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2IBM Deutschland Entwicklung GmbH, Processor Development 2, Böblingen, Germany

Abstract

We investigate how formal methods can be used for the verification of cryptographic protocols
such that the verified properties are valid for the concrete implementation of the protocol using actual
cryptography. We give an abstract deterministic specification for secure message transmission with
ordered channels along with a possible implementation that we prove to be secure in the sense of
simulatability, which is the cryptographic notion of a secure refinement. The correctness of this
proof relies on a composition theorem and a deterministic bisimulation, which we formally verify
using the theorem prover PVS. We further use PVS to formally verify that message reordering is
in fact prevented in the specification. We finally show that integrity properties are preserved under
simulatability, which allows for carrying over the proven property to the concrete implementation.
This yields the first example ever of a formally verified but nevertheless cryptographically sound
proof of a security protocol.

Keywords: Security, cryptographic protocols, verification, integrity, simulatability

1 Introduction

Many practically relevant cryptographic protocols like SSL/TLS, S/MIME, IPSec, or SET use crypto-
graphic primitives like signature schemes or encryption in a black-box way, while adding many non-
cryptographic features. Vulnerabilities have accompanied the design of such protocols ever since early
authentication protocols like Needham-Schroeder [31, 13], over carefully designed de-facto standards
like SSL and PKCS [40, 9], up to current widely deployed products like Microsoft Passport [17]. How-
ever, proving the security of such protocols has been a very unsatisfactory task for a long time.

One possibility was to take the cryptographic approach. This means reduction proofs between the
security of the overall system and the security of the cryptographic primitives, i.e., one shows that if
an overall system could be broken, one of the underlying cryptographic primitives could also be bro-
ken with respect to their cryptographic definitions, e.g., adaptive chosen-message security for signature
schemes. For authentication protocols, this approach was first used in [8]. In principle, proofs in this
approach are as rigorous as typical proofs in mathematics. In practice, however, human beings are
extremely fallible with this type of proofs. This is not due to the cryptography, but to the distributed-
systems aspects of the protocols. It is well-known from non-cryptographic distributed systems that many
wrong protocols have been published even for very small problems. Hand-made proofs are highly error-
prone because following all the different cases how actions of different machines interleave is extremely

∗Parts of this work were published in [4] and [3]. These parts were done while two of the authors were affiliated with
Saarland University.
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tedious. Humans tend to take wrong shortcuts and do not want to proof-read such details in proofs by
others. If the protocol contains cryptography, this obstacle is even much worse: Already a rigorous
definition of the goals gets more complicated, and often not only trace properties (integrity) have to be
proven but also secrecy. Further, in principle the complexity-theoretic reduction has to be carried out
across all these cases, and it is not at all trivial to do this rigorously. In consequence, there is almost
no real cryptographic proof of a larger protocol, and several times supposedly proven, relatively small
systems were later broken, e.g., [36, 14].

The other possibility was to use formal methods. There one leaves the tedious parts of proofs to
machines, i.e., model checkers or automatic theorem provers. This means to code the cryptographic
protocols into the language of such tools, which may need more or less start-up work depending on
whether the tool already supports distributed systems or whether interaction models have to be encoded
first. None of these tools, however, is currently able to deal with reduction proofs. Nobody even thought
about this for a long time, because one felt that protocol proofs could be based on simpler, idealized
abstractions from cryptographic primitives. Almost all these abstractions are variants of the Dolev-Yao
model [15], which represents all cryptographic primitives as operators of a term algebra with cancel-
lation rules. For instance, public-key encryption is represented by operators E for encryption and D

for decryption with one cancellation rule, D(E(m)) = m for all m. Encrypting a message m twice in
this model does not yield another message from the basic message space but the term E(E(m)). Fur-
ther, the model assumes that two terms whose equality cannot be derived with the cancellation rules
are not equal, and every term that cannot be derived is completely secret. However, originally there
was no foundation at all for such assumptions about real cryptographic primitives, and thus no guaran-
tee that protocols proved with these tools were still secure when implemented with real cryptography.
Although no previously proved protocol has been broken when implemented with standard provably
secure cryptosystems, this was clearly an unsatisfactory situation, and artificial counterexamples can be
constructed.

Three years ago, efforts started to get the best of both worlds. Essentially, [35, 37] started to define
general cryptographic models that support idealization that is secure in arbitrary environments and under
arbitrary active attacks, while [2] started to justify the Dolev-Yao model as far as one could without such
a model. Both directions were significantly extended in subsequent papers, in particular [1, 38, 11].

Nevertheless, none of these papers actually used formal proof tools for the verification of a concrete
cryptographic protocol. We close this gap by presenting the first tool-supported security proof of a
cryptographic protocol such that the proof is valid with respect to the cryptographic semantics. Our
paper is based on a model of reactive systems in asynchronous networks [38], and it essentially consists
of two parts:

In the first part, we define integrity properties in the underlying model, and we prove that they are
preserved under simulatability, which captures the cryptographic notion of a secure refinement. This
means that integrity properties automatically carry over from an abstract specification to a concrete
implementation if the implementation is proved to be secure in the sense of simulatability, Moreover,
we show that logic derivations among integrity properties are valid for the concrete implementation in
the cryptographic sense, which is essential to make the properties accessible to theorem provers.

The second part of this paper is dedicated to the actual verification of a cryptographic protocol:
secure message transmission with ordered channels. We present a detailed deterministic specification of
secure message transmission with ordered channels and we subsequently derive a secure implementation
by refining the specification with respect to simulatability. The correctness proof of this refinement
mainly relies on a composition theorem of the underlying model and of a deterministic bisimulation
which we formally verify in a theorem proving system. We finally verify the desired integrity property
– preventing message reordering – for the specification, and we use the integrity preservation theorem
established in the first part of this work to carry over this property to the concrete secure implementation.
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This yields the first example of a machine-aided proof of a cryptographic protocol that is neverthe-
less sound with respect to the cryptographic definitions.

Related Literature Both the cryptographic and the idealizing approach at proving cryptographic sys-
tems started in the early 80s. Early examples of cryptographic definitions and reduction proofs are
[19, 20]. Applied to protocols, these techniques are at their best for relatively small protocols where
there is still a certain interaction between cryptographic primitives, e.g., [7, 39]. The early methods
of automating proofs based on the Dolev-Yao model are summarized in [24]. More recently, such
work concentrated on using existing general-purpose model checkers [27, 30, 12] and theorem provers
[16, 34], and on treating larger protocols, e.g., [6].

Work intended to bridge the gap between the cryptographic approach and the use of automated
tools started independently with [35, 37] and [2]. In [2], Dolev-Yao terms, i.e., with nested operations,
are considered specifically for symmetric encryption. However, the adversary is restricted to passive
eavesdropping. Consequently, it was not necessary to define a reactive model of a system, its honest
users, and an adversary, and the security goals were all formulated as indistinguishability of terms. This
was extended in [1] from terms to more general programs, but the restriction to passive adversaries
remains, which is not realistic in most practical applications. Further, there are no theorems about
composition or property preservation from the abstract to the real system. Several papers extended this
work for specific models or specific properties. For instance, [21] specifically considers strand spaces
and information-theoretically secure authentication only. In [25] a deduction system for information
flow is based on the same operations as in [2], still under passive attacks only.

The approach in [35, 37] was from the other end: It starts with a general reactive system model,
a general definition of cryptographically secure implementation by simulatability, and a composition
theorem for this notion of secure implementation. This work is based on definitions of secure function
evaluation, i.e., the computation of one set of outputs from one set of inputs [18, 29, 5, 10]; earlier
extensions towards reactive systems were either without real abstraction [26] or for quite special cases
[22]. The approach was extended from synchronous to asynchronous systems in [38, 11]. All the
reactive works come with more or less worked-out examples of abstractions of cryptographic systems,
however they have not investigated the use of formal methods for the verification of a concrete example.

The relationship between integrity properties and simulatability was investigated in [37], where it
was shown that integrity properties are preserved under simulatability for a synchronous timing model.
However, a synchronous definition of time is difficult to justify in the real world since no notion of
rounds is naturally given there and it seems to be very difficult to establish them for the Internet for
example. In contrast to that, asynchronous scenarios are attractive, because no assumptions are made
about network delays and the relative execution speed of the parties. Technically, the first part of our
work can be seen as an extension of the results of [37] to asynchronous scenarios. This extension is not
trivial since synchronous time is much easier to handle; moreover, both models do not only differ in the
definition of time but also in subtle, but important details.

Organization of the Paper We start with a brief review of the model for reactive systems in asyn-
chronous networks from [38] in Section 2. In Section 3 we define what it means for a system to provide
integrity properties in a cryptographic sense. We then prove that (1) proofs of such properties made for
an abstract specification also hold for the concrete implementation and (2) that logic derivations among
integrity properties are valid for the concrete implementation with respect to cryptographic definitions.
Section 4 contains our specification of secure message transmission with ordered channels. We give a
possible implementation in Section 5, which is shown to securely implement the specification in Sec-
tion 6, 7, and 8. More precisely, Section 6 establishes a security proof by defining a so-called simulator,
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Figure 1: Ports and buffers.

and by applying a deterministic bisimulation for proving the correctness of the refinement. Section 7
deals with the actual verification of the bisimulation within the theorem proving system PVS [33]. In
Section 8 we finally verify that message reordering is in fact prevented for the deterministic specifica-
tion, again using PVS, and we use our preservation theorem to show that the verified property carries
over to the concrete implementation. Section 9 summarizes.

