
RZ 3502 (# 99462) 07/01/2003
Computer Science 12 pages

Research Report

Dynamic Replica Management in Distributed Hash Tables

Marcel Waldvogel, Paul Hurley and Daniel Bauer

IBM Research
Zurich Research Laboratory
8803 R̈uschlikon
Switzerland
{mwl, pah, dnb}@zurich.ibm.com

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available
at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich

Dynamic Replica Management
in Distributed Hash Tables

Marcel Waldvogel Paul Hurley Daniel Bauer
IBM Research

Zurich Research Laboratory
{mwl,pah,dnb}@zurich.ibm.com

Abstract— Interest in distributed storage is fueled by de-
mand for reliability and resilience combined with decreas-
ing hardware costs. Peer-to-peer storage networks based
on distributed hash tables are an attractive solution due to
their efficient use of resources and resulting performance.
The placement and location of replicas in such systems
remain open problems, especially in view of dynamic needs
and the requirement to update replicated content.

We present and evaluate a novel and versatile technique,
replica enumeration, which allows for controlled replication
and replica access. The possibility of enumerating and
addressing individual replicas allows dynamic updates
as well as superior performance without burdening the
network with state information, yet taking advantage of
locality information when available. We simulate, analyze
and prove properties of the system, compare it with re-
lated work according to replica management classification
criteria we introduce, and discuss some applications.

I. INTRODUCTION

Peer-to-peer (P2P) systems offer enormous potential.
Although some still associate it with music piracy, the
technology itself and its many uses are entirely content-
neutral. In fact, with the continually increasing reliance
of many business and government processes on contin-
uous, instantaneous, and reliable access to data, peer
services have become the hope of many corporate IT
specialists. It has also been argued, based on recent
experience, that heterogeneous, physically distributed
systems are more resilient against attacks using physical
force against servers as well as intrusion and distributed
denial-of-service (DDoS) attacks. Recent advancements
in peer technologies, such as the introduction of the
Distributed Hash Table (DHT) method, have caused a
noticeable shift from unreliable toy systems to scalable
enterprise-level services capable of managing global data
repositories. In contrast to previously used extensive
flooding of queries through the system, DHT provides
a low-overhead possibility for the efficient addressing of

data at unknown locations using only the unique resource
(document) ID.

A key property of DHTs is that, if the ID of a re-
source is known, this resource can be addressed directly
and efficiently, without knowledge of the address(es)
of the host(s) providing it. In addition, the location
can be found by passing the message hop-by-hop, with
each node having only minimal routing information.
To provide resilience and support high demands for
certain resources, the availability of multiple replicas is
crucial. So far, the management of the replication process
in DHTs has received little attention, with the noted
exception of caching techniques.

In this paper, we present and evaluate, in detail, a
novel technique, called replica enumeration (RE), which
allows end-systems to make an informed decision about
where replicas are and which ones to access. It enables
updates to reach all replicas easily, thereby allowing
updates to be pushed immediately, without having to
wait for the next replica-initiated synchronization. RE
is achieved without explicit metadata or the need for a
replica directory service, and works on top of any DHT.

RE is well suited to a globally distributed storage
system, but also for applications in locally confined en-
vironments. Examples include its use for load balancing
in a server farm or as a backup for the company-wide
centralized replica directory.

We analyze and prove the properties of RE and pro-
vide simulation results. As part of our evaluation, we also
present classification criteria for replica management and
discuss the tradeoffs of different mechanisms.

A. Replication Criteria

We propose the following list of criteria for the
evaluation of replica management and access.

Openness. The replicas should be useful to many re-
questers, not only a single user.

Locality. Obtaining a “nearby” replica is preferable. The
actual distance (or cost) metric used may include
dynamic parameters such as network and server
load.

Addressability. For management, control, and updates,
support should be provided for enumeration and
individual or group-wise addressing of replicas.

Freshness. The replicas should be the most up to date
version of the document.

Adaptivity. The number of replicas for a resource
should be adaptable to demand, as a tradeoff be-
tween storage requirement and server load.

Flexibility. The number of replicas for one resource
should not depend on the number of replicas for
another resource.

Variability. The locations of replicas should be se-
lectable.

State size. The amount of additional state required for
maintaining and using the replicas should be mini-
mum. This applies to both distributed and central-
ized state.

Resilience. As DHTs themselves are completely dis-
tributed and resilient to outages, centralized state
or other single points of failure should be avoided.

Independence. The introduction of a new replica (re-
spectively, the removal of an existing replica) on
a node should depend on as few other nodes as
possible.

Performance. Locating a replica should not cause ex-
cessive traffic or delays.

Our models assume that, in this scenario, communi-
cation is far more expensive than local computation.

B. Main Contribution

We present and describe replica enumeration, a tech-
nique that performs well according to the above criteria.
RE provides replicas that are openly accessible by all
members. It allows locality-aware selection of a replica
as well as enumeration of all replicas for immediate
update, and is adaptive to the load in the network.
There is no requirement for metadata per se for replica
location and it is thus also independent of any centralized
data, combined with good performance (the metadata is
implicit through the replica placement strategy).

We provide thorough results and proofs as well as
simulation to back our claims.

We also propose a criteria catalog for the evaluation of
replication schemes and use it for comparison purposes.

C. Paper Organization

The paper is organized as follows. Section II intro-
duces background and related work. Section III presents
RE in detail. Section IV shows the results of our simula-
tions. Section V describes applications and combinations
of RE. Section VI concludes the paper, and presents
further work.

