
RZ 3511 (# 99529) 11/10/03
Computer Science 14 pages

Research Report

Low-level Ideal Signatures and General Integrity Idealization

Michael Backes, Birgit Pfitzmann and Michael Waidner

IBM Research
Zurich Research Laboratory
8803 R̈uschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available
at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich



Low-level Ideal Signatures and General Integrity Idealization

Abstract

Recently Backes, Pfitzmann and Waidner solved the long-standing open problem of justifying
a Dolev-Yao type model of cryptography as used in virtually all automated protocol provers.
They define a flexible toolbox for constructing abstract nested cryptographic terms and for using
them in arbitrary protocols, together with a cryptographic realization provably secure under
arbitrary active attacks in the standard model of cryptography. While treating a term algebra
is the point of that paper, a natural question is whether the proof could be more modular, e.g.,
by using a low-level idealization of signature schemes similar to the treatment of encryption.

We present a low-level ideal signature system that could be used as a lower layer in this
toolbox. It may be of independent interest for cryptography because idealizing signature schemes
has proved surprisingly error-prone. However, we also explain why using it makes the overall
proof of the toolbox more complicated instead of simpler.

We further present a technique, integrity idealization, for mechanically constructing compos-
able low-level ideal systems for other cryptographic primitives that have “normal” cryptographic
integrity definitions.

Keywords: Digital Signatures, Composability, Dolev-Yao, Formal Methods, Integrity Idealization

1 Introduction

Automated proofs of security protocols with model checkers or theorem provers typically abstract
from cryptography by deterministic operations on abstract terms and by simple cancellation rules.
An example term is Epkew

(Epkev
(signsksu

(m,N1), N2)), where m denotes an arbitrary message and
N1, N2 two nonces. A typical cancellation rule is Dske(Epke(m)) = m for corresponding keys. The
proof tools handle these terms symbolically, i.e., they never evaluate them to bitstrings. In other
words, they perform abstract algebraic manipulations on trees consisting of operators and base
messages, using the cancellation rules, the transition rules of a particular protocol, and abstract
models of networks and adversaries. Such abstractions, although different in details, are called the
Dolev-Yao model after the first authors [14].

For many years there was no cryptographic justification for such abstractions. The problem lies
in the assumption, implicit in the adversary model, that actions that cannot be expressed with the
abstract operations are impossible, and that no relations hold between terms unless derivable by the
cancellation rules. It is not hard to make artificial counterexamples to these assumptions. Never-
theless, no counterexamples against the method for protocols proved in the literature were found so
far. Further, the overall approach of abstracting from cryptographic primitives once with rigorous
hand-proofs, and then using tools for proving protocols using such primitives, is highly attractive:
Besides the cryptographic aspects, protocol proofs have many distributed-systems aspects, which
make proofs tedious and error-prone even if they weren’t interlinked with the cryptographic aspects.
To use existing efficient automated proof tools for security protocols, cryptography must indeed
be abstracted into simple, deterministic ideal systems. The closer one can stay to the Dolev-Yao
model, the easier the adaptation of the proof tools will be.1

1Efforts are also under way to formulate syntactic calculi for dealing with probabilism and polynomial-time consid-

1



Cryptographic underpinnings of a Dolev-Yao model were first addressed by Abadi and Rogaway
in [2]. However, they only handled passive adversaries and symmetric encryption. The protocol
language and security properties handled where extended in [1, 18], but still only for passive ad-
versaries. This excludes most of the typical ways of attacking protocols, e.g., man-in-the-middle
attacks and attacks by reusing a message part in a different place or concurrent protocol run. A full
cryptographic justification for a Dolev-Yao model, i.e., for arbitrary active attacks and within the
context of arbitrary surrounding interactive protocols, was first given recently in [5]. Based on the
specific Dolev-Yao model whose soundness was proven in [5], the well-known Needham-Schroeder-
Lowe protocol was proved in [4]. This shows that in spite of adding certain operators and rules
compared with simpler Dolev-Yao models (in order to be able to use arbitrary cryptographically
secure primitives without too many changes in the cryptographic realization), such a proof is pos-
sible in the style already used in automated tools, only now with a sound cryptographic basis. The
authors also showed how the library, in other words the term algebra and rules, can be modularly
extended by additional cryptographic primitives, using the example of symmetric authentication
[7].