2 The Model for Reactive Systems

In this section, we recapitulate the model for asynchronous probabilistic reactive systems as introduced
by Pfitzmann and Waidner in [38].

Several definitions will only be sketched, whereas those that are important for understanding our
upcoming definitions and proofs are given in full detail. All other details can be looked up in the
original paper.

2.1 General System Model

Systems mainly are compositions of several machines. Usually we consider real systems that are built
by a set M̂ of machines {M1, . . . ,Mn}, one for each user u from a set M = {1, . . . , n}, and ideal
systems built by one machine {TH}.

Communication between different machines is done via ports using messages composed from an
alphabet Σ. Inspired by the CSP-Notation [23], we write output and input ports as q! and q? respectively.
The ports of a machine M are denoted by ports(M). The subset of input and output ports are denoted by
in(ports(M)) and out(ports(M)), respectively. Channels are defined implicitly by naming convention,
that is port q! sends messages to q?. To achieve asynchronous timing, a message is not directly sent to
its recipient, but it is first stored in a special machine q̃ called a buffer and waits to be scheduled. If a
machine wants to schedule the i-th message of buffer q̃ (this machine must have the unique clock-out
port q/!) it simply sends i at q/!, see Figure 1. The buffer then schedules the i-th message and removes
it from its internal list. In our case, most buffers are either scheduled by a master scheduler or the
adversary, i.e., one of those has the clock-out port. In [38] the adversary and the master scheduler are
the same entity. This gives the adversary complete control over the overall scheduling of network traffic
and models the worst-case behavior we usually have to expect in an asynchronous system. We define
the complement pc of a port p to be the port which it connects to according to Figure 1, i.e., q!c = q↔?,
q/!c = q/?, q↔!c = q?, and vice versa. We use the same notation for sets of ports.

After introducing ports, we now focus on the definition of machines. Our machine model is prob-
abilistic state-transition machines, similar to probabilistic I/O automata as sketched by Lynch [28]. If
a machine is switched, it receives an input tuple at its input ports and performs its transition function
yielding a new state and an output tuple in the deterministic case, or a finite distribution over the set of
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states and possible outputs in the probabilistic case. At each switching step of one particular machine,
at most one value can arrive at every input port and the machine can produce at most one output per
port. Furthermore, each machine has a bound on the length of the considered inputs which allows time
bounds independent of the environment.

Definition 2.1 (Machines) A machine is a tuple

M = (nameM,PortsM,StatesM, δM, lM, IniM,FinM)

of a name nameM ∈ Σ+, a finite sequence PortsM of ports (i.e., PortsM = ports(M)), a set StatesM ⊆
Σ∗ of states, a computable probabilistic state-transition function δM, a length function lM : StatesM →
(N ∪ {∞})|in(PortsM)|, and sets IniM,FinM ⊆ StatesM of initial and final states. Its input set is IM :=
(Σ∗)|in(PortsM)|; the i-th element of an input tuple denotes the input at the i-th in-port. Its output set is
OM := (Σ∗)|out(PortsM)|. The empty word, ε, denotes no in- or output at a port. δM probabilistically
maps each pair (s, I) ∈ StatesM×IM of state and inputs to a pair (s′, O) ∈ StatesM×OM of successor
states and outputs. Following two restrictions apply to δM: (1) The induced output distribution has to be
finite, and (2) if s ∈ FinM or I = (ε, . . . , ε), then δM(s, I) maps always to the same state and no output,
i.e, (s, (ε, . . . , ε)). Inputs are ignored beyond the length bounds, i.e., δM(s, I) = δM(s, IdlM(s)) for all
I ∈ IM, where Rdl:= (rdl)r∈R for R ∈ (Σ∗)∗ and rdl denotes the l-bit prefix of a sequence r ∈ Σ∗. 3

In the text, we often write “M” also for nameM. We only briefly state here that these machines have a
natural realization as a probabilistic Turing machine.

A collection Ĉ of machines is a finite set of machines with pairwise different machine names and
disjoint sets of ports. The completion [Ĉ ] of a collection Ĉ is the union of all machines of Ĉ and the
buffers needed for every channel. A port of a collection is called free if its connecting port is not in the
collection. These port will be connected to the users and the adversary. The free ports of a completion
[Ĉ ] are denoted as free([Ĉ ]). A collection Ĉ is called closed if its completion [Ĉ ] has no free ports
except a special master clock-in port clk/?, i.e., free([Ĉ ]) = {clk/?}. The master clock-in port clk/? is
used to give control to the master scheduler as shown below. By convention, we assume that the master
scheduler expects a 1 as input on this port.

A closed collection represents a “runnable” system. For such a closed collection, a probability space
of runs (sometimes called traces or executions) is defined. Scheduling of machines is done sequentially,
so we have exactly one active machine M at any time. If this machine has clock-out ports, it is allowed
to select the next message to be scheduled as explained above. If that message exists, it is delivered by
the buffer and the unique receiving machine is the next active machine. If M tries to schedule multiple
messages, only one is taken, and if it schedules none or the message does not exist, the special master
scheduler is scheduled. Formally, runs are defined as follows.

Definition 2.2 (Runs) Given a closed collection Ĉ with master scheduler X and a tuple ini ∈ Ini
Ĉ

:=
×

M∈Ĉ
IniM of initial states, the probability space of runs is defined inductively by the following al-

gorithm. It has a variable r for the resulting run, an initially empty list, a variable MCS (“current
scheduler”) over machine names, initially MCS := X, and treats each port as a variable over Σ∗, ini-
tialized with ε except for clk/? := 1. Probabilistic choices only occur in Step (1).

1. Switch current scheduler: Switch machine MCS, i.e., for a given current state s and in-port values
I , set the new state and output (s′, O) to the output of δMCS

(s, I). Then assign ε to all in-ports of
MCS.

2. Termination: If X is in a final state, the run stops.
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3. Buffer messages: For each simple out-port q! of MCS, in their given order, switch buffer q̃ with
input q↔? := q!, cf. Figure 1. Then assign ε to all these ports q! and q↔?.

4. Clean up scheduling: If at least one clock out-port of MCS has a value 6= ε, let q/! denote the first
such port and assign ε to the others. Otherwise let clk/? := 1 and MCS := X and go back to
Step (1).

5. Scheduled message: Switch q̃ with input q/? := q/! (cf. Figure 1), set q? := q↔! and then assign
ε to all ports of q̃ and to q/!. Let MCS := M′ for the unique machine M′ with q? ∈ ports(M′). Go
back to Step (1).

Whenever a machine (this may be a buffer) with name nameM is switched from (s, I) to (s′, O), we add
a step (nameM, s, I ′, s′, O) to the run r for I ′ := IdlM(s), except if s is final or I ′ = (ε, . . . , ε). This
gives a family of random variables indexed by the possible initial states

run
Ĉ

:= (run
Ĉ ,ini

)ini∈Ini
Ĉ
.

For a number l ∈ N, l-step prefixes run
Ĉ ,ini ,l

of runs are defined in the obvious way. For a function
l(·) : Ini

Ĉ
→ N, this gives a family run

Ĉ ,l(·) = (run
Ĉ ,ini ,l(ini))ini∈Ini

Ĉ
. 3

Definition 2.3 (Views and Restrictions to Ports) The view of a subset M̂ of a closed collection Ĉ in a
run r is the restriction of r to M̂ , i.e., the subsequence of all steps (nameM, s, I, s′, O) where nameM is
the name of a machine M ∈ M̂ . Similarly, for a set S of ports, we define the restriction rdS of a run r to
the set S , i.e., for every step of the run, we leave out the name nameM and the states s, s′, and restrict
the sets I and O to the ports in S . This gives two families of random variables

view
Ĉ

(M̂ ) = (view
Ĉ ,ini

(M̂ ))ini∈Ini
Ĉ

and

run
Ĉ
dS= (run

Ĉ ,ini
dS )ini∈Ini

Ĉ

and similarly for l-step prefixes. For a singleton M̂ = {H} we write view
Ĉ

(H) instead of view
Ĉ

({H}).
3

2.2 Security-specific System Model

For security purposes, special collections are needed, because an adversary may have taken over parts
of the initially intended system. Therefore, a system consists of several possible remaining structures.
First, the system part is defined and then the environment, consisting of users and adversaries.

Definition 2.4 (Structures and Systems)

a) A structure is a pair struc = (M̂ ,S ) where M̂ is a collection of simple machines (i.e., with only
normal in- and output ports and clock-out ports) called correct machines, and S ⊆ free([M̂ ])
is called specified ports. If M̂ is clear from the context, let S̄ := free([M̂ ]) \ S . We call
forb(M̂ ,S ) := ports(M̂ ) ∪ S̄ c the forbidden ports, i.e., those ports that an honest user should be
forbidden to have. (The ports in ports(M̂ ) belong to the structure and must hence not be used by
the user because of name clashes; the ports in S̄ c should belong to the adversary.)

b) A system Sys is a set of structures. It is polynomial-time iff all machines in all its collections M̂

are polynomial-time.