II. BACKGROUND AND RELATED WORK

A. Distributed Hash Tables

Several scalable overlay networks have recently
sprung to life. Sitting “on top” of the Internet, they
add additional value to the transport capabilities of the
underlying network. DHT provides a mapping from
resource IDs to a set of hosts (d→ H) that is typically
preceded by a mapping from resource name to resource
ID (N → d). This is achieved using minimal routing
information in each node. DHTs are also generally
prepared to deal with changes in host availability and
network connectivity.

They come in a variety of routing flavors, but all share
the property that messages are transported on a hop-
by-hop basis among constituent nodes of the overlay
network. Each hop knows how to get closer to the
destination, until it finally reaches the node that claims
the requested ID as its own and acts according to the
request.

Some of the DHTs operate based on intervals in skip-
list-based ring topologies (Chord [1], [2], SkipNet [3]),
some split hyperspaces into manageable chunks (CAN
[4] and Mithos [5]), whereas some other mechanisms are
probably best described as a rootless tree implementation
(P-GRID [6], Pastry [7], Tapestry [8] and Plaxton’s
scheme [9]).

Many of these DHT systems are able to exploit the
locality of the underlying network. Locality aspects are
typically separated into geographic layout and proximity
forwarding, categories adapted from Castro et al. [10].
Moreover, a node that knows more than another node
will bring the message closer to its ultimate destination,
generally calculated in the resource ID space. From
among these nodes, proximity forwarding selects one
that is close by also in terms of the underlying network
(this is implemented in Chord and Pastry, among others).

Geographic layout, on the other hand, implies that
the ID space is already partitioned into regions (“hash
buckets”) based on the connectivity in the underlay,
a method utilized by CAN and Mithos. Geographical
layout automatically implies some form of proximity
forwarding.

2

TABLE I

COMPARISON ACCORDING TO CRITERIA CATALOG OF SECTION I-A

Criteria Fixed OceanStore Caching Proxy a CDN Enumeration
Openness all near path locals all all
Locality manual yes when cached yes often
Addressability yes no no no yes
Freshness yes no no yes yes
Adaptivity (replica count) no yes yes yes yes
Flexibility (replica count) no yes yes yes yes
Variability (location) no yes no no no
State size full ABF none full none
Resilience yes yes yes yes yes
Independence no no yes yes yes
Performance no impact redirect no impact no impact local probes

aThe properties of caching proxies also apply to local replicas used in systems such as Lotus Notes or IMAP.

B. Replication

Traditionally, replication has been solved by mirror-
ing, in which the mirrors typically know about (a subset
of) the other mirrors, in order to be able to point at
some of the other mirrors. This redirection can be an au-
tomated process, but most often is performed manually.
Criteria for selecting a mirror may include reliability, ac-
cess latency, or throughput. To maintain data consistency,
there often exists a relationship between the master and
the mirrors. Elaborate mirroring-based systems include
Usenet News [11], Akamai [12], Lotus Notes [13], and
IMAP [14].

A less organized method for replication includes
caching, which is widely used and researched in par-
ticular for web caches [15], [16]. Here, consistency
is achieved by a combination of the server stamping
expiration dates and the caches querying the server for
updates on a regular basis. The caches are sometimes
organized into semi-hierarchical topologies to improve
performance and reduce server load.

Content distribution networks (CDNs) [17], [18] are
sets of inter-operating caches that replicate documents
to places where user demand is high. Requests are
mapped to close-by caches using DNS servers that take
server- and network load into account. Consistency is
maintained using time-stamping, version numbering, and
on-demand purges (invalidations) of content. The ability
to dynamically assemble documents allows CDNs to
cache content that would otherwise not be cacheable.

One of the most organized ways of linking DHTs and
caching is employed by OceanStore [19]. When there is

a high probability that a cached copy of the document
can be found along that route, queries passing along the
DHT are redirected by Attenuated Bloom Filters (ABF).
In addition to the possibility of false positives despite
continuous ABF update traffic, there is no way for the
document originator to address selected (or update all)
replicas when the need arises.

C. Comparison

Table I compares RE with other replication policies,
such as local replicas or local caching proxies, the ABF
used by OceanStore, and replication to fixed, hard-coded
locations, as is often used in a database context.

Fixed installations often come with hard-coded replica
references, resulting in a overhead-free system that uses
locality if correctly configured, but is highly resistant
to configuration changes, requiring manual intervention.
Adding a directory service leads to a tradeoff between
performance impact and update frequency; typically the
locality property is also lost in the process.

OceanStore is able to place copies wherever needed,
but only queries that pass close to a cached copy will
use it. The downside includes (1) potentially significant
traffic volume due to frequent exchanges of bloom filters,
(2) the possibility of increased forwarding cost to the
destination resulting from misleading redirection caused
by the ABF, and (3) the impossibility of updating or
ensuring freshness of the copies.

Caching proxies and local replicas are only accessible
by local users (often just a single user) and therefore
cannot be shared unless combined with elaborate inter-

3

cache communication schemes, which introduce signif-
icant overhead. They cannot be kept up to date or be
notified of updates.

CDNs optimize access to read-only documents. The
overhead in these systems is rather high; a monitoring
system constantly measures server- and network load and
feeds the results into a DNS-server based control infras-
tructure that keeps state information about replicas. State
information in the DNS servers is constantly updated
in order to avoid inconsistencies. Document replicas are
not directly addressable, the matching between client and
replica is instead done by a third party, the DNS server.
Changes are allowed to propagate from the original
server only.

