
RZ 3495 (# 93904) 05/26/03
Computer Science 12 pages

Research Report

Achieving Scalable and Efficient Video-on-Demand
Over Multicast

Ramaprabhu Janakiraman

Applied Research Laboratory
Washington University in St. Louis
One Brookings Drive
Campus Box 1045
St. Louis, MO 63130-4899
USA

Marcel Waldvogel

IBM Research
Zurich Research Laboratory
8803 R̈uschlikon
Switzerland

Wei Deng

Iguana Robotics Inc.
2004 S. Wright Street
Champaign, IL 61820
USA

Lihao Xu

Dept. of Computer Science and Engineering
Washington University in St. Louis
One Brookings Drive
Campus Box 1045
St. Louis, MO 63130-4899
USA

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available
at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich

1

Achieving Scalable and Efficient Video-on-Demand
Over Multicast

Ramaprabhu Janakiraman Marcel Waldvogel Wei Deng Lihao Xu

Abstract— Server bandwidth has been identified as a major bot-
tleneck in large Video-on-Demand (VoD) systems. Using multicast
delivery to serve popular content helps increase scalability by mak-
ing efficient use of server bandwidth. In addition, recent research
has focused on proactive schemes in which the server periodically
multicasts popular content without explicit requests from clients.
Proactive schemes are attractive because they consume bounded
server bandwidth irrespective of client arrival rate.

In this work, we describe Fuzzycast, a scalable periodic multicast
scheme that uses simple techniques to provide video on demand at
reasonable client start-up times while consuming optimum server
bandwidth. We start with a theoretically optimum scheme for pro-
viding scalable multicast video-on-demand and analyze its perfor-
mance. We go on to consider a series of issues that are of both the-
oretical and real-world importance, including support for variable-
bitrate (VBR) media and optimum transmission over multiple mul-
ticast groups.

Index Terms— Video on demand, media on demand, multicast,
proactive, shuffling

I. INTRODUCTION

The promise of universal broadband networks and fast cheap
computation has triggered active research and popular interest in
Video-on-Demand (VoD). However, experience with traditional
VoD systems has revealed significant limiting factors: server
bandwidth tends to become swamped by requests for popular
videos, forcing providers to invest in expensive resources to en-
sure acceptable quality of service under peak load.

Earlier work [3] on requests in video rentals suggests that a
variation of the well-known 80:20 rule might hold here as well:
80% of the requests are for the top 20 movies. Applying this
knowledge to the design of VoD system, this fact suggests that
multicast delivery can help significantly reduce server loads by
concurrently serving popular content to multiple clients.

However, clients in a VoD system, unlike television broadcast
audiences, choose their own schedules: plain broadcast alone
will not suffice. On the other hand, dedicating a channel to each
client quickly uses up server bandwidth. Many of the efficient
VoD systems compromise by periodically rebroadcasting con-
tent to satisfy the different movie start times requested by clients.

The following metrics are important in assessing VoD perfor-
mance: the first three are driven by user demand, the rest by
technology limits.

MEDIA QUALITY: Users expect at least the media quality that
they routinely get on cable television and rented videos.

PLAYOUT QUALITY: Playout should be reasonably free of
glitches and skipped frames. This depends on the network con-
nectivity and computational power available to the client.

This paper is a significant revision and extension of our results published at
Globecom 2001 [1] and IEEE Infocom 2002 [2].

STARTUP DELAY: While VoD should strictly be instanta-
neous, most discussions on broadcast-based VoD systems allow
for reasonable client wait times between requesting a video and
commencement of playout.

BANDWIDTH USAGE: Bandwidth is multi-faceted, ranging
from the requirements at the server or client attachment to the
overall load on the Internet Service Provider (ISP) network used
by the VoD system. From a scalability perspective, server band-
width usage is the most critical metric, but the others aspects
should not be neglected.

BUFFER SPACE: The most efficient VoD systems transmit
video segments out of order. Clients need computers or set-top
boxes with large amounts of buffer space to cache out-of-order
segments from arrival until their playout and to smooth playout
jitter introduced by the network. In some broadcast-based sche-
mes, peak buffer requirements run to several megabytes.

With storage cost rapidly dropping, the crucial trade-off in
building scalable VoD systems appears to be that of server band-
width usage vs. client startup delay. Recent research has there-
fore focused on ways to minimize the server bandwidth required
to achieve a given startup delay and vice versa.

Proactive multicast protocols [4] are especially attractive
in terms of server bandwidth usage [5–9]. These protocols
“push” popular content periodically without explicit requests
from clients, so that server bandwidth usage remains bounded
and is essentially independent of client demand. However, cur-
rent proactive protocols have their own drawbacks: The most
efficient protocols use a fluid model [8, 10] in which data is
segmented and multicast in parallel over many constant-rate bit
streams. This view is conceptually appealing but difficult to sus-
tain in practice: video data consists of individual frames that
are transmitted over the network in discrete packets. The com-
plexity involved in overlaying multiple time-sensitive, constant
bandwidth bit streams on a best-effort packet network will be a
significant obstacle in deploying these protocols.

In this work, we discuss Fuzzycast—a proactive multicast
scheme that takes an alternative, discrete frame-oriented ap-
proach to periodic multicast of video data. We demonstrate that
using a discrete approach results in a feasible and practical VoD
system without sacrificing the bandwidth efficiency of optimum
but infeasible designs.

The remainder of this paper is organized as follows: In Sec-
tion II, we introduce and analyze harmonic broadcasting, the
theoretical ideal for proactive VoD schemes, and explain why its
existing approximations either are infeasible in practice or ineffi-
cient in design. In Section III, we describe Fuzzycast, a practica-
ble and efficient version of harmonic broadcasting, and evaluate
its performance. In Section IV, we consider the impact of var-
ious effects such as limited client buffers and variable-bit-rate

2

Algorithm 1 IDEAL

1: for all frames fj do
2: λ← j + w;
3: for (t← λ; t ≤ tmax; t+ = λ) do
4: transmit (t, fj);

(VBR) media on its performance and outline simple extensions
to address these issues. In Section V, we propose the problem
of optimally partitioning a transmission over a small number of
multicast groups, and show that it is a special case of a com-
monly encountered resource tradeoff—one that we have labeled
“Scottie’s dilemma”—and solve the problem in its general form,
before, in Section VI, applying it to Fuzzycast and analyzing per-
formance. In Section VII, we briefly describe a prototype VoD
system that was built using these techniques. In Section VIII we
discuss alternative solutions before concluding in Section IX.

II. TOWARDS OPTIMALITY

A. Definitions

This work applies to a VoD system that comprises a central
server distributing digital media to clients over a network that
supports a bandwidth-efficient broadcast primitive, such as satel-
lite broadcast or Internet Protocol (IP) multicast. We use the
terms “broadcast” and “multicast” interchangeably throughout
this paper, except in Section V where we assume an ability to
join and leave multicast groups.

The server stores a set of movies from which each client is free
to choose. A movie comprises blocks of data (frames) which, for
convenience of explanation and without loss of generality, are
assumed to be transmitted atomically in network packets. Except
in Section IV-B, which is devoted to VBR, we assume frames to
be of fixed size.

Time is discrete and measured in instants; an instant is defined
to be the playout time of a single frame. Bandwidth is measured
in frames per instant. Clients arrive at times of their choosing,
request the server for movies, and after a given initial waiting
period of w instants, consume their movies from beginning to
end, thus spending w + n instants on a movie of n frames. We
shall neglect client decoding time and network-introduced delay
in our analysis, as they will be negligible compared to typical
startup delays w. As a result, a frame transmitted at time t0 will
be available for playout at the beginning of t0 + 1.