3
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The separation of the free ports into specified ports and others is an important feature of the upcoming
security definitions. The specified ports are those where a certain abstract service is guaranteed. Typical
examples of inputs at specified ports are “send message m to id” for a message transmission system or
“pay amount x to id” for a payment system. The ports in S̄ are additionally available for the adversary.
The ports in forb(M̂ ,S ) will therefore be forbidden for an honest user to have.

A structure can be completed to a configuration by adding machines H and A, modeling the joint
honest users and the adversary, respectively. The machine H is restricted to the specified ports S , A

connects to the remaining free ports of the structure and both machines can interact, e.g., in order to
model active attacks.

Definition 2.5 (Configurations)

a) A configuration of a system Sys is a tuple conf = (M̂ ,S ,H,A) where (M̂ ,S ) ∈ Sys is a struc-
ture, H is a machine without forbidden ports, i.e., ports(H)∩ forb(M̂ ,S ) = ∅, and the completion
Ĉ := [M̂ ∪ {H,A}] is a closed collection. The set of configurations is written Conf(Sys).

b) The initial states of all machines in a configuration are a common security parameter k in unary
representation. This means that we consider the families of runs and views of the collection Ĉ re-
stricted to the subset Ini ′

Ĉ
:= {(1k)

M∈Ĉ
|k ∈ N} of Ini

Ĉ
. We write runconf and view conf (M̂ ) for

the families run
Ĉ

and view
Ĉ

(M̂ ) restricted to Ini ′
Ĉ

, and similar for l-step prefixes. Furthermore,
we identify Ini ′

Ĉ
with N and thus write runconf ,k etc. for the individual random variables.

c) The set of configurations of Sys with polynomial-time user H and adversary A is called
Confpoly(Sys). The index poly is omitted if it is clear from the context.

3

We only briefly state here that several machines can be combined into one single machine (which has the
original machines as submachines), cf. [38] for more details. Moreover, the view of every submachine
remains unchanged by this combination.

2.3 Defining Security with Simulatability

As we will see below, the system model provides a powerful instrument to compare two systems and to
assess whether one system securely implements another one. Based on this, our approach in defining
security is as follows: (1) We define the abstract specification of a secure service as an ideal system Sys id

consisting of a single machine TH. Given the simplicity of the idealized machine, the correctness of the
specification is often intuitively clear. Furthermore, we can gain additional confidence by analyzing TH

using formal methods and automated tools. (2) Given any concrete real system Sys real implementing
the desired service, we then prove its security by showing that it securely implements Sys id.

The definition of one system securely implementing another one is based on the common concept
of simulatability. The notion of simulatability was introduced in [41] and has asserted its position as
a fundamental concept of modern cryptography. Simulatability essentially means that whatever might
happen to an honest user in a concrete system Sys real can also happen in an ideal system Sys id. As by
definition only good things can happen in the ideal system, simulatability guarantees that no bad things
can happen in the real system. More precisely, for every configuration conf 1 ∈ Conf(Sys real), there
exists a configuration conf 2 ∈ Conf(Sys id) yielding indistinguishable views of the same user in both
configurations. We abbreviate this by Sys real ≥sec Sys id and we say that Sys real is “at least as secure”
as the system Sys id. A typical situation is illustrated in Figure 2.
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Figure 2: Example of simulatability. The view of H is compared.

However, we do not want to compare a structure (M̂1,S1) ∈ Sys real with arbitrary structures of
Sys id, but only with certain “suitable” ones. What suitable actually means can be defined by a mapping
f from Sys real to the powerset of Sys id. The mapping f is called valid if it maps structures with the
same set of specified ports.

The upcoming simulatability definition is based on indistinguishability of views.

Definition 2.6 (Indistinguishability) Two families (vark)k∈N and (var′k)k∈N of random variables (or
probability distributions) on common domains Dk are

a) perfectly indistinguishable (“=”) if for each k, the two distributions vark and var′k are identical.

b) statistically indistinguishable (“≈SMALL”) for a suitable class SMALL of functions from N to
R≥0 if the distributions are discrete and their statistical distances

∆(vark, var
′
k) :=

1

2

∑

d∈Dk

|P (vark = d) − P (var′k = d)| ∈ SMALL

(as a function of k). SMALL must be closed under addition, and with a function g also contain
every function g′ ≤ g.

c) computationally indistinguishable (“≈poly”) if for every algorithm Dis (the distinguisher) that is
probabilistic polynomial-time in its first input,

|P (Dis(1k, vark) = 1) − P (Dis(1k, var′k) = 1)| ∈ NEGL.

Intuitively, given the security parameter and an element chosen according to either vark or var′k,
Dis tries to guess which distribution the element came from. The class NEGL denotes the set of all
negligible functions, i.e., g : N → R≥0 ∈ NEGL if for all positive polynomials Q, ∃k0∀k ≥ k0 :
g(k) ≤ 1/Q(k).

We write ≈ if we want to treat all three cases simultaneously. 3

We now present the simulatability definition.

Definition 2.7 (Simulatability) Let systems Sys 1 and Sys2 with a valid mapping f be given.

a) We say Sys1 ≥f,perf
sec Sys2 (perfectly at least as secure as) if for every configuration conf 1 =

(M̂1,S ,H,A1) ∈ Conf(Sys1), there exists a configuration conf 2 = (M̂2,S ,H,A2) ∈
Conf(Sys2) with (M̂2,S ) ∈ f(M̂1,S ) (and the same H) such that

view conf
1
(H) = view conf

2
(H).

8
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Figure 3: Composition of Systems.

b) We say Sys1 ≥f,SMALL
sec Sys2 (statistically at least as secure as) for a class SMALL if the same

as in a) holds with view conf
1
,l(H) ≈SMALL view conf

2
,l(H) for all polynomials l, i.e., statistical

indistinguishability of all families of l-step prefixes of the views.

c) We say Sys1 ≥f,poly
sec Sys2 (computationally at least as secure as) if the same as in a) holds with

configurations from Confpoly(Sys1) and Confpoly(Sys2) and computational indistinguishability
of the families of views.

In all cases, we call conf 2 an indistinguishable configuration for conf 1. Where the difference between
the types of security is irrelevant, we simply write ≥f

sec, and we omit the index f if it is clear from the
context. 3

Clearly, perfect simulatability implies statistical simulatability for every non-empty class SMALL. Sim-
ilarly, statistical simulatability for a class SMALL implies computational simulatability if SMALL ⊆
NEGL.

An important feature of the system model is transitivity of ≥sec, i.e., the preconditions Sys1 ≥sec

Sys2 and Sys2 ≥sec Sys3 together imply Sys1 ≥sec Sys3, which has been proved in [38].

2.4 Composition

We conclude this section with a brief review of what has already been proven about composition of
reactive systems. Assume that we have already proven that a system Sys 0 is at least as secure as
another system Sys ′0. Typically Sys0 is a concrete system whereas Sys ′0 is an ideal specification of
the concrete system. If we now consider larger protocols that use Sys ′

0 as an ideal primitive we would
like to securely replace it with Sys0. In practice this means that we replace the specification of a system
with its implementation yielding a concrete system.

Usually, replacing means that we have another system Sys 1 using Sys ′0; we call this composition
Sys∗, cf. Figure 3. We now want to replace Sys ′0 with Sys0 inside of Sys∗ which gives a composition
Sys#. Typically Sys# is a completely real system whereas Sys ∗ is at least partly ideal. This is illustrated
in the left and middle part of Figure 3. The composition theorem now states that this replacement
maintains security, i.e., Sys# is at least as secure as Sys∗ (see [38] for details).

However, typically a specification of the overall system should not prescribe that the implementation
must have two subsystems; e.g., in specifying a payment system, it should be irrelevant whether the
implementation uses secure message transmission as a subsystem. Hence, the overall specification is
typically monolithic, cf. Sys spec in Figure 3. Moreover, such specifications are well-suited for formal
verification, because they typically are deterministic and single machines are furthermore much easier
to validate. Our specification in Section 4 is of this kind.
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3 Integrity Properties

In this section, we show how the relation “at least as secure as” relates to integrity properties a system
should fulfill, e.g., safety properties expressed in temporal logic.

3.1 Definition of Integrity Properties

As a rather general version of integrity properties, independent of the concrete formal language, we
consider those that have a linear-time semantics, i.e., that correspond to a set of allowed traces of in- and
outputs. We allow different properties for different sets of specified ports, since different requirements
of various parties in cryptography are often made for different trust assumptions. We will show later on
that integrity properties are preserved under simulatability which allows sound refinement of abstract
systems. Clearly this can only hold for properties formulated in terms of inputs and outputs at the
specified ports of a given structure, since only these ports are considered by simulatability.

Definition 3.1 (Integrity Properties) An integrity property Req for a system Sys is a function that
assigns to each set S with (M̂ ,S ) ∈ Sys a set of traces at the ports in S . Informally speaking, Req

states which are the “good” traces for the given structure. More precisely such a trace is a sequence
(vt)t∈I of values over port names and Σ∗ with I = {1, . . . , l} for l ∈ N or I = N, i.e., sets of port-value
pairs so that vt is of the form vt :=

⋃
p∈S′{p : vp,t} for a subset S ′ ⊆ S and vp,t ∈ Σ∗. Intuitively, S ′

contains those ports where “something happens”. 3

After introducing what integrity properties are, we have to define what it means that a system fulfills
them. We will see that there are different grades of fulfillment. We distinguish between perfect, statis-
tical, and computational fulfillment, depending on whether the integrity property always holds, or only
with overwhelming probability, i.e., the probability of failure should be statistically small or negligible
in polynomial-time configurations, respectively.

