
RZ 3496 (# 99317) 05/26/03
Computer Science 5 pages

Research Report

Establishing Trust in Distributed Storage Providers

Germano Caronni

Zurich Information Security Center
Swiss Federal Institute of Technology
ETH Zentrum
8092 Zurich
Switzerland
gec@acm.org

Marcel Waldvogel

IBM Research
Zurich Research Laboratory
8803 R̈uschlikon
Switzerland
mwl@zurich.ibm.com

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available
at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich



Establishing Trust in Distributed Storage Providers

Germano Caronni and Marcel Waldvogel∗

Abstract

Corporate IT as well as individuals show increasing interest in
reliable outsourcing of storage infrastructure. Decentralized so-
lutions with their resilience against partial outages are among the
most attractive approaches. Irrespective of the form of the rela-
tionship, be it based on a contract or on the more flexible cooper-
ative model, the problem of verifying whether someone promis-
ing to store one’s data actually does so using multiple replicas
remains to be solved. In this paper, we introduce a lightweight
mechanism that allows the data originator or a dedicated verifi-
cation agent to build up trust in the replica holder by means of
protocols that do not require prior trust or key establishment. We
show how naive versions of the protocol do not prevent cheating,
and then strengthen it by adding means that make it economically
attractive to be honest. This provides a foundation for further
work in providing trustworthy distributed storage.

1 Introduction

The outsourcing of storage infrastructure is becoming in-
creasingly interesting for corporate IT as well as for in-
dividuals. Besides the tainted use of peer-to-peer (P2P)
content sharing systems such as Gnutella [1], the idea of
completely decentralized storage is very appealing. Rang-
ing from niche applications such as censor-resistant pub-
lishing (e.g., Freenet/Eternity [2, 3] and Publius [4]), to
the scalable use of promising overlay networks based on
distributed hash tables (DHT) [5–9], the potential of stor-
ing Petabytes of data accessible whenever and wherever re-
quired has spurred great enthusiasm. The advent of DHTs
has given such systems a strong boost, as DHTs allow an
efficient, scalable, and often failure-tolerant addressing of
stored documents. These and similar other file distribution
and storage mechanisms also make sense in more traditional
scenarios, ranging from distributed backup and mirroring

∗G. Caronni is with the Zurich Information Security Center (ZISC)
at ETH Zurich and with Sun Microsystems Inc., Sun Laborato-
ries. He can be reached at gec@acm.org. M. Waldvogel is with
IBM Research, Zurich Research Laboratory. He can be reached at
mwl@zurich.ibm.com.

facilities to distributed storage facilities for gridware [10]
or a gridware-like environment.

There is, however, one crucial problem with independent
agents holding copies of your data: How can you make sure
that they really store a copy locally, and not just claim to do
so? The existence of this problem becomes immediately ev-
ident in collaborative environments. Even in the presence of
contracts, how can you verify that the storage providers are
actually providing the promised number of replicas? If you
ask them to provide you with some file content, they can
easily forward that request to another replica holder with-
out your knowledge. The most immediate risk here is that
replicas of your data are being retained in fewer places than
you ask for. In the extreme, this can lead to the existence
of a single point of failure, exactly the scenario distributed
storage eagerly tries to avoid. If storing your data gives
replica holders the right to store some of their data at your
place, a financial compensation, or some other kind of tan-
gible benefit, the economic incentive for falsely claiming to
store your data becomes clear.

1.1 Our Contribution

In this paper, we introduce a mechanism that returns power
to the data originator. It allows the originator to estab-
lish trust into the replica holder. We show that naive ap-
proaches are susceptible to cheating by the replica holder.
Our proposed lightweight protocol allows building up trust,
even without a prior phase of authenticated key exchange
and trust establishment, both major criteria in collabora-
tive systems. The resulting protocol does not provide a di-
rect proof of storage, but requires dishonest replica holders
to use significantly more resources than an honest replica
holder would have to use. It does not, however, prevent
malicious, resource-rich entities from performing their in-
tentionally malicious goal at considerable expense. Using
appropriate cost functions, the protocol provides the neces-
sary leverage against “lazy” replica holders, whose goal it
is to obtain a seizable advantage and which we expect to be
the common cheating candidate. Our symmetrical protocol
limits the possibilities of Denial-of-Service (DoS) attacks.