B. Harmonic Broadcasting

Consider the broadcast of a popular movie of n frames. As-
sume the frames are to be broadcast to satisfy the on-demand
requirements of multiple clients with different join times. Now,
a client with a join time of t and a wait time of w will require
frame f at time tf no later than during playout time t+w+f−1,
i.e., t ≤ tf < t + w + f . Thus each client has a window of
w + f instants in which to receive frame f . In the absence of
client feedback, i.e., in a proactive system, on-demand delivery
for each client is ensured by broadcasting frame f at least once
every w + f instants. Most of the existing work expands on this
simple result, known as Harmonic Broadcasting [6].

This is formalized as algorithm IDEAL (Algorithm 1) below.
The schedule generated by IDEAL (with w = 1) is plotted in

Fig. 1(a), showing the frames transmitted during each instant and
the receive windows for two clients joining at instants 1 and 4.
In this example, we assume a transmit system call that schedules
frame f for transmission at instant t using a transmission queue.

Theorem 1 On average, IDEAL consumes server bandwidth and
client bandwidth of log n+w

w
frames/instant.

Proof: Each frame f is scheduled once in w + f in-
stants and hence occupies an average bandwidth of 1/(w + f)
frames/instant. Thus the average bandwidth for the entire movie
is

B =

n∑

f=1

1

w + f
≈ log

n + w

w
, (1)

where B is normalized to the playout bandwidth of the movie.
In other words,

Bandwidth (in frames/instant) ≈ log
Movie length
Initial delay

where the log function refers to the natural logarithm.
In practical terms, serving a 2-h 300-kbps Real Media or

MPEG-4 movie with a 5-min initial delay requires a server and
client bandwidth of≈1 Mbps. Thus, the system begins to be ad-
vantageous as soon as the number of clients exceeds 3. Fig. 1(b)
shows the scaled bandwidth usage (relative to the bit rate of the
movie) as a function of the initial delay (relative to the length of
the movie).

Theorem 2 For a client with a waiting time w between arrival
and playout, IDEAL

• delivers all data on time, and
• has the least server bandwidth for any pure proactive

scheme.
Proof: It is easy to prove that IDEAL is optimum in the sense

that a frequency of 1/(w + f) instants for frame f is both nec-
essary and sufficient for on-demand data delivery: necessary be-
cause an interval of w + f instants without frame f beginning
at time t would cause a client starting at t to miss f ; sufficient
because, in the absence of interactive functions such as fast for-
warding, each client is guaranteed to play out frame f no earlier
than w + f instants after joining.

Theorem 3 IDEAL requires a peak client buffer space of about
1/e ≈ 37% of the movie length, where e is the base of the natu-
ral logarithm.

Proof: The probability p(f, t) that frame f has reached the
client by time t (t < f + w) relative to the start of the session is

t
w+f

. The transmit time of any frame is calculated without ref-
erence to any other frame, making the arrival probabilities inde-
pendent. Expected buffer space at time t can thus be calculated
as the cumulative probability

∑n
f=t p(f, t). Buffer requirements

at the client side are therefore given by

B(t) =

{

t log n+w
w

1 ≤ t ≤ w,

t log n+w
t

w ≤ t ≤ n + w .

This has a maximum max(B) = n+w
e

at time n+w
e

. As w � n,
max(B) ≈ 0.37n.

3

(a) Basic Transmission Pattern

1

2

3

4

5

6

7

8

0 2 4 6 8 10

B
an

dw
id

th
 u

sa
ge

Initial delay (minutes)

1-hour movie
2-hour movie
3-hour movie

(b) Bandwidth vs. Delay

Fig. 1. These figures show the scheduling and performance of an optimum multicast transmission scheme. Fig. 1(a) shows frames scheduled over time. Note
that clients that join at any of the time instants shown will retrieve all the frames in time for playout, but not necessarily in order. Fig. 1(b) shows the critical
bandwidth-delay tradeoff. Here the bandwidth is shown normalized to the rate of the movie, i.e., in frames per instant.

C. Existing Approaches

Although IDEAL is simple, elegant, and optimum, a fatal flaw
renders it unusable in its original form. The number of frames
scheduled for transmission at time t is the number of integers
w ≤ i ≤ w + n such that i divides t. This function is ex-
tremely spiky, varying from ≤ 2 for prime values of t to record
highs when t is highly composite [11]. Owing to the resulting
bandwidth spikiness, earlier research [8,9] discounted IDEAL as
a theoretical limit rather than as a practicable scheme.

Existing protocols, notably the harmonic broadcasting proto-
cols [6,7], have taken a stream-based approach to avoid the lim-
itations of IDEAL. Stream-based protocols, rather than transmit-
ting frame (or an arbitrary-sized segment of the movie) f every
f + w instants, transmit it continuously in a separate channel or
stream of bandwidth 1/(f + w). This ensures uniform band-
width usage, but also encounters difficulties: In stream-based
protocols, the initial delay is a function of the segment size. Be-
cause user acceptance considerations dictate that initial delay be
small compared with the movie length, these protocols transmit
a movie over many concurrent streams. For example, Polyhar-
monic Broadcasting [10] transmits a single 2-h movie with a 5
min initial delay over 96 streams, with bandwidths varying from
a few hundred kbps to a few hundred bps. However, this merely
defers responsibility down the network stack because streams
ultimately map to network packets. Because packets cannot be
arbitrarily small, low-bandwidth streams will have to be aggre-
gated, returning to the original problem of infeasible schedules.

Finally, unless error-correction techniques such as Forward
Error Correction (FEC) [12] are used, stretching the transmis-
sion of a segment over an extended period and over multiple
packets increases the probability that a frame becomes unusable
due to partial loss or corruption in transit. This is further am-
plified by error propagation as part of the decompression pro-
cess. A recent solution for this problem using un-equal protec-
tion (UEP) codes is discussed in [13].

Another stream-based protocol, Pagoda broadcasting [14], at-
tempts to pack segments into a few fixed-rate channels determin-
istically, but sacrifices performance in the process because it has
to settle for suboptimum schedules (Fig. 2(c)).

Algorithm 2 BASIC

1: Best ← Bact ← 0;
2: for all frames fj do
3: λ← j + w;
4: Best += 1

λ
;

5: for (t← λ; t ≤ tmax; t+= δt, Bact[t]++) do
6: δt ← FIND-NEIGHBOR;
7: transmit (t + δt, fj);

III. COMPUTING FEASIBLE FRAME SCHEDULES

As a proactive scheme, the only flaw of IDEAL is that it re-
sults in non-uniform bandwidth usage. We rectify this as fol-
lows: Whenever a frame f has to be scheduled at an instant
that has used up the bandwidth allotted to frames 1 · · · f , we
allow it to ‘drift’ heuristically from its scheduled position to a
neighboring time slot that can spare some of its allotted band-
width. The aim is to spread out or ‘smear’ a bandwidth peak
over time—flattening peaks and filling up troughs—without sig-
nificantly changing the optimum schedule.1

This is formalized as algorithm BASIC (Algorithm 2). The
crux of it is the FINDNEIGHBOR function, which finds an alterna-
tive placement in a neighboring time slot for frames that IDEAL

would have scheduled in relatively ‘crowded’ time slots.
At this point, we pause to distinguish between advancing a

frame and delaying it: advancing a frame wastes bandwidth lo-
cally by scheduling it before it is due, whereas delaying it poten-
tially increases startup delay for all clients expecting it. The im-
pact of both operations is a reduction of the startup—bandwidth
efficiency. The actual impact depends on the frame shifted, but
in contrasting ways: Delaying later frames increases the aver-
age initial delay more strongly, since more clients wait for these
frames. Advancing later frames, however, is less harmful as its
marginal effect on average bandwidth usage decreases with in-
creasing gap between successive transmissions of a frame.