Definition 3.2 (Fulfillment of Integrity Properties) Let an arbitrary system Sys and an integrity prop-
erty Req for Sys be given. Then Sys fulfills Req

a) perfectly (written Sys |=perf Req ) if for any configuration conf = (M̂ ,S ,H,A) ∈ Conf(Sys),
the restrictions rdS of all runs of this configuration to the specified ports S lie in Req(S ). In
formulas, [(runconf ,kdS )] ⊆ Req(S ) for all k, where [·] denotes the carrier set of a probability
distribution.

b) statistically for a class SMALL (Sys |=SMALL Req ) if for any configuration conf = (M̂ ,S ,
H,A) ∈ Conf(Sys), the probability that Req(S ) is not fulfilled is small, i.e., for all polynomials l
(and as a function of k),

P (runconf ,k ,l(k)dS 6∈ Req(S )) ∈ SMALL.

The class SMALL must be closed under addition and making functions smaller.

c) computationally (Sys |=poly Req ) if for any polynomial configuration conf = (M̂ ,S ,H,A) ∈
Confpoly(Sys), the probability that Req(S ) is not fulfilled is negligible, i.e.,

P (runconf ,kdS 6∈ Req(S )) ∈ NEGL.

For the computational and statistical case, the trace has to be finite. Note that a) is normal fulfillment.
We write “|=” if we want to treat all three cases together. 3

10



H

M

A

S

H

M

A
s

S

H
1

H
s

^ ^

Figure 4: Sketch of the proof of Lemma 3.1

Obviously, perfect fulfillment implies statistical fulfillment for every non-empty class SMALL and
statistical fulfillment for a class SMALL implies fulfillment in the computational case if SMALL ⊆
NEGL.

3.2 Preservation of Integrity Properties Under Refinement

In this section, we show that our definitions of integrity properties and their fulfillment behaves well
under simulatability. Usually, defining a cryptographic system starts with an abstract specification stat-
ing what the system should do. After that, this specification can be refined stepwise with respect to
simulatability, which finally yields a secure implementation. At this time, we may wonder whether the
verification of these properties made for the ideal specification carries over to the concrete implementa-
tion. This is essential for modular proofs. We can answer this question in the affirmative yielding the
preservation theorem presented below.

The actual proof will be done by contradiction, i.e., we will show that if the concrete implementation
did not fulfill its goals, the two systems could be distinguished. However, in order to exploit simulatabil-
ity, we have to consider an honest user that connects to all specified ports. Otherwise, the contradiction
might stem from those specified ports which are connected to the adversary, but those ports are not
considered by simulatability. The following lemma circumvents this problem:

Lemma 3.1 Let a system Sys be given. For every configuration conf = (M̂ ,S ,H,A) ∈ Conf(Sys),
there is a configuration confs = (M̂ ,S ,Hs,As) ∈ Conf(Sys) with S ⊆ ports(Hs), such that
runconf dS= runconfsdS , i.e., the probability of the runs restricted to the set S of specified ports is
identical in both configurations. If conf is polynomial-time, then confs is also polynomial-time. 2

Proof (sketch). Since the proof is quite technical, we only give a brief sketch. For a complete proof we
refer the reader to Appendix A. We define a new machine H1 which is inserted between the system and
the adversary, so that H1 now exactly uses the specified ports formerly connected to A (cf. Figure 4).
This machine mainly forwards messages, so it does not change the probability of the runs at the specified
ports. Combination of H1 and the original H yields the intended user Hs. The adversary As is mainly
derived by port renaming of A with the only difference that clock-out ports of A have to be simulated
by As in a different way, mainly by additional output ports. This will give us a configuration confs ∈
Conf(Sys) as shown in the right side of Figure 4, where the honest user Hs connects to all specified ports.
The main difficulty of the proof is that we have to ensure that the new honest user Hs is polynomial-
time in case of a polynomial-time configuration. This aspect requires a thorough look at the details and
significantly lengthens the proof, cf. Appendix A.

Before we now turn our attention to the actual preservation theorem, we state the following well-known
lemma which we will need in the theorem’s proof.
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Lemma 3.2 The statistical distance ∆(φ(vark), φ(var′k)) between a function φ of two random variables
is at most ∆(vark, var

′
k). 2

Theorem 3.1 (Preservation of Integrity Properties) Let a system Sys 2 be given that fulfills an in-
tegrity property Req , i.e., Sys2 |= Req , and let Sys1 ≥f

sec Sys2 for a valid mapping f . Then also
Sys1 |= Req . This holds in the perfect and statistical sense, and in the computational sense if member-
ship in the set Req(S ) is decidable in polynomial time for all S . 2

Proof. Req is well-defined on Sys1, since simulatability implies that for each (M̂1,S1) ∈ Sys1 there
exists (M̂2,S2) ∈ f(M̂1,S1) with S1 = S2. We will now prove that if Sys1 did not fulfill the property,
the two systems could be distinguished yielding a contradiction.

Assume that a configuration conf 1 = (M̂1,S1,H,A1) ∈ Conf(Sys1) contradicts the theorem. As
already described above, we need an honest user that connects to all specified ports. This is precisely
what Lemma 3.1 does, i.e., there is a configuration conf s,1 in which the user connects to all specified
ports, with runconf s,1

dS1
= runconf

1
dS1

, so conf s,1 also contradicts the theorem. Note that all specified
ports are now connected to the honest user; thus, we can exploit simulatability. In the proof for the
synchronous timing model, this problem was avoided by combining the honest user and the adversary
to the new honest user. However, in the asynchronous model, this combination contradicts the definition
of configurations, since this user would not be valid any more, cf. Definition 2.5.

Because of our precondition Sys1 ≥f
sec Sys2, there exists an indistinguishable configuration

conf s,2 = (M̂ ,S ,Hs,A2) ∈ Conf(Sys2), i.e., view conf s,1
(Hs) ≈ viewconf s,2

(Hs). By assumption,
the property is fulfilled for this configuration conf s,2 (perfectly, statistically, or computationally). Fur-
thermore, the view of Hs in both configurations contains the trace at S := S1 = S2.

In the perfect case, the distributions of the views are identical. This immediately contradicts the
assumption that [(runconf s,1,kdS )] 6⊆ Req(S ) while [(runconf s,2,kdS )] ⊆ Req(S ).

In the statistical case, let any polynomial l be given. The statistical distance ∆(view conf s,1,k,l(k)(Hs),

view conf s,2,k,l(k)(Hs)) is a function g(k) ∈ SMALL. We apply Lemma 3.2 to the characteristic function
1vdS 6∈Req(S) on such views v. This gives

|P (runconf s,1,k,l(k)dS 6∈ Req(S )) − P (runconf s,2,k,l(k)dS 6∈ Req(S ))| ≤ g(k).

As SMALL is closed under addition and under making functions smaller, this gives the desired contra-
diction.

In the computational case, we define a distinguisher Dis: Given the view of machine Hs, it extracts
the run restricted to S and verifies whether the result lies in Req(S ). If yes, it outputs 0, otherwise 1. This
distinguisher is polynomial-time (in the security parameter k) because the view of Hs is of polynomial
length, and membership in Req(S ) was required to be polynomial-time decidable. Its advantage in
distinguishing is

|P (Dis(1k, view conf s,1,k) = 1) − P (Dis(1k, view conf s,2,k) = 1)|

= |P (runconf s,1,kdS 6∈ Req(S )) − P (runconf s,2,kdS 6∈ Req(S ))|.

If the difference were negligible, then the first term would have to be negligible because the second term
is and NEGL is closed under addition. Again this yields the desired contradiction.

3.3 Logic Derivations

In order to apply this theorem to integrity properties formulated in a logic, e.g., temporal logic, we have
to show that abstract derivations in the logic are valid with respect to the cryptographic sense. This can
be proven similar to the version with synchronous time, we only include it for reasons of completeness.
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Theorem 3.2 Let Sys be a system, and Req 1, Req2 be integrity properties for Sys . Then the following
holds:

a) If Sys |= Req1 and Req1 ⊆ Req2, then also Sys |= Req 2.

b) If Sys |= Req1 and Sys |= Req2, then also Sys |= Req 1 ∩ Req2.

Here “⊆” and “‘∩” are interpreted pointwise, i.e., for each S . This holds in the perfect and statistical
sense, and in the computational sense if for a) membership in Req 2(S ) is decidable in polynomial time
for all S . 2

Proof. Part a) is trivially fulfilled in all three cases. Part b) is trivial in the perfect case. For the statistical
case and every conf = (M̂ ,S ,H,A) ∈ Conf(Sys),

P (runconf ,k ,l(k)dS 6∈ (Req1(S ) ∩Req2(S ))

≤ P (runconf ,k ,l(k)dS 6∈ Req1(S )) + P (runconf ,k ,l(k)dS 6∈ Req2(S )) ∈ SMALL

because both summands are in SMALL which is closed under addition. The computational case holds
analogously because NEGL is closed under addition.

