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Analytic Second Variational Derivative of the

Exchange-Correlation Functional

Daniel Egli and Salomon R. Billeter∗

IBM Research, Zurich Research Laboratory, 8803 Rüschlikon, Switzerland

Abstract
A general analytic expression for the second variational derivative of gradient-corrected exchange-

correlation energy functionals is derived, and the terms for the widely used Becke/Perdew,
Becke/Lee-Yang-Parr, and Perdew-Burke-Ernzerhof exchange-correlation functionals are given.
These analytic derivatives can be used for all applications employing linear-response theory or
time-dependent density-functional theory. Calculations are performed in a plane-wave scheme and
shown to be numerically more stable, more accurate, and computationally less costly than the most
widely used finite-difference scheme.

∗Electronic address: srb@zurich.ibm.com

1



I. INTRODUCTION

Density-functional theory (DFT) in the Kohn-Sham (KS) formulation [1–3] is the most

widely used nonempirical tool for studying the geometric and electronic structures of systems

in condensed phase. The many-electron problem is reduced to many one-electron problems

in a self-consistent effective potential. The part of this potential accounting for the many-

electron effects is called the exchange-correlation (XC) functional and also contains the elec-

tron self-interaction. Its full nonlocal form is not known, but is usually approximated with

the local-density approximation (LDA) or the generalized-gradient approximation (GGA). A

plane-wave basis is particularly well suited for calculations in condensed phase. Fast Fourier

transforms (FFTs) can be used for conveniently transforming electronic wavefunctions and

density distributions between direct and reciprocal space, and the XC functional is normally

evaluated on the real-space mesh given by the Fourier transform of the plane-wave basis (see

e.g. Ref. [4]).

Often, the response of a many-electron system to an external influence is best described

with density-functional perturbation theory [5, 6] (DFPT). Examples of problems that can

be solved with DFPT include interactions with a changing electric field, such as light, and

nuclear motions, such as phonons or colliding particles. In most cases, limiting the response

functions to linear terms is sufficient. Moreover, time-dependent DFT [7] (TDDFT) can be

formulated as a perturbation theory to the ground state to obtain excitation energies [8] and

even excited-state geometries [9]. Therefore the same techniques as for DFPT can be used.

To calculate the linear-response wavefunctions, the variation of the effective potential

acting on the electrons with respect to the external perturbation needs to be determined.

Because the effective potential contains the external potential as well as the potential from

electron-electron interactions, calculating the variation of the effective one-electron potential

will always involve the variation of the electron-electron potential, i.e., the Hartree potential

(electrostatics), and the XC potential. While the variation of the Hartree potential, i.e., the

second variational derivative of the Hartree energy with respect to the electronic density

distribution, is trivial, its XC counterpart of the popular GGA functionals currently either

has to be approximated or is calculated using a finite-difference method [6, 9] because its fully

analytic implementation is considered to be cumbersome to derive, numerically unstable in

regions of low density, and, lastly, too expensive to calculate [6, 9]. We shall show that all

three problems can be overcome.

A brief motivation will be given in Section II. Section III will propose an analytic func-

tional form of the second derivative of the gradient-corrected XC energy as well as show in

which order the terms need to be evaluated in order to avoid numerical problems in regions of

low electron density. In addition to a general expression, specific expressions will be given for

the widely used Becke88 [10] / Perdew86 [11] (BP), Becke88 / Lee-Yang-Parr [12] (BLYP),

and Perdew-Burke-Ernzerhof [13–15] (PBE) XC functionals. In Section IV, we will show

the practical feasibility of the proposed analytic method in an implementation using plane

waves, and demonstrate that it actually outperforms the finite-difference scheme, Eq. (7),

in terms of accuracy, convergence control, and computational performance. The appendix

will give the specific terms for the BP, BLYP, and PBE functionals.
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II. THE XC POTENTIAL IN DFPT

The effective one-electron (KS) Hamiltonian Ĥ
(0)
KS = V̂ext+V̂el+V̂xc+T̂ of the unperturbed

system is composed of the external potential V̂ext due to the atomic nuclei, the Hartree po-

tential V̂el of the electrostatic repulsion between electrons, the noninteracting kinetic energy

T̂ , and the XC potential V̂xc,

Vxc[n](r0) =
δExc[n]

δn(r0)
. (1)

This potential is the variational derivative of the XC energy Exc with respect to the electron

density n(r0). The XC energy can be written as [16]

Exc[n] =

∫
dr εxc(n)n(r) , (2)

where εxc is the XC energy per electron.

Consider a system described by the KS Hamiltonian ĤKS(λ) = Ĥ
(0)
KS + λĤ

(1)
KS responding

to a time-dependent or time-independent perturbation λĤ
(1)
KS, e.g., a nuclear displacement

due to a phonon or an electric field caused by a photon. To determine the linear-response

electron density n(1) = ∂n/∂λ, the partial derivative ∂ĤKS/∂λ of the KS Hamiltonian with

respect to the perturbation parameter λ needs to be calculated.

Because the electron density n(r, λ) = n(0)(r) + λn(1)(r) at point r will generally react to

such a perturbation, the calculation of the derivative,

∂

∂λ
ĤKS[n(λ)](λ) =

∂ĤKS(λ)

∂λ

∣∣∣∣∣
n(λ)

+

∫
dr

δĤKS[n(λ)]

δn(r, λ)

∂n(r, λ)

∂λ
, (3)

also includes the variational derivation of the electron-electron terms with respect to the

density distribution: ∫
dr

δĤKS

δn(r)

∂n(r)

∂λ
=

∫
dr

δV̂el + δV̂xc

δn(r)

∂n(r)

∂λ
. (4)

In the LDA, εxc is a local function of the density only and can be expressed in the form

εxc(n)n(r) ≈ fxc(n(r)), and the second variational derivative of the XC energy is easily

evaluated:∫
dr

δVxc(r0)

δn(r)

∂n(r)

∂λ
=

∫
dr

∂n(r)

∂λ
δ(r0 − r)

∂2fxc

∂n2

∣∣∣∣
r0,r

=
∂n(r0)

∂λ

∂2fxc

∂n2

∣∣∣∣
r0,r0

. (5)

The situation is more complicated for the GGA. We concentrate here on the popular

gradient-corrected functionals of the form εxc(n)n(r) ≈ fxc(n(r),∇n(r)) and their corre-

sponding one-electron potential V̂xc,

Vxc[n](r0) =
δExc[n]

δn(r0)
=

(
∂fxc

∂n
−∇ · ∂fxc

∂∇n

)∣∣∣∣
r0

. (6)

Note that with a plane-wave basis, these terms can be conveniently evaluated on a mesh

in real space using FFTs to evaluate both the gradient of the density and the divergence
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operator, but special care has to be taken not to introduce artificial high Fourier components

due to the mesh. In practice, this is achieved by applying a cutoff density ncut, below which

the gradient correction is neglected.

For the GGA class of density functionals, the analytic evaluation of an expression anal-

ogous to Eq. (5) was considered to be cumbersome to implement, numerically unstable

in regions of low density, and computationally expensive [6, 9, 17]. Therefore, numerical

methods that include approximations and finite-difference schemes are used (see e.g. Refs.

[6, 9, 17]). For example, good results are obtained with the two-point formula [6],∫
dr

δVxc[n](r0)

δn(r)
n(1)(r) ' Vxc[n + εnn

(1)](r0)− Vxc[n− εnn
(1)](r0)

2εn

. (7)

The drawbacks of finite-difference schemes for this task are less obvious than those of approx-

imations to the full functional: the accuracy of such finite-difference methods is difficult to

control not only for large displacements εn because of higher-order terms but also for small

values of εn because of amplified numerical ripple, particularly when using a plane-wave

basis with the XC potential evaluated on a real-space mesh.