With this in mind, we define two parameters δa and δd, which
together provide the boundaries for advancing or delaying of
frame f out of time slot t between t− (w +f)δa and t+ δd×w.
Reasonable defaults are δa ≈ 0.05 and δd < 0.1, but these val-

1This fuzziness of operation is the origin of the term “Fuzzycast.”

4

Algorithm 3 FIND-NEIGHBOR function implementing BFSCAN

1: δt ← λ;
2: for (i← λ; i > λ− left; i−−) do
3: if (Bact[t + i] ≤ Best) then
4: δt ← i;
5: break;
6: else if (Bact[t + i] < Bact[t + δt]) then
7: δt ← i;
8: for (i← λ + 1; i < λ + right; i++) do
9: /* Lines 3 through 7 */

10:

11: return δt;

ues can be tuned during system setup or at the configuration
stage to take into account practical limits on server bandwidth
and delay variability. For example, variability in startup delay
can be forbidden by setting δd = 0 so that a frame may only be
advanced from its original slot.

Given these limits, there are many ways to implement a neigh-
borhood search function, such as:

BFSCAN: Starting from t, scan first backward from t to t −
δa(f + w) and then forward from t to t + δd × w, looking for
time slots with available bandwidth.

FBSCAN: Similar to BFSCAN, but start by going forward
first.

SPIRAL: Search along a spiral path alternatingly going back-
ward and forward, so that t− δa(w + f) is evaluated just before
t + δd × w. To accommodate asymmetric bounds, the spiral is
appropriately distorted. For example, if the advancing limit is 6
frames and delay limit 3, the sequence of time slots that SPI-
RAL considers is
t, t− 1, t− 2, t+1, t− 3, t− 4, t+2, t− 5, t− 6, t+3 .

It is possible that FIND-NEIGHBOR finds no neighbor that can
accommodate frame f . As a fallback, if all instants in the search
interval exceed their allotted bandwidth, these algorithms sched-
ule f in the minimum bandwidth instant within this interval. But
our simulations suggest that this will seldom happen for reason-
able values of δa and δd as both the allotted bandwidth and the
search interval size increase with the frame number, thus contin-
uously increasing the degree of freedom.

As shown in Fig. 2(a), these strategies can be represented by
paths from coordinate (t, t) to (t− δa(w + f), t + δd ×w). For
these paths, both coordinates are non-decreasing as the path pro-
gresses. For example, SPIRAL can be represented by a straight
line between the two points, as mapped by Bresenham’s line
drawing algorithm [15].2 Advancing horizontally or vertically
by a “pixel” results in probing the next unprobed time slot in
backward or forward direction, respectively; direction changes
on the rectangle correspond to direction changes in the search.
Extensive simulation over a wide range of parameters indicates
that SPIRAL is a robust way to perform a neighborhood search.
Because of its back-and-forth nature, SPIRAL generates feasible
schedules while managing to place frames close to their original
time slots.

2Our use of Bresenham’s line drawing algorithm to distort the SPIRAL helped
introduce the path visualization.

Algorithm 4 Co-scheduling multiple movies
1: Best ← Bact ← 0;
2: for all movies mi do
3: bframe ← bblock ← 0;
4: right← wiδd;
5: for all frames fj ∈ mi do
6: λ← j + wi;
7: left← λδa;
8: Best+ = 1

λ
;

9: for (t← λ; t ≤ tmax; t+ = δt, Bact[t] + +) do
10: δt ← FIND-NEIGHBOR;
11: transmit(t + δt, fj);

Algorithm 3 shows the implementation of the FINDNEIGH-
BOR function. For clarity, we have used the simpler BFSCAN

algorithm instead of SPIRAL. Fig. 2(b) displays the bandwidth
spectrum, i.e. the distribution of bandwidths over time, for trans-
mitting a 30-frames-per-second (fps) 2-h movie with various ini-
tial delays.

IV. SPECIALIZED SCHEDULING

A. Peak versus Average Bandwidth

Our assumption of taking frames as indivisible units shows
a drawback: if the theoretical server bandwidth requirement is,
say, exactly 4.1 frames/instant, even the best possible algorithm
will necessarily have to schedule (at least) 5 frames in some (≈
10%) time slots, so that peak bandwidth usage overshoots the
average by more than 20%. The obvious remedy would be to
divide frames into many smaller units, which would significantly
increase server scheduling and client reordering complexities, as
well as disk access times due to increased seeks.

Instead, we observe that it is likely for any VoD system to
broadcast multiple movies simultaneously. By modifying algo-
rithm BASIC to be aware of both allotted and consumed global
bandwidth when making scheduling decisions (Algorithm IV-
A), it is possible to efficiently co-schedule multiple streams. We
find the resulting co-scheduling to as few as 8 concurrent streams
results in a peak bandwidth usage within 2% of the optimum
(Fig. 2(f)).

B. Support for Variable-Bit-Rate Media

So far, we have made the simplification that the media are en-
coded at a constant bit rate (CBR). In practice, however, popular
media encoding results in variable frame sizes and thus VBR.
Algorithm BASIC can be used to schedule VBR frames, provided
the frame sizes are incorporated into the bandwidth calculation.
For an n-frame movie with frame sizes f1, f2, · · · , fn, estimated
bandwidth for the first p frames is:

BVBR(p) =

p
∑

i=1

fi

w + i
.

When combined with the global scheduling algorithm, this
significantly smoothens bandwidth usage. For example, Fig. 2(f)
shows the bandwidth usage (normalized bandwidth predicted ac-
cording to Eq. (1)) of 1-h MPEG-4 movie streams, over a 10-h

5

F
or

w
ar

d

Backward

(t, t)

(t - δa*(f + w), t + δd*w)

SPIRAL

BFSCAN

FBSCAN

(a) Search strategies

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8

F
re

qu
en

cy
 o

f o
cc

ur
re

nc
e

Bandwidth usage

w = 10%
Actual Ideal

w = 1%
Actual Ideal

w = 0.1%
Actual Ideal

(b) Bandwidth spectrum

0

2

4

6

8

0 0.02 0.04 0.06 0.08 0.1

B
an

dw
id

th
 u

sa
ge

Initial delay

Polyharmonic
Pagoda
Optimal

Fuzzycast

(c) Bandwidth usage vs. initial delay

0

2

4

6

8

10

0.1 0.2 0.3 0.4

B
an

dw
id

th
 u

sa
ge

Buffer requirement

Initial delay = 0.1%
Initial delay = 1%
Initial delay = 10%

(d) Bandwidth usage vs. buffer space require-
ment

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10

B
an

dw
id

th
 u

sa
ge

Time (Hours)

CBR
VBR

PCRT
Fragmented Fuzzycast

(e) Peak Bandwidth usage: single VBR stream

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10

B
an

dw
id

th
 u

sa
ge

Time (Hours)

CBR
VBR

PCRT
Fragmented Fuzzycast

(f) Peak Bandwidth usage: 8 VBR streams

Fig. 2. These graphs illustrate the techniques and performance of our heuristic scheduling schemes. Fig. 2(a) formulates the various neighborhood search strategies
as paths along a rectangular grid. Fig. 2(b) shows the distribution of bandwidth usage over time, in comparison with the optimum distributions. Fig. 2(c) plots
average bandwidth usage versus initial delay for various proactive video-on-demand schemes. Fig. 2(d) measures the average bandwidth usage of the Limited-buffer
scheme against the buffer space requirement it entails. Figures 2(e) and 2(f) plot the bandwidth variability of various schemes while transmitting variable bit-rate
content. In these last two graphs, the peak bandwidth usage is measured on an hourly basis and is normalized to the average for that period.