The first part of Theorem 3.2 resembles the Boolean “implies” operator, whereas the second part resem-
bles the Boolean “and”. We now have to show that the common deduction rules hold. For example,
we consider modus ponens, i.e., if one has derived that a and a → b are valid in a given model, then
b is also valid in this model. If Reqa etc. denote the semantics of the formulas, i.e., the trace sets they
represent, we have to show that

(Sys |= Reqa and Sys |= Reqa→b) implies Sys |= Reqb .

From Theorem 3.2b we conclude Sys |= Reqa∩Reqa→b . Obviously, Reqa ∩Reqa→b = Reqa∧b ⊆ Reqb

holds, so the claim follows from Theorem 3.2a.

4 A Specification for Secure Message Transmission in Correct Order

In this section an abstract specification for ordered secure message transmission is presented, so neither
reordering the messages in transit nor replay attacks are possible for the adversary. In the subsequent
sections, a secure implementation for this specification is derived following the composition approach
from Section 2.4. We include all definition details like ports and structures as needed for the notion of
simulatability because the abstract specification is the abstract cryptographic module based on which
protocols should be proved in future work. Hence it has to be defined precisely, and encoded faithfully
into proof tools. We start with a brief review on standard cryptographic systems.

4.1 A Brief Review of Standard Cryptographic Systems

In real life, every user u usually has exactly one machine Mu, which is correct if and only if its user
is honest. The machine Mu has special ports inu? and outu ! for connecting to the user u. A standard
cryptographic system Sys can now be derived by a trust model, which consists of an access structure
ACC and a channel model χ. If n denotes the number of participants, then ACC is a set of subsets H of
M := {1, . . . , n} and denotes the possible sets of correct machines. For each set H there will be exactly
one structure consisting of the machines belonging to the set H; the remaining machines are considered
part of the adversary. The channel model classifies every connection as secure (private and authentic),
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authenticated or insecure and derives the correspondent network connectivity. These changes can easily
be done via port renaming and duplication (cf. [38]). For a fixed set H and a fixed channel model, we
obtain a modified machine Mu,H for every machine Mu with u ∈ H. We denote the set of them by M̂H

(i.e., M̂H := {Mu,H | u ∈ H}), so real systems are given by Sys real = {(M̂H,SH) | H ∈ ACC}. Ideal
systems are typically of the form Sys id = {({THH},SH) | H ∈ ACC} with the same sets SH as in the
corresponding real system Sys real, i.e., each structure consists of only one machine THH that we refer
to as trusted host.

4.2 The Abstract Specification

Given a number n of participants and a tuple L of parameters (about lengths and bounds) discussed in
Section 4.2.1, our specification is a typical ideal system

Sys
OSM,spec
n,L = {(THOSM

H ,SOSM
H ) | H ∈ {1, . . . , n}}

as described in Section 4.1, where H denotes the set of honest users (i.e., the access structure makes no
restriction on the possible corruptions). When H is clear from the context, let A := M\H denote the
indices of corrupted machines. The ideal machine THOSM

H models initialization, sending and receiving
of messages. The ports of THOSM

H intended for the users are

userportsOSM
H := {inu?, outu !, outu

/! | u ∈ H}.

Intuitively each u represents one user. The ports of the users which connect to those ports are

SOSM
H

c
:= {inu !, outu?, inu

/! | u ∈ H}.

For the adversary, the machine THOSM
H offers ports

advportsOSM
H := {from advu?, to advu !, to advu

/! | u ∈ H}.

Altogether, this yields

ports(THOSM
H ) := userportsOSM

H ∪ advportsOSM
H .

4.2.1 Lengths and Bounds

To allow a polynomial-time implementation to be as secure as this abstract specification, we use func-
tions max len, max in user, and max in adv bounding the length of each message that should be trans-
mitted, the number of inputs that THH accepts from each user, and the number of inputs that THH

accepts from the adversary for each user, respectively. The tuple of these three functions is the system
parameter L. Each function must be bounded by a polynomial and efficiently computable.

The reason for including these functions is to ensure that only a polynomial number of inputs will
be processed by the machine THOSM

H independent of the environment. This is essential for applying
existing results of the underlying model, in particular for the composition theorem. For real applications,
one would choose these functions so large that they will never be reached.

4.2.2 States

The state of THOSM
H consists of seven arrays:

• (sc inOSM
u )u∈H over {0, . . . ,max in user(k)} for counting the number of inputs that THOSM

H has
received at inu?,
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• (sc outOSM
u )u∈H over {0, . . . ,max in adv(k)} for counting the number of inputs that THOSM

H

has received at from advu?,

• (initOSM
u,v )u,v∈M over {0, 1} for modeling initialization of users, where initOSM

u,u = 1 means that
u has generated its encryption and signature key pair, and initOSM

u,v = 1 that v has received the
public keys of u,

• (msg inOSM
u,v )u∈H,v∈M over {0, . . . ,max in user(k)} for counting the number of messages sent

from u to v,

• (msg outOSM
u,v )u,v∈H over {0, . . . ,max in adv(k)} for storing the number of the next expected

message. This array is used to achieve the desired ordering (cf. the description below),

• (stoppedOSM
u )u∈H over {0, 1} for storing whether the machine of user u has already been stopped,

i.e., whether it has reached its runtime bounds (again cf. the below description),

• (deliverOSM
u,v )u,v∈H of lists for storing the actual messages.

The first six arrays are initialized with 0 everywhere, except that msg out OSM
u,v is initialized with 1

everywhere. The last array is initialized with empty lists everywhere. Roughly, the five arrays init OSM
u,v ,

msg outOSM
u,v , msg inOSM

u,v , stoppedOSM
u , and deliverOSM

u,v ensure functional correctness, whereas the
arrays sc inOSM

u and sc outOSM
u are included to allow a polynomial-time system to be as secure as this

specification, cf. Section 4.2.1.

4.2.3 Inputs and their Evaluation

We now define the precise inputs and how THOSM
H evaluates them based on its abstract state. First, the

machine model contains length functions which allow to bound how many bits of input are accepted at
each port, depending on the current state. The length functions are determined by the domain specified
for each input in the part “for ...” after the parameter list, i.e., the overall length function for each
port in each state is the maximum of the possible lengths of possible inputs in that state; it can easily
be computed. In the following, we introduce commands for initialization, for sending or receiving
messages and for stopping a particular machine. If these commands are entered with correct parameters
at a permitted port according to the below description, we speak of well-formed inputs. If an input is not
well-formed, we call it trash.

Initialization. Assume that the user u wants to generate its encryption and signature keys and dis-
tribute the corresponding public keys over authenticated channels. He can do so by sending a command
(snd init) to THOSM

H . For the sake of readability, we exemplarily annotate this transition in detail.
Upon receiving on input (snd init) the system checks that the user has not already reached his

input bound (which is improbable in this case unless he tried to send trash all the time), and that no
key generation of this user already occurred in the past. These checks correspond to sc inOSM

u <
max in user(k), and initOSM

u,u = 0, respectively. If at least the first check holds, the counter sc inOSM
u,v

is increased. If both checks hold, the keys are distributed over authenticated channels, modeled by an
output (snd init) to the adversary which either can schedule them immediately, later or even leave them
on the channels forever. Because of the asynchronous timing model, THOSM

H has to wait for a term
(rec init, u) input by the adversary at from advv? signaling that a connection between u and v should
be established.
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• Send initialization: (snd init) at inu?:

If sc inOSM
u < max in user(k), set sc inOSM

u := sc inOSM
u + 1, otherwise do nothing. If the test

holds check initOSM
u,u = 0. In this case set initOSM

u,u := 1 and output (snd init) at to advu !, 1 at
to advu

/!.

• Receive initialization: (rec init, u) at from advv? for u ∈ M:

If stoppedOSM
v = 0, initOSM

u,v = 0, and [u ∈ H ⇒ initOSM
u,u = 1], set initOSM

u,v := 1, other-
wise do nothing. If sc outOSM

u < max in adv(k) set sc outOSM
u := sc outOSM

u + 1 and output
(rec init, u) at outv !, 1 at outv

/!.

Sending and receiving messages. Sending a message m to a user v is triggered by a command
(send,m, v). If v is honest, the message is stored in the array deliver OSM

u,v of THOSM
H together

with the counter msg inOSM
u,v indicating the number of the message. After that, the information

(send blindly, i, l, v) is output to the adversary, where l and i denote the length of the message m
and its position in the array, respectively. This models that a real-world adversary may see that a
message is sent and it may even see its length. We speak of tolerable imperfections that are explic-
itly given to the adversary. Because of the asynchronous timing model, THOSM

H again has to wait for
a term (receive blindly, v, i) input by the adversary at from advv?, signaling that the ith message in
deliverOSM

u,v should be delivered to v . Now THOSM
H reads (m, j) := deliverOSM

u,v [i] and checks whether
j ≥ msg outOSM

u,v holds. This test prevents replay and message reordering. If the test is successful the
message is delivered, yielding an output (receive, u,m) to user v, and the counter msg out OSM

u,v is set to
j + 1.