III. ANALYTIC VARIATIONAL DERIVATIVE OF THE XC POTENTIAL

For the second variation of the XC energy, we need to introduce a Dirac distribution to

bring the semi-local functional Vxc[n](r0) into its integrated form, F (y) =
∫

dx L(x, y(x)):

Vxc[n](r0) =

∫
dr Vxc[n](r) δ(r− r0) , (8)

which is suitable for variational differentiation. Substituting expression (6) for Vxc, we arrive

at

Vxc[n](r0) =

∫
dr

(
∂fxc

∂n(r)
−∇ · ∂fxc

∂|∇n(r)|
∇n(r)

|∇n(r)|

)
δ(r− r0) , (9)

where we have used the identity

∂fxc

∂∇n
=

∂fxc

∂|∇n|
∇n

|∇n|
(10)

because the practical gradient-corrected density functionals do not depend explicitly on the

gradient but rather on its absolute value because of rotational invariance.

The variational derivative can be defined as follows [16]: If the following relation holds

for any well-behaved function ϑ(x)

d

dα
F [y + αϑ]

∣∣∣
α=0

=

∫
dx

δF [y]

δy(x)
ϑ(x) , (11)
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then δF [y]/δy(x) is called variational derivative of F [y]. Inserting Eq. (9), we find

d

dα
Vxc[n + αϑ](r0)

∣∣∣
α=0

=

∫
dr

{
∂2fxc

∂n2
ϑ +

∂2fxc

∂|∇n|∂n

∇n

|∇n|
· ∇ϑ−∇ ·

[
∇n

|∇n|

(
∂2fxc

∂n∂|∇n|
ϑ +

∂2fxc

∂|∇n|2
∇n

|∇n|
· ∇ϑ

)
+

∂fxc

∂|∇n|

(
∇ϑ

|∇n|
− ∇n

|∇n|3
∇n · ∇ϑ

)]}
δ(r− r0) (12)

The first term corresponds to (11). By partial integration, we could bring terms with ∇ϑ

to this form: ∫
dr g(r)δ(r− r0)∇ϑ(r) = −

∫
dr ∇ (g(r) δ(r− r0)) ϑ(r) , (13)

which, by comparison with (11), would imply that

−∇ (g (r) δ(r− r0)) = −∇g(r) δ(r− r0) + g(r)∇ δ(r− r0) (14)

is the variational derivative. But recalling our objective, which is to calculate∫
dr

δVxc[n](r0)

δn(r)
n(1)(r) , (15)

it would be necessary to apply the Dirac distribution and its gradient to n(1). This would

however lead to numerically unstable terms. But we can in fact skip this step: Because Eq.

(11) must hold for any function ϑ, we set ϑ = n(1) and from Eqs. (11) and (12) obtain∫
dr

δVxc[n](r0)

δn(r)
n(1)(r) =

{
∂2fxc

∂n2
n(1) +

∂2fxc

∂|∇n|∂n

∇n

|∇n|
· ∇n(1)

−∇ ·
[
∇n

|∇n|

(
∂2fxc

∂n∂|∇n|
n(1) +

∂2fxc

∂|∇n|2
∇n

|∇n|
· ∇n(1)

)
+

∂fxc

∂|∇n|

(
∇n(1)

|∇n|
− ∇n

|∇n|3
∇n · ∇n(1)

)]} ∣∣∣∣∣
r=r0

. (16)

Note that this equation differs considerably from the one given in Ref. [17]. For the PBE

exchange (PBE96) functional [13], Eq. (16) can be simplified:∫
dr

δV PBE96
x [n](r0)

δn(r)
n(1)(r) =

{
∂2fPBE96

x

∂n2
n(1) +

∂2fPBE96
x

∂|∇n|2∂n
2∇n · ∇n(1)

−∇ ·
[
2∇n

(
∂2fPBE96

x

∂n∂|∇n|2
n(1) +

∂2fPBE96
x

∂(|∇n|2)2
2∇n · ∇n(1)

)
+

∂fPBE96
x

∂|∇n|2
2∇n(1)

]} ∣∣∣∣∣
r=r0

. (17)

Generalization to spin-polarized calculations is straightforward for the exchange poten-

tial because there is no exchange antisymmetry between electrons with different magnetic
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quantum number. The total density n = nα + nβ in Eq. (16) merely has to be substituted

by the corresponding density of electrons with spin up or down, nα or nβ, and the constants

adjusted accordingly. For the correlation potentials, Vc,α(r0) = δEc/δnα(r0), this restriction

does not apply, and terms containing nα, nβ, |∇nα|, |∇nβ|, and ∇nα · ∇nβ are possible in

a rotationally invariant GGA. The spin-polarized equivalent of Eq. (16) for the Perdew86

(P86) correlation functional [11] contains all possible terms:∫
dr

δV P86
c,α [n](r0)

δn(r)
n(1)(r) =

{
∂2fP86

c

∂n2
α

n(1)
α +

∂2fP86
c

∂nβ∂nα

n
(1)
β

+
∂2fP86

c

∂|∇nα|∂nα

∇nα · ∇n1
α

|∇nα|
+

∂2fP86
c

∂|∇nβ|∂nα

∇nβ · ∇n1
β

|∇nβ|

+
∂2fP86

c

∂(∇nα · ∇nβ)∂nα

(∇nβ · ∇n(1)
α +∇nα · ∇n

(1)
β )

−∇ ·
[
∇nα

|∇nα|

(
∂2fP86

c

∂nα∂|∇nα|
n(1)

α +
∂2fP86

c

∂nβ∂|∇nα|
n

(1)
β

+
∂2fP86

c

∂(∇nα · ∇nβ)∂|∇nα|
(∇nβ · ∇n(1)

α +∇nα · ∇n
(1)
β )

+
∂2fP86

c

∂|∇nα|2
∇nα · ∇n1

α

|∇nα|
+

∂2fP86
c

∂|∇nβ|∂|∇nα|
∇nβ · ∇n1

β

|∇nβ|
− ∂fP86

c

∂|∇nα|
∇nα · ∇n1

α

|∇nα|2

)
+∇nβ

(
∂2fP86

c

∂nα∂(∇nα · ∇nβ)
n(1)

α +
∂2fP86

c

∂|∇nα|∂(∇nα · ∇nβ)

∇nα · ∇n1
α

|∇nα|

+
∂2fP86

c

∂nβ∂(∇nα · ∇nβ)
n

(1)
β +

∂2fP86
c

∂|∇nβ|∂(∇nα · ∇nβ)

∇nβ · ∇n1
β

|∇nβ|

+
∂2fP86

c

∂(∇nα · ∇nβ)2
(∇nβ · ∇n(1)

α +∇nα · ∇n
(1)
β )

)
+

∂fP86
c

∂|∇nα|
∇n

(1)
α

|∇nα|
+

∂fP86
c

∂(∇nα · ∇nβ)
∇n

(1)
β

]} ∣∣∣∣∣
r=r0

. (18)
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It can be simplified for the Lee-Yang-Parr (LYP) correlation functional [12]:∫
dr

δV LYP
c,α [n](r0)

δn(r)
n(1)(r) =

{
∂2fLYP

c

∂n2
α

n(1)
α +

∂2fLYP
c

∂nβ∂nα

n
(1)
β

+
∂2fLYP

c

∂|∇nα|∂nα

∇nα

|∇nα|
· ∇n(1)