Algorithm 5 FRAGMENT function
1: bblock ← bframe ← 0;
2: i← 0;
3: for all frames fj do
4: while (bblock ≥ bframe and j < n) do
5: bframe += size(fj);
6: j++;
7: λi ← w + j;
8: bblock += blocksize;
9: i++;

10: return (λ1, λ2, · · ·);

period. However, clients do not benefit from the smoothing ef-
fect of multiple streams; they still suffer from significant band-
width variability. Variable-sized frames also complicate client
buffer management.

Using a smoothing mechanism such as piecewise constant-
rate transmission (PCRT) [16, 17] is an effective compromise.
PCRT smoothens by dividing the media into a few variable-sized
segments, which are then transmitted at constant rates. Initial
delay and peak bandwidth usage strongly depend on how the
movie is split up [16]. PCRT smoothens bandwidth variabil-
ity effectively (Fig. 2(e)) but the additional initial delay incurred
sometimes results in performance overheads that exceed 20%.

We now propose a simpler and more effective solution called

Algorithm 6 Fragmented Fuzzycast (co-scheduled)
1: Best ← Bact ← 0;
2: for all movies mi do
3: (λ1, λ2, · · ·)← FRAGMENT;
4: right← wiδd;
5: for all blocks bj ∈ mi do
6: Best+ = 1/λj ;
7: left← λjδa;
8: for (t← λj ; t ≤ tmax; t+ = δt, Bact[t] + +) do
9: δt ← FIND-NEIGHBOR;

10: transmit(t + δt, fj);

Fragmented Fuzzycast, which is a straightforward extension of
our original frame scheduling: Consider a VBR-encoded movie
with a set of frames F = {f1, f2, · · · , fn}, split into a set of
fixed-sized blocks B = {b1, b2, · · · , bm}. For each block bi,
there is a set C(bi) ⊂ F of frames that are either fully or partially
contained in bi. If the earliest frame in C(bi) is fj , then transmit
block bi at frequency 1/(w + j).

Theorem 4 Fragmented Fuzzycast delivers all data on time.
Proof: Block bi is scheduled such that the earliest frame in it

reaches all clients on time. By fixing its transmission rate ac-
cording to the frame with the most urgent requirement, we en-
sure that later frames in it also reach their destination on time. If
the last frame in block bi is truncated, transmitting block bi only

6

Algorithm 7 LIMITED-BUFFER

1: for all frames fj do
2: λ← min(j + w, v + w);
3: for (t← λ; t ≤ tmax; t+ = λ) do
4: transmit (t, fj);

guarantees on-time delivery of this fragment. But the rest of this
frame, by virtue of being the earliest in block bi+1, is delivered
on time. As all the frames in the last block are delivered on time,
so are all the frames in a movie.

Fragmented Fuzzycast (Algorithm 5) is simple to implement:
we maintain pointers to the end of the current block in bblock and
the current frame in bframe, which grow at rates blocksize and
size(j) respectively. Whenever the block pointer overtakes the
frame pointer, the frame number is increased until this state is
reversed. Fig. 2(f) shows that Fragmented Fuzzycast is effective
in smoothing the rate variability of VBR traffic: the graph is a
virtual replica of the CBR bandwidth usage in the same graph.
Algorithm 6 shows a version of the Fuzzycast algorithm support-
ing co-scheduling multiple VBR streams.

C. Support for Limited Client Buffers

From Theorem 3, we know that the peak buffer requirements
run to about 37% of the movie. This is not an issue as far as
desktop clients are concerned: the most inexpensive hard disks
today routinely come at tens of gigabytes. However, this could
be too high a requirement for “dumb” clients that, in the absence
of a hard disk, must buffer entirely in RAM or other, non-disk,
media. In case a significant fraction of clients using these de-
vices, there is a need to tailor transmission according to the re-
quired client buffer limit. As we have seen, possibly at the cost
of increased network bandwidth usage.

One simple way to achieve this is to transmit frames more
frequently than necessary, so that clients do not have to buffer
later frames for too long before playout. Specifically, we de-
fine a limit v up to which the interframe distance increases (cf.
Algorithm 7).

Using simple probabilistic analysis, we can show that the
buffer space requirement over time follows

D(t) =

t log(v
t
) + t2

2v
0 < t < v,

v
2 v < t < n− v,
t
2 −

(t−n+v)2

2v
n− v < t < n.

The increased bandwidth is given by

B = log(
v + w

n + w
) +

n− v

v
. (2)

The key parameter here is v, which can be tuned according to
the following rule: peak buffer space = v/2, with a commensu-
rate increase in network bandwidth usage given by Eq. (2). Fig-
ure 2(d) shows the relation between bandwidth and buffer space
requirements for various initial delays.

V. TRANSMITTING OVER MULTIPLE MULTICAST GROUPS

A. Problem Statement

Periodic broadcast schemes are attractive in terms of server
bandwidth usage but tend to consume additional client and net-
work bandwidth by continuously and redundantly transmitting
data. While this is unavoidable in a purely broadcast-based sys-
tem, e.g., a satellite- or cable-based distribution network, it is
wasteful in a multicast situation where network support for sub-
scribing to and unsubscribing from a multicast session is avail-
able. It is therefore desirable that each client explicitly deregister
its interest in unwanted frames with the multicast infrastructure.

The transmission goal is to strictly avoid sending the same
frame more than once to the same client. In a purely proactive
system, this is possible only if a client could unsubscribe selec-
tively from further transmissions of an arbitrary frame upon re-
ceiving it once. Although such high granularity of choice may be
achieved in theory by dedicating one multicast group per frame,
this solution is clearly infeasible due to the high network over-
heads it incurs in the form of group membership messages and
multicast state information in routers.3 For practical reasons,
each movie should therefore be multicast over a small number
of groups. Each client initially subscribes to all the groups of
a movie and then proceeds to discard each group upon receiv-
ing every frame in it at least once. This is similar to, but dif-
ferent from existing techniques for receiver-driven congestion
control [18] and efficient data distribution over layered multicast
[19, 20].

Our problem, then, is simply stated: Given a movie of n
frames, how to transmit it over α multicast groups in a way that
minimizes total redundancy? As the first few frames use the
most bandwidth in our scheduling scheme, it is intuitive to drop
early and drop often. But there is a strict limit on the number
of groups: a greedy assignment will merely exchange the bom-
bardment of a few frequent frames for the slow torture of many
infrequent ones.

In the remainder of this section, we show how this problem
is actually a specific instance of a general optimization trade-off
that we have encountered frequently enough to assign it a name
– “Scottie’s dilemma.”

B. Scottie’s Dilemma: When to Cut Costs?

In situations involving processes that have a constantly accru-
ing cost but decreasing utility, we would like to cut costs as soon
and as often as possible, rather than drag along excess baggage.
However, practical constraints dictate that we aggregate such ac-
tions into a few distinct decision points rather than continuously
improve the state of affairs. This dilemma is common in real life:
psychologists speak of deferring instant gratification for long-
term profit; rocket scientists have to decide when and how often
their creations jettison used-up booster stages; file systems peri-
odically synchronize with storage and discard modified buffers.

In general, situations of this kind can be represented by two
simple functions: Θ(t), a weight function that defines how cost
accrues over time, and Φ(t), a utility function that defines how
utility decays with time. In the common case when costs add up
linearly in time, Θ(t) = t.