If v is dishonest, THOSM
H simply outputs (send,m, v) to the adversary. The adversary can also send

a message m to a user u by inputting a command (receive, v,m) to the port from advu? of THOSM
H for

a corrupted user v.

• Send: (send,m, v) at inu? for v ∈ M \ {u}, m ∈ Σ∗, l := len(m) ≤ max len(k):

If sc inOSM
u < max in user(k), set sc inOSM

u := sc inOSM
u +1 and msg inOSM

u,v := msg inOSM
u,v +

1, otherwise do nothing. If initOSM
u,u = 1 and initOSM

v,u = 1 holds:

If v ∈ A then { output (send, (m,msg inOSM
u,v ), v) at to advu !, 1 at to advu

/! } else {set
i := size(deliverOSM

u,v )+1, deliverOSM
u,v [i] := (m,msg inOSM

u,v ) and output (send blindy, i, l, v) at
to advu !, 1 at to advu

/! }.

• Receive from honest party u: (receive blindly, u, i) at from advv? for u ∈ H, i ∈ N:

If stoppedOSM
v = 0, initOSM

v,v = 1, initOSM
u,v = 1, sc outOSM

v < max in adv(k) and (m, j) :=

deliverOSM
u,v [i] 6= ↓, check j ≥ msg outOSM

u,v (j = msg outOSM
u,v in the perfect ordered system). If

this holds set sc outOSM
v := sc outOSM

v + 1, msg outOSM
u,v := j +1 and output (receive, u,m) at

outv !, 1 at outv
/!.

• Receive from dishonest party u: (receive, u,m) at from advv? for u ∈ A, m ∈ Σ∗, len(m) ≤
max len(k):

If stoppedOSM
v = 0, initOSM

v,v = 1, initOSM
u,v = 1 and sc outOSM

v < max in adv(k), set
sc outOSM

v := sc outOSM
v + 1 and output (receive, u,m) at outv !, 1 at outv

/!.
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Stop commands. The adversary is further to cause the machine of any user u to stop processing inputs
received from the network by entering a command (stop) at from advu?. This roughly corresponds to
exceeding the machine’s runtime bounds in the real world.

• Stop: (stop) at from advu?:

If stoppedOSM
u = 0 and sc outOSM

v < max in adv, set stopped OSM
u := 1 and output (stop) at

outu !, 1 at outu
/!.

Trash inputs. Finally, if THOSM
H receives an input at a port inu? which is not comprised by the above

transitions (i.e., the user sends some kind of trash), it increases the counter sc inOSM
u . Similarly, if

THOSM
H receives such an input at a port from advv? it increases the counter sc outOSM

v .
Sys

OSM,spec
n,L is as abstract as we hoped for. It is deterministic without containing any cryptographic

objects. Furthermore it is simple, so that its state-transition function can easily by expressed in formal
languages, e.g., in PVS. In the following we write SysOSM,spec instead of Sys

OSM,spec
n,L if the parameters

n and L are not necessary for understanding.

4.3 The Security Property

Our goal is to prove that message reordering in Sys
OSM,spec
n,L is not possible for the adversary. Formally,

this means that for u, v ∈ H, the messages that v received from u via THOSM
H always have to be a

sublist of those messages that u sent to v. The former list is called the receive-list, the latter the send-
list. More formally, this means that for u, v ∈ H, a trace tr, and a point t in time, we define the send-list
send list tr

u,v(t) at time t as follows:

1. The trace tr is first restricted to inputs at inu?.

2. The resulting sub-trace is further restricted to inputs of the form (send,m, v) with len(m) ≤
max len(k).

3. Finally, every element (send,m, v) is replaced by m.

Similarly, the receive-list recv list tr
u,v(t) at time t is defined as follows:

1. The trace tr is first restricted to outputs at outu !.

2. The resulting sub-trace is further restricted to outputs of the form (receive, u,m) with len(m) ≤
max len(k).

3. Finally, every element (receive, u,m) is replaced by m.

We are now ready to introduce the desired integrity property reqOSM, which we call ordering property:

Definition 4.1 (Ordering Property) Let S OSM
H be the specified ports of Sys

OSM,spec
n,L as defined in Sec-

tion 4.2. Then a trace tr is contained in ReqOSM(SOSM
H ) if for all u, v ∈ H and any time t:

recv list tr
u,v(t) ⊆ send list tr

u,v(t),

where “⊆” is the sublist relation. 3

The following theorem finally captures the security of the system Sys
OSM,spec
n,L with respect to the order-

ing property.
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Theorem 4.1 (Ordering Property of the Ideal System for Ordered Secure Message Transmission)
Let Sys

OSM,spec
n,L be the ideal system for ordered secure message transmission defined in Section 4.2

for arbitrary parameters n,L, and let ReqOSM be the integrity property of Definition 4.1. Then
Sys

OSM,spec
n,L |=perf ReqOSM. 2

We will prove this theorem in Section 8 by means of the theorem proving system PVS.

5 The Cryptographic Implementation

In this section, we derive a possible implementation of the proposed specification, and we will prove this
implementation to be secure in the subsequent sections. We start with the definition of an intermediate,
called hybrid system in Sections 5.1-5.3. If we take a look at Figure 3, the system Sys OSM,spec plays the
role of the monolithic specification Sys spec. We now split our specification into a system SysOSM,hybr

(corresponding to Sys∗ in Figure 3) such that SysOSM,hybr ≥sec SysOSM,spec holds. SysOSM,hybr is
the combination of two systems Sysfilt and SysSM,spec. The system SysSM,spec is the ideal system for
secure unordered message transmission presented in [38], and the system Sys filt will filter messages
that are out of order. Finally, replacing the subsystem Sys SM,spec with the concrete system for secure
message transmission SysSM,real from [38] and using the composition theorem yields a concrete system
SysOSM,real that is as secure as SysOSM,spec.

We start with the definition of the filtering system.

5.1 The Filtering System

Given a number n of participants and the tuple L of functions as introduced in Section 4.2.1, the filtering
system is given by

Sysfilt
n,L = {(M̂ filt

H ,Sfilt
H ) | H ⊆ {1, . . . , n}},

where M̂ filt
H := {Mfilt

u | u ∈ H} and ports(Mfilt
u ) := {inu?, outu !, outu

/!} ∪ {infilt
u ?, outfilt

u !, outfilt
u

/
!}.

All free ports of [M̂ filt
H ] are specified, i.e., S filt

H consists of all ports corresponding to ports(M̂ filt
H ).

5.1.1 States

Each machine Mfilt
u maintains two arrays and three variables, whose meanings follow closely from the

description of the state of THOSM
H introduced in Section 4.2.2:

• (msg infilt
u,v)v∈M over {0, . . . ,max in user(k)},

• (msg outfilt
v,u)v∈M over {0, . . . ,max in adv(k)},

• sc infilt
u over {0, . . . ,max in user(k)},

• sc outfilt
u over {0, . . . ,max in adv(k)},

• stopped filt
u over {0, 1}.

Both arrays should be initialized with 0 everywhere, and the three counters should be initially 0.
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5.1.2 Inputs and their Evaluation

The length functions for each port of each machine Mfilt
u are defined similarly to Section 4.2.3, i.e.,

they are determined by the domain specified for each input in the part “for ...” after the parameter
list. However, if the counter sc infilt

u reaches the bound max in user(k), sc out filt
u reaches the bound

max in adv(k), or stopped filt
u = 1 holds, we use different bounds to ensure polynomial runtime of the

system. These bounds are introduced in Section 5.1.3.
We further assume that encoding of tuples has the following straightforward length property:

len((m,num)) = len(m) + c(k) for every num ∈ {0, . . . ,max{max in user(k),max in adv(k)}}
and an arbitrary polynomially bounded function c, i.e., len(num) is constant for each fixed secu-
rity parameter k. This condition can easily be achieved by padding all values num to a fixed size
≥ len(max{max in user(k),max in adv(k)}). Now the behavior of Mfilt

u is defined as follows.

Initialization.

• Send initialization: (snd init) at inu?:

If sc infilt
u < max in user(k), set sc infilt

u := sc infilt
u + 1 and output (snd init) at outfilt

u !, 1 at
outfilt

u
/
!.

• Receive initialization: (rec init, v) at infilt
u ? for v ∈ M:

If stopped filt
u = 0 and sc outfilt

u < max in adv(k), set sc outfilt
u := sc outfilt

u + 1 and output
(rec init, v) at outu !, 1 at outu

/!.

Sending and receiving messages.

• Send: (send,m, v) at inu? for v ∈ M \ {u}, m ∈ Σ∗, len(m) ≤ max len(k):

If sc infilt
u < max in user(k), set sc infilt

u := sc infilt
u + 1, msg infilt

u,v := msg infilt
u,v + 1 and

output (send, (m,msg infilt
u,v), v) at outfilt

u !, 1 at outfilt
u

/
!.

• Receive: (receive, v,m′) at infilt
u ? for v ∈ M, m′ ∈ Σ∗, len(m′) ≤ max len(k) + c(k):

If stopped filt
u = 0 and sc outfilt

u < max in adv(k), decompose the message m′ into (m,num).
If num ≥ msg outfilt

v,u (or num = msg outfilt
v,u in the perfect ordered system), set sc out filt

u :=

sc outfilt
u + 1, msg outfilt

v,u := num + 1 and output (receive, v,m) at outu !, 1 at outu
/!.