RE evenly distributes replicas among the network
nodes, in break of the variability criteria. We believe
this to be a minor issue, as we assume that clients are
also evenly distributed. Furthermore, given the current
level of network backbone connectivity and capacity,
even a small number of replicas leads to a configuration
where at least one replica is sufficiently close. For
applications that require very low latencies, we describe
helpful combinations with other schemes in Section V.
The excellence of RE in terms of the other criteria is
another strong point in its favor.

III. REPLICA ENUMERATION

Document replica placement in large-scale environ-
ments has traditionally been driven by demand, either
from a single user or a small group. Caching proxies,
for example, are placed based on decisions of the local
user community, independently of where other caching
proxies are placed. RE, on the other hand, uses a coor-
dinated approach based on a globally known algorithm
to place the replicas.

The basic idea behind RE is simple: For each doc-
ument with ID d, the replicas are placed at the DHT
addresses determined by h(m, d), where m is the index,
or number, of that particular replica, and h(·, ·) is the
allocation function, typically a hash function, which
is shared by all nodes. In our derivations, we assume
that h(·, ·) is essentially pseudo-random, i.e. the DHT
addresses of the replicas are uniformly distributed in the
address space.1 Using this knowledge, any node in the
network can easily determine any potential replica ad-
dress. However, knowing only the potential addresses is

1The correctness of the system does not depend on the random-
ness, but the impact of a non-uniform distribution on the system
performance would need to be re-evaluated.

Listing 1 ADDITION

1: /* Triggered by high load */
2: rd ← NumReplicas(d); /* using linear or binary search

*/
3: Exclusively lock h(rd, d) to prevent removal, retry if

replica no longer exists;
4: Create replica at h(rd + 1, d), ignore existing-replica

errors;
5: Release lock on h(rd, d);

Listing 2 DELETION

1: /* Run at replica having an underutilized document d */
2: Determine the replica index, m, for this replicated docu-

ment;
3: Exclusively lock the document h(m, d);
4: /* Are we the last replica? */
5: if exists h(m + 1, d) then
6: /* Cannot remove replica, would break rule 3 */
7: else
8: Remove local replica;
9: end if

10: Release lock on h(m, d);

not sufficient. Information about the number of replicas
actually present or the location of the closest replica is
essential.

To solve this problem, we present the following four
simple replica-placement rules that govern the basic
system behavior:

1) Replicas are placed only at addresses given by
h(m, d).

2) For any document d in the system, there always
exists an initial replica with m = 1 at h(1, d).

3) Any further replica (m > 1) can only exist if a
replica currently exists for m− 1.

4) No document has more than R replicas (including
the initial replica).

The first three of the above invariant rules indicate that
for a document d with rd replicas, the replicas will
be placed at h(m, d), where m ∈ [1, rd], resulting in
a contiguous set of values for m. The only system
parameters that need to be pre-agreed upon and remain
static are the choice of hash function h(·, ·) and the
maximum number of replicas, R.

With these rules in place, it turns out there is no need
to know the actual number of replicas currently present
when performing the most common operation, namely
lookup. Before introducing and tuning the lookup al-
gorithm, replica addition and deletion are, respectively,
presented in Listings 1 and 2. Both algorithms are

4

Listing 3 AWARE: Location-aware replica selection

1: /* Locate a replica for document ID d */
2: r ← R;
3: /* Calculate cost for each potential replica */
4: ∀i ∈ [1, R] : ci ← cost(h(i, d));
5: while r ≥ 1 do
6: m← index of minimal cost among ci, (i ≤ r);
7: Request document with ID h(m, d);
8: if request was successful then
9: return document;

10: end if
11: r ← m− 1;
12: end while
13: return nil;

straightforward and listed mainly for the sake of com-
pleteness; their understanding is not necessary for the
main lookup algorithm.

A. Basic Lookup: Locality-Aware, Reliable Case

Several DHT systems, such as CAN [20], Mithos
[5], and SkipNet [3], support some notion of locality,
i.e., from the DHT address, any device can estimate
whether the destination address is likely to be close.
Also, there are several other systems that allow distance
determination that can be used in conjunction with DHTs
[21], [22].

Assumptions: For a first description, let us assume
the existence of a reliable DHT with support for locality;
i.e. for two addresses returned by the hash function
h(·, ·), any device is able to decided which of the
two is closer. We will later generalize the system to
include unreliable behavior, lack of a priori knowledge
of distances, and faster convergence. We also assume
initially that distance information is perfect. Recall that
local computations are considered to be much cheaper
than communications, and, for ease of analysis, the
assumption that the hash function h(·, ·) conforms to an
essentially uniformly random distribution.

The basic algorithm is similar in spirit to a binary
search on the range that initially spans [1, R], with the
exception of the pivot element selection process. Instead
of picking the middle element, as in ordinary binary
search, the node m with the least cost is picked and
probed. If it contains the replica, we are lucky and need
not probe further. Otherwise, we know from rule 3 that
rd < m and the search range is reduced to [1, m − 1].
The process is then repeated with the resulting narrower
span until it succeeds. Success is guaranteed because
of rule 2, unless, of course, the document has not been

D
is

ta
nc

e

Replica Index

C
B

A

Replicas

Fig. 1. Lookup Probing Strategy (R = 12, rd = 5)

stored in the DHT at all. The search is also explained in
algorithmic form in Listing 3.

