
RZ 3488 (# 99303) 04/21/03
Electrical Engineering 7 pages

Research Report

Organizing Pattern Libraries for ASIP Design

Gero Dittmann

IBM Research
Zurich Research Laboratory
8803 R̈uschlikon
Switzerland
ged@zurich.ibm.com

LIMITED DISTRIBUTION NOTICE

This report will be distributed outside of IBM up to one year after the IBM publication date.
Some reports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich

OrganizingPatternLibraries for ASIPDesign

GeroDittmann
IBM Research,ZurichResearch Laboratory

Säumerstrasse4 / Postfach
8803Rüschlikon,Switzerland

ged@zurich.ibm.com

Abstract

In this paper we propose a new method to arrange
a library of application-graphpatterns.Such libraries
are employed in the designprocessfor Application-
SpecificInstruction-setProcessors (ASIPs)to find op-
portunities to specializea processorinstruction-set for
anapplicationdomain. In current approaches,theseli-
brariesare unordereddata collections. Therefore, to
searcha library for a specificpatternentailscompar-
ing the patternwith eachentry in the library, which is���������
	

with
�

thetotal numberof operationnodesof
all patternsin the library and

�
the sizeof the pattern

sought.
Ournew methodemploysidentityoperationsto orga-

nizea library in sucha way thata directedsearchstrat-
egy with only

�����	
and

�����
is possible.Furthermore,

theorganization revealssynergiesbetweenpatterns for
theASIP designprocessandfor codegeneration.

1 Introduction

A crucial step in the designof Application-Specific
Instruction-setProcessors(ASIPs)is theinstruction-set
generation. Methods for automating this process,sur-
veyedin [1], extractpatternsfrom applications,usually
in theformof data-flow graphs(DFGs),andinsertthem
into a patternlibrary. Along with eachpattern,statisti-
cal datais stored,suchas the number of occurrences
of a patternin the applications. Basedon this data,a
subsetof thepatternsin thelibrary is thenselectedfor
implementationasspecializedinstructions.

For eachpatternwhich is found in theapplications,a
searchin thelibrary is performedto checkwhetherthe
patternis alreadypresent, andthepatternis theneither
addedto thelibrary or only thestatisticsareupdated.

In current approaches,the patternlibraries are un-
orderedcollectionsof patterns—providedthelibrary or-
ganizationhasbeendescribedatall. A searchalgorithm
on sucha library hasto compare all operation nodes
of the patternin questionwith all operation nodes of
all patterns in thelibrary, in theworstcase.Hence,the

computationalcomplexity of this searchis
���������
	

,
with

�
the total number of operation nodesof all pat-

ternsin the library and
�

thesizeof thepatternsought
[2]. Becausea searchis conductedfor eachpatternin
the applications andbecausethe patternlibraries tend
to belarge, thecomputationalcomplexity of thesearch
algorithm hasa significantimpacton the total running
time of the instruction-set generation. In [2] for in-
stance,memory requirementsof more than200MB are
given for singlebenchmark applications, resultingin a
running time of morethan24 hours with a number of
heuristicsalreadybuilt in to keeplibrary sizelow.

In this paper, we introduce a novel organizationfor
patternlibraries that enablesa searchalgorithm with
only

�����	
, where

�
is thesizeof thepatternsought up

to themaximum patternsizein thelibrary (
�����

). Fur-
thermore,thelibrary organizationrevealsopportunities
to substituteonepatternby another. This may be ex-
ploitedfor moreefficient instruction selectionandcode
generation. The method is presented for tree-shaped
patterns but canbeextendedto directedacyclic graphs
(DAGs).

Theremainder of this paper is structured asfollows:
In Section2 we referto relatedwork on instruction-set
generation. In Section3 we introduce our concept of
anidentity graph andits usefor a novel library organi-
zation.Section4 presents a searchalgorithm, andSec-
tion 5 an insertionalgorithm for identity-graph-based
libraries.Boundsof the library sizearederivedanalyt-
ically in Section6 andcomparedwith conventional li-
braries.We concludethepaperwith Section7 andindi-
catesomedirections for future work.