3Better solutions are possible if active networking technology were deployed
in the network.

7

Given these two functions, the theoretical minimum cost, C∞,
is obtained by perfectly following the utility at each instant:

C∞ =

∫ T

0

Φ(t) dΘ(t).

However, in practice, it is more realistic to assume that time con-
sists of a number of distinct epochs (say, again, α of them), sep-
arated by decision points t0 = 0, t1, · · · , tα = T . At each de-
cision point, unwanted costs accumulated during the preceding
epoch are eliminated. In this case the total cost is given by

Cα =

α∑

k=1

∫ tk

tk−1

Φ(t) dΘ(t)

=

α∑

k=1

{
Θ(tk)−Θ(tk−1)

}
Φ(tk−1),

(3)

where t0 = 0 and tα = T .
Thus the tradeoff is reduced to choosing an optimum set of

decision points (t∗1, t
∗

2, · · · , t
∗

α−1) that minimizes cost Cα = C∗

α.
Differentiating both sides of Eq. (3) w.r.t. tk, we obtain

∂Cα

∂tk
=

(
Θ(tk+1)−Θ(tk)

)
Φ′(tk)−

Θ′(tk)Φ(tk) + Θ′(tk)Φ(tk−1)
= 0 (for minimum cost),

or

Θ(t∗k+1) = Θ(t∗k) +
Θ′(t∗k)

Φ′(t∗k)

(
Φ(t∗k)− Φ(t∗k−1)

)
. (4)

This recurrence can then be solved for specific cost and utility
functions Θ(t) and Φ(t), to obtain optimum decision points. To
assess performance, we define inefficiency as follows:

I(α) =
optimum cost with α groups

theoretical minimum cost
=

C∗

α

C∞

. (5)

C. Numerical Solutions

When closed-form expressions for the optimum boundaries
cannot be obtained, numerical methods can be applied. Owing
to the recursive nature of Eq. (4), finding the set of optimum
decision points (t∗1, t

∗

2, ...t
∗

α−1) reduces to finding the first point
t∗1. For a given candidate t1 = x, we can define a recursive
set of functions, t2(x), t3(x), · · · tα(x) that can be determined
either analytically or numerically using Eq. (4). As it is always
true that tα(t∗1) = t∗α = T , finding t∗1 reduces to solving

tα(x)− T = 0 .

This can be done numerically, e.g., using the Newton–
Raphson iteration. Once t∗1 has been determined, all optimum
decision points can readily be decided. In the cases of interest to
us, time is measured using integers, and tk(x) are monotonically
increasing functions of x, so that we may do a binary search on
the time interval, resulting in an O(α log T) algorithm to find
α optimum boundaries over time T . When Θ(t) or Φ(t) is an
arbitrary function defined over integer t, we can use a dynamic
programming approach shown in Algorithm 8 to obtain an opti-
mum solution in O(αT 2) time.

Algorithm 8 Dynamic program solving Scottie’s dilemma
1: G0 ← 0;
2: for i← t0 to tα do
3: Gi ← Gi−1 + Φ(i);
4: F1,i ← Gi ∗Θ(i);
5: for i← 2 to α do
6: for j ← t0 to tα do
7: Fi,j , ki,j ← Fi−1,j , j;
8: for k ← t0 to j do
9: if Fi−1,k + (Gj −Gk) ∗Θ(j) < Fi,j then

10: Fi,j , ki,j ← Fi−1,k + (Gj −Gk) ∗Θ(j), k;
11: t∗α ← tα;
12: for i← α− 1 to 1 do
13: t∗i ← ki,t∗

i+1
;

14: return t∗1, t
∗

2, · · · t
∗

α−1;

VI. FUZZYCAST OVER MULTIPLE GROUPS AS AN

INSTANCE OF SCOTTIE’S DILEMMA

In this section, we consider the specific problem of how to
optimally partition a Fuzzycast transmission over multiple mul-
ticast groups. Given the discussion in the previous section, it is
apparent that partitioning a transmission over multiple multicast
groups is an instance of “Scottie’s dilemma,” where “epochs”
correspond to distinct multicast groups. Given α decision points
in which played-out frames can be dropped, we have to choose
the points that minimize redundancy given various objectives.
Let us consider two different objectives: minimizing client load
and minimizing overall network load. (Recall that there is no
need to minimize server load, as it is constant, independent of
the number of multicast groups and the dropping points.)

A. Case 1: Minimizing Client Load

We first consider the partition that minimizes the total number
of frames that each client receives. In this case, total cost is given
by the number of frames received during the course of transmis-
sion. The utility of the transmission at any time is the portion
of the frames received for the first time.4 Thus, the weight and
utility functions may be formulated as

Θ(t) = t; Φ(t) =

∫ T

t

1

t
dt = log

T

t
.

In this case, optimum values of drop boundaries are given by

t∗k+1 = t∗k

(

1 + log
t∗k

t∗k−1

)

. (6)

Descending recursively, the first optimum drop point t∗1 is deter-
mined by

t∗α = t∗1

(

1 + log
t∗1
t∗0

)(

1 + log

(

1 + log
t∗1
t∗0

))

· · ·

︸ ︷︷ ︸

α terms

, (7)

where t∗α = n + w and t∗0 = w. For convenience, we assumed
time starts with w.

4Ignoring the negligible effect of scheduling jitter and the case of limited client
buffers, each frame is received exactly once before playout. Therefore, this also
matches the number of frames that have not yet been played out.

8

optimal
Receiver

 Playout time

Network
optimal

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

4

4

Fig. 3. Optimum partition (1-h movie, 36 s initial delay)

Using the method outlined in Section V-C, Eq. (7) can be
solved numerically to obtain t∗1, · · ·, t∗α−1. This set of bound-
aries is the one that minimizes the number of frames that each
client receives. For example for a 1-h, 30-fps movie with α = 3
and w = 36 s (1%), the optimum group boundaries are at 7:34,
26:46, and 60:36 min, leading to an average client bandwidth
usage of 54 fps, as opposed to 165 fps without layering, roughly
67% reduction.

To measure the performance gain in this case, we use Eq. (5)
to obtain the Receiver inefficiency:

C∗

α =

α∑

k=1

t∗k log
t∗k

t∗k−1

; C∞ =

∫ n+w

w

log
n + w

t
dt

IR(α) =
frames received on average

frames in movie

≈

1

n

α∑

k=1

t∗k log
t∗k

t∗k−1

.

Fig. 4(a) plots the receiver inefficiency against α for various
initial delays. Fig. 4(b) shows the values of inefficiency obtained
through simulation. There shows excellent agreement between
the predicted and the experimental values. We also find that there
is a “sweet spot” at around 4–5 groups, where maximum gains
are obtained; increasing α further does not result in significant
performance gains.

B. Case 2: Minimizing Network Load

Another problem that might be more relevant from an ISP’s
viewpoint is to find the partition that minimizes overall network
costs, i.e., we would like to minimize the number of frames in
the network at any given time.

If the number of links in a delivery tree of m clients is L(m)
and the average client arrival rate is λ, then the number of clients
subscribed to group k at any given time is ≈ λtk. Throughout
this section, we assume that clients are characterized by unique
end routers. According to this definition, multiple end users on
a single local network count as a single client.

A seminal result obtained by Chuang and Sirbu [21] states that
for Internet multicast, L(m) is fairly accurately approximated
by a power law of the form, L(m) ≈ ûmρ, where ρ ≈ 0.8
and û is the average unicast path length (recall that m represents
the number of unique end routers). m/mρ thus represents its
network bandwidth advantage over multiple unicast, which has
L(m) = ûm. This was subsequently verified by Phillips et al.
[22].