The expected number of probing rounds required is
approximately logarithmic with the maximum number
of replicas R. This is proven in Section III-B.

Figure 1 provides an example for R = 12. The
twelve potential replicas are shown as vertical bars, with
increasing replica indices from left to right. The length
of the bar indicates the distance to the querying node.
The first five nodes (in the dashed rectangle) contain a
replica. The closest three nodes are labeled A to C, in
order of increasing distance. Let us follow the algorithm:

1) The closest node, A, is probed, but fails.
2) The range is reduced to only the first six nodes,

up to but excluding A. This also eliminates B, the
second closest node.

3) The closest node remaining in the reduced range,
C, is probed and succeeds.

B. Performance Analysis

In this section, we will provide correctness proofs and
performance analysis for the static case, namely when no
replicas for the document being searched are added or
deleted during a search operation (the dynamic case is
discussed in Section III-C).

We show that the algorithm AWARE will find the clos-
est replica if at least one exists. Closed form solutions for
the probability distribution, expected value, and variance
of the number of rounds necessary to find a replica are
derived (equations (1), (5) and (6) respectively), as well
as approximations for the expected value and variance.

Before diving into details, we would like to provide
an understanding of the consequences of the proba-

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.05

0.1

0.15

0.2

0.25

Number of Probes P

P
ro

ba
bl

ili
ty

 th
at

 P
 p

ro
be

s
ar

e
ne

ed
ed

 to
 fi

nd
 r

ep
lic

a

r
d
=1

r
d
=5

r
d
=2

r
d
 Expected Value 99.9 percentile

1 5.19 13
2 4.69 12
5 3.90 11

Fig. 2. Probability distributions of the number of rounds required in
order to find the document, for cases where there are rd = 1, 2, 10

replicas of it. The expected number of rounds needed is also shown
as well as the 99.9th percentile (e.g. when rd = 1, 99.9% of all
document searches will find the document with no more than 13
rounds).

bility distribution on the number of rounds (as given
by (1)). Figure 2 considers the example where there
are a maximum of R = 100 replicas and shows the
probability distributions when the number of replicas of
the document is 1, 2 or 10. We see that the expected
number of rounds of probing is very small relative to the
maximum number of replicas (as a first approximation
roughly log(R/rd)).

Although some pathological cases do exist, (such as
linear traversal of all possible replicas when the cost
function is a decreasing function of the replica index),
they have close to zero probability of occurring. For
example, when there is only one replica of the document
(rd = 1), there is a probability of 99.9% of taking no
more than 13 rounds to obtain the document.

Lemma 1: The algorithm AWARE will find a replica
in a static system (no replicas arrive or leave the system
during algorithm execution) if at least one replica exists.

Proof: The algorithm closely follows binary search:
Start with an initial range covering all possible matches
and only remove those parts that are guaranteed not to
contain a match. In a reliable system, a probe at replica
index m either succeeds, returning the document, or fails
because of its absence. If a probe selected from the
range returns the document, the algorithm obviously has
succeeded. If it failed, rule 3 signifies that no replica
≥ m can exist, therefore the upper end of the range can

be lowered to m−1 without risk of missing an entry.

Lemma 2: In a static system where a scalar cost
function cost(h(·, ·)) is defined, the algorithm AWARE

will find the closest replica if at least one replica exists.

Proof: As the range (“potential replicas”) at any
time includes at least all actual replicas (Lemma 1),
the closest of all potential replicas must be at least
as good as the closest actual replica. By choosing the
closest in-range (potential) replica for the next probe, it
is impossible to miss the closest actual replica.

The following lemma enables us to establish the
probability distribution of the number of probes needed
by the location algorithm.

Lemma 3: Let R be the maximum number of replicas,
and let the document being searched for be replicated rd

times. Let S be the round number where the document
is found. Upon application of the random searching
algorithm, the probability of finding a document after
s probes is given by:

P (S = s) =
rd

R

R−1
∑

x1=rd

x1−1
∑

x2=rd

x2−1
∑

x3=rd

. . .

xs−3−1
∑

xs−2=rd

xs−2−1
∑

xs−1=rd

1

x1x2 . . . xs−2xs−1

(1)

where s = 1, 2, 3, . . . , R− rd + 1.
Proof: At the ith probe, let the replica number

chosen to be probed be the random variable Xi. A
successful document search happens when Xi ≤ rd.

If s is the first probe such that Xs ≤ rd, then
necessarily Xi > rd for all i < s and,

P (S = s) = P (Xs≤rd and X1 >rd and

X2 >rd and . . . Xs−1 >rd)

= P (X1 >rd)P (X2 > rd|X1 >rd) . . .

P (Xs ≤ rd|X1 >rd . . . Xs−1 >rd).

Now, the event {X1 > rd} occurs if and only if
X1 = x1 for some x1 ∈ {rd + 1, . . . , R}. Similarly,
for any i = 2, 3, . . . and conditional on X1 = x1, X2 =
x2, . . .Xi−1 = xi−1, the event {Xi > rd} occurs if and
only if Xi = xi for some xi ∈ {rd + 1, . . . , xi−1 − 1}.
(Note that P (Xi = xi) when a number Xi is chosen at
random from {1, . . . , xi−1 − 1} equals 1

xi−1−1
.) Hence,

P (S = s) =

R
∑

x1=rd+1

1

R

x1
∑

x2=rd+1

1

x1−1

x2
∑

x3=rd+1

1

x2−1

. . .

xs−2
∑

xs−1=rd+1

rd

xs−2−1

rd
∑

xs=1

1

xs−1−1
.