1



1.2 Organization of the Paper

In Section 2, we first introduce and then improve methods
that help verify whether a replica holder actually keeps its
promises. Section 3 describes how to minimize the impact
of DoS attacks. In Section 4, we present related work, and
in Section 5, we draw our conclusions.

2 Verification of Content

Standard solutions to verify whether a replica holder has a
copy of some file are to either ask it to send the file back
to the verifier, or to compute a (potentially keyed) hash
value over the file. Unfortunately, they require considerable
bandwidth (both in terms of network traffic and in terms of
storage-to-CPU data transfers) or CPU power for each re-
quest, respectively. The exclusive use of optimizations such
as hash trees over the file are not appropriate, because the
supposed replica holder can just precompute them, thus ob-
viating the need for storing the entire document.

A viable compromise is to have the verifier request the
hash value to be computed only over a chunk of the data at
one time, with the chunk being selected at random. Thus a
smooth trade-off between full verification and partial veri-
fication as well as between CPU/disk load and bandwidth
usage is achieved.

Let us now take this as the most naive practical starting
point. By considering the different ways in which a replica
holder might cheat and adapting our protocol accordingly,
this initial idea will steadily evolve into a simple, efficient,
and secure protocol.

2.1 Options of Dishonest Replica Holders

As mentioned above, a replica holder can try to cheat in
many ways. It can pre-compute information and only re-
member that data; it can try to forward the request for verifi-
cation to another (potentially colluding) replica holder; and
it can download the file or parts of the file that are needed
for verification from another replica holder on demand.

The following subsections will look at each of these pos-
sibilities, and discuss how they can be counteracted. The at-
tempt at using pre-computed data is most easily thwarted by
making all computations over the data involve some fresh
nonce to be used as the key to a message authentication
code or to make the range of data to be verified sufficiently
random (see also Section 2.4).

Step A B
1 A, R1, H(R1‖R2) −→
2 ←− B, R3, H(R3‖R4)
3 R2 −→
4 ←− R4, K

Ri are random values; A, B are not easily forgeable identities to deter
work delegation. The result of the protocol, the key K, is defined as
K = H(A‖B‖R1‖R2‖R3‖R4).

Figure 1: Key exchange protocol

2.2 Delegation to Unsuspecting Replica Holders

The first idea a smart fraudulent replica holder might have
is not to perform any work at all, but simply to try and for-
ward the verification request from a client to another legit-
imate replica holder. One way to counter this would be to
have the data originator produce “personalized” replicas for
each holder, e.g. by tying them to the identity1 of the replica
holder. However, this would require the underlying replica-
tion architecture to be strictly star-shaped. No replica holder
would be able to forward its copy to somebody else, without
going first through the data originator. This contradicts the
goal of avoiding single points of failure and performance
bottlenecks.

A far more effective, but still simple solution is to use
a key for a Message Authentication Code (MAC) [11] that
is derived from random inputs of both verifier and replica
holder in a secure fashion. In this way, neither party can
a priori force a result with specific parameters. Therefore,
the replica holder cannot forward the request, as a delega-
tion attempt would use a different key. The initial agree-
ment can be kept simple because no confidentiality or au-
thenticity issues exist. For example, a man-in-the-middle
trying to hijack the protocol can only persuade the verifier
that the replica holder has no copy, an accusation that can be
achieved more easily by means of a DoS attack, including
simply dropping the packets (Section 3).

A sample key agreement protocol is shown in Figure 1.
Note that B’s messages are not chained to A’s messages,
until the key is sent back. The inclusion of the identities
of A and B is required to prevent a dishonest replica holder
B from transparently forwarding traffic between A and C .

1Identities, as used in this paper, might be as simple as the addresses
used by the communications protocols, e.g., IP addresses. They are nei-
ther required to be cryptographically strong nor signed by a central au-
thority.

2



Table 1: Latency and bandwidth comparison

Intra- Inter-
Disk LAN MAN continental

Latency [ms] 10a 1 10 50. . . 100 100. . . 400
Bandwidth [Mbps] 250. . . 500 10. . . 1000 1. . . 100 1. . . 10 0.1. . . 10

aTime for random seek; track-to-track seek is around 1ms. As disks typically buffer at least an entire track, seek
times within a track become basically negligible.