The full version of [5] with its rigorous proofs is of considerable length. This is not too surprising
compared with, e.g., the length of [2]. Nevertheless, it seems an interesting question, whether the
cryptographic library, in other words the precise Dolev-Yao model used, as well as its proof could
not be presented in a more modular way.2 There are several aspects to this question. We will
discuss easy ones first and then come to the question of a more modular proof, which is the main
motivation for this paper.

The trivial answer is that the authors could have left out some operators and then add them
again in a separate paper as in [7]. Clearly the text would be much shorter if only encryption,
application data, and lists would be retained as a minimum repertoire for building nested encryption
terms of the Dolev-Yao style, or similarly for signatures. This would be a simple textual deletion of
the subsections dealing with the other operators in the ideal system, the real system, the simulator,
and the proof. Although that might have been smarter (as least publishable units and given
impatient readers), the scientific credibility of the overall framework is indeed much clearer if at
least two really different cryptographic systems are present. The reason is that the main point of
such term algebras is to define the grammar of correct nested terms and cancellation rules, and to
guarantee that terms that cannot be transformed into each other by cancellation rules are always
unequal in reality. The facts that terms are type-safe across different cryptographic systems and
that no unwanted cancellation can occur must be established by the overall framework, e.g., by
defining how the simulator parses received nested abstract messages from the ideal system and
received nested concrete terms received from the adversary (including that it cannot always parse
them completely).

One could also define and name sublibraries of [5], in other terminologies sub-algebras or sub-
functionalities, corresponding to textual subsets as described in the previous paragraph. However,
this is not much use, because a protocol designer needing only a subset of the operators is not
bothered by the presence of additional operators, just as a programmer isn’t bothered by additional
systems in a real implementation of a cryptographic library she is using. Actually, the protocol

erations, in particular [21, 19, 22, 17] and, as a second step, to encode them into proof tools. However, this approach
can not yet handle protocols with any degree of automation. Generally it should be seen as complementary to, rather
than competing with, the approach of getting simple deterministic abstractions of cryptography and working with
those wherever cryptography is only used in a blackbox way.

2The non-anonymous version will contain acknowledgments to others who also asked this question. Let us only
declare that we asked ourselves this question and had a written version of essentially the functionality presented here
before any communication about it with others.
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proof in [4] already shows this. It also shows how one can omit aspects like key distribution in
such proofs if one does not care. Even if the designer of a theorem prover wanted to use only
some of the operators, that would be easy, but the value of a theorem prover lies in its range of
implemented theories, and we currently do not see that the tools would be easier to adapt for some
operators in [5] than for others. Similarly, in coding the real (cryptographic) implementation of
that term algebra, one could code only a subset of the operators, or bind part of the code to a
protocol implementation, but usually a library with more primitives is more useful in practice.

However, another version of the modularization question is of more interest, and no answer to
it can be derived from the text of [8] and its successor papers. This question is why the proof
would not become simpler by using a low-level ideal signature system similar to the low-level ideal
encryption system that is used, and possibly even using a pre-existing one.

By “low-level” we mean that the interface of the ideal system is not yet abstract in the sense
needed for current automatic tools, and as in Dolev-Yao models. For encryption, such low-level
ideal functionalities were introduced in [26, 9]. For signatures, formalizing and proving an ideal
version is actually easier because their security property is an integrity property. Their established
cryptographic definition is from [16]. It was known since [23, 24] that such properties can be
formulated abstractly, e.g., in temporal logic. A similar formulation for authentication is known
from [28], but without cryptographic proofs with respect to it. In essence, a low-level ideal system
for signatures combines the real signature functionality with a system-internal verification whether
the desired integrity property is still fulfilled. We will call this the integrity idealization paradigm.
Such an idealization was first made in [20] for symmetric authentication. A somewhat similar
ideal signature system was presented in [9], with variations in [10, 11]. However, the precise
approach taken in [9] cannot be used to construct nested Dolev-Yao style terms, because while a
term E(pke, S(pks,m)) in reality keeps m secret from the adversary even if sent over an insecure
connection, its mere construction by an honest participant would give m to the adversary if one
used the ideal functionality for signing from [9]. This aspect was not changed in [10, 11].

In the following, we present an ideal low-level signature system that could be used as a sub-
module in the cryptographic implementation of the library from [5]. However, we also show that
using it would make the overall proof of that library (or of the addition of signature schemes to
that library if one first restricted it to encryption) more complicated instead of simpler. While
this argument necessarily depends on the proof technique used in [5], an important aspect depends
solely on the simulator, and not on the details of the cryptographic bisimulation, so that it does
not seem easy to circumvent.