2 Related Work

An early approach to instruction-set generation for
ASIPscanbefound in [3]. Parallel operationsin DFGs
are scheduledinto time steps,and operations in the
sametime step form an instruction.A simulatedan-
nealingalgorithm is then usedto modify the original
operationscheduleto find betterinstruction sets.More-
over, different operand encodingsaretried out in order

1

Dittmann:Organizing PatternLibraries

to meetagiven instruction-sizeconstraint.A datastruc-
ture for the collectionof instructioncandidatesis not
described.

In [2], existing processorsareextendedfor anappli-
cationdomainby implementingpatternsasspecialin-
structionsthatconsistof sequential and parallel opera-
tionswhichshareat leastoneoperand.Applicationsare
not representedby the compiler output directly but by
execution traces,whichenablesthedetectionof patterns
acrosscontrol-flow boundariesanda betterestimateof
their frequency of occurrence.

Thepattern-matching algorithm thatworkson these
tracesdevelops its patternlibrary on the fly: It starts
with a library of basicoperations and then iteratively
addsall possiblecombinationsof eachoperationnode
with its neighbors, i.e., combinationswith othernodes
that shareat leastoneoperandwith it in the applica-
tiongraph.Patternsfromthislibraryarethenselectedto
cover theapplicationgraph suchthateachoperation is
coveredby exactly onepattern.This selectionis called
acover of theapplication graph. A variationof dynamic
programming is employed to minimize the implemen-
tationcostof thecover.

Thepatterns in the library aresortedby thenumber
of timesthey occurin theapplicationgraphs andby the
number of timesthey wereselectedfor a cover. From
this list, patterns aremanuallyselected,grouped,and
implemented.

The library-construction algorithm tries to find pat-
tern matchesby iterating over all operation nodesof
all patterns in the library andcomparing themwith all
nodes in a subjectpattern.We concludethatthelibrary
is anunorderedcollectionof patterns.Thesearchalgo-
rithm givenhasacomputationalcomplexity of

����������	
,

asexplainedin Section1. In ordertokeep
�

low, heuris-
ticsareintroducedto limit thelibrary sizeby excluding
patternsthatdonotseembeneficial.

A differentmethodto clusterparallel operationsto
form new instructions is proposedin [4]. DFG nodes
arescheduledassoonaspossibleandaslate aspossi-
ble to determine their mobility. Fromthis information,
agraphis derivedin whichtwo nodesareconnectedby
anedgeif they canbescheduled in thesameschedule
step.Theedgesareweightedwith thenumberof times
the nodes can be scheduledtogether. For instruction
selection,a profiling function is employed to find the
most frequently occurring operation pairs.This func-
tion mustmaintaina library of candidatepairsin order
to collectprofiling information,but is not describedin
thepaper.

Identity operations,whichweusetofindrelationsbe-
tweenpatterns,have beenexploitedfor basicalgebraic
transformationsin compilers[5] andin high-level syn-
thesis[6]. In [7] and[8], identityoperationsareinserted
into sequencesof operation nodesin order to increase
the number of identical patterns.We go the opposite
wayby usingidentityelementsto eliminate nodesfrom
patterns. As a sideeffect, however, the library we con-
structin thiswayrevealsthesameopportunitiesto sub-
stituteonepatternby another. Moreover, our approach
is notconstrainedto smallsequentialpatterns.

3 Organizing Libraries as Identity
Graphs

Most primitive operationsthatarefound in theinstruc-
tion setsof general-purposeprocessorscanbe usedto
maponeinput operand � to itself by applying aniden-
tity operand � ����� , i.e. thealgebraic identityelement for
thatoperator, to theotherinput suchthat����� � ���! ��"#�%$� � ��� ��� ��"
turning theprimitiveoperation � into anidentityopera-
tion.Examplesof identityoperandsaregivenin Table1.