α +
∂2fLYP

c

∂|∇nβ|∂nα

∇nβ

|∇nβ|
· ∇n

(1)
β

+
∂2fLYP

c

∂(∇nα · ∇nβ)∂nα

(∇nβ · ∇n(1)
α +∇nα · ∇n

(1)
β )

−∇ ·
[
∇nα

|∇nα|

(
∂2fLYP

c

∂nα∂|∇nα|
n(1)

α +
∂2fLYP

c

∂nβ∂|∇nα|
n

(1)
β

)
+∇nβ

(
∂2fLYP

c

∂nα∂(∇nα · ∇nβ)
n(1)

α +
∂2fLYP

c

∂nβ∂(∇nα · ∇nβ)
n

(1)
β

)
+

∂fLYP
c

∂|∇nα|
∇n

(1)
α

|∇n
(1)
α |

+
∂fLYP

c

∂(∇nα · ∇nβ)
∇n

(1)
β

]} ∣∣∣∣∣
r=r0

. (19)

The corresponding terms for the gradient-corrected [14] Perdew-Wang correlation (PW92)

functional [15], often referred to as the correlation part of the PBE XC functional, are:∫
dr

δV PW92
c,α [n](r0)

δn(r)
n(1)(r) =

{
∂2fPW92

c

∂n2
α

n(1)
α +

∂2fPW92
c

∂nβ∂nα

n
(1)
β

+
∂2fPW92

c

∂|∇nα|2∂nα

2∇nα · ∇n1
α +

∂2fPW92
c

∂|∇nβ|2∂nα

2∇nβ · ∇n1
β

+
∂2fPW92

c

∂(∇nα · ∇nβ)∂nα

(∇nβ · ∇n(1)
α +∇nα · ∇n

(1)
β )

−∇ ·
[
2∇nα

(
∂2fPW92

c

∂nα∂|∇nα|2
n(1)

α +
∂2fPW92

c

∂nβ∂|∇nα|2
n

(1)
β

+
∂2fPW92

c

∂(∇nα · ∇nβ)∂|∇nα|2
(∇nβ · ∇n(1)

α +∇nα · ∇n
(1)
β )

+
∂2fPW92

c

∂(|∇nα|2)2
2∇nα · ∇n1

α +
∂2fPW92

c

∂|∇nβ|2∂|∇nα|2
2∇nβ · ∇n1

β

)
+∇nβ

(
∂2fPW92

c

∂nα∂(∇nα · ∇nβ)
n(1)

α +
∂2fPW92

c

∂|∇nα|2∂(∇nα · ∇nβ)
2∇nα · ∇n(1)

α

+
∂2fPW92

c

∂nβ∂(∇nα · ∇nβ)
n

(1)
β +

∂2fPW92
c

∂|∇nβ|2∂(∇nα · ∇nβ)
2∇nβ · ∇n1

β

+
∂2fPW92

c

∂(∇nα · ∇nβ)2
(∇nβ · ∇n(1)

α +∇nα · ∇n
(1)
β )

)
+

∂fPW92
c

∂|∇nα|2
2∇n(1)

α +
∂fPW92

c

∂(∇nα · ∇nβ)
∇n

(1)
β

]} ∣∣∣∣∣
r=r0

(20)

We have explicitly calculated the terms for the widely used Becke88 (B88) [10] and PBE96

[13] exchange functionals, and for the LYP [12], P86 [11], and PW92 correlation functionals.

The individual terms are given in the appendix.
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IV. TEST CALCULATIONS: SETUP AND RESULTS

We have implemented the methods presented in this letter in the DFT-based program

CPMD [18], which uses a plane-wave basis. For programs using this basis, FFTs play a

central role, allowing a convenient and efficient evaluation of both spatial derivatives and

operators that are either local in direct or reciprocal space. In practice, the computational

efficiency of a method in a plane-wave code is often determined by the possibility to use

FFTs and the number of FFTs needed. Note that all terms in Eqs. (9) and (16) can be

conveniently evaluated using FFTs [4, 19]. The variational formulation of DFPT [6] as

implemented in CPMD has been used.

The NO2 radical was chosen as a test system. The Becke-Lee-Yang-Parr (BLYP) XC

functional [10, 12] has been used throughout. Spin-polarized calculations were performed

in a cubic cell of 24.0-Bohr edge. The cutoff of the plane-wave basis was 70 Ry. Unless

indicated otherwise, all values are given in atomic units. For test purposes, the robustness

of the integral

I[f ] =

∫ ∫
dr0 dr

δVxc(r0)

δn(r)

∂n(r)

∂RN

f(r0) , (21)

was tested against arbitrary choices of numerical parameters. δRN corresponds to a dis-

placement of the nitrogen atom towards one of the two oxygen atoms. The test density

distribution f(r0) was either the linear-response density or the overlap density,

f(r0) =

{
fo(r0) = φ∗

d(r0)φs(r0) response density

fr(r0) = ∂n(r0)/∂RN overlap density
, (22)

where |φd〉 and |φs〉 represent the KS orbitals of the highest doubly occupied and the singly

occupied state, respectively. All integrals were evaluated for the Slater transition-state

density (see e.g. Ref. [3]) for the excitation between these two states.

Table I compares the results of numerical calculations of the second variational derivative

of the XC energy, Eq. (7), with the value calculated analytically using Eq. (16), both as

a function of the finite-difference displacement εn and of the cutoff density ncut for the

calculation of the gradient corrections. Clearly, the analytic calculation is more robust

than the finite-difference calculation. This can be explained by inspection of the values of∫
dr (δVxc(r0)/δn(r)) (∂n(r)/∂RN), which had approximately hundredfold larger fluctuations

in the finite-difference case than in the analytic case owing to amplified numerical ripple in

Vxc(r0). When using Eq. (16) instead of Eqs. (13) and (14), the predicted instabilities due

to large inverse powers of the density[6] can be avoided because these terms are multiplied

on the fly with a linear-response density distribution or its gradient, which are small in the

same regions where the total electron density distribution is also small.

The CPU time required for both methods is approximately the same. For spin-polarized

calculations, the analytic method requires 16 forward and 10 inverse Fourier transforms,

compared with 16 forward and 12 inverse Fourier transforms for the finite-difference calcu-

lation1. For the BLYP [10, 12] functional, the analytic calculation is slightly faster: On four

1 Note that these counts exploit the fact that the density distribution in position space is real, and therefore,
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TABLE I: Convergence of the second variational derivative of the XC functional with respect to
the finite-difference displacement εn and to the base-10 logarithm of the cutoff density ncut for
calculating the gradient corrections, calculated with the finite-difference formula (“FD”), Eq. (7),
and analytically (“Ana”) with Eq. (16). Tabulated are the integrals I[fr] (“Response”) and I[fo]
(“Overlap”) of Eqs. (21) and (22). All values are given in atomic units.