Now, we can simply set up the weight function as the number
of links in a group at time t:

Θ(t) = û(λt)ρ; Φ(t) = log
T

t
.

This results in the recurrence

t∗k+1 = t∗k

(

1 + ρ log
t∗k

t∗k−1

) 1
ρ

i.e.,

t∗α = t∗1

(

1 + ρ log
t∗1
t∗0

) 1
ρ

(

1 + log

(

1 + ρ log
t∗1
t∗0

)) 1
ρ

· · ·

︸ ︷︷ ︸

α terms

.

(8)
Again, this equation can be numerically solved to get optimum
t1 = t∗1.

To measure performance, we obtain the Network inefficiency
from Eq. (5) as follows:

C∗

α =
α∑

k=1

(t∗k)ρ log
t∗k

t∗k−1

; C∞ =

∫ n+w

w

log
n + w

t
d(tρ)

IN (α) =
frames in network at any time
minimum # frames in network

≈

ρ

(n + w)
ρ

α∑

k=1

(t∗k)ρ log
t∗k

t∗k−1

.

(9)
Fig. 4(d) shows the network inefficiency versus α for various

w. Figures 4(e) and 4(f) shows the values obtained from simula-
tion over realistic network topologies created using the GT-ITM
[23] simulator and from traces obtained from the SCAN [24]
project. Details about our simulation setup are given in Sec-
tion VI-E. As the figure shows, there is excellent agreement be-
tween predicted and observed values, both for generated and real
topologies. Again, there is a “sweet spot” at around 4–5 groups,
beyond which increasing α does not seem to have much effect.

C. Comparing Receiver-Optimum and Network-Optimum
Cases

In Fig. 3, we compare the partitions in the receiver-optimum
case and the network-optimum case. It is apparent from the fig-
ure that the boundaries for the network-optimum case are ear-
lier than the corresponding receiver-optimum boundaries. This
is in fact always true and can easily be proved by letting zk =
tk/tk−1 in both cases, so that Eq. (6) and Eq. (8) both reduce to
the form

zk+1 = (1 + ρ log zk)
1
ρ ,

where ρ = 1.0 in the first case and 0.8 in the second (when
using multicast on Internet topologies). This can be shown to be
an decreasing function of ρ, from which the result immediately
follows.

The intuition behind this result is that the sublinear depen-
dence of the multicast tree size on the membership size “dilutes”
the effect of large groups, so that when optimizing for network
load, it is advantageous to drop the initial high-bandwidth frames
sooner.

9

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

R
ec

ei
ve

r
in

ef
fic

ie
nc

y

multicast groups

delay = 0.1 %
delay = 0.5 %
delay = 1.0 %
delay = 2.0 %

(a) Predicted: IR(α) vs. α

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

R
ec

ei
ve

r
in

ef
fic

ie
nc

y

multicast groups

delay = 0.1%
delay = 0.5%
delay = 1.0%
delay = 2.0%

(b) Actual: IR(α) vs. α

0

1

2

3

4

0 1 2 3 4 5

f(
X

)

Mean active clients for group (X = λxk)

f(X) = E(Xρ)
f(X) = E(X)ρ

(c) Arrival processes and tree scaling

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

N
et

w
or

k
in

ef
fic

ie
nc

y

multicast groups

delay = 0.1 %
delay = 0.5 %
delay = 1.0 %
delay = 2.0 %

(d) Predicted: IN (α) vs. α

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

N
et

w
or

k
in

ef
fic

ie
nc

y

multicast groups

delay = 0.1 %
delay = 0.5 %
delay = 1.0 %
delay = 2.0 %

(e) Actual: IN (α) vs. α (TS)

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

N
et

w
or

k
in

ef
fic

ie
nc

y

multicast groups

delay = 0.1 %
delay = 0.5 %
delay = 1.0 %
delay = 2.0 %

(f) Actual: IN (α) vs. α (INET)

Fig. 4. This set of graphs plots the performance of the schemes for efficiently transmitting content over multiple multicast groups. Figures 4(a) and 4(b) plot the
receiver inefficiency (= #frames received/#frames in movie) versus α, the number of groups used. The first shows predicted performance, the second performance
measured in simulations. Fig. 4(c) relates to the approximation discussed in Section VI-D and provides a numerical justification for it. The last series of graphs
Figures 4(d)–4(f) are from Section VI-B and measure the network inefficiency (= #frames in network/minimum #frames in network) as a function of the number
of groups. The first shows the performance in theory; the next two plot performance measured in simulations involving two different topologies explained in
Section VI-E.

D. Variable Arrival Rate

In Sections VI and especially VI-B, we have assumed that
client arrivals are uniformly distributed. Specifically, we as-
sumed that with an arrival rate λ, the number of clients in time
t would be λ × t. However, realistic client arrivals follow a
distribution centered around a mean λ. For Poisson-distributed
arrivals, the network cost is given by

N ≈ K ′ ×
α∑

k=1

E(Xρ, λxk) log
xk

xk−1
,

where E(f(X), λ) is
∑

∞

k=0
e−λλkf(k)

k! . That is, in the pre-
ceding section we have implicitly assumed E(Xρ, λxk) ≡
E(X,λxk)ρ, which is not true in general. However, as the mean
arrival rate for any given group exceeds 1, these two expressions
converge rapidly (Fig. 4(c)). Because xk is of the order of a few
minutes and the content is popular, the approximation is justi-
fied, at least for the Poisson case.

E. Performance Analysis

We now study the performance of these techniques in realistic
situations. Our simulation setup is as follows: For the topology
generated using GT-ITM [23], we created a transit-stub graph
containing ≈ 10, 000 nodes and 36, 000 edges. For the real net-
work topology, we have used the merged traces of the SCAN

project [24] and the Internet mapping project [25] at Bell Labs.
To make this huge topology manageable, we have chosen to con-
struct a subgraph by doing a traversal with maximum depth 8
starting from an arbitrary node.5

Having generated a graph from this data, we pick a random
source S (In the GT-ITM model, this is a stub node). We pick
unique receivers Ri located at random nodes ni, select start
times si with an average arrival rate of λ, and construct the
distribution tree. At random times tj , we use the rule that for
each multicast group k, Ri is subscribed at time tj if and only
if tj ≥ si and tj ≤ si + xk in order to calculate Lkj , the dis-
tinct links involved in group k at time tj . The results are then
averaged to obtain an estimate L̂k of Lk = L(λxk). The overall
network bandwidth can then be estimated as

∑α
k=1 L̂k log xk

xk−1
.

In Figures 4(e) and 4(f), we plot the performance predicted by
Eq. (9) compared with values obtained by graph simulations. TS
refers to the GT-ITM generated transit-stub graph, and INET
refers to the Internet trace. As the figure shows, there is good
agreement between estimated and empirical values.

VII. IMPLEMENTATION

Our system consists of an application-level, proactive Media-
on-Demand server and multiple Fuzzycast clients, all of which

5These traces, along with programs for their manipulation, can be found at
http://www.arl.wustl.edu/∼rama/traces/ .

10

are connected to a multicast-enabled 100-Mbps Ethernet. Multi-
ple media streams can be served, but are limited by the network
bandwidth and disk throughput available to the server. The cur-
rent implementation is a proof-of-concept prototype written in
about 1800 lines of Java code and organized into object-oriented
modules to facilitate flexible plug-ins of different algorithms,
such as server scheduling and client caching. Its architecture,
shown in Fig. 5, consists of the following components:

SCHEDULER: The Scheduler incorporates most of the func-
tionality described in the above sections. Given a list of meta-
files describing multiple media files, it can set up concurrent
playout schedules for these media items, relying on Algorithm 6.
The Server Cache and the Dispatcher are regularly notified, trig-
gering a chain of events that ultimately results in frames being
transmitted as scheduled.