Table1: IdentityOperands.
primitive left right
operation operand operand&

0 0' n/a 0�
1 1(

n/a 1)*) ",+*+ n/a 0
AND all 1’s all 1’s

OR,XOR 0 0

An operand for anoperation node in a DFG pattern
is eithergeneratedby another nodein thesamepattern
or is anexternal inputto thepattern.Depending ontheir
operands,we distinguish threetypes of nodes:- A leaf node hastwo operandsthatareexternalin-

putsto thepattern.- An internal node hastwo operands that areboth
generatedby othernodesin thesamepattern.

2

Dittmann:Organizing PatternLibraries

- A cyclops node has only one operand that is
an external input to the pattern and the other
operand is generatedwithin the pattern. Depend-
ing on whetherthe external input is the right or
left operand, we call thenode a right cyclops or a
left cyclops, respectively.

A complex patterncanbetransformedinto a simpler
patternby applying the identity operands of its oper-
ation nodesto the appropriate inputs, thus effectively
eliminatingnodesfrom thepattern. Particularoperands
can be applied directly to leaf nodesand to cyclops
nodes.Thenon-commutativeoperationsin Table1 have
no left identityoperand.Nodesof theseoperation types
mustbe leafsor right-cyclops nodes to be removable,
i.e., their right input must be accessiblefrom outside
thepattern.

By applying identity operandsto onenode at a time,
a patternof

�
nodes,of which . are removable can

betransformedinto . patternsof
� '0/ nodes.By re-

cursively repeating thisoneachof thesimplerpatterns,
thecomplex patterncaneventually bereduced to primi-
tiveoperations.If all leafnodesandall cyclopsnodesat
any stageof therecursionareremovablethenthesetof
primitive operatationsincludesall operation typesthat
occurin thepattern.Theprimitiveoperationsfinally all
converge to a move operation.

If all patternsgenerated this way are enteredinto
the patternlibrary then the sequenceof applying the
identity operands can be usedto sort the patternsin
the library. We representthis sorting as a graph with
the graph nodes being the patterns and the directed
graphedgesrepresenting theapplication of an identity
operand to oneparticular operation nodein thepattern.
Theedgesaredirectedfrom themorecomplex pattern
to thederived smallerone. Wecall this typeof graphan
identity graph (ID graph). Figure1 shows anexample
ID-graph of a patternfrom an application that parses
headers of network packets[9].

The library ID-graph shows which simplerpatterns
canbe coveredby a complex instructionduring code
generation, againby applying the appropriate identity
operandsto its input. Therefore, thesesimplerpatterns
neednot be implementedas individual instructionsif
the complex pattern is chosenfor implementation—
providedthatthepossiblyslowerexecutionandthecost
of applying theidentity operandscanbeafforded.This
costmaybe,for instance,additional move instructions.

To this end,thepower of a complex patternto cover
all derivedsimplerpatterns seemsto suggestthatonly

the most complex patternsshouldbe chosenfor im-
plementation.But in ASIP designmethodologies there
is animplementationcostfunction 1 �2� �343657$ �8	 associ-
atedwith thepatternsthatusuallyincreaseswith pattern
complexity, capturing for instanceoperandencodingef-
fort, die area,or latency. This cost function balances
thederivedtendency towardsmorecomplex patternsfor
implementation.

4 Searching an Ordered Library

Theaccessto thepatternlibrary canbeacceleratedsig-
nificantlyby exploiting theorderof thepatterns.When
searching for a particular patternin thelibrary, we start
with oneof theprimitive operationnodesit comprises,
namely, theroot node.We thenaddoperation nodesin
thepatternin reversetopologicalorderby following the
edgesin thelibrary ID-graph againsttheir direction. In
this way, we arrive at thecompletepattern, providedit
existsin thelibrary.