Method εn log(ncut) Integral
Response Overlap

FD 0.0001 –5 –0.5937 –0.0086585
FD 0.0005 –5 –0.5938 –0.00865863
FD 0.001 –5 –0.59370 –0.00865862
FD 0.01 –5 –0.59372 –0.00865863
FD 0.1 –5 –0.585 –0.0086588
FD 0.0005 –4 –0.594 –0.0086582
FD 0.0005 –5 –0.5938 –0.00865863
FD 0.0005 –6 –0.59371 –0.008658654
FD 0.0005 –7 –0.59370 –0.008658659
FD 0.0005 –8 –0.59371 –0.00865869
FD 0.0005 –9 –0.593724 –0.00865870
FD 0.0005 –10 –0.593723 –0.008658696
FD 0.0005 –11 –0.593722 –0.008658687
Ana — –4 –0.59370 –0.008658662
Ana — –5 –0.593675 –0.008658658
Ana — –6 –0.593686 –0.008658667
Ana — –7 –0.593698 –0.008658671
Ana — –8 –0.593706 –0.008658673
Ana — –9 –0.593720 –0.0086586815
Ana — –10 –0.593721117 –0.00865868179326
Ana — –11 –0.593721118 –0.00865868179334

processors of an IBM RS/6000 7044-270, one evaluation of the analytic formula, Eq. (16),

took 24.28 s, whereas 27.43 s were required for the finite-difference formula, Eq. (7).2

two independent density distributions in position space or momentum space can be obtained using only
one FFT.

2 Of this difference of 2.15 s, the two additional FFTs accounted for 0.78 s, the evaluation of the individual
terms for 1.21 s, and the remaining 0.16 s could be saved by omitting the calculation of |∇n(1)| from its
components.
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V. CONCLUSIONS

This letter demonstrated that the calculation of the analytic variational derivative of a

gradient-corrected exchange-correlation functional does not lead to the anticipated numer-

ical instabilities if implemented correctly. Indeed, it is numerically much more robust and

more accurate than the finite-difference schemes currently used, and its calculation does

not require any additional computational effort compared with the finite-difference schemes

but rather slightly reduces them. The generalization from the currently available terms of

the widely used BP [10, 11], BLYP [10, 12], and PBE [13–15] functionals to other density

functionals is straightforward. With the increasing use of TDDFT and DFPT to calculate

electronic excitation energies, phonon spectra, electron-phonon couplings, and many other

properties in molecular and solid-state systems, the calculation of all these properties will

benefit from the accuracy and efficiency of the new analytic method proposed here.
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APPENDIX. SECOND DERIVATIVE OF SOME WIDELY USED XC FUNC-
TIONALS

Partial derivatives of the Becke88 [10] and Perdew-Burke-Ernzerhof [13] (PBE) exchange

functionals, and for the Lee-Yang-Parr [12] (LYP), Perdew86 [11], and PBE correlation

functionals [14, 15], used in Eqs. (16) and (19). Where the configuration argument in this

section is omitted, r must be assumed. A term F̃ corresponds to F with the spin of all

densities inversed. For the spin-unpolarised case, just set nα = nβ = n/2.

The Becke88 [10] exchange functional reads

fB88
x = −

∑
σ=α,β

An4/3
σ + βn4/3

σ x2
σZσ

x =
|∇n|
n4/3

, Z =
1

1 + 6βx sinh−1(x)
, A =

3
4

(
6
π

)1/3

, β = 0.0042 .

Its partial derivatives are

∂2fB88
x

∂n2
= −4

9
An−2/3 − β|∇n|

[
x′
(

4
3
n−1Z + 3Z ′

)
+ x(−4

3
(n−2Z + n−1Z ′) + Z ′′) + 2x′′Z

]
x′ = −4

3
|∇n|n−7/3 , x′′ =

28
9
|∇n|n−10/3 , Z ′ = −6βZ2(x′ sinh−1(x) + xS′) , S′ =

x′

1 + x2

∂2fB88
x

∂n∂|∇n|
= −β(Z(

4
3
n−1x + 2x′) + xZ ′)− β|∇n|(4

3
n−1(ẋZ + xŻ) + 2ẋ′Z + 2x′Ż + ẋZ ′ + xŻ ′)

ẋ′ = −4
3
n−7/3 , Ṡ′ = −4

3
Ṡ3n5/3 , Ż ′ = −12ZŻβ(x′S + xS′)− 6Z2β(ẋ′S + x′Ṡ + ẋS′ + xṠ′)

∂2fB88
x

∂|∇n|2
= −β(2Żx + 2Zẋ + n4/3(2xẋŻ + x2Z̈))

S̈ = −Ṡ3|∇n| , Z̈ = −12βZŻ(ẋS + xṠ)− 6βZ2(2ẋṠ + xS̈) .

The LYP [12] correlation functional reads

fLYP
c = −4aD

nαnβ

n
− ωK

K = nαnβL− 2
3
n2|∇n|2 +

(
2
3
n2 − n2

α

)
|∇nβ |2 +

(
2
3
n2 − n2

β

)
|∇nα|2

L = CF (n8/3
α + n

8/3
β ) +

(
47
18
− 7

18
δ

)
|∇n|2 −

(
5
2
− 1

18
δ

)
(|∇nα|2 + |∇nβ |2)−

δ − 11
9

(nα

n
|∇nα|2 +

nβ

n
|∇nβ |2

)
D =

1
1 + dn−1/3

, ω = abe−cn−1/3
Dn−11/3 , δ = cn−1/3 +

dn−1/3

1 + dn−1/3
, CF = 211/3 3

10
(3π2)2/3

a = 0.04918 , b = 0.132 , c = 0.2533 , d = 0.349 .

Its partial derivatives are

∂2fLYP
c

∂|∇nα|2
= −ωK̇

K̇ = nαnβL̇− n2
β , L̇ =

1
9
− 1

3
δ − 1

9
(δ − 11)nαn−1

12



∂2fLYP
c

∂n2
α

= −4a(D′′nαnβ

n
+ 2D′n2

βn−2 − 2Dn2
βn−3)− ω′′K − 2ω′K ′ − ωK ′′

D′ =
1
3
dD2n−4/3 , D′′ =

1
3
d(2DD′n−4/3 − 4

3
n−7/3D2) ,

ω′ = ab
e−cn−1/3

(cn1/3 + cd− 10n1/3d− 11n2/3)
3n14/3(n1/3 + d)2

,

ω′′ =
e−cn−1/3

(c2d2 + n(282d− 26c) + n1/3(2c2 − 24cd2) + n2/3(c2 − 50cd + 130d2) + 154n4/3)
9n6(n1/3 + d)3

,

K ′ = nβL + nαnβL′ +
(

4
3
n− 2nα

)
|∇nβ |2 +

4
3
n(|∇nα|2 − |∇n|2) ,

K ′′ = 2nβL′ + nαnβL′′ − 4
3
(|∇n|2 + 2|∇nβ |2 − |∇nα|2) ,

L′ =
8
3
CF n5/3

α − 1
9
(δ − 11)nβn−2

(
|∇nα|2 − |∇nβ |2

)
− 7

18
|∇n|2δ′ − 1

9
δ′

nαnβ

n
+

1
18

δ′(|∇nα|2 + |∇nβ |2)

L′′ =
40
9

CF n2/3
α − 2

9
δ′nβn−2(|∇nα|2 − |∇nβ |2) +

2
9
(δ − 11)nβn−3(|∇nα|2 − |∇nβ |2)

+ δ′′
(

1
18

(|∇nα|2 + |∇nβ |2)−
1
9

nαnβ

n
− 7

18
|∇n|2

)

∂2fLYP
c

∂nβ∂nα
= −4a(D′′nαnβ

n
+ D′n2

αn−2 + D′n2
βn−2 + 2Dnαnβn−3)− ω′′K − ω′K̃ ′ − ω′K ′

− ω

(
nβL̃′ + L + nαL′ + nαnβ

(
1
9
δ′n−2(|∇nα|2 − |∇nβ |2)(nβ − nα)(1 +

1
9
(δ − 11)n−1)