2.3 Delegation to Colluding Replica Holders

In Section 2.2, we have seen how to prevent a dishonest
replica holder from abusing an honest one. But the problem
becomes much harder if the two replica holders actively col-
laborate and share information beyond what is exchanged in
the protocol in Figure 1. This might include having random
number generators running in lockstep, exchanging the ran-
dom values R3 and R4, or allowing the key K to be set
without going through the key exchange.

While there are possibilities that might help detecting
collusion between replicas, this requires the colluding repli-
cas to be relatively far away. Then, this additional delay
might be detected by making the actual hash calculation in-
volve numerous synchronous message exchanges between
verifier and the fake replica holder. Given the uncertainties
in detecting colluding replica holders, we currently do not
feel that the effort is worthwhile.

We believe, however, that economic considerations do
not motivate collusion. Consider the following scenario: A
partnership of colluders provides a substantial portion of the
storage infrastructure, say, 10%. In addition, assume that
the typical customer requests two replicas. Given a random
selection of replica holders, the dishonest service could be
offered at a storage savings of about 1% of the infrastruc-
ture. We believe that the savings obtained are not worth the
risk of suddenly being put out of business because of the
fraudulent behavior. A company owning the sizable busi-
ness of 10% of the total storage market should not take this
risk lightly.

Therefore, the incentives at work against collusion in
both large (business risk) and small (no profit gain) part-
nerships are expected to support honesty.

2.4 Download on Demand

Whenever a verifier requests a check from a replica holder,
the replica holder could theoretically go and request the spe-
cific data to be covered by a check from other replica hold-

ers. This works well when the range to be verified is mostly
contiguous and relatively small. Otherwise, the efforts and
bandwidth spent by the fraudulent replica in downloading
the data are large compared with the storage space saved.

The predicament for the replica holder can be made even
stronger, in that the range to be verified consists of several
hundred very small chunks (e.g. only a single byte), each
residing a random distance apart from the previous chunk.
The selection of actual distances should discourage down-
loading large chunks.

At this point, we can compare the different behavior of
network and local access to data, see Table 1.

These differing properties can be used to differentiate be-
tween honest replica holders that access the document from
a disk and dishonest replica holders that access it over a
network. Differences exist in both bandwidth and delay,
but the latter can easily be magnified by preventing the
fraudulent replica holder from parallelizing the download
requests. Even if it has enough bandwidth available, each
request will have to be processed sequentially, and thus the
response will reveal this through high latency.

Such an effect is achieved by making the steps between
the bytes to be verified data dependent. They still should be
spaced such that

1. for fraudulent replica holders it is at least as efficient to
request the ranges separately, than requesting the entire
range as a whole, and

2. honest replica holders obtain reasonable efficiency by
having different chunks reside within the realm of a
single disk access.

As a first cut, consider the verification procedure in List-
ing 1. Given the amount of randomness involved in select-
ing the bytes to verify, we cannot conceive of any way a
dishonest replica holder would use this to precompute and
store information about the verification value. Thus we sug-
gest to use an inexpensive checksumming function such as
Adler-32 [12], instead of a more expensive cryptographi-
cally strong hash function.

3



Listing 1 First-cut verification procedure
1: Verifier and replica holder agree on common key (Figure 1)
2: Verifier specifies chunk size, maximum step size, and upper

number of steps.
3: Replica holder and verifier seed their stepping function

(RC4) with the key
4: current position← 8 bytes out of RC4 (modulo file size)
5: while number of steps < upper number of steps do
6: value← chunk at current position in file
7: insert value into hash
8: step size ← (value + 8 bytes out of RC4) (modulo maxi-

mum step size)
9: next position← (current position + step size) (modulo file

size)
10: end while

Using Listing 1 with the data provided in Table 1, we
need about 1 s disk drive time (probably much less CPU
time) to check some 30 MB available on the local disk, in-
dependent of the number of samples, assuming a contiguous
layout of the file. Over a network (50 ms at 1 MB/s (∼10
Mb/s), which is roughly the rate with which medium-sized
enterprises connect to the Internet), it takes 30 s to down-
load everything; the same time is achieved by requesting
1200 data-dependent samples.