6

and thus,

P (S = s) =
rd

R

R
∑

x1=rd+1

x1
∑

x2=rd+1

. . .

xs−2
∑

xs−1=rd+1

1

(x1−1)(x2−1) . . . (xs−2−1)(xs−1−1)

where s = 1, 2, 3, . . . , R − rd + 1. Changing indices
xi − 1←→ xi, the expression is as given in (1).

We can explicitly obtain the moments of the probability
distribution analytically. To this end, we first obtain the
moment generating function, and then use this to derive
the mean and variance.

Lemma 4: The generating function H(z) for P (S =
s) given from (1) is:

H(z) =
zrd!

R!
(z + rd)(z + rd + 1) . . . (z + R− 1) (2)

Proof: For easier recognition of the generat-
ing function, re-label the indices in (1), x1 ←→
xk−1, x2 ←→ xk−2 etc.:

P (S = s) =
rd

R

R−1
∑

xs−1=rd

xs−1−1
∑

xs−2=rd

xs−2−1
∑

xs−3=rd

. . .

x3−1
∑

x2=rd

x2−1
∑

x1=rd

1

x1x2 . . . xs−2xs−1

(3)

(s = 1, 2, 3, . . . , R− rd + 1), which can be written,

P (S = s) =
rd

R

∑

rd≤x1<x2<...<xs−1≤R−1

1

x1x2 . . . xs−2xs−1

for s = 1, 2, . . . , R− rd + 1 (it agrees with (3) because
it has precisely all vectors (x1, x2, . . . , xk−1) that satisfy
rd ≤ x1 < . . . < xk−1 ≤ R− 1).

Let H(z) be the generating function for P (S = s) in
Lemma 3, namely,

H(z) =

R−rd+1
∑

s=1

P (S = s)zs.

For ease of notation, we first use G(z), the generating
function for P (S = s+1) rather than H(z), the function
for P (S = s). Consider the function

G(z) =
rd

R
(1 +

1

rd

z)(1 +
1

rd + 1
z) . . . (1 +

1

R− 1
z).

which can be written,

G(z) =
rd!

R!
(rd + z)(rd + 1 + z) . . . (R− 1 + z). (4)

To see that this is the generator function for P (S =
s+1), one can multiply the terms of G(z) which shows

that the coefficient of zs−1 is
rd

R

∑

rd≤x1<x2<...< xk−1≤R−1

1

x1x2 . . . xk−2xk−1

.

Note that

H(z) =

R−rd+1
∑

s=1

P (K = s)zs

= z

R−rd+1
∑

s=1

P (S = s)zs−1 = zG(z).

An explicit expression for H(z) is then, using (4), given
by (2).

Lemma 5: The expected number of probes required
is

E(K) = 1 +

R
∑

j=rd+1

1

j
(5)

and the variance is:

V ar(K) =
R

∑

j=rd+1

1

j
−

R
∑

j=rd+1

1

j2
. (6)

Proof: The mean and variance of probability dis-
tribution, given its generator function H(z), are H ′(0)
and H ′′(1) − H ′(1) − [H ′(1)]2 respectively (e.g. [23]).
From (2),

H ′(z) = zG′(z) + G(z) (7)

and

H ′′(z) = zG′′(z) + G′(z) + G′(z) = zG′′(z) + 2G′(z) (8)

Now taking the logarithm of both sides of (4),

log G(z) = log
rd!

R!
+

R−1
∑

i=rd

log(i + z)

so that

G′(z) = G(z)

R−1
∑

i=rd

1

z + i
(9)

and

G′′(z) = −G(z)

R−1
∑

i=rd

1

(z + i)2
+ G′(z)

R−1
∑

i=rd

1

z + i
. (10)

From (9) and (10) we see that

G′(1) = G(1)

R−1
∑

i=rd

1

1 + i
(11)

and

G′′(1) = −G(1)
R−1
∑

i=rd

1

(1 + i)2
+ G′(1)

R−1
∑

i=rd

1

1 + i
(12)

7

Now using (4),

G(1) =
rd!

R!
(rd + 1)(rd + 2) . . . R = 1 (13)

Using (7), (11) and (13), we obtain

H ′(1) = G′(1) + G(1) =

R−1
∑

i=rd

1

1 + i
+ 1

from which (5) results. To obtain the variance, note that,
given (8), (11), and (12),

H ′′(1) = G′′(1) + 2G′(1)

= −
R

∑

j=rd+1

1

j2

R
∑

j=rd+1

1

j

2

+ 2

R
∑

j=rd+1

1

j
. (14)

Using (14) and (5) we see that

V ar(S) = −
R

∑

j=rd+1

1

j2
+

R
∑

j=rd+1

1

j

2

+

2

R
∑

j=rd+1

1

j
+ 1 +

R
∑

j=rd+1

1

j
−

1 +

R
∑

j=rd+1

1

j

2

(15)

from which (6) results.
Lemma 6: For large R, and rd fixed, the expected

value is approximately log(R/rd), and the variance
approximately

V ar(S) ≈ log(R/rd)−
π2

6
+

rd
∑

j=1

1

j2
. (16)

Proof: Consider a fixed rd and let R→∞. From
(5),

E(S) = 1 +
R

∑

j=rd+1

1

j
≈ 1 + log(R/rd) ≈ log(R/rd). (17)

Using (6) and the fact that
∑∞

j=rd+1
1

j2 = π2

6
we find

that

V ar(S) =

R
∑

j=1

1

j
−

rd
∑

j=1

1

j
−

R
∑

j=1

1

j2
+

rd
∑

j=1

1

j2

≈ log(R/rd)−
π2

6
+

rd
∑

j=1

1

j2

as in (16).
Theorem 1: The algorithm AWARE will, in a static

system, have a probability of finding the document in
s steps according to (1). It thus also has an expected
number of steps and variance as given in (5) and (6)
respectively.