Stop commands.

• Stop: (stop) at infilt
u ?:

If stopped filt
u = 0 and sc outfilt

u < max in adv(k), set stopped filt
u := 1 and output (stop) at outu !,

1 at outu
/!.

Trash inputs. Finally, if Mfilt
u receives an input at a port inu? which is not comprised by the above

transitions, it increases the counter sc infilt
u . Similarly, if Mfilt

u receives such an input at port infilt
u ? it

increases the counter sc outfilt
u .
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5.1.3 On Polynomial Runtime

In order to apply existing results of the underlying model, in particular the composition theorem, the
system Sysfilt

n,L must be polynomial-time, i.e., every machine Mfilt
u must be polynomial-time. Note that

each input at port inu? checks if sc infilt
u < max in user(k) holds, doing nothing at failure. In case of a

successful check, Mfilt
u increases sc infilt

u . Similar reasoning holds for the port infilt
u ? with sc outfilt

u and
max in adv(k), where additionally stopped filt

u = 0 is checked and maybe stopped filt
u = 1 is set. This

means that only a polynomial number of inputs lead to a state change or a non-empty output. However,
since the machine still has to read its input to perform the mentioned checks, this is not yet sufficient
for polynomial runtime. We therefore use the length functions of the underlying model to “cut off” an
input port as soon as a corresponding counter has reached its limit.

More formally, the value 0 for the length function for a port p? means that no input is accepted
(without a Turing step) at p?. This means that whenever the counter sc in filt

u reaches the bound
max in user(k) or sc outfilt

u reaches the bound max in adv(k), the length function for the port inu?
respectively infilt

u ? is always zero. Similarly, if stopped filt
u = 1 then the length function for infilt

u ? is zero.
Note that this does not affect the functional behavior of the machine Mfilt

u since the port inu? is only cut
off if no further input at inu? can cause Mfilt

u to change its state or produce a non-empty output, similarly
for the port infilt

u ?.

Lemma 5.1 The system Sysfilt
n,L is polynomial-time for all parameters n,L. 2

Proof. Each transition of each Mfilt
u can surely be realized in polynomial time, since the length bounds

only read a polynomially bounded number of bits in each transition. Moreover, non-empty inputs at
inu? can only occur if sc infilt

u < max in user(k); if this condition does not hold, the length function
for inu? is explicitly defined to be zero. If the check succeeds, each transition increases the counter
sc infilt

u , hence there can at most be max in user(k) inputs at inu?. Similarly, non-empty inputs at infilt
u ?

can only occur if stopped filt
u = 0 and sc outfilt

u < max in adv(k), and each transition in this case either
increases the counter sc outfilt

u or sets stopped filt
u = 1. Hence there are at most max{max in adv(k), 1}

inputs at infilt
u ?, i.e., a polynomial number of inputs total, which finishes the proof.

5.2 The Ideal System for Unordered Secure Message Transmission

As described above, the system SysSM,spec is the ideal system for secure unordered message transmis-
sion of [38]. We now describe it in full because we need it for our security proof in Sections 6 and 7. We
made a few adaptations (in particular renaming the ports intended for the users), which do not invalidate
the proof.

Let n denote the number of participants. Similar to the system for ordered secure message trans-
mission, the system for secure unordered message transmission has a parameter max len bounding the
permitted message length. Then the ideal system for secure unordered message transmission is given by

Sys
SM,spec
n,max len = {(THSM

H ,SSM
H ) | H ⊆ {1, . . . , n}},

with ports(THSM
H ) := {outfilt

u ?, infilt
u !, infilt

u
/
!, from advu?, to advu !, to advu

/! | u ∈ H}. If H is clear
from the context, let again A := M\H. The ports of the users which connect to those ports are

SSM
H

c
:= {infilt

u ?, outfilt
u !, outfilt

u

/
! | u ∈ H}.
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5.2.1 States

The machine THSM
H maintains three arrays, whose meanings should already be clear from the description

of the state of THOSM
H .

• (initSM
u,v)u,v∈M over {0, 1} initialized with 0 everywhere.

• (stopped SM
u )u∈H over {0, 1} initialized with 0 everywhere,

• (deliver SM
u,v)u,v∈H of lists, all initially empty.

5.2.2 Inputs and their Evaluation

The length functions of the machine THSM
H are defined similarly to Section 4.2.3, i.e., they are deter-

mined by the respective domains. The state-transition function of THH is defined by the following
rules:

Initialization.

• Send initialization: (snd init) at outfilt
u ?:

If initSM
u,u = 0, set initSM

u,u := 1 and output (snd init) at to advu !, 1 at to advu
/!.

• Receive initialization: (rec init, u) at from advv? for u ∈ M:

If stopped SM
v = 0 and initSM

u,v = 0 and [u ∈ H ⇒ initSM
u,u = 1], set initSM

u,v := 1 and output
(rec init, u) at infilt

v !, 1 at infilt
v

/
!.

Sending and receiving messages.

• Send: (send,m, v) at outfilt
u ? for v ∈ M \ {u}, m ∈ Σ∗, l := len(m) ≤ max len(k) + c(k):

If initSM
u,u = 1, and initSM

v,u = 1:

If v ∈ A then { output (send,m, v) at to advu !, 1 at to advu
/! }, else {i := size(deliver SM

u,v) + 1;
deliverSM

u,v [i] := m; output (send blindly, i, l, v) at to advu !, 1 at to advu
/! }.

• Receive from honest party u: (receive blindly, u, i) at from advv? for u ∈ H, i ∈ N:

If stopped SM
v = 0, initSM

v,v = 1, initSM
u,v = 1, and m := deliverSM

u,v [i] 6= ↓, then output
(receive, u,m) at infilt

v !, 1 at infilt
v

/
!.

• Receive from dishonest party u: (receive, u,m) at from advv? for u ∈ A, m ∈ Σ∗, len(m) ≤
max len(k):

If stopped SM
v = 0, initSM

v,v = 1 and initSM
u,v = 1, then output (receive, u,m) at infilt

v !, 1 at infilt
v

/
!.

Stop commands.

• Stop: (stop) at from advu?:

If stopped SM = 0, set stopped SM
u = 1 and output (stop) at infilt

u !, 1 at infilt
u

/
!.

Trash inputs. THSM
H simply ignores trash inputs at every port.
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Figure 5: The Hybrid System.

5.3 The Hybrid System

We now combine the two systems Sys
SM,spec
n,max len and Sysfilt

n,L in the “canonical” way, i.e., we combine
those structures with the same index H. We further restrict ourselves to the case, where the parame-
ter max len of Sys

SM,spec
n,max len is equal to the respective message length function of the parameter L (cf.

Section 4.2.1). This yields a system Sys
OSM,hybr
n,L , which we call hybrid system for ordered secure mes-

sage transmission. It is depicted in Figure 5. The specified ports of the hybrid system for H are then
given by {outu?, inu !, inu

/! | u ∈ H}c, i.e., they are equal to the specified ports S OSM
H of the specifica-

tion. Finally, we define all connections {outfilt
u !, outfilt

u ?} and {infilt
u !, infilt

u ?} of Sys
OSM,hybr
n,L to be secure,

because they correspond to local subroutine calls.

5.4 The Real System

The concrete system Sys
OSM,real
n,L,E ,S is derived by replacing Sys

SM,spec
n,max len with Sys

SM,real
n,max len,E ,S , which is the

concrete implementation of Sys
SM,spec
n,max len as introduced in [38]. For understanding it is sufficient to give

a brief review of Sys
SM,real
n,max len,E ,S . It is a standard cryptographic system of the form Sys

SM,real
n,max len,E ,S =

{(M̂ SM
H ,SSM

H ) | H ∈ {1, . . . , n}}, cf. Section 4.1, where n denotes the number of participants, i.e., any
subset of participants may be dishonest; max len is the usual bound on the message length, which we
defined to be equal to the message length function in L. The system uses an asymmetric encryption
scheme E and a digital signature scheme S as cryptographic primitives, which are additional parameters
of the system. A user u can let his machine create signature and encryption keys that are sent to other
users over authenticated channels. Messages sent from user u to user v are signed and encrypted by
Mu and sent to Mv over an insecure channel, representing a real network. The adversary can schedule
the communication between correct machines and send arbitrary messages m to arbitrary users. He can
also replay messages and also change their order, which is prevented in our scheme by the additional
filtering system.

We now build the combination of Sys
SM,real
n,max len,E ,S and Sysfilt

n,L again in the canonical way, which

yields a new system Sys
OSM,real
n,L,E ,S that we refer to as the real system for ordered secure message trans-

mission. It is depicted in Figure 6.
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Figure 6: Sketch of the Real System for Ordered Secure Message Transmission.

6 Proving Security of the Real Ordered System

In this section, we start to prove that the real ordered system Sys
OSM,real
n,L,E ,S is at least as secure as the

specification Sys
OSM,spec
n,L provided that the encryption and signature system used are secure. We further

show that Sys
OSM,real
n,L,E ,S computationally fulfills the integrity property of Definition 4.1.

6.1 The Simulatability Property

We start with the simulatability property, which is captured in the following theorem.