+ δ′′
(

1
18

(|∇nα|2 + |∇nβ |2)−
1
9

nαnβ

n
− 7

18
|∇n|2

))
− 4

3
(|∇n|2 − |∇nβ |2 − |∇nα|2)

)

∂2fLYP
c

∂nα∂|∇nα|2
= −ω′K̇ − ωK̇ ′

K̇ ′ = nβL̇ + nαnβL̇′ , L̇′ = −1
9
δ′(3 + nαn−1)− 1

9
(δ − 11)nβn−2

∂2fLYP
c

∂nβ∂|∇nα|2
= −ω′K̇ − ω(nαL̇ + nαnβ(−1

3
δ′ − nα(

1
9
δ′n−1 − 1

9
(δ − 11)n−2))− 2nβ)

∂2fLYP
c

∂|∇nβ |2∂nα
= −ω′(nαnβ

˜̇L− n2
α)− ω(nβ

˜̇L + nαnβ

(
−1

3
δ′(3 + nβn−1) +

1
9
(δ − 11)nβn−2

)
− 2nα

∂2fLYP
c

∂(∇nα · ∇nβ)∂nα
= 2

(
−ω

(
nαnβ

(
47
18
− 7

18
δ

)
− 2

3
n2

)
− ω

(
−4

3
n + nβ

(
47
18
− 7

18
δ

)
− nαnβ

7
18

δ′
))

∂2fLYP
c

∂(∇nα · ∇nβ)
= −ω

(
2nαnβ

(
47
18
− 7

18
δ

)
− 4

3
n2

)
.
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The P86 [11] correlation functional reads

fP86
c = Z + e−ΦC(rs)

|∇n|2

n
4
3 d

Z = εp(rs) +
(
εf(rs)− εp(rs)

)
f(ζ), Φ = 0.19195C(∞)

|∇n|
n

7
6 C(rs)

, d = 2
1
3

(
(ζ + 1)

2

5
3

+
(ζ − 1)

2

5
3

) 1
2

C(rs) = 0.001667 +
P0 + P1rs + P2r

2
s

1 + P3rs + P4r2
s + P5r3

s

, f(ζ) =
(ζ + 1)

4
3 + (ζ − 1)

4
3 − 2

2
4
3 − 2

n = nα + nβ , ζ =
nα − nβ

n
, rs =

(
3

4πn

) 1
3

, ε = A log(rs) + B + Crs log(rs) + Drs

P0 = 0.002568, P1 = 0.023266, P2 = 7.38910−6, P3 = 8.723, P4 = 0.472, P5 = 0.07389

Ap = 0.0311, Af = 0.01555, Bp = −0.048, Bf = −0.269, Cp = 0.0020,

Cf = 0.0007, Dp = −0.0116, Df = −0.0048

Its partial derivatives are

∂fP86
c

∂|∇nα|
=

C(rs)
dn

4
3

e−Φ̇
(
−Φ̇|∇n|2 + 2|∇nα|

)
Φ̇ =

0.19195C(∞)
n

7
6 |∇n|

|∇nα|

∂2fP86
c

∂n2
α

= 2Z
′
+ nZ

′′
− |∇n|2e−Φ

(
d−1

(
−Φ

′
C(rs) + C

′
(rs)− C(rs)(d

′
d−1 +

4
3
n−1)

)
(Φ

′
n−

4
3 +

4
3
n−

7
3 )

−n−
4
3

(
d
′

d2

(
−Φ

′
C(rs) + C

′
(rs)− Cd−1d

′
− 4

3
C(rs)n−1

)
+
(
−Φ

′′
C(rs)− Φ

′
C

′
+ C

′′
− C

′
(rs)(d

′
d−1 +

4
3
n−1)− C(rs)(−d

′2d−2 + d
′′
d−1 − 4

3
n−2)

)
d−1

))
∂2fP86

c

∂nβ∂nα
= Z̃ + Z

′
+ nZ̃

′
+ |∇n|2e−Φ

(
d−1

(
−Φ

′
C(rs) + C

′
(rs)− C(rs)(d

′
d−1 +

4
3
n−1)

)
(Φ

′
n−

4
3 +

4
3
n−

7
3 )

− n−
4
3

d̃

d2

(
−Φ

′
C(rs) + C

′
(rs)− Cd−1d

′
− 4

3
C(rs)n−1

)
+
(
−Φ

′′
C(rs)− Φ

′
C

′
+ C

′′
− C

′
(rs)(d

′
d−1 +

4
3
n−1)− C(rs)(−d̃d

′
d−2 + d̃

′
d−1 − 4

3
n−2)

)
d−1

)
r
′

s = −1
3

(
3

4πn

) 1
3

n−
4
3 , r

′′

s =
4
9

(
3

4πn

) 1
3

n−
7
3

ε
′
=
(

A

rs
+ C (log(rs) + 1) + D

)
r
′

s, ε
′′

=
(
−A

r2
s

+
C

rs

)
r
′2
s +

ε
′

r′s
r
′′

s
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f
′
(ζ) =

4
3

ζ
′
(
(ζ + 1)

1
3 − (ζ − 1)

1
3

)
2

4
3 − 2

, f̃(ζ) = −f
′
(ζ)

nα

nβ
, ζ

′
= 2

nβ

n2
, ζ̃ = −ζ

′ nα

nβ

Z
′
= εp′ + f(ζ)

′ (
εf − εp

)
+ f(ζ)

(
εf ′ − εp′

)
, Z̃ = εp′ + f̃(ζ)

(
εf − εp

)
+ f(ζ)

(
εf ′ − εp′

)
C

′
(rs) =

(P1 + 2P2rs)
1 + P3rs + P4r2

s + P5r3
s

−
(
P0 + P1rs + P2r

2
s

) (
P3 + 2P4rs + 3P5r

2
s

)
d
′
=

1
2d

5
6
ζ
′
(
(ζ + 1)

2
3 − (ζ − 1)

2
3

)
, d̃ = −d

′ nα

nβ

Φ
′
= −0.19195C(∞)|∇n|

(
7
6

C(rs)n
13
6

+
C

′
(rs)

C(rs)2n
7
6

)
, Φ̂ = 0.19195C(∞)n

7
6 |∇n||∇nβ |

ζ
′′

= −4
nβ

n3
, ζ̃

′
= 2

nα − nβ

n3

f
′′

=
4
3

1
3

ζ
′2

(ζ+1)
2
3

+ (ζ + 1)
1
3 ζ

′′
+ 1

3
ζ
′2

(ζ−1)
2
3
− (ζ − 1)

1
3 ζ

′′

2
4
3 − 2

f̃
′
=

4
3

ζ̃
′
(
(ζ + 1)

1
3 − (ζ − 1)

1
3

)
+ 1

3ζ
′
ζ̃(ζ − 1)−

2
3 + (ζ − 1)−

2
3

2
4
3 − 2

Z
′′

= εp′′ + f
′′ (

εf − εp
)

+ 2f
′
(
εf ′ − εp′

)
+ f

(
εf ′′ − εp′′

)
Z̃
′
= εp′′ + f̃

′ (
εf − εp

)
+ f

′
(
εf ′ − εp′

)(
1− nα

nβ

)
+ f

(
εf ′′ − εp′′

)
C

′′
(rs) =

[
2

P2

1 + P3rs + P4r2
s + P5r3

s

−
{
2(P1 + 2P2rs)

(
P3 + 2P4rs + 3P5r

2
s

)
+

(
P0 + P1rs + P2r

2
s

)
(2P4 + 6P5rs)