Proof: Nearest replicas are probed successively
and replicas have been uniformly distributed among

all possible replicas by the hash function h(., .). Thus,
probing the nearest replica is equivalent to searching the
replica space 1, . . . , R randomly and thus we can directly
apply Lemma 3.

C. Dynamic Systems

Theorem 2: In a dynamic system, AWARE will per-
form as in Theorem 1, but is not guaranteed to return the
closest document. Still, the replica chosen for document
download will be at least as close as the closest replica
that has persisted during the entire search.

Proof: The correctness and termination Lemmas (1
and 3, respectively) still apply under dynamic conditions.
The only difference is that in a dynamic system, the
addition of replicas may cause the creation of a replica
outside the current range. The effect is that freshly-added
replicas may be better than the one actually selected for
download. (In fact, only previously probed nodes that
claimed non-existence at probe time but later turned into
replicas can be closer.)

D. Basic Lookup: Location-Unaware, Reliable Case

Not all DHTs support location awareness or can easily
be equipped with a location service. In this case, any
replica (not necessarily close) can be located by choosing
probes differently. Care should be taken not to select a
deterministic method, such as exactly halving the range.
This would result in every request going to the same
replica, negating the benefits of distributed document
retrieval.

The recommended way is thus to select the next probe
from the range using a uniformly distributed random pro-
cess. This closely follows the location-aware algorithm,
resulting in the same properties, such as efficiency and
good distribution properties, with the notable exception
of unknown distance.

If preference should be given to local servers, instead
of a single probe, k probes can be sent in parallel,
resembling a (k +1)-ary search. While this also may be
useful in location-aware scenarios, the potential benefit
seem to mainly lie in the location-unaware (i.e., random
probing) scenarios.

To avoid taxing the system excessively, care should
be taken not to directly issue a request for the entire
document, but merely a probe for its existence, unless the
document is known to be very small. Listing 4 illustrates
a basic algorithm for k parallel probes. For ease of
explanation, it assumes that a node that has replied and
indicated having a replica will still have it in the short
interval between probe response and document request.

8

Listing 4 K-PROBES: Location-unaware parallel probes

1: r ← R;
2: while r ≥ 1 do
3: p← min(k, r); /* Number of probes this turn */
4: P ← (p distinct random indices from [1, r]);
5: ∀i ∈ P : Check for document h(i, d) in parallel;
6: if any request was successful then
7: return document retrieved from closest actual

replica;
8: end if
9: r ← min(∀i ∈ P)− 1;

10: end while
11: return nil;

A more sophisticated version is presented in Section III-
E.

E. Full Lookup

In the above descriptions, we have assumed the ex-
istence of a reliable network transport, which is often
not the case. Therefore, the lookup function needs to be
able to handle slow responses or machines that do not
respond at all. Reasons include overload and outages of
network links or nodes. Therefore, the algorithm needs
to be able select a replica with fewer answers. The lack
of an answer cannot be taken as an indication to shrink
the probing range. Only true negative answers (“I do not
have the document”) can be used to shrink the range.

Listing 5 describes the full lookup algorithm that also
handles timeouts, unreachable nodes, and nodes ceasing
to be replicas during the query process. The behavior
is controlled by τ , the per-step timeout period, and q,
the number of query replies that are sufficient before
continuing to the next step. For a reasonable system
configuration, the following inequality should hold:

R ≥ k ≥ q ≥ 1.

The algorithm is able to take advantage of locality, but
will also work without that information.

One of this algorithm’s advantages is that it success-
fully returns a document if at least one of the replicas
was reachable (within the timeout constraints) for the
entire duration of the algorithm. In general, this means
that if at least one replica is reachable, the replica will
be found. Of course, with an increasing number of
unreachable nodes, an increasing effort is required to
find this document. Nevertheless, this property makes
RE useful even in harsh environments such as ad-hoc
networks.

Listing 5 LOOKUP: Full lookup algorithm; handles un-
responsive nodes and timeouts

1: r ← R;
2: B ← ∅; /* Blacklist of unresponsive nodes */
3: label retry;
4: while r ≥ 1 do
5: b← min(k, |[1, r] \ B|); /* Number of probes */
6: P ← (b distinct indices from [1, r] \ B); /* Pick

according to distance metric or randomly */
7: ∀i ∈ P : Send query for document h(i, d);
8: Start timeout with period τ ;
9: while fewer than min(b, q) replies processed this turn

do
10: Wait for timeout or next reply;
11: if timeout then
12: B ← B ∪ P;
13: goto retry;
14: end if
15: Y ← replica index of replying node;
16: if reply was positive then
17: if document retrieval successful then
18: return document;
19: end if
20: else
21: r ← min(r, Y − 1); /* Never raise r again */
22: end if
23: end while
24: end while
25: return nil;

IV. MEASUREMENTS

We compared, by simulation, the effect on total time
to obtain a replica, when location information is used to
choose the nearest replica (AWARE algorithm) and when
a node is picked randomly independent of cost (random
algorithm). To obtain realistic delay information, we
estimated the delay distribution from data obtained from
[24], which consisted of RTT probes from 5 locations (3
different ISPs in Switzerland, one in Japan and one in
the United States).