We further present a general technique “integrity idealization” to mechanically construct com-
posable ideal systems for certain types of cryptographic primitives that have “normal” crypto-
graphic integrity definitions together with a proof sketch that these idealizations are automatically
secure.

2 A Low-Level Ideal Signature System and its Realization

In this section, we present an ideal system which, at a low level of abstraction, offers the functionality
of a secure signature scheme in a reactive and composable fashion. Essentially, it stores which keys
belong to honest users and which messages the users signed with these keys, and it never accepts
signatures that are supposedly made with one of these keys on different messages, i.e., forgeries.

2.1 Underlying Cryptographic Definition

As cryptographic primitive, we use a signature system secure against adaptive chosen-message
attacks [16]. Further, we assume that it uses memory about previously signed messages only in
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the form of a counter. Besides memory-less signature schemes, this class comprises important
provably secure signature schemes such as [16, 27, 15, 12, 13]. While efficient implementations of
such signature schemes also store a path in a tree at any time, in theory such a path or any other
function of random values chosen during earlier applications of signsk is equivalent to just a counter,
because the random values can be regarded as part of the secret key sk and thus as chosen during
key generation. At the same time, this class of signature schemes excludes pathologic cases that
could not be used safely in a normal Dolev-Yao style library, e.g., if every signature divulges the
history of all previous signatures with the same key. A proof that secure signature systems with
this pathologic property exist and that they can make applications insecure is given in [6]. We
summarize the GMR definition for this subclass in the following two definitions.

Definition 2.1 (Signature Schemes) A signature scheme is a triple (gen, sign, test) of polynomial-
time algorithms, where gen and sign are probabilistic. gen takes an input (1k, 1s) with k, s ∈ N,
where k denotes a security parameter and s the desired maximum number of signatures, and outputs
a pair (sk , pk) of a secret signing key and a public test key in {0, 1}+. sign takes such a secret key,
a counter c ∈ {1, . . . , s}, and a message m ∈ {0, 1}+ as inputs and produces a signature in {0, 1}+.
We write this sig ← signsk ,c(m). Similarly, we write verification as b := testpk (m, sig) with b ∈ {
true, false}. If the result is true, we say that the signature is valid for m. For a correctly generated
key pair, a correctly generated signature for a message m must always be valid for m. 3

Security of a signature scheme is defined against existential forgery under adaptive chosen-message
attacks:

Definition 2.2 (Signature Security) Given a signature scheme (gen, sign, test) and a polynomial
s ∈ N[x], a signature oracle Os is defined as follows: It has variables sk , pk and a counter c
initialized with 0, and the following transition rules:

• First generate a key pair (sk , pk )← gen(1k, 1s(k)) and output pk.

• On input (sign,m) with m ∈ {0, 1}+, and if c < s(k), set c := c + 1 and return sig ←
signsk ,c(m).

The signature scheme is called existentially unforgeable under adaptive chosen-message attack if
for every polynomial s and every probabilistic polynomial-time machine Asig that interacts with Os

the following holds: The probability is negligible (in k) that Asig finally outputs two values m and
sig (meant as a forged signature for the message m) with testpk (m, sig) = true and where m is not
among the messages previously signed by the signature oracle. 3

2.2 The Low-level Ideal System

We now present an ideal signature system that, at a low level of abstraction, summarizes the
functionality guaranteed by the cryptographic definition. It uses a list keys of key tuples belonging
to honest users and a list signed of message tuples honestly signed with these keys. Using lookup in
these lists, it never accepts forgeries, i.e., signatures on other messages that are supposedly made
with one of these keys.

We define this by an ideal machine whose honest users are, without loss of generality, numbered
{1, ..., n}. Its ports from and to user u are insig,u? and outsig,u !.3

3The representation of the Dolev-Yao-style library in [5] is based on the system model from [26], containing details
of the state-transition model used for abstract functionalities and its realization by interacting Turing machines.
Ports correspond to individual input or output tapes in the Turing machine realization. We use the same model here,
but omit some notation although it would allow a more compact presentation.
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Definition 2.3 (Low-level Ideal Signature Machine) Let a signature scheme (gen, sign, test)
and parameters n ∈ N and s ∈ N[x] be given. A corresponding ideal signature machine Sig low id,n,s

is defined as follows:
It maintains two initially empty lists keys and signed. The transition function is given by the

following rules. Let u be the index of the port insig,u? where the current input occurs; the resulting
output goes to outsig,u !.

• On input (generate): Set (sk , pk )← gen(1k, 1s(k)), add the tuple (u, sk , pk , 0) to the list keys,
and output pk.