(1 + P3rs + P4r2
s + P5r3

s )2
}

+
2
(
P0 + P1rs + P2r

2
s

) (
P3 + 2P4rs + 3P5r

2
s

)2
(P0 + P1rs + P2r2

s )3
]
r
′2
s +

C
′
(rs)
r′s

r
′′

s

d
′′

= −d
′2

d
+

2−
1
3

d

5
3

(
2

1
3
1
6
ζ
′2
(
(ζ + 1)−

1
3 + (ζ − 1)−

1
3

)
+ 2−

2
3

(
(ζ + 1)

2
3 − (ζ − 1)

2
3

) ζ
′′

2

)

d̃
′
=

5
12

(
ζ ‘

d
((ζ + 1)

2
3 − (ζ − 1)

2
3 )(− b̃

d
+

ζ̃
′

ζ ′
) +

2
3

ζ
′

d
ζ̃
′
((ζ + 1)−

1
3 + (ζ − 1)−

1
3 )

)

Φ
′′

= 0.19195C(∞)|∇n|(91
36

n
19
6

C(rs)
+

7
3

n−
13
6

C(rs)2
C

′
(rs) +

2
C(rs)3

C
′
(rs)2n−

7
6 − C

′′
(rs)

C(rs)2
n−

7
6 )

∂2fP86
c

∂nα∂|∇nα|
= n−

4
3 d−1

(
C

′
(rs)e−Φ(−Φ̇|∇n|2 + 2|∇nα|) + C(rs)e−Φ(Φ

′
Φ̇|∇n|2 − Φ̇

′
|∇n|2 − Φ

′
2|∇nα|)

)
+ C(rs)e−Φ(−Φ̇|∇n|2 + 2|∇nα|)(−

4
3
n−

7
3 d−1 − d

′
d−2n−

4
3 )

Φ̇
′
= 0.19195C(∞)

(
−7

6
n−

13
6 C(rs)−1 − C

′
C(rs)−2n−

7
6

)
|∇n|−1|∇nα|
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∂2fP86
c

∂nβ∂|∇nα|
= n−

4
3 d−1

(
C

′
(rs)e−Φ(−Φ̇|∇n|2 + 2|∇nα|) + C(rs)e−Φ(Φ

′
Φ̇|∇n|2 − Φ̇

′
|∇n|2 − Φ

′
2|∇nα|)

)
+ C(rs)e−Φ(−Φ̇|∇n|2 + 2|∇nα|)(−

4
3
n−

7
3 d−1 − d̃d−2n−

4
3 )

∂2fP86
c

∂nα∂|∇nβ |
=

∂2fP86
c

∂nα∂|∇nα|
|∇nβ |
|∇nα|

∂2fP86
c

∂|∇n|2
= C(rs)n−

4
3 d−1e−Φ

(
(Φ̇2 − Φ̈)|∇n|2 − Φ̇4|∇nα|+ 2

)
Φ̈ = 0.19195C(∞)n−

7
6 C(rs)−1

(
|∇n|−1 − |∇nα|2

|∇n|3

)

∂2fP86
c

∂|∇nβ |∂|∇nα|
= C(rs)n−

4
3 d−1e−Φ

(
(Φ̂Φ̇− ˆ̇Φ)|∇n|2 − Φ̇2|∇nβ | − Φ̂2|∇nα|

)
ˆ̇Φ = 0.19195C(∞)n−

7
6 C−1

(
−|∇nα||∇nβ ||∇n|−3

)

∂fP86
c

∂(∇nα · ∇nβ)
=

∂fP86
c

∂|∇nα|
|∇nα|−1

∂2fP86
c

∂(∇nα · ∇nβ)∂nα
=

∂2fP86
c

∂nα∂|∇nβ |
|∇nβ |−1

∂2fP86
c

∂nβ∂(∇nα · ∇nβ)
= n−

4
3 d−1e−Φ(−Φ̄|∇n|2 + 2)(C

′
(rs)−

4
3
C(rs)n−1

− C(rs)d−1b̃− C(rs)Φ
′
)− C(rs)n−

4
3 d−1e−ΦΦ̄

′
|∇n|2

Φ̄ = 0.19195C(∞)C−1n−
7
6 |∇n|−1

Φ̄
′
= 0.19195C(∞)(−7

6
n−

13
6 C(rs)−1 − C

′
C−2n−

7
6 )|∇n|−1

∂2fP86
c

∂(∇nα · ∇nβ)2
= C(rs)n−

4
3 d−1e−Φ(Φ̄2|∇n|2 − ¯̄Φ|∇n|2 − 4Φ̄)

¯̄Φ = 0.19195C(∞)n−
7
6 C(rs)−1|∇n|−3
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∂2fP86
c

∂(∇nα · ∇nβ)∂|∇nα|
=

∂2fP86
c

∂|∇nβ |∂|∇nα|
|∇nβ |−1

∂2fP86
c

∂(∇nα · ∇nβ)∂|∇nβ |
=

∂2fP86
c

∂(∇nα · ∇nβ)2
|∇nβ |

The PBE [13] exchange functional reads

fPBE96
x =

1
2

∑
σ=α,β

E(2nσ)

E(n) = −3
4
bn

4
3 F, F = 1 + R− R

(1 + µS2

R )2

b =
(

3
π

) 1
3

, µ = 0.066725
π2

3
, S = χa, χ =

|∇n|
n

4
3

, a =
1

2(3π2)
1
3

Its partial derivatives are

∂E

∂|∇n|2
= −3

2
bn

4
3 µ

1
(1 + µS2

R )2
a2n−

8
3

∂2E

∂(|∇n|2)2
= 12bn

4
3 µ2 a2

R
n−

16
3

1
(1 + µS2

R )3

∂2E

∂n2
= 2b

(
−1

3
n−

2
3 − 2n

1
3 F

′
− 3

4
n

4
3 F

′′
)

F
′
= 2

1
(1 + µS2

R )2
µSχ

′
a, χ

′
= −4

3
|∇n|n− 7

3

F
′′

= −µ

(
8µ

R

1
(1 + µS2

R )3
S2χ

′2a2 − 2
(1 + µS2

R )2
(χ

′2a2 + Sχ
′′
a)

)
, χ

′′
=

28
9
|∇n|n− 10

3

∂2E

∂|∇n|2∂n
= 4

(
−bn

1
3 µ

1
(1 + µS2

R )2
a2n−

8
3 − 3

4
bn

4
3 Ḟ ′

)

Ḟ ′ =
µ

|∇n|2

(
2SS

′ 1
(1 + µS2

R )2
− 4

µ

R
S3S

′ 1
(1 + µS2

R )3

)
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The PW92 [14, 15] correlation functional3 reads

fPW92
c = n (ε + L)

ε = e1 − e3ω
(1− ζ4)

c
+ (e2 − e1) ωζ4

rs =
(

3
4πn

) 1
3

, ζ =
nα − nβ

n
, ω =

(1 + ζ)f3 + (1− ζ)f3− 2
2f3− 2

ei = e(rs, Ti, Ui, Vi,Wi, Xi, Yi) = −2Ti(1 + Uirs) log

(
1 +

1

2Ti(Vi
√

rs + Wirs + Xir
3
2
s + Yir2)

)
c = 1.709921, T = [0.031091, 0.015545, 0.016887], U = [0.21370, 0.20548, 0.11125]

V = [7.5957, 14.1189, 10.357], W = [3.5876, 6.1977, 3.6231], X = [1.6382, 3.3662, 0.88026]

Y = [0.49294, 0.62517, 0.49671]

L =
u3λ2

2ι
log
(

1 + 2
ι(d2 + Ad4)