The following is the pseudocodeof a recursive al-
gorithm that implements the proposedsearchstrategy.
It traversesthe pattern sought depth-first and right-
branch-first.It returnseitherthepositionof thepattern
in thelibrary or NULL.

patternI nLibrary = find (pattern Root,
libLevel 0)

libNode find (patNod e, libNode) {
libNode =

libNode.nex t[patNode.op erandNumber,
patNode.op erator]

if patNode.ri ghtOperand != NULL then
libNode = find (patNode .rightChild,

libNode)
if patNode.le ftOperand != NULL then

libNode = find (patNode .leftChild,
libNode)

return libNode
}

Figure2 shows thegraphfor thepatternin Figure1
with only the reverseedgesthat are requiredfor the
searchalgorithm.Wecall thisanID-basedsearchgraph.

In orderto searchthis graph for, e.g.,the patternin
themiddleconsistingof aright shift followedby asub-
traction, the algorithm startswith the patternroot—in
this casethe subtraction. In the first line of thefind
function, libNode is set to the library entry corre-
sponding to the patternroot by following the next -

3

Dittmann:Organizing PatternLibraries

AND

x1

AND

SHR

x2 = 0

x1 =
0xFFFFFFFF

SHR

x1

MOV

x1 = 0

x1 =
0xFFFFFFFF

AND

SHR

SUB

x3 = 0

x2 = 0

x1 =
0xFFFFFFFF

SHR

SUB

AND

SUB

x2 = 0

x1 = 0

SUB

x1

x2 = 0

x1 =
0xFFFFFFFF

x1 = 0

x0

x0

x0

x0

x0

x0

x0

x0

x1

x1

x1

x1

x2

x2

x2

x2

x3

Level 3 Level 2 Level 1 Level 0

Figure1: ID-Graph of aPattern

pointerindexedby theonly operandof the library root
andby a SUB operator. Thenthe right operand of the
patternroot—labeledx2—is examined,whichis NULL
becauseit is an external patterninput. Therefore,it is
skippedandthe left operand is checked, which is not
NULL becauseit is connectedto theoutput of theshift
operator. Consequently, thefind function is calledre-
cursively with theshift operationasthenext patNode
andthesubtraction asthe libNode .

This time, the first line of the find function fol-
lows thenext -pointer indexedby thesecondoperand
of the subtraction andby a SHR operator andhereby
setslibNode to the library entrywe have beenseek-
ing. Both, the left andright operandof patNode are
NULL andthereforethelibraryentrysought is returned,
after unwinding the recursive calls, to be assignedto
patternIn Library .

Thefind function is calledat mostoncefor each
node in the patternsought. Therefore, this searchis���9�
	

, with
�

the number of operation nodesin the

patternsought.If the patternsought is larger thanthe
largestpatternin thelibrary thenthesearchstopseven
earlier. Hence,the worst-casecomputationalcomplex-
ity of a searchis

�����	
, with

�
the sizeof the pattern

sought up to themaximum number of operationnodes
in any pattern in the library—which is equal to the
maximum depthof the library search-graph.Note that�����

.

5 Inserting Patterns into a Library

To insertapatternintoapatternlibrary thatis organized
asanID-basedsearchgraph,weconstructtheID graph
of thenew patternandderive thecorrespondingsearch
graph. Then,for eachpathin this searchgraph,we try
to find the correspondingpathin the library. If a path
doesnot exist in its entiretyin thelibrary thenthepart
existinghastobeconnectedto theremainderof thepath
in thesearchgraphof thenew pattern. Thosepartsof the

4

Dittmann:Organizing PatternLibraries

AND

x1

AND

SHR

SHR

x1

MOV

AND

SHR

SUB

SHR

SUB

AND

SUB

SUB

x1

x0

x0

x0

x0

x0

x0

x0

x0

x1

x1

x1

x1

x2

x2

x2

x2

x3

Level 3 Level 2 Level 1 Level 0

Figure2: ID-BasedSearchGraph

new searchgraphthatalreadyexistedin thelibrary are
deleted.A pseudocodeof this algorithm is asfollows:

newRoot = makeSearchG raph(newPatt ern)
insert (newRoot , libraryRoo t)

insert (sourceN ode, destNod e) {
for each operand {

for each operator {
if sourceNode.n ext[operand, operator]