Theorem 6.1 (Security of Real Ordered Secure Message Transmission) We have Sys
OSM,real
n,L,E ,S ≥poly

sec

SysOSM
n,L for all parameters n,L, E ,S (and for the canonical mapping), provided the signature and en-

cryption schemes used are secure. This holds with blackbox simulatability.1
2

The proof is split into four steps, which can be illustrated in Figure 3:

1. First, [38] contains the result Sys
SM,real
n,max len,E ,S ≥poly

sec Sys
SM,spec
n,max len.

2. Secondly, the composition theorem (cf. Section 2.4) yields the relation Sys
OSM,real
n,L,E ,S ≥poly

sec

Sys
OSM,hybr
n,L . The only remaining task is to check that its preconditions are fulfilled, which is

straightforward since we showed that the system Sys filt
n,L is polynomial-time in Lemma 5.1.

3. Thirdly, we prove Sys
OSM,hybr
n,L ≥poly

sec Sys
OSM,spec
n,L .

4. Finally, Sys
OSM,real
n,L,E ,S ≥poly

sec Sys
OSM,spec
n,L follows from the transitivity lemma, cf. Section 2.1.

Thus, we only have to prove Sys
OSM,hybr
n,L ≥poly

sec Sys
OSM,spec
n,L . We will even prove the perfect case

Sys
OSM,hybr
n,L ≥perf

sec Sys
OSM,spec
n,L , which is separately captured in the following lemma:

1See [38] for further details on canonical mappings and different kinds of simulatability.
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Lemma 6.1 For all parameters n,L, we have Sys
OSM,hybr
n,L ≥perf

sec Sys
OSM,spec
n,L (for the canonical map-

ping), and with blackbox simulatability. 2

In order to prove this, we assume a configuration confhybr := ({THSM
H }∪M̂ filt

H ,SH,H,A) of Sys
OSM,hybr
n,L

with M̂ filt
H = {Mfilt

u | u ∈ H} to be given, which we call a hybrid configuration. We then have to show
that there exists a configuration confspec := ({THOSM

H },SH,H,A′) of Sys
OSM,spec
n,L , called a specifica-

tion configuration, yielding indistinguishable views for the honest user H .
The adversary A′ consists of two machines: a so-called simulator SimH, which we define in the fol-

lowing, and the original adversary A. This is exactly the notion of blackbox simulatability. These con-
figurations are shown in Figure 7. We will now first give some preliminaries of the proof of Lemma 6.1,
and give a rigorous definition of the simulator afterwards.

6.1.1 Preliminaries for Proving Lemma 6.1

Given a hybrid configuration and a specification configuration as defined above, the ultimate goal is to
show that the collections M̂hybr := {THSM

H } ∪ {Mfilt
u | u ∈ H} and M̂spec := {THOSM

H ,SimH} have the
same input-output behavior, i.e., if they obtain the same inputs they produce the same outputs. We do so
by proving a deterministic bisimulation, i.e., we define a relation φ on the states of the two collections
and show that φ is maintained in every step of every trace and that the outputs of both systems are always
equal. This is exactly the procedure we will perform in the next section using the theorem prover PVS.

Definition 6.1 (Deterministic Bisimulation) Let two arbitrary collections M̂1 and M̂2 of deterministic
machines with identical sets of free ports be given, i.e., free([M̂1]) = free([M̂2]). A deterministic bisim-
ulation between these two collections is a binary relation φ on the states of M̂1 and M̂2 such that the
following holds.

• The initial states of M̂1 and M̂2 satisfy the relation φ.

• The transition functions δ1 and δ2 of M̂1 and M̂2 preserve the relation φ and produce identical
outputs. I.e., let S1 and S2 be two states of M̂1 and M̂2, respectively, with (S1, S2) ∈ φ, let I be an
arbitrary overall input of M̂1 and M̂2, and let (S ′

1,O1) := δ1(S1, I) and (S ′
2,O2) := δ2(S2, I).

Then we have (S ′
1, S

′
2) ∈ φ and O1 = O2.

We call two collections M̂1 and M̂2 bisimilar if there exists a deterministic bisimulation between them.
3

We will apply this definition to composed transition functions of each of the two collections M̂hybr and
M̂spec, i.e., the overall transition from an external input (from H or A) to an external output (to H or A).
It is quite easy to see that a deterministic bisimulation in this sense implies perfect indistinguishability
of the view of H, cf. Figure 7, and even of the joint view of H and the original adversary A. Assume
for contradiction that these views are not identical. Thus, there exists a first time where they can be
distinguished. This difference has to be produced by the collections. Since we defined this to be the first
different step, the prior input of both collections is identical. But thus, both collections also produce
identical outputs because they are bisimilar. This yields the desired contradiction.

The next section describes how the machines are expressed in the formal syntax of PVS and partly
explains the bisimulation proof, which then finishes the proof of Lemma 6.1, and hence also the simu-
latability proof of Theorem 6.1.

It is worth mentioning that we used standard paper-and-pencil proofs before we decided to use a
formal proof system to validate the desired bisimulation. However, these proofs have turned out to be
prone to error since they are straightforward on the one hand, but long and tedious on the other, so they
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Figure 7: Proof Overview of Sys
OSM,hybr
n,L ≥perf

sec Sys
OSM,spec
n,L .

are mainly vulnerable to slow-down of concentration. During our formal verification, we in fact found
several errors in both our machines and our proofs, which were quite obvious afterwards, but had not
been found before. We decided to put the whole paper-and-pencil proof in the web2, so readers can
make up their own minds.

6.1.2 Definition of the Simulator SimH

The Simulator SimH is placed between the trusted host THOSM
H and the adversary A, see Fig-

ure 7. Its ports are given by {to advu?, from advu !, from advu
/! | u ∈ H} ∪ {from adv′u?, to adv′u !,

to adv′u
/! | u ∈ H}. The first set contains the ports connected to THOSM

H , the ports of the second
set are for communication with the adversary. This means that we have to rename the ports to advu?,
from advu !, and from advu

/! of the adversary into to adv′u?, from adv′u !, and from adv′u
/!, respec-

tively. (Port renaming is permitted in simulatability proofs, since the view is defined independently
from the port names.)

States.

Internally, SimH maintains four arrays:

• (init sim
u,v)u,v∈M over {0, 1},

• (stopped sim
u )u∈H over {0, 1},

• (msg out sim
u,v)u∈A,v∈H over {0, . . . ,max in user(k)}.

All three arrays are initialized with 0 everywhere.

Inputs and their Evaluation.

We now define the behavior of the simulator. The length functions are again determined by the respective
domains. In most cases SimH simply forwards inputs to their corresponding outputs, modifying some
internal values.

2http://www.zurich.ibm.com/∼mbc/PVS/OrdSecMess.tgz
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• Send initialization: (snd init) at to advu?:

Set init sim
u,u := 1 and output (snd init) at to adv′u !, 1 at to adv′u

/!.

• Receive initialization: (rec init, u) at from adv′v? for u ∈ M:

If stopped sim
u = 0 and init sim

u,v = 0 and [u ∈ H =⇒ init sim
u,u = 1] set init sim

u,v := 1 and output
(rec init, u) at from advv !, 1 at from advv

/!.

• Send: (send blindy, i, l′, v) at to advu? for v ∈ H, l′ ≤ max len(k), i ≤ n · max in user(k):

Set l := l′ + c(k) and output (send blindy, i, l, v) at to adv′u !, 1 at to adv′u
/!.

• Send 2: (send,m, v) at to advu? for v ∈ M, m ∈ Σ∗, len(m) ≤ max len(k) + c(k):

Output (send,m, v) at to adv′u ! and 1 at to adv′u
/!.

• Receive from honest party u: (receive blindly, u, i) at from adv ′v? for u ∈ H:

If stopped sim
v = 0 then output (receive blindly, u, i) at from advv ! and 1 at from advv

/!.

• Receive from dishonest party u: (receive, u,m′) at from adv′v? with u ∈ A, len(m′) ≤
max len(k) + c(k):

Decompose m′ := (m,num): If stopped sim
v = 0, init sim

v,v = 1, init sim
u,v = 1, num ≥ msg out sim

u,v

(num = msg out sim
u,v in the perfect ordered system), set msg out sim

u,v := num + 1, and output
(receive, u,m) at from advv !, 1 at from advv

/!.

• Stop: (stop) at from adv′u?:

If stopped sim
u = 0, set stopped sim

u := 1 and output (stop) at from advu !, 1 at from advu
/!.

If a trash input occurs at to advu?, SimH forwards this input to to adv′u !; trash inputs at from adv′u? are
ignored.

The simulator essentially recalculates the length of message m into len((m,num)) to achieve indis-
tinguishability. Furthermore it decomposes messages sent by the adversary, maybe sorting them out, in
order to achieve identical outputs in both systems. Now the overall adversary A ′ is defined by combining
A and SimH.

It is easy to see that this combination is polynomial-time in case of a polynomial-time adversary:
Each transition of SimH is surely polynomial-time and SimH only accepts inputs of polynomial length
at the ports to advu?. By construction, every such input (either “send initialization”, “send”, or “trash”)
will cause the simulator to schedule the adversary subsequently. Since the remaining ports of the simu-
lator are connected to the adversary, there has to at least one step of the adversary after a polynomially
bounded number of steps of