λ(1 + Ad2 + A2d4)

)
u =

1
2

(1 + zp23 + zm23) , d =
|∇n|
4u

k1n
−7, A =

2ι

λ

(
e−

2ιε
u3λ2 − 1

)−1

, k1 =
(π

3

) 1
6

ι = 0.0715996577859519, λ = 0.0667245506031492

3 Note that, consistently with the implementation of the PBE XC functional in CPMD [18], the term called
H1 in Ref. [14] has been dropped.
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Its partial derivatives are

∂2fPW92
c

∂n2
α

= 2ε
′
+ nε

′′
+ 2L

′
+ nL

′′

ε
′
= e

′

1 − e
′

3ω
(1− ζ4)

c
− e3(ω

′ (1− ζ4)
c

− ω
4ζ3ζ

′

c
) + (e

′

2 − e
′

1)ωζ4 + (e2 − e1)(ω
′
ζ4 + ω4ζ3ζ

′
)

ω
′
= k2nβ(n

1
3
α − n

1
3
β )n−

7
3 , ζ

′
= 2

nβ

n2
, k2 = 6.4630961358174301

e
′

i = −2Ti

(
Uir

′

s log

(
1 +

1

2Ti(Vi
√

rs + Wirs + Xir
3
2
s + Yir2)

)

− 1 + Uirs

1 + 2Ti(Vi
√

rs + Wirs + Xir
3
2
s + Yir2)

(
2Ti(Vi

√
rs + Wirs + Xir

3
2
s + Yir

2)
)−1

×
(

2Ti(
1
2
Vir

− 1
2

s + Wi +
3
2
Xi
√

rs + 2Yirs)r
′

s

))
ε
′′

= e
′′

1 − e
′′

3ω
(1− ζ4)

c
− e

′

3(ω
′ (1− ζ4)

c
− 2ω

4ζ3ζ
′

c
)

− e3

(
ω
′′ (1− ζ4)

c
− 2ω

′ 4ζ3ζ
′

c
− ωc−1(12ζ2ζ

′2 + 4ζ3ζ
′′
)

)
+ (e

′′

2 − e
′′

1 )ωζ4 + 2(e
′

2 − e
′

1)(ω
′
ζ4 + ω4ζ3ζ

′
) + (e2 − e1)(ω

′′
ζ4 + 2ω

′
4ζ3ζ

′
+ ω(12ζ2ζ

′2 + 4ζ3ζ
′′
))

ζ
′′

= −4
nβ

n3
, ω

′′
= k2nβ

(
1
3
n
− 2

3
α n−

7
3 − (n

1
3
α − n

1
3
α)

7
3
n−

10
3

)
L
′
=

λ2

2ι

(
3u2u

′
log
(

1 +
2ι

λ

Z1

N1

)
+

u3

1 + 2ι
λ

Z1
N1

(
Z
′

1

N1
− Z1N

′

1

N2
1

))
Z
′

1 = 2dd
′
+ A

′
d4 + 4Ad3d

′
, N

′

1 = A
′
d2 + 2Add

′
+ 2AA

′
d4 + 4A2d3d

′

u
′
= (

1
3
zp− 13− 1

3
zm− 13)ζ

′
, A

′
= 2λ

(
e−

2ιε
u3λ2 − 1

)−2

e−
2ιε

u3λ2
2ι

λ2
(ε

′
u−3 − εu

′
u−4)

d
′
=
|∇n|

4
k1(−u−2u

′
n−

7
6 − 7

6
u−1n−

13
6 )

L
′′

=
λ2

2ι

(
6u2 u

′

1 + 2ι
λ

Z1
N1

2ι

λ

(
Z
′

1

N1
− Z1N

′

1

N2
1

)
+ log

(
1 +

2ι

λ

Z1

N1

)
(6uu

′2 + 3u2u
′′
)

+ u3

−4
ι2

λ2

(
Z
′

1

N1
− Z1N

′

1

N2
1

)2(
1 +

2ι

λ

Z1

N1

)−2

+
(

1 +
2ι

λ

Z1

N1

)−1 2ι

λ

(
Z
′′

1

N1
− Z

′

1N
′

1

N2
1

− Z
′

1N
′

1 + Z1N
′′

1

N2
1

+ 2
Z1N

′2
1 N1

N4
1

)))
Z
′′

1 = 2(d
′2 + dd

′′
) + A

′′
d4 + 8A

′
d3d

′
+ 4A(3d2d

′2 + d3d
′′
)

N
′′

1 = A
′′
d2 + 4A

′
dd

′
+ 2A(d

′2 + dd
′′
) + 2A

′2d4 + 2A(A
′′
d4 + 4A

′
d3d

′
) + 8AA

′
d3d

′
+ 4A2(3d2d

′2 + d3d
′′
)

d
′′

=
|∇n|

4
k1

(
2u−3u

′2n−
7
6 − u−2(u

′′
n−

7
6 − 7

6
u
′
n−

13
6 )− 7

6
(−u−2u

′
n−

13
6 − 13

6
u−1n−

19
6 )
)

u
′′

= ζ
′′
u
′
+

1
2
ζ
′2

(
−2

9
zp− 43− 2

9
zm− 43

)
A
′′

=
2ι

λ

(
−2
(
e−

2ιε
u3λ2 − 1

)−3

e−
4ιε

u3λ2

(
2ι

λ2
ε
′
u−3 − εu

′
u−4

)2

+
(
e−

2ιε
u3λ2 − 1

)−2

×

(
e−

2ιε
u3λ2

(
2ι

λ2
ε
′
u−3 − εu

′
u−4

)2

+ e−
2ιε

u3λ2

(
− 2ι

λ2
(ε

′′
u−3 − ε

′
6u

′
u−4 − 3ε(u

′′
u−4 − 4u

′2u−5))
)))
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∂2fPW92
c

∂nβ∂nα
= ε

′
+ ε̃ + nε̃

′
+ L̃ + L

′
+ nL̃

′

ε̃ = e
′

1 − e
′

3ω
(1− ζ4)

c
− e3

(
ω̃

(1− ζ4)
c

− 4ωζ3ζ̃c−1

)
+ (e

′

2 − e1
′)(ω̃ζ4 + 4ωζ3ζ̃), ω̃ = −nα

nβ
ω
′

ε̃
′
= e

′′

1 − e
′′

3ω
(1− ζ4)

c
− e

′

3(ω̃
(1− ζ4)

c
− 2ω

4ζ3ζ
′

c
)

− e3

(
ω̃′ (1− ζ4)

c
− ω

′ 4ζ3ζ̃

c
− ω̃

4ζ3ζ
′

c
− ωc−1(12ζ2ζ

′
ζ̃ + 4ζ3ζ̃ ′)

)
+ (e

′′

2 − e
′′

1 )ωζ4 + 2(e
′

2 − e
′

1)(ω
′
ζ4 + ω4ζ3ζ

′
) + (e2 − e1)(ω̃

′ζ4 + ω
′
4ζ3ζ̃ ′ + ω̃4ζ3ζ

′
+ ω(12ζ2ζ

′
ζ̃ + 4ζ3ζ̃ ′))

ω̃
′
= k2(

n
1
3
α − n

1
3
β

n
7
3

+ nβ(−1
3
n
− 2

3
β n−

7
3 − (n

1
3
α − n

1
3
β )