All results are obtained from the average of 500 sim-
ulation runs, including error bounds at 95% confidence.
We show sample confidence intervals whenever they do
not detract from visibility. In all cases, the intervals were
verified to be in agreement with the general conclusions.

The results are illustrated in Figures 3 and 4. The
experimental results agree with the derivations in Sec-
tion III-B, and show that the AWARE algorithm is far
quicker at retrieving the document than just probing
when location unaware (the random case).

Interestingly (Figure 3(b)), the average time to obtain

9

50 100 150 200 250 300 350 400 450
1

2

3

4

5

6

Maximum number of replicas R

A
ve

ra
ge

 n
um

be
r

of
 r

ou
nd

s

1 50 100 150 200 250 300 350 400 450
0

0.5

1

1.5

2

2.5

Maximum number of replicas R

A
ve

ra
ge

 d
el

ay
 (

se
cs

)

Random

Aware

Random
Aware
Expected value

(a)

(b)

Fig. 3. (a) The average number of probing rounds needed as a
function of the maximum number of replicas R (for rd = 5 replicas
of the document) when using the AWARE and random algorithms
both agree with the expected value from (5). (b) Using AWARE, the
average time to obtain the document does not, in general, increase
as a function of R.

the document does not, in general, increase as the
maximum number of replicas R increases. This confirms
the assertion that even choosing R to be large has
little negative influence on the speed of retrieving a
document. In addition, the relative decrease in search
time and number of rounds by adding further replicas
(i.e. increasing rd) is small after the initial boost of
adding a few replicas (Figure 4(b)). This property of
a initial boost is related to the oft remarked “power of
two choices” [25].

V. APPLICATIONS

RE opens up new possibilities for applications that re-
quire high-performance access to dynamically replicated
and up-to-date information content.

RE enables a wide variety of applications, ranging
from a uniform paradigm for web serving/web mirroring/
content distribution/web caching to distributed storage
or collaboration in ad-hoc wireless networks. The latter
environment differs significantly from wired networks
in terms of link and node reliability as well as latency
and transmission costs. Reliable location of a close-by
replica is thus of key importance. Constant probing by
replicas whether they still are up to date would also incur
unacceptable loads on the ad-hoc network.

RE, is well suited for many applications and those
with specific requirements can use RE in combination

50 100 150 200
1

2

3

4

5

6

Number of replicas r
d

A
ve

ra
ge

 n
um

be
r

of
 r

ou
nd

s

1 50 100 150 200
0

0.5

1

1.5

2

Number of replicas r
d

A
ve

ra
ge

 d
el

ay
 (

se
cs

)

Random

Aware

Random
Aware
Expected value

(a)

(b)

Fig. 4. (a) The average number of probing rounds needed as a
function of the number of replicas rd that exist (for R = 250

maximum replicas) when using the AWARE and random algorithms
both agree with the expected value from (5). (b) Using AWARE,
the average time to obtain the document decreases significantly per
additional replica when there are relatively few replicas, but the
benefit is minimal once a small critical mass is reached.

with more traditional approaches such as caching, redi-
rection, centralized directories, or distributed computa-
tion, as described below.

Caching: Even though RE often eliminates the need
for caching, there may be instances where additional
caches can be useful, including disconnected operation.
In fact, RE improves the scalability of replication, com-
pared with a single original document, because verifying
whether cache contents are still current (or installing an
update callback with a replica) imposes additional load
on the replica. Having more up-to-date replicas available
will significantly reduce the per-replica load.

Redirection: When a particular replica is over-
loaded, it may return a list of pointers to known caches
or other nearby replicas instead of incurring additional
load by returning the document.

Directory Backup: RE may also serve as a dis-
tributed backup solution to centralized replication direc-
tories. If the directory places at least some replicas per
document according to the RE rules, the system will
continue to work even if the directory service becomes
unavailable. The directory server may have placed some
of the replicas at strategic locations independent of
the RE rules to obtain better performance or physical
security according to specialized rules. These replicas
will not be used during the outage of the directory

10

server, but all others will continue to work as if nothing
happened: the perfect failsafe solution.

Distributed Computation: The resources addressed
through DHT and RE need not necessarily be data
blocks, but they can also be programs. RE can thus be
used as a platform for distributed computation.

VI. SUMMARY AND CONCLUSIONS

Distributed storage systems based on distributed hash
tables promise the provision of reliable and resilient
access to data. The key element to this reliability and
resiliency is a powerful replica management system.
We have identified a catalog of criteria that can be
used to classify these systems. We have described a
novel method, replica enumeration, that fulfills all of
the criteria identified with the exception of location
variability (Table I).

In summary, RE is a fully distributed approach that
requires neither state nor control information, while
providing a very efficient lookup performance. Its power
and versatility make RE very useful in a wide range of
systems, ranging from server-farm load balancing over
a distributed backup solution for centralized directory
systems to scalable globally distributed storage systems.