!= NULL then {
if destNode.n ext[operand, operator]

== NULL then
destNode.ne xt[operand,o perator]
= sourceNod e.next

[operand, operator]
else {

insert (sourceNod e.next
[operand, operator],
destNode. next
[operand, operator])

delete (sourceNod e)
}

}
}

}
}

Thisinsert function considers thepossibilitiesof
growing thepatternsfrom onelevel of thesearchgraph
to the next. It compares thesepossibilitiesin the new

searchgraph with the library and links thoseto the
library that are missing.The number of possibilities,
which is also the number of next-pointers storedwith
apattern,correspondsto thenumber of possiblecontin-
uationsof asearchfor larger patterns:thenumber of ex-
ternalleft operandson thetop left fringeof thepattern,
plus oneright operand,timesthe number of primitive
operatorsin thelibrary.:<;
=?>A@�BC�D EF@�=4G�H �I��� 57$J� ���K @�CMLON =?P9@ & / 	6Q $%R?.SR?34R?TU5 K
Only thetopright operandof apatternhasto beconsid-
eredbecausetheotherrightoperandshavebeenhandled
at lower levelsof thesearchgraph. Thesameis truefor
left operandsthat arenot in the top left fringe. In the
worstcase,all left operandsin a patternareon the top
left fringe. Then the number of next-pointers for this
patternwith

�
nodesis

�2� & / 	8�VQ $%RI.WR?34R?T5 K . Notethat
pointersthat areNULL still have to bestoredbecause
they area terminationcondition of therecursionin the
searchandinsertalgorithms.

We can provide a coarseestimateof the computa-
tional complexity of the insert function when we
assumethe derived worst-casenumber of possibilities
of
�2� & / 	X�YQ $7R?.WR?34RITU5 K for eachpatternin thesearch

graph. Thenumber of primitive operations is constant.
Thenthealgorithm is

����KZ�[��	
, with

�
thenumberof op-

erationnodesin the insertedpatternand
K

the number
of patterns in its searchgraph.

6 Library Size

6.1 Analytical Bounds

The patternswith the largest ID graphs are thosefor
which eachoperationnode canbeeliminatedby its ID
operand.This is the casefor patternsthat consistonly
of right-cyclops nodeswith right identity operands,
suchas the patternin Figure 1. Thesepatternsform
a sequenceof nodes, eachof which obtains its left
operand from a previous node—except for the first
node—andthatprovidesits resultastheleft operand to
thefollowing node—exceptfor theroot node.All right
operandsarepattern-external inputsthrough which the
ID operandscanbeapplied to eliminateany nodeatany
levelof theID graph.For theworst-caselibrarysize,we
consider patterns of this kind in thefollowing.

Thederivationof patternsfrom a parent patterncan
be formulatedasa combinatorial problem at eachID-
graph level: On level \ , how many different waysare

5

Dittmann:Organizing PatternLibraries

thereto choose\ nodesout of the
�

nodes in the par-
entpattern?Hence,apatternof

�
different right-cyclops

nodes generatesagraphof]^_A`ba c � \ed
patternsthroughidentity-operand transformations.This
includes the parentpatternitself, the primitive opera-
tions,andthefinal move node.For thefirst patternto be
insertedinto anemptylibrary, this is alsothenumberof
new patternsfor thelibrary.