7
3
n−

10
3 , ζ̃

′
= 2

ζ

n2

L̃ =
λ2

2ι

(
3u2ũ log

(
1 +

2ι

λ

Z1

N1

)
+

u3

1 + 2ι
λ

Z1
N1

(
Z̃1

N1
− Z1Ñ1

N2
1

))
Z̃1 = 2dd̃ + Ãd4 + 4Ad3d̃, Ñ1 = Ãd2 + 2Add̃ + 2AÃd4 + 4A2d3d̃

d̃ =
|∇n|

4
k1(−u−2ũn−

7
6 − 7

6
u−1n−

13
6 ), ũ = (

1
3
zp− 13− 1

3
zm− 13)ζ̃

Ã = 2λ
(
e−

2ιε
u3λ2 − 1

)−2

e−
2ιε

u3λ2
2ι

λ2
(ε̃u−3 − εũu−4)

L̃
′
=

λ2

2ι

(
3u2 u

′

1 + 2ι
λ

Z1
N1

2ι

λ

(
Z̃1

N1
− Z1Ñ1

N2
1

)
+ log

(
1 +

2ι

λ

Z1

N1

)
(6uũu

′
+ 3u2ũ′)

+3u2 ũ

1 + 2ι
λ

Z1
N1

2ι

λ

(
Z
′

1

N1
− Z1N

′

1

N2
1

)
+ u3

(
− ι2

λ2

(
Z
′

1

N1
− Z1N

′

1

N2
1

)(
1 +

2ι

λ

Z1

N1

)−2
(

Z̃1

N1
− Z1Ñ1

N2
1

)

+
(

1 +
2ι

λ

Z1

N1

)−1 2ι

λ

(
Z̃
′
1

N1
− Z

′

1Ñ1

N2
1

− Z̃N
′

1 + Z1Ñ
′
1

N2
1

+ 2
Z1N

′

1Ñ12N1

N4
1

)))
Z̃1

′

= 2(d
′
d̃ + dd̃′) + Ã′d4 + 4A

′
d3d̃ + 4Ãd3d

′
+ 4A(3d2d̃d

′
+ d3d̃′)

Ñ1

′

= Ã′d2 + 2A
′
dd̃ + 2Ãdd

′
+ 2A(d

′
d̃ + dd̃′) + 2A

′
Ãd4 + 2A(Ã′d4 + 4A

′
d3d̃) + 8AÃd3d

′
+ 4A2(3d2d

′
d̃ + d3d̃′)

d̃
′
=
|∇n|

4
k1

(
2u−3u

′
ũn−

7
6 − u−2(ũ′n−

7
6 − 7

6
u
′
n−

13
6 )− 7

6
(−u−2ũn−

13
6 − 13

6
u−1n−

19
6 )
)

ũ
′
= ζ̃ ′u

′
+

1
2
ζ
′
ζ̃

(
−2

9
zp− 43− 2

9
zm− 43

)
Ã
′
=

2ι

λ

(
−2
(
e−

2ιε
u3λ2 − 1

)−3

e−
4ιε

u3λ2

(
2ι

λ2
ε
′
u−3 − εũu−4

)2

+
(
e−

2ιε
u3λ2 − 1

)−2

×

(
e−

2ιε
u3λ2

(
2ι

λ2
ε̃u−3 − εũu−4

)2

+ e−
2ιε

u3λ2

(
− 2ι

λ2
(ε̃

′
u−3 − ε

′
6ũu−4 − 3ε(ũ′u−4 − 4u

′
ũu−5))

)))

∂fPW92
c

∂|∇nα|2
= nL̇

L̇ = λu3

(
1 +

2ι

λ

Z1

N1

)−1
(

Ż1

N1
− Z1Ṅ1

N2
1

)

Ż1 =
d2 + 2Ad4

|∇n|2
, Ṅ1 =

Ad2 + 2A2d4

|∇n|2
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∂2fPW92
c

∂(|∇nα|2)2
= nL̈

L̈ =
λ2

2ι
u3

−4ι2

λ2

(
Ż1

N1
− Z1Ṅ1

N2
1

)2(
1 +

2ι

λ

Z1

N1

)−2

+

(
Z̈1

N1
− Ż1Ṅ1

N2
1

− Ż1Ṅ1 + Z1N̈1

N2
1

+ 2
Z1Ṅ1

2
N1

N4
1

)
Z̈1 =

2Ad4

|∇n|4
, N̈1 =

2A2d4

|∇n|4

∂2fPW92
c

∂|∇nα|2∂nα
= L̇ + nL̇

′

L̇
′
=

λ2

2ι

(
3u2u

′ 2ι

λ

(
1 +

2ι

λ

Z1

N1

)−1
(

Ż1

N1
− Z1Ṅ1

N2
1

)
+ u3

(
−
(

1 +
2ι

λ

Z1

N1

)−2
(

Ż1

N1
− Z1Ṅ1

N2
1

)
2ι

λ

(
Z
′

1

N1
− Z1N

′

1

N2
1

)

+
(

1 +
2ι

λ

Z1

N1

)−1
2ι

λ

Ż1

′

N1
− Ż1N

′

1

N2
1

− Z
′

1Ṅ1 + Z1Ṅ1

′

N2
1

+ 2
Z1N

′

1Ṅ1N1

N4
1


Ż1

′

=
2dd

′
+ 2A

′
d4 + 8Ad3d

′

|∇n|2
, Ṅ1

′

=
A
′
d2 + 2Add

′
+ 4AA

′
d4 + 8A2d3d

′

|∇n|2

∂2fPW92
c

∂|∇nα|2∂nβ
= L̇ + n ˙̃L

˙̃L =
λ2

2ι

(
3u2ũ

2ι

λ

(
1 +

2ι

λ

Z1

N1

)−1
(

Ż1

N1
− Z1Ṅ1

N2
1

)
+ u3

(
−
(

1 +
2ι

λ

Z1

N1

)−2
(

Ż1

N1
− Z1Ṅ1

N2
1

)
2ι

λ

(
Z̃1

N1
− Z1Ñ1

N2
1

)

+
(

1 +
2ι

λ

Z1

N1

)−1
(

2ι

λ

˙̃Z1

N1
− Ż1Ñ1

N2
1

− Z̃1Ṅ1 + Z1
˙̃N1

N2
1

+ 2
Z1Ñ1Ṅ1N1

N4
1

)))
˙̃Z1 =

2dd̃ + 2Ãd4 + 8Ad3d̃

|∇n|2
, ˙̃N1 =

Ãd2 + 2Add̃ + 4AÃd4 + 8A2d3d̃

|∇n|2

∂2fPW92
c

∂(∇nα · ∇nβ)∂nα
= 2

∂2fPW92
c

∂|∇nα|2∂nα

∂2fPW92
c

∂(∇nα · ∇nβ)∂|∇nα|2
= 2

∂2fPW92
c

(∂|∇nα|2)2

∂fPW92
c

∂(∇nα · ∇nβ)
= 2

∂fPW92
c

∂|∇nα|2

∂2fPW92
c

∂(∇nα · ∇nβ)2
= 4

∂2fPW92
c

(∂|∇nα|2)2
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∂2fPW92
c

∂|∇nβ |2∂|∇nα|2
=

∂2fPW92
c

(∂|∇nα|2)2

∂2fPW92
c

∂|∇nβ |2∂nα
=

∂2fPW92
c

∂|∇nα|2∂nα

∂2fPW92
c

∂(∇nα · ∇nβ)∂|∇nβ |2
= 2

∂2fPW92
c

(∂|∇nα|2)2

∂2fPW92
c

∂(∇nα · ∇nβ)∂∇nβ
= 2

∂2fPW92
c

∂|∇nα|2∂nβ
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