Even at higher bandwidths, the replica being exploited
also needs to have the same bandwidth available and the
dishonest replica needs to be willing to waste this (expen-
sive) bandwidth to save some (cheap) disk space. By using
this scheme, we can easily remove any economic incentives
that cheating may have had.

3 Denial-of-Service Considerations

The verification protocol as outlined so far is an excellent
way to run a DoS attack on replica holders: Just have them
perform unlimited verification operation. That will keep
them busy and unable to provide their normal service. Al-
though this situation can be prevented by intricate identity
and ownership management of files, we choose not to ex-
plore this direction. Instead, we keep things simple and
again base trust only on verifiable behavior. We balance
costs such that a verifier has to spend at least as much ef-
fort on continued verification processes as the replica holder
does.

The first mechanism to limit DoS opportunities against
replica holders is by giving the replica holder the option to
require the verifier to perform a hash-cash [13, 14] opera-

tion. Thus, the verifier has to “pay” for the verification with
CPU cycles. The amount of hash-cash will be defined by the
current load experienced by the replica holder. The result
of the calculation is a ticket of limited lifetime that grants
access to the actual verification. Should the replica holder
repeatedly pose impossibly high hash-cash challenges, the
verifier can assume the replica holder does not comply with
the protocol.

When replica holder and verifier are in symmetric po-
sitions, i.e., both are interested in verifying each other’s
content, then a second ticket-granting mechanism becomes
available: A successfully executed verification of one party
will grant this party the right to request a slightly larger ver-
ification from the other side by issuing an appropriate ticket.
Here, both sides actually perform useful work, eliminating
the waste of CPU cycles performed by hash-cash.

A man-in-the-middle attacker can use the proposed
mechanism for DoS by falsifying or suppressing the mes-
sages exchanged (see also Section 2.2). Even though this
attack is typically not controlled by the replica holder, the
replica holder becomes an unreliable storage provider. The
use of overlay networks may help circumvent such packet
dropping or modification attacks, but this is beyond the
scope of this paper.

4 Related Work

Trust has been a research topic for decades [15], ranging
from agreements even in the presence of untrusted enti-
ties [16] to the total trust in a peer in a web-of-trust [17]
setting. In practice, however, trust is often handled through
centralized hierarchies: Everyone ultimately trusts a single
entity, which in turn delegates some of its trust to other prin-
cipals, who may or may not have the right to delegate this
further.

As all of these systems have weaknesses, people have
started working on other, more immediate ways to deal with
this issue, namely, reputation systems [18]. Advogato [19]
uses a hybrid system in which users can rank their peers; the
overall reputation of a ranked individual then depends on
the result of a network flow calculation. Mobile ad-hoc net-
works are a prime area of reputation research to determine
whether intermediate nodes actually do forward the packets
or prefer to behave egotistically and instead conserve their
own power by not helping the others [20, 21]. In this do-
main, it is relatively simple to see the result, either through
reciprocal reception of the radio signal, through the help

4



of other nodes, or by seeing communications progress and
getting the desired answer from the communication peer.
Systems such as CONFIDANT [22] use reputation gossip to
augment their first-hand experience.

5 Conclusions

In this paper we have presented a first algorithmic approach
at fairly verifying whether replica holders indeed perform
the service they promised. Our protocol is based on a check-
sum or hash that is calculated over key-defined ranges of
shared data. This check is performed in an iterative fashion
with alternating roles, or compensated by the calculation of
responses to challenges to prevent DoS attacks. At the same
time this builds a trust relationship between replica holder
and verifier which can be reused in later rounds of the pro-
tocol.

To the best of our knowledge, this is the first paper rais-
ing the issue of verification of storage in order to build
trust in the storage provider. Given the increased interest
in (potentially massively) distributed storage, the need for a
lightweight mechanism is well covered in the protocol de-
veloped herein. We believe that it will give first answers to
some of the issues that have arisen in the peer-to-peer and
distributed storage communities, but also raise new ques-
tions and challenges. Open issues include tightening many
of the loose ends and gathering experience in a real envi-
ronment.