Whena parent patternthat is beinginsertedhasoff-
spring patterns that are alreadypresent in the library
thenthe number of new patterns that the parent intro-
ducesinto thelibrary is accordingly lower. EachID sub-
graphthatthelibraryandtheID graph of thenew parent
patternhave in common comprisesthe merge pattern
whereboth graphs meet,andits complete coneof ID
transformationsdown to thefinal move operation. For a
mergepatternthatcomprises. right-cyclopsnodesout
of the

�
nodes of the parent, the number of additional

patternsthatareintroducedto thelibrary by theparent
patternis only]^_V`ba c � \ d 'gf^ � `ba c . R dih

If the library and the parent have more than one
merge patternthentheID graphsof themerge patterns
mayoverlap. In this case,theoverlappingregion must
be subtracted only oncefrom the contribution of the
parent to the library. For a parent that hastwo merge
patternswith thelibrary, comprising .kj and .ml nodes,
respectively, andthe ID graphs of the two merge pat-
ternsmerging atapatternof .on nodes,thecontribution
of theparentto thelibrary is computedby]^_A`ba c � \ d 'kpq fsr^ � `ba c .mjR d & fut^v `ba c .wlx d ' f�y^z `ba c .Wn{ d}|~ h

Thepatternswith thesmallestID graphsarethosefor
which only onenodecanberemovedat eachtransfor-
mationlevel. This is true for patternsthatconsistonly
of left-cyclopsnodesof non-commutative operators. In
thesepatterns, theonly removablenode is theleafnode
becauseit is the only nodewith a pattern-external left
operand. The ID graph of sucha parent hasonly one
patternat eachlevel, namely, the patternat one level
higher without theleaf node.If theparentcomprises

�

operationnodesits ID graphwill consistsof
�

patterns
andthemove node.

Patternsthatcomprisemultiple instancesof thesame
operationwill resultin smallerID graphs asredundant
childpatternswill occuronlyoncein theID graph. Each
duplicatedoperation noderesultsin oneprimitive node
fewer on level 1 of the ID graph. Furthermore, dupli-
catedoperationswill probably alsoresultin redundant
patternsonhigherID-graphlevels.Eachof theseredun-
dancies reducesthenumberof patterns in theID graph.

How many patterns a library will ultimately incor-
poratestrongly dependson thepropertiesof theparent
patterns thathavebeeninsertedandthereforecannot be
derivedanalytically.

6.2 Comparison with Unordered Li-
braries

An unorderedpatternlibrary onlycomprisesparentpat-
ternsandtheir sub-graphs.Many offspring patternsin
ID graphs are also sub-graphsof the parent pattern.
They wouldhavebeenaddedto thelibrary by aconven-
tional library-construction algorithm aswell. But there
areotherpatterns in anID graph thatarenotsub-graphs
of the parent andthat, comparedwith conventional li-
braries,therefore constituteanoverhead.

For eachtransformation stepfrom a parentpattern
to primitive patterns, a simplerpatternis a sub-graph
of its parent if the operation node eliminatedwas a
leaf or a root node,i.e., the eliminatednode hadonly
pattern-external inputsor its only output wasa pattern-
external output. Eliminating other nodes, i.e. cyclops
nodes, always leadsto connecting previously uncon-
nectednodes.Thisnew connectioncannot occurin sub-
graphsof theparent pattern.Hence,comparedwith an
unorderedpatternlibrary, patternsthatincorporatesuch
aconnection representtheoverheadof anID graph.

Thenumber of patternsin theID graphthataresub-
graphs of the parent is equalto the sumof leaf nodes
andremovableroot nodesof the parent patternandof
all its generatedsub-graphs.If a leaf thatis beingelim-
inatedfrom apatternfeedsinto acyclops nodethenthe
child patterngeneratedhasthesamenumber of leaves.
If theleaf feedsinto aninternal node thenthechild has
oneleaf fewer thanits parent.

Thepatternswith thehighestnumber of childrenthat
arenot sub-graphsof the parent, i.e. the patternswith
thelargestID-graphoverheadcomparedwith unordered
patternlibraries,areagainpatternsof only right-cyclops

6

Dittmann:Organizing PatternLibraries

nodes and a single leaf node, such as the patternin
Figure1. EachID-graphlevel from the parentpattern
to level 1 hasone sub-graph more than the previous
level—startingwith onein the highest level. Subtract-
ing thetotal number of sub-graphsfrom thetotal num-
ber of patternsin the ID graphof a pattern, minus the
final moveoperation, whichwill notberepresentedin a
practicallibrary, resultsin thefollowing formulafor the
worst-caseID-graph overheadfor a parent patternof

�
nodes:]^_A`ba c � \ed '�/s']^ � ` j R

]^_V` j c � \ed ' \
In practice,insertedpatternswill have a significant

number of internal nodes that cannot be eliminated.
Moreover, they will compriseredundantsub-graphsthat
are insertedinto the library only once. Consequently,
theoverheadof suchpatternsis significantlylowerthan
in theworstcasegiven here.