Our simulations show that even locality-unaware (ran-
dom probing) systems perform well and that the number
of probing rounds closely matches the expected value
of log(R/rd). This indicates that it scales well with
the maximum number of replicas, R, and that there
is already a significant performance improvement for
popular documents (i.e., replicated on more than one
node) with only a few replicas.

Using locality information considerably improves on
the document retrieval delay. We have shown that the
expected time to locate a document is, to all and intents
and purposes, independent of R and very small: only a
couple of typical Internet round-trip times.

As a next step, we are looking into further applica-
tions, and will extend the quantitative analysis to the
random and K-PROBE cases.

REFERENCES

[1] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek,
and Hari Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. In Proceedings of ACM
SIGCOMM 2001, pages 149–160, San Diego, CA, USA, August
2001.

[2] Greg N. Frederickson. Searching intervals and compact routing
tables. Algorithmica, 15(5):448–466, May 1996.

[3] Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin
Theimer, and Alec Wolman. SkipNet: A scalable overlay
network with practical locality properties. In Proceedings
of USENIX Symposium on Internet Technologies and Systems
(USITS ’03), March 2003.

[4] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp,
and Scott Shenker. A scalable content-addressable network. In
Proceedings of ACM SIGCOMM, September 2001.

[5] Marcel Waldvogel and Roberto Rinaldi. Efficient topology-
aware overlay network. ACM Computer Communications
Review, 33(1):101–106, January 2003. Proceedings of ACM
HotNets-I (October 2002).

[6] Karl Aberer, Manfred Hauswirth, Magdalena Punceva, and
Roman Schmidt. Improving data access in P2P systems. IEEE
Internet Computing, 6(1), January/February 2002.

[7] Anthony Rowstron and Peter Druschel. Pastry: Scalable, dis-
tributed object location and routing for large-scale peer-to-peer
systems. In IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), pages 329–350, Heidelberg,
Germany, November 2001.

[8] Ben Y. Zhao, John Kubiatowicz, and Anthony Joseph. Tapestry:
An infrastructure for fault-tolerant wide-area location and rout-
ing. Technical Report UCB/CSD-01-1141, University of Cali-
fornia, Berkeley, April 2001.

[9] C. Greg Plaxton, Rajmohan Rajaraman, and Andrea W. Richa.
Accessing nearby copies of replicated objects in a distributed
environment. In ACM Symposium on Parallel Algorithms and
Architectures, pages 311–320, 1997.

[10] Miguel Castro, Peter Druschel, Y. Charlie Hu, and Antony
Rowstron. Exploiting network proximity in distributed hash
tables. In Ozalp Babaoglu, Ken Birman, and Keith Marzullo,
editors, International Workshop on Future Directions in Dis-
tributed Computing (FuDiCo), pages 52–55, June 2002.

[11] Brian Kantor and Phil Lapsley. Network news transfer protocol.
RFC 977, Internet Engineering Task Force, February 1986.

[12] Anees Shaikh, Renu Tewari, and Mukesh Agrawal. On the
effectiveness of DNS-based server selection. In Proceedings of
IEEE INFOCOM, pages 1801–1810, Anchorage 2001.

[13] Lotus Software, IBM Software Group. Administering the
Domino System Volume 1, May 1999.

[14] Mark R. Crispin. Internet message access protocol - version
4rev1. RFC 3501, Internet Engineering Task Force, March
2003.

[15] Li Fan, Pei Cao, Jussara Almeida, and Andrei Broder. Summary
cache: A scalable wide-area web cache sharing protocol. In
Proceedings of ACM SIGCOMM, pages 254–265, September
1998.

[16] Haobo Yu, Lee Breslau, and Scott Shenker. A scalable web
cache consistency architecture. In Proceedings of ACM SIG-
COMM, pages 163–174, 1999.

[17] John Dilley, Bruce Maggs, Jay Parikh, Harald Prokop, Ramesh
Sitaraman, and Bill Weihl. Globally distributed content deliv-
ery. IEEE Internet Computing, 6(5):50–59, September-October
2002.

[18] Guillaume Pierre and Maarten van Steen. Design and imple-
mentation of a user-centered content delivery network. In Pro-
ceedings of the Third IEEE Workshop on Internet Applications,
June 2003.

[19] Sean C. Rhea and John Kubiatowicz. Probabilistic location and
routing. In Proceedings of INFOCOM 2002, 2002.

[20] Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott
Shenker. Topologically-aware overlay construction and server
selection. In Proceedings of INFOCOM, June 2002.

11

[21] T. S. Eugene Ng and Hui Zhang. Predicting Internet network
distance with coordinates-based approaches. In Proceedings of
IEEE INFOCOM, pages 170–179, New York, NY, USA, June
2002.

[22] Luis Garcés-Erice, Keith W. Ross, Ernst W. Biersack, Pascal A.
Felber, and Guillaume Urvoy-Keller. TOPLUS: Topology-
centric lookup service. In Proceedings of Networked Group
Communications (NGC) 2003, September 2003.

[23] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik.
Concrete Mathematics: A Foundation for Computer Science.
Addison-Wesley, Reading, MA, USA, second edition, 1994.

[24] Roberto Rinaldi and Marcel Waldvogel. Routing and data
location in overlay peer-to-peer networks. Research Report RZ-
3433, IBM, July 2002.

[25] Mitzenmacher. The power of two choices in randomized load
balancing. IEEETPDS: IEEE Transactions on Parallel and
Distributed Systems, 12, 2001.

12