References

[1] Eytan Adar and Bernardo A. Huberman. Free riding on Gnutella.
First Monday, September 2000.

[2] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W.
Hong. Freenet: A distributed anonymous information storage and
retrieval system. http://freenetproject.org/, 1999.

[3] Ross J. Anderson. The Eternity service. In Proceedings of
Pragocrypt ’96, 1996.

[4] Marc Waldman, Aviel D. Rubin, and Lorrie Faith Cranor. Pub-
lius: A robust, tamper-evident, censorship-resistant, web publish-
ing system. In Proc. 9th USENIX Security Symposium, pages 59–
72, August 2000.

[5] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and
Scott Shenker. A scalable content-addressable network. In Pro-
ceedings of ACM SIGCOMM, September 2001.

[6] Anthony Rowstron and Peter Druschel. Pastry: Scalable, dis-
tributed object location and routing for large-scale peer-to-peer
systems. In IFIP/ACM International Conference on Distributed

Systems Platforms (Middleware), pages 329–350, Heidelberg, Ger-
many, November 2001.

[7] Ben Y. Zhao, John Kubiatowicz, and Anthony Joseph. Tapestry:
An infrastructure for fault-tolerant wide-area location and rout-
ing. Technical Report UCB/CSD-01-1141, University of Califor-
nia, Berkeley, April 2001.

[8] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and
Hari Balakrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In Proceedings of ACM SIGCOMM 2001,
pages 149–160, San Diego, CA, USA, August 2001.

[9] Marcel Waldvogel and Roberto Rinaldi. Efficient topology-aware
overlay network. In Proceedings of ACM HotNets-I, October 2002.

[10] Sun cluster grid architecture. http://www.sun.com/
software/grid/whitepapers.html, 2002.

[11] Gene Tsudik. Message authentication with one-way hash func-
tions. ACM Computer Communication Review, 22(5):29–38, 1992.

[12] Peter Deutsch and Jean-Loup Gailly. ZLIB compressed data format
specification version 3.3. RFC 1950, Internet Engineering Task
Force, May 1996.

[13] Adam Back. Hashcash—A Denial of Service Counter-Measure.
http://www.cypherspace.org/∼adam/hashcash/,
1997.

[14] Manuel Blum, William S. Evans, Peter Gemmell, Sampath Kan-
nan, and Moni Naor. Checking the correctness of memories. In
IEEE Symposium on Foundations of Computer Science, pages 90–
99, 1991.

[15] Matt Blaze, Joan Feigenbaum, John Ionnidis, and Angelos D.
Keromytis. The role of trust management in distributed systems se-
curity. In Secure Internet Programming: Security Issues for Mobile
and Distributed Objects, pages 185–210. Springer Verlag, 1999.

[16] L. Lamport, R. Shostak, and M. Pease. The byzantine generals
problem. ACM Transactions on Programming Languages and Sys-
tems, 4(3):382–401, July 1982.

[17] Ueli Maurer. Modelling a public-key infrastructure. In ESORICS:
European Symposium on Research in Computer Security. LNCS,
Springer-Verlag, 1996.

[18] Paul Resnick, Richard Zeckhauser, Eric Friedman, and
Ko Kuwabara. Reputation systems. Communications of the
ACM, 43(12):45–48, 2000.

[19] Advogato’s trust metric. http://www.advogato.org/
trust-metric.html, February 2000.

[20] Pietro Michiardi and Refik Molva. CORE: A collaborative rep-
utation mechanism to enforce node cooperation in mobile ad hoc
networks. In Sixth IFIP Conference on Security Communications,
and Multimedia (CMS 2002), Portoroz, Slovenia, 2002.

[21] Krishna Paul and Dirk Westhoff. Context aware inferencing to rate
a selfish node in dsr based ad-hoc networks. In Proceedings of
the IEEE Globecom Conference, Taipeh, Taiwan, November 2002.
IEEE.

[22] Sonja Buchegger and Jean-Yves Le Boudec. Performance Analysis
of the CONFIDANT Protocol: Cooperation Of Nodes—Fairness
In Dynamic Ad-hoc NeTworks. In Proceedings of IEEE/ACM
Symposium on Mobile Ad Hoc Networking and Computing (Mo-
biHOC), Lausanne, June 2002.

5