7 Conclusions and Future Work

In thispaperwehavepresentedanovel method to orga-
nizelibrariesof DFG patternsasID graphs.Compared
with conventionalunorderedlibraries,ID graphsenable
moreefficient searcheswith a computationalcomplex-
ity of

�����U	
insteadof

�������7��	
with

�����
. Because

this eliminatesthedependency betweencomputational
complexity andlibrary size,large patternlibrariescan
behandled. Giventhememory sizesof today’sworksta-
tions, the needfor heuristics that exclude lesspromis-
ing patternsis significantlyreduced,andexactmethods
becomepossible.Furthermore,ID graphs reveal oppor-
tunitiesto substitutepatternsby others.This canbeex-
ploited for instruction-setgenerationandcodegenera-
tion.

We have presented our method for operation nodes
with only oneoutput, i.e., for tree-shaped patterns.The
next stepin developing themethodwill beto extend it
for any kind of directedacyclic graph(DAG). We plan
to achieve this by introducing a visited-flag for pattern
nodes to keepthesearchalgorithm from searching the
samenodetwicewhile traversinga pattern.

Furthermore, we will study how to find patterns
deterministically that perform the samefunction but
have different shapesbecause of commutative opera-
tions.We try to achieve this by ordering operators and
operands,whichresultsin acanonicalizationof thepat-
terns.

Finally, we will explore the possibility to substitute
thepattern-findingalgorithmsthatfeedapatternlibrary
by insertingthecompleteDFGof eachbasicblock into
anID-graph library. Weexpectto beableto generateall
sub-graphsof aDFGby allowingasmallsetof nodesto
beremovedfrom a patternthatarenot removablewith
ID operands.

References

[1] GeroDittmannandAndreasHerkersdorf. Multi-
layer intermediaterepresentationfor ASIP design
and critical-pathoptimization. Technical Report
RZ 3484, IBM Research,February 2003.

[2] Marnix Arnold. Instruction Set Extension for Em-
bedded Processors. PhDthesis,Delft Universityof
Technology, Delft, TheNetherlands,March2001.

[3] Ing-JerHuangandAlvin M. Despain.Generating
instructionsetsandmicroarchitecturesfrom appli-
cations. In Proceedings of ICCAD-94, pages391–
396,November1994.

[4] Philip Brisk,AdamKaplan, RyanKastner, andMa-
jid Sarrafzadeh.Instruction generationandregular-
ity extractionfor reconfigurableprocessors. In Pro-
ceedings of CASES 2002, pages262–269,October
2002.

[5] Steven S. Muchnick. Advanced Compiler Design
& Implementation. MorganKaufmannPublishers,
SanFrancisco,1997.

[6] Birger Landwehr and Peter Marwedel. A new
optimization technique for improving resourceex-
ploitation andcritical pathminimization. In Pro-
ceedings of ISSS’97, pages65–72,1997.

[7] MiodragPotkonjak andSujit Dey. Optimizingre-
sourceutilization and testability using hot potato
techniques.In Proceedings of DAC’94, pages201–
205,1994.

[8] Dirk HerrmannandRolf Ernst.Improvedintercon-
nectsharingby identityoperationinsertion. In Pro-
ceedings of ICCAD-1999, pages489–493, 1999.

[9] Gero Dittmann. Programmable finite state ma-
chines for high-speed communication compo-
nents. Master’s thesis, Darmstadt University
of Technology, http:// www.zurich. ibm.
com/˜ged/ publication s.html , 2000.

7