• On input (sign, pk ,m): Try to retrieve a tuple (u, sk , pk , c) ∈ keys with the given u and pk.
If none exists or c = s(k), return the error symbol ↓. Else set c := c + 1, i.e., increase the
signature counter for this key in keys. Then set sig ← signsk ,c(m), add the pair (pk ,m) to
the list signed, and output sig.

• On input (test, pk ,m, sig): Try to retrieve a tuple (v, sk , pk , c) ∈ keys with the given pk.
If none exists, output testpk (m, sig). Else if the pair (pk ,m) exists in signed, then output
testpk (m, sig), else false.

Other inputs are ignored. We omit the indices n, s of Siglow id,n,s where they are irrelevant. 3

The low-level ideal machine never outputs secret keys. For signing, user u inputs the public
key to designate the desired private key, and the machine verifies internally that the key tuple
belongs to u. The test function is a normal signature test for unknown public keys (typically keys
generated by the adversary). For known public keys, the low-level ideal machine first verifies that
the message was indeed signed with this key, and then it additionally verifies that the signature
presented is valid.

The main difference to the signature functionality in [9] is that the adversary learns nothing
about what honest users sign. In the notation from [26] used here, this would show up as outputs
at an adversary outsig,a! during individual transitions, e.g., an output (m, sig) during signing.

2.3 Cryptographic Realization

The claimed cryptographic realization of the low-level ideal signature functionality is the natural
use of digital signatures in a distributed system, i.e., it consists of a separate machine Sigu for each
user u, and each machine signs and tests in the normal way. Together, these machines offer the
same ports and accept the same inputs as the ideal machine.

Definition 2.4 (Real Signature Machines) Let a signature scheme (gen, sign, test) and param-
eters u ≤ n ∈ N and s ∈ N[x] be given. Then the low-level ideal signature machine Sigu,s is defined
as follows. It has ports insig,u? and outsig,u ! and maintains an initially empty list keysu. The
transition function is given by the following rules.

• On input (generate): Set (sk , pk) ← gen(1k, 1s(k)), add the tuple (sk , pk , 0) to keysu, and
output pk.

• On input (sign, pk ,m): Retrieve a tuple (sk , pk , c) ∈ keys u with the given pk. If none is found
or c = s(k), return ↓. Else set c := c + 1 and output sig ← signsk ,c(m).

• On input (test, pk ,m, sig), output testpk (m, sig).

Other inputs are ignored. We denote the set of these machines by Sigreal,n,s, and omit the indices
n, s (also for Sigu,s) where they are irrelevant. 3
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2.4 Security

We now claim that the real signature system is as secure as the low-level ideal system. In slight
abuse of notation of [26] (explained in Section 3), we can write this as follows.

Theorem 2.1 Given a secure signature system according to Definitions 2.1 and 2.2, we have

∀n ∈ N∀s ∈ N[x] : Sigreal,n,s ≥
poly Siglow id,n,s.

This holds with blackbox simulatability; actually no simulator is necessary. 2

Proof. We show that for an arbitrary polynomial-time overall user machine interacting with either
of our systems, the views are indistinguishable. (As an adversary has no special ports here, we
need not distinguish users and adversaries as usual in the model of [26].)

The proof uses and shows the following invariant: at any time, each list keys u of a real machine
Sigu,s can be derived from the list keys of the ideal machine by restricting keys to entries with first
parameter u and then deleting the first parameters. All entries of keys are covered in this way.

We now consider the three acceptable inputs at a port insig,u?.

• On input (generate), both systems generate keys and output pk in the same way. The way
they add to their lists keysu and keys retains the invariant.

• On input (sign, pk ,m), both machines first look for an appropriate secret key. By the invariant,
Sigu,s finds a tuple (sk , pk , c) ∈ keysu if and only if Siglow id,n,s finds (u, sk , pk , c) ∈ keys (with
the same sk and c). Both return ↓ if none is found or c = s(k). Else both increment the
counter c, thus retaining the invariant. Then both output a signature sig generated in the
same way. Only Siglow id,n,s additionally stores (pk ,m) in signed .

• On input (test, pk ,m, sig) and if pk does not exist in keys, both machines simply test the
signature. Else both machines also output true only if the signature passes the cryptographic
test, but Siglow id,n,s additionally requires that (pk ,m) occurs in signed . However, this sole
difference in the views corresponds to signature forgery and is therefore negligible.