DISPATCHER: The Dispatcher is a multithreaded process that
accepts frame data from various media streams and muticasts
them according to a schedule over multiple multicast groups. It
segregates transmissions of various movies into flows, each flow
operating at its optimum bandwidth (plus about 2 to 3%) as de-
termined by Eq. (1).

SERVER CACHE: The Server Cache is a circular memory
buffer that caches frequently transmitted frames of each movie.
The cache acts on requests for frames from the scheduler. It
maintains a mapping between media frames and disk blocks.
The buffer is shared with the Dispatcher.

PROGRAM GUIDE: The Program Guide Server keeps a pro-
file for each media stream, which contains network informa-
tion (multicast address and port), protocol information (stream
length, packet size, initial delay, number of multicast groups),
and media information (stream name, brief introduction, snap-
shot, media type). Each receiver connects to the server through
unicast and downloads a program guide. An alternative imple-
mentation could multicast the program guide in its own well-
known, low-bandwidth channel.

RECEIVER: The Receiver is responsible for subscribing to
and receiving media data. The receiver ‘tunes in’ to the appro-
priate multicast channels according to the information provided
by the directory service.

CLIENT CACHE: The Client Cache is filled by the receiver
and is consumed by the displayer. In our scheme, the client is
required to have sufficient buffer space for about 37% of the
movie. For efficiency, the Client Cache buffers frames that are
near playout in main memory. Efficient schemes for client side
buffer management are described in [26].

DISPLAYER: The Displayer paces the data to the rate the me-
dia player desires and provides the media stream through stan-
dard HTTP streaming, ready for use by a local off-the-shelf me-
dia player. This increase the flexibility of integration with ex-
ternal media players for supporting various newer or proprietary
media types not handled by our internal player. For example, we
have successfully used RealPlayer to play RealVideo movies,
without need for knowledge of the actual format.

CLIENT GUI: The client GUI interacts with the end user. As
soon as the client connects to the system, it downloads a pro-
gram guide from the directory service via a unicast channel,
and shows the brief introductions and snapshots for each me-
dia stream. Whenever a media stream is selected, it will wait
an initial delay according to the stream’s profile, and starts the

Client

Broadcast
Network

Scheduler

Interface

Receiver

Splitter

Dispatcher

c o nnect io
nUnicast

Media
Control

Program
Guide

Player

Cache Cache

Disk

ServerClient
Disk

Fig. 5. System architecture

integrated player to play sequentially until the end of the stream
or user interruption. We use Java Media Framework [27] to con-
struct the integrated player, due to its platform independence.

Fig. 6 shows the screen snapshots from a Linux-based server
and two clients on Linux and Windows respectively. For com-
parison, we show the server side network bandwidth at differ-
ent time points. The observed bandwidth remains approximately
constant. The two clients join the system at different time and
get the same media stream at the specified initial delay.

The plot results from the client windows also show that the
theoretical results provided in the above sections are met. For ex-
ample, the client network bandwidth and the client cache growth
curves are in accordance with the results shown in Fig. 2(c) and
Fig. 2(d), respectively.

VIII. RELATED WORK

Among the earliest proposals for bandwidth-efficient VoD
was Batching [3], where the server aggregated requests that
came close together in time. In subsequent years, progressively
more efficient periodic broadcast methods have been proposed.

PROACTIVE TRANSMISSION SCHEMES: Recently, the Har-
monic Broadcasting [6,7] family of protocols (discussed in Sec-
tions II-B and II-C) seem to be the most promising insofar as
the bandwidth-delay tradeoff is concerned. Some lower bounds
for the performance of such protocols were obtained in [8,9,28].
The impact of packet loss was evaluated and reduced in [29].
Support for interactive functions was introduced in [30].

PRE-PUSH: Several commercial pay-per-view networks are
currently testing “on-demand” models, in which movies are
downloaded ahead of time to consumer set-top boxes. With this
technique, a single broadcast transmission suffices to preload all
data. The downside is that enormous storage amounts are re-
quired to keep enough data so that an acceptable selection of
movies can be offered. Moreover, while most demand at any
given time is for a small set of movies, the composition of this
set is a moving target, defeating attempts at any long-term client-
side caching.

SMOOTHING VBR VIDEO: Although there is a large body
of work on smoothing unicast transmission of VBR video [16,
17], the impact of VBR media on the performance of proactive
multicast schemes has never been properly studied.

11

Fig. 6. Screen captures of clients and server in action. Top left and right show snapshots from two clients, running under Linux and Windows, respectively, that
joined at different times. The bottom two shots show the server load before and after the second client joined. Client windows: Left is the movie guide; in the center
the current movie as well as movie and system time; the graphs on the right show buffer size, bandwidth from the network, and bandwidth to the player.

LAYERING OVER MULTIPLE GROUPS: We introduced the
problem of client and network optimum partitioning over mul-
ticast groups for Fuzzycast in [1]. To our knowledge, no prior
work to quantifying the network impact of proactive VoD pro-
tocols or on optimally distributing content among multiple mul-
ticast groups exists. Bhattacharyya et al. [20] discuss optimum
scheduling of data packets in a layered multicast transmission
[18] to receivers with identical starting times.

CONTENT DISTRIBUTION NETWORKS: Content distribution
networks (CDNs [31]) are an alternative way of providing VoD
to many clients. For the most part, they are orthogonal to the
work on harmonic broadcasting. For our purpose, CDNs just
provide a way to trade investments in networks and routers for
servers and storage. Combining bandwidth-efficient distribution
strategies with cache hierarchies in a cost-effective manner cur-
rently is an area of active research.

BULK DATA DISTRIBUTION: Byers et al. proposed a digital
fountain approach to data distribution [19], in which receivers
download from a continuous data stream until they have received
enough unique encoded data to reconstruct all of the original
data. While this is an attractive solution for bulk data trans-
fer in which data only needs to be reconstructed once at the
end of transmission, it does not seem to be readily applicable
to streaming media applications, which requires the first parts
of the stream to be reconstructed early. An adaptation of digital
fountains to VoD using UEP codes is described in [13]. Com-
pared to Fuzzycast, the use of coding requires an additional pro-
cessing step involving large amounts of main memory.

IX. CONCLUSIONS

The success of VoD systems depends on the provider’s ability
to offer a cost-effective service that is also attractive to end-users.
Scalability and efficiency are critical for the former part, while

functionality, ease of use, and quick response to user commands
are needed to satisfy the latter aspect.

Proactive VoD protocols are attractive from the scalability
point of view, because they use server bandwidth efficiently to
serve media even under heavy demand. However, current proac-
tive schemes have significant drawbacks in terms of practical im-
plementation and deployment. Fuzzycast, by taking a pragmatic
frame-oriented approach, uses near-optimum server bandwidth
while remaining relatively simple to implement and maintain.

Although transmitting variable bitrate (VBR) media is a sig-
nificant issue in the real world, most existing periodic multicast
schemes do not handle VBR media very well. We proposed a
simple extension to Fuzzycast, namely Fragmented Fuzzycast,
and demonstrated that it was able to deliver VBR content over
constant-rate channels with minimal performance loss or com-
plexity overhead.

