignto be reducedsignificantly. Symbolicrepresentationsyield a compact
representationof the statespaceand in particularallow us to apply formal symbolicmodel-checkingmethods
to verify the behavior of an autonomiccomputingsystem.Second,the interactionbetweenthe systemcompo-
nentsproceedsover locally or globally sharedcommunicationchannelsthatcarrymessagesof a particulartype.
This yields clearly definedinterfacesbetweenthe systemcomponentsandthe environment,which improve the
interoperabilityof autonomiccomputingsystems.

We demonstratetheapproachwith an intelligentdevice discovery system.Futurework will addressthescal-
ability of theapproachto applicationsystemsin theareaof e-businessprocessintegrationandautomationbased
onwebservices.A specificchallengein thisareais theexistenceof concurrentprocessesthatneedto bespawned
dynamicallyandtherepresentationof businessrulesandpolicies.

9



Figure 5. State machine for surveilling a service.

References

[1] D. BrandandP. Zafiropulo.Oncommunicatingfinite-statemachines.Journalof theACM, 30(2):323–342,1983.
[2] R. Brooks. Intelligencewithout representation.Artificial Intelligence, 47:139–159,1991.
[3] J.Burch,E. Clarke, K. McMillan, D. Dill, andL. Hwang. Symbolicmodelchecking: �����	� statesandbeyond. Infor-

mationandComputation, 98(2):142–170,1992.
[4] E. Christensen,F. Curbera,G. Meredith, and S. Weerawarana. The web servicesdescriptionlanguageWSDL.

http://www-4.ibm.com/software/solutions/webservices/resources.html,2001.
[5] D. Gantenbeinand L. Deri. Categorizing computing assetsaccording to communicationpatterns. Tutorial

on Asset Inventory and Monitoring in a Networked World at the 2nd IFIP-TC6 Networking Conference,2002.
http://www.zurich.ibm.com/csc/ibi/idd.html.

[6] C. HeckmanandJ.Wobbrock. Liability for autonomousagentdesign.AutonomousAgentsandMulti-AgentSystems,
2(1):87–103,1999.

[7] G. Holzmann.DesignandValidationof ComputerProtocols. PrenticeHall, New Jersey, 1991.
[8] IBM Corporation.Autonomiccomputing- amanifesto.www.research.ibm.com/autonomic, 2001.
[9] G. Karjoth. ImplementingLOTOS specificationsby communicatingstatemachines. In Proceedingsof the Third

InternationalConferenceon ConcurrencyTheory, volume630of LNCS, pages386–400.Springer, 1992.
[10] S. Kumar, P. Cohen,andH. Levesque. The adaptive agentarchitecture:Achieving fault-toleranceusingpersistent

brokerteams.In Proceedingsof the4th InternationalConferenceonAutonomousAgents, pages459–466.ACM Press,
2000.

[11] D. Martin, A. Cheyer, andD. Moran. The openagentarchitecture:A framework for building distributedsoftware
systems.AppliedArtificial Intelligence, 13(1):91–128,1999.

[12] J. McCarthyandP. Hayes. Somephilosophicalproblemsfrom thestandpointof artificial intelligence. In B. Meltzer
andD. Michie, editors,MachineIntelligence, volume4, pages463–502.EdinburghUniversityPress,1969.

[13] W. Pengand S. Purushothaman.Analysis of a classof communicatingfinite-statemachines. Acta Informatica,
29(6/7):499–522,1992.

[14] P. Rosenbloom,J.Laird, andA. Newell. TheSOARpapers: Readingson IntegratedIntelligence. MIT Press,1993.
[15] D. Taubner. Finite Representationsof CCSand TCSPProgramsby AutomataandPetri Nets, volume369of LNCS.

Springer, 1989.

10