In more detail, the last step is proved in the following standard way: Let a probabilistic
polynomial-time machine H obtain distinguishable views when interacting with the two systems.
By our considerations of all possible inputs, H achieves at least one different signature test output
(in a system run) with non-negligible probability (over the possible runs of the system). Let maxkey

be a polynomial bounding the number of inputs generate that H makes. We construct an adversary
Asig against the signature oracle: It chooses i

R← {1, . . . ,maxkey(k)} and starts simulating H and all
machines Sigu,s and Siglow id,n,s. When H makes the i-th input generate, then Asig uses the signature
oracle. The element sk in the resulting tuple (u, sk , pk , c) ∈ keys remains empty, and similarly in
keysu. From then on, Asig uses the signature oracle when signing with respect to this key tuple.
Thus for each message m signed by the oracle there is a pair (pk ,m) in the list signed . Hence when
H makes an input (test, pk ,m′, sig ′) where sig ′ is valid but (pk ,m′) 6∈ signed , then Asig can output
(m′, sig ′) as a successful forgery in the sense of Definition 2.2. As this happens with not negligible
probability, it contradicts the signature security. Hence the systems are indeed indistinguishable.
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3 Other Versions of the Low-level Ideal System

We now describe some possible variants of the low-level ideal system.

Overall System Definition. We first explain in which sense Theorem 2.1 was simplified and
why this is no problem. First, the model from [26] distinguishes so-called specified and unspecified
ports of a set of machines. Honest users only link to the specified ports. In our case, all ports are
specified, i.e., there are no special outputs to or inputs from the adversary. Secondly, simulatability
is defined (and composition and property-preservation theorems are proved) for so-called systems.
Our sets Sigreal,n,s and {Siglow id,n,s}, together with the set of specified ports, are each one possible
structure in a system derived from an intended structure and a trust model in a standard way.

Scheduling. As the systems are currently described, outputs would be clocked by the adversary.
Instead both systems can be equipped with clock ports by which they can schedule their own
outputs. Similarly, putting input clock ports into the set of specified ports lets the users schedule
the inputs. This is advantageous to keep the state space small in higher-level proofs if signature-
related operations are only used as local subroutines.

Memory-less version. If we only want to consider memoryless signatures, we can omit the
counter and the parameter s from Definition 2.1 and everything dealing with them in the following.
This is simple text extraction.

Fixed-length schemes. In a cryptographic library that allows arbitrary (polynomial) long mes-
sages, encryption leaks length information. To make this manageable for the case of encrypted
message parts like signatures and public keys, it is useful to assume that for given parameters k

and s, the length of signatures and public keys is fixed. This can be modeled by length functions
sig len(k, s) and pks len(k) for the original signature scheme as in [5].

Polynomial time. The machines described are not polynomial-time by themselves. In their
typical intended application this does not matter. However, all machines can be made polynomial-
time by equipping them with (arbitrary polynomial-time) bounds on the length and number of
accepted inputs at each port.

Joint semi-real machine. If one intends to use a low-level idealization only once for proving
a higher-level idealization with a given, completely real version as in [5], it may be simpler for
the overall proof to also write the real system as one machine, because the fact that the overall
real system can be rewritten with the low-level semi-real system implies that it is real enough
for the given purpose. This would correspond more closely to the treatment of encryption in [5].
Conversely, the real version of that encryption functionality could be rewritten from a semi-real
version (one machine) to a real version if one omits the global key counter from the low-level ideal
version.

4 Using the Low-level Ideal Signature System in a Dolev-Yao-style

Cryptographic Library

The proof of the Dolev-Yao-style library in [8] is based on a simulator. For all polynomial-time
honest users and adversaries on the real system, the simulator achieves essentially the same effect in
the ideal system. More precisely, it achieves that the views of the honest users in both systems are
indistinguishable. This is the standard blackbox technique for showing that a system is as secure
as another one in a sense that guarantees composability, as first formalized in detail for reactive
systems in [25].

A possible use of low-level ideal signature machines in the overall proof is shown in Figure 1.
First the real cryptographic library is rewritten to use the real signature machines Sigu (Step 1 in
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Figure 1: Overview of a potential proof of the Dolev-Yao-style library with signature machines

Figure 1). This happens after the step of rewriting with encryption machines from [8], which we
omit in Figure 1.4 Next, the real signature machines Sigu can jointly be replaced by their low-
level ideal counterpart Siglow id according to a composition theorem, in this case of [26] (Step 2 in
Figure 1). The simulator can immediately be defined with the signature machines Sig low id (upper
right system in Figure 1).