Finally, periodic multicast schemes place extra load on the
network owing to redundant multicasts. We show how the prob-
lem of transmitting content over multiple multicast groups re-
sults in a fundamental resource tradeoff; by solving the general
case, we obtain an optimum solution to our problem. We find
that using even a few multicast groups results in significant re-
duction in overhead for both client and network. We note that
the result obtained here is quite general and applicable to diverse
situations, including networks that follow scaling properties that
are very different from the Chuang–Sirbu law, in a straightfor-
ward manner.

Most importantly, we have shown that a simple and inexpen-
sive heuristic scheduling can be used to outperform all known
practical schemes, including many more complex schemes.

Using the optimum solution described here in other similar
scenarios is an area of research we intend to pursue further. In
addition, our current work involves extending these results to add
support for more “user-friendly” options like interactive VCR-
like functions.

12

REFERENCES

[1] Marcel Waldvogel and Ramaprabhu Janakiraman, “Efficient media-on-
demand over multiple multicast groups,” in Proceedings of Globecom
2001, San Antonio, Texas, USA, Nov. 2001.

[2] Ramaprabhu Janakiraman, Marcel Waldvogel, and Lihao Xu, “Fuzzycast:
Efficient video-on-demand over multicast,” in Proceedings of INFOCOM,
New York, NY, USA, June 2002, pp. 920–929.

[3] Asit Dan, Dinkar Sitaram, and Perwez Shahabuddin, “Scheduling poli-
cies for an on-demand video server with batching,” in Proceedings ACM
Multimedia ’94, Oct. 1994, pp. 391–398.

[4] Sridhar Ramesh, Injong Rhee, and Katherine Guo, “Multicast with cache
(mcache): An adaptive zero-delay video-on-demand service,” in Proceed-
ings of IEEE INFOCOM, 2001, pp. 85–94.

[5] Kien A. Hua and Simon Sheu, “Skyscraper broadcasting: A new broad-
casting scheme for metropolitan video-on-demand systems,” in Proceed-
ings of ACM SIGCOMM, Sept. 1997, pp. 89–100.

[6] Li-Shen Juhn and Li-Meng Tseng, “Harmonic broadcasting for video-on-
demand service,” IEEE Transactions on Broadcasting, vol. 43, no. 3, pp.
268–271, Sept. 1997.

[7] Jehan-François Pâris, Steven W. Carter, and Darrel D. E. Long, “Efficient
broadcasting protocols for video on demand,” in Proceedings 6th Interna-
tional Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, July 1998, pp. 127–132.

[8] Subhabrata Sen, Lixin Gao, and Donald F. Towsley, “Frame-based pe-
riodic broadcast and fundamental resource tradeoffs,” Tech. Rep. 99-78,
University of Massachusetts, Amherst, 1999.

[9] Derek L. Eager, Mary K. Vernon, and John Zahorjan, “Minimizing band-
width requirements for on-demand data delivery,” in Proceedings of Mul-
timedia Information Systems Conference (MIS ’99), Oct. 1999.

[10] Jehan-François Pâris, Steven W. Carter, and Darrel D. E. Long, “A low
bandwidth broadcasting protocol for video on demand,” in Proceedings
7th International Conference on Computer Communications and Networks
(IC3N’98), Oct. 1998, pp. 690–697.

[11] Srinivasa Ramanujan, “Highly composite numbers,” Proceedings of the
London Mathematical Society, vol. 14, pp. 347–409, 1915.

[12] Jörg Nonnenmacher, Ernst W. Biersack, and Donald F. Towsley, “Parity-
based loss recovery for reliable multicast transmission,” IEEE/ACM Trans-
actions on Networking, vol. 6, no. 4, pp. 349–361, Aug. 1998.

[13] Lihao Xu, “Efficient and scalable on-demand data streaming using uep
codes,” in Proceedings of ACM Multimedia 2001, Ottawa, Canada, Sept.–
Oct. 2002.

[14] Jehan-François Pâris, Steven W. Carter, and D. D. E Long, “A hybrid
broadcasting protocol for video on demand,” in Proceedings of Multimedia
Computing and Networking Conference 1999 (MMCN’99), 1999, pp. 317–
326.

[15] Jack E. Bresenham, “Algorithm for computer control of a digital plotter,”
IBM Systems Journal, vol. 4, no. 1, pp. 25–30, Jan. 1965.

[16] James D. Salehi, Zhi-Li Zhang, James F. Kurose, and Donald F. Towsley,
“Supporting stored video: Reducing rate variability and end-to-end re-
source requirements through optimal smoothing,” IEEE/ACM Transac-
tions on Networking, vol. 6, pp. 397–410, Aug. 1998.

[17] Jean M. McManus and Keith W. Ross, “A dynamic programming method-
ology for managing prerecorded VBR sources in packet–switched net-
works,” in Proceedings SPIE, Performance and Control of Network Sys-
tems, Nov. 1997, pp. 140–154.

[18] Steven McCanne, Van Jacobson, and Martin Vetterli, “Receiver-driven
layered multicast,” in Proceedings of ACM SIGCOMM, Aug. 1996, pp.
117–130.

[19] John W. Byers, Michael Luby, Michael Mitzenmacher, and Ashu Rege, “A
digital fountain approach to reliable distribution of bulk data,” in Proceed-
ings of ACM SIGCOMM, Vancouver, BC, Canada, Sept. 1999, pp. 56–67.

[20] Supratik Bhattacharyya, James F. Kurose, Donald F. Towsley, and Ramesh
Nagarajan, “Efficient rate-controlled bulk data transfer using multiple mul-
ticast groups,” in Proceedings of IEEE INFOCOM, June 1998, pp. 1172–
1179.

[21] John C.-I. Chuang and Marvin A. Sirbu, “Pricing multicast communica-
tions: A cost based approach,” in Proceedings of INET, 1998.

[22] Graham Phillips, Hongsuda Tangmunarunkit, and Scott Shenker, “Scal-
ing of multicast trees: Comments on the Chuang-Sirbu scaling law,” in
Proceedings of ACM SIGCOMM, Sept. 1999.

[23] Ellen W. Zegura, Kenneth L. Calvert, and Michael J. Donahoo, “A quan-
titative comparison of graph-based models for Internet topology,” IEEE/
ACM Transactions on Networking, vol. 5, no. 6, pp. 770–783, 1997.

[24] “The Mercator Internet mapping project,” http://www.isi.edu/scan/
mercator/maps.html.

[25] “The Internet Mapping project,” http://cm.bell-labs.com/who/ches/map/.
[26] Marcel Waldvogel, Wei Deng, and Ramaprabhu Janakiraman, “Efficient

buffer management for scalable media-on-demand,” in SPIE Multimedia
Computing and Networking (MMCN 2003), Santa Clara, CA, USA, Jan.
2003.

[27] “Java Media Framework,” http://www.javasoft.com/products/java-media/
jmf/.

[28] Yitzhak Birk and Ron Mondri, “Tailored transmissions for efficient near-
video-on-demand service,” in IEEE International Conference on Multime-
dia Computing and Systems, Florence, Italy, June 1999, pp. 9226–9231.

[29] Anirban Mahanti, Derek L. Eager, Mary K. Vernon, and David Sundaram-
Stukel, “Scalable on-demand media streaming with packet loss recovery,”
in Proceedings of the 2001 Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communications, San Diego, CA,
USA, June 2001, pp. 97–108.

[30] Ernst Biersack, Alain Jean-Marie, and Philippe Nain, “Open-loop video
distribution with support of VCR functionality,” Performance Evaluation,
vol. 49, no. 1-4, pp. 411–428, Sept. 2002.

[31] Balachander Krishnamurthy, Craig Wills, and Yin Zhang, “On the use and
performance of content distribution networks,” in Proceedings of ACM
SIGCOMM Internet Measurement Workshop, Nov. 2001.