The major part of the proof shows that the simulator is correct, both in general aspects like
parsing, type determination, and handling of unparsable terms, and in handling the individual
cryptographic operations. For this, [8] first defines a combined system C that essentially has
the combined ideal and real state space (Step 3 in Figure 1). Now it would also get signature
submachines. Then so-called cryptographic bisimulations are shown between the combined system
and the real system with the signature and encryption machines, and with the ideal system with
the simulator (Steps 4a and 4b in Figure 1). These bisimulations contain a definition of error sets,
containing runs where the simulation does not work. It also contains an embedded information-flow
analysis whose necessity will become clear in Section 5.1. Finally, cryptographic reduction proofs
show that the error sets are negligible, based on the information-flow analysis. This yields that the
rewritten real system is as secure as the ideal system (Step 5 in Figure 1), and by transitivity of
“as secure as” this also holds for the original real system (Step 6 in Figure 1).

4Both these steps are obsolete if one defines the real library based on these functionalities in the first place, but
[8] first presents an entirely real version, presumably for concreteness.
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5 Discussion

We now discuss why the use of low-level idealized signature machines in the proof of the Dolev-Yao
style cryptographic library, as described in Section 4, does not work quite as expected and actually
makes the proof more complicated.

5.1 Other Error Sets and Information-Flow Analysis Remain

The low-level idealization of signatures certainly avoids the error set corresponding to signature
forgeries in the bisimulations, and the reduction proof showing that this set is negligible. However,
this is a short and simple part of the overall proof.

Avoiding error sets would mainly be useful if one could get rid of all of them, and thus have
“classical” probabilistic bisimulations. Towards this goal, one could introduce a low-level ideal
nonce system that excludes nonce collisions, while still outputting real nonces. This system falls
under the integrity-idealization paradigm: Equip a real nonce system with a virtual, global non-
repetition test over the nonces of all honest parties.

However, one also has to demonstrate that the adversary cannot guess certain values. Here the
low-level ideal systems do not help. For instance, with both real nonces and the low-level ideal
nonce system, it is trivial that the adversary cannot guess a nonce of an honest participant if he
obtained no information about it (except with exponentially small probability). But whether or not
he obtained such information depends on all potential nested terms that were sent containing this
nonce, i.e., this belongs to the overall proof and not to the proof of the subsystem. Concretely, this
proof aspect is the static information-flow analysis embedded in the cryptographic bisimulation, an
important novel proof technique in [8].

In other words, idealizing signatures and nonces only gets rid of the easier parts of the final
reduction proofs and of the non-standard aspects of the bisimulations.

5.2 More Complicated Bisimulation by Diverging States

Another long part of the proof in [5] is the standard aspects of the bisimulations. This comprises
the definition of mappings from combined states to real and ideal states, respectively, as well as
invariants of all three systems (combined, real and ideal). It is then shown that, given mapped
states fulfilling the invariants, every input from the adversary or honest users leads to equal outputs
and to mapped next states with equal probability distributions, and that the invariants are retained
(except for the error sets).

Usually, the more machines one has in a bisimulation, the more complicated the state spaces
and invariants get, i.e., modularization is typically not useful. Nevertheless, one might hope that
introducing low-level ideal signature machines is useful because their states would simply be mapped
identically, and their state transitions would trivially retain this mapping.5 However, this is not so.
The individual signatures are not made in the same order in the simulator as in the real system.
For instance, honest user u might make a signature sig on a message m, encrypt it as Epk (sig) with
a key pk of another honest user, and send it over an insecure channel. Now the signature exists in
Siglow id in the real system, i.e., a counter has been updated and the message m is stored in signed .
However, the simulator only gets an abstract ciphertext from the ideal system and simulates it by
Epk (msim) for a fixed message msim (using its low-level ideal encryption system). There is no way
for the simulator to know at this point that it should simulate a signature. The signature will only
be simulated if it is ever sent in a form readable for the adversary.

5However, even in this case one would need invariants about the consistency between the state of the overall “term
machines” and the signature machines.
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Hence although the signature subsystems in the overall systems to be compared are function-
ally equal, they are usually in different states. Hence they are just an additional burden on the
bisimulation.6

5.3 Simulator Needs Reordered Signatures

The example in Section 5.2 also shows that the simple low-level ideal system from Section 2.2,
derived from the GMR definition by integrity idealization, is not quite the functionality we need in
a reactive scenario.

If one only considers the real system, the following additional property is needed: If the adver-
sary only sees a subset (adaptively chosen) of the signatures made by a signer, this divulges nothing
about other signatures. This is already discussed in [6]. It is shown there that this property follows
from the GMR definition as restricted in our Definition 2.1, but that the concrete security can
be improved by additional randomization. In the cryptographic library of [5], such an additional
randomization is present in the real system anyway.

For proceeding as in Section 4, one also has to consider the simulator. The example in Section 5.2
shows that the simulator has to make signatures with an arbitrary non-repeating sequence of counter
values. Thus, to define the simulator with a low-level ideal signature system, that system must take
the counter value as an input, instead of incrementing it internally as done in reality.7 Hence for the
overall proof technique with signature submachines, we must prove that the underlying signature
schemes are secure for this behavior. (The proof in [5] does not need this aspect of a signature
scheme.) We are not aware that this follows from Definition 2.2, although we believe that it holds
for all known systems (because the tree constructions are essentially symmetric if one considers all
randomness as chosen in advance, e.g., the third leaf does not depend on the first leaf any more
than vice versa). Nevertheless, this is not easy to point out in, say, the proof in [16].

6 Integrity Idealization Theorem

We have repeatedly mentioned integrity idealization as a common concept for defining certain
low-level ideal functionalities. We now show that this concept can be formalized and used to
mechanically construct many simple ideal systems and the corresponding proofs.

Typically, a cryptographic primitive is defined as a tuple of algorithms (A1, . . . , At), such (gen,

sign, test) for signatures, with certain parameter domains. The security definition is typically given
by an “oracle” (such as the signature oracle Os) interacting with an adversary, where an oracle
call corresponds to an algorithm invocation. A typical integrity property can be (re-)written as
a property of the trace of in- and outputs of the oracle, where the first violation can only occur
by an output of the oracle. For instance, Definition 2.2 is not yet in this form because there is
the “dangling” output (m, sig) of the adversary at the end, but it can be rewritten into this form
by making that output an input to the oracle and by letting the oracle verify that sig is a valid
signature and m a new message. This makes sense particularly for cases like signatures where
the adversary only wins if he can successfully cheat an honest participant with a forgery. Other
examples of such integrity properties are all other authentication properties, the collision-freeness
of a nonce system, and the correctness properties of a payment system.

6Comparing Figure 1 with the corresponding figure in [5], one sees that they did not use the encryption machines
in the simulator and the combined system. This is presumably for the same reason of diverging states.

7This problem disappears for memory-less underlying signature systems. However, as long as memory-less provably
secure systems under standard assumptions are less efficient than their counterparts with memory, it is interesting
to be able to handle systems with memory, too.
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For a system defined by such integrity requirements, we define the corresponding ideal system
by one joint machine, corresponding closely to the oracle, that interacts with the honest users and
the adversary and that, before every output, verifies that the output does not violate the integrity
properties. Thus it fulfils the integrity properties perfectly by definition.

To present this approach as a rigorous theorem, we assume that the real systems and the security
properties are already described in a certain model. (In other words, we do not aim at mechanizing
the translation of an arbitrary rigorous but textual definition of algorithms, parameters, oracles,
and security properties into a particular model.) As in the rest of the paper, we use the model of
[26]. Integrity properties and their cryptographic fulfillment were already defined for it in [3]. As
that definition is geared towards a preservation theorem from ideal systems to real systems, it only
deals with events at the specified ports of a system, i.e., those that honest users can connect to
and that must be equal in the ideal and the real system. We generalize this to arbitrary ports of
the machines, although integrity requirements involving only the specified ports will be the most
common case.8

Briefly, an integrity requirement Req for a set M of machines is a set of traces (i.e., possible
event sequences) over the set of ports of M . We say that Req is input-closed if with every trace
t ∈ Req , also append(t, i) ∈ Req for all inputs i.

As multiple integrity requirements on one machine set can be combined into one by intersection,
we only consider one.

Definition 6.1 Let a set M of machines and an input-closed integrity property Req for M be given.
Then we define the integrity-idealized machine MReq as follows: Let Mcom be the combination of
the given machine set M (as defined in [26]).9 Now MReq acts like Mcom, but before every output,
it verifies that this output retains the integrity property Req. If not, it stops. For this verification,
MReq always keeps track of its prior trace t of all in- and outputs. Given the new potential output
o, it evaluates whether append(t, o) ∈ Req. 3

If we want to make MReq polynomial-time or weakly polynomial-time (i.e., polynomial-time
in the length of its overall inputs), we must presuppose that membership in Req is decidable in
polynomial time.

The definition can be canonically lifted to systems consisting of several structures (as mentioned
in Section 3); formally each structure is a pair (M ,S ) of a set M of machines and a set S of specified
ports. Conversely, the definition of a system fulfilling a requirement from [3] can immediately be
specialized to one structure, and generalized to an arbitrary integrity requirement (i.e., not only
involving specified ports). We denote this by (M ,S ) |= Req , where “|=” may get a superscript
perf, SMALL, or poly for perfect, statistical or computational fulfillment, respectively. Essentially,
the three notions mean that in all valid configurations (M ,S ,H,A) of (M ,S ), i.e., all combinations
with a suitable honest user and adversary, the probability that the restriction of the resulting run
r to the ports of M does not lie in Req , in formulas rdports(M ) 6∈ Req , is zero, or in a class SMALL,
or negligible (as a function of a security parameter k and in the probability space of runs defined
for each k).

The following theorem says that if a structure (M ,S ) fulfils a requirement Req , then it is as
secure as the corresponding integrity-idealized structure (MReq ,S ). Here “≥” denotes “as secure

8We can also generalize it to involve internal states without significant changes in the following definition and
theorem. However, this requires more new notation. Further, one can also transform relevant internal state into
events at ports in standard ways.

9The machines must be combined because the integrity condition is usually not locally verifiable. Otherwise one
would not need a cryptographic implementation of this distributed functionality.
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as”, the simulatability definition guaranteeing composability, and can get the same superscripts as
“|=” if one specifically wants to denote the perfect, statistical or computational case.

Theorem 6.1 If (M ,S ) |= Req, and MReq is constructed according to Definition 6.1, then
(M ,S ) ≥ (MReq ,S ). This holds for the perfect, statistical, and computational case, and with black-
box simulatability. Actually, no simulator is needed. 2

In some sense, the theorem may seem trivial, just like the individual idealizations of signature
systems, but as simulatability implies secrecy aspects, it is worth presenting a short proof.

Proof. (Sketch) We show that for every configuration (M ,S ,H,A) of (M ,S ), the corresponding
configuration (MReq ,S ,H,A) is indistinguishable. Each run r of (M ,S ,H,A) can trivially be mapped
to the same run r of (MReq ,S ,H,A), except if MReq would suppress an output and stop in that
run. Thus the view of H can differ at most for runs with r 6∈ Req , i.e., runs that do not fulfill
the integrity requirement of (M ,S ). This happens with zero, small or negligible probability given
perfect, statistical or computational integrity fulfillment.

Hence the view of H in the two configurations is perfectly, statistically or computationally
indistinguishable, respectively.

An integrity-idealized system formally depends on the real system, like the first instantiation
of this paradigm in [20]. In individual cases this could probably always be alleviated by the
technique from [9] of letting the adversary choose the algorithms, so that the overall low-level ideal
functionality comprises all possible instantiations. We have not worked out what this would mean
at the level of generality of Theorem 6.1, and in all use cases known to us it is not necessary: One
can either assume given algorithms because the low-level idealization is only used to prove a larger
system, e.g., like the algorithm-dependent low-level encryption idealization is used to prove the
algorithm-independent Dolev-Yao style library in [5]. Or a really abstract idealization fits better
because arguing about the evaluation of an arbitrary algorithm input by an adversary is far beyond
the kind of theories implemented in current automated proof tools. In particular, cryptographic
objects that would be output by such arbitrary algorithms can be addressed by handles (names,
pointers) in such an abstraction, as in [5].

7 Conclusion

We have presented a low-level ideal signature functionality that can be realized by every secure
signature scheme that uses memory only for a counter and random values, without additional
techniques like padding or randomization.

However, we also showed multiple pitfalls when using such a low-level idealization for proving a
larger protocol. While we showed this for the specific example of a cryptographic library enabling
Dolev-Yao-style nested terms, we believe that the problems are of a general nature. For instance,
every protocol where some signatures are only sent in encrypted form has the problem from Sec-
tion 5.2, and if such signatures become known to the adversary later in a different order than they
were made, the problems from Section 5.3 are added. (Recall that prior low-level ideal signature
systems cannot handle this case at all.) In most cases, it will be simpler to work either with a real
abstraction, such as the cryptographic library from [5], or directly with the integrity properties.

As a general underpinning for using integrity properties in proofs that otherwise use a compo-
sition theorem, we showed that an arbitrary real system fulfilling an arbitrary integrity property is
automatically as secure as a mechanically derivable low-level idealization.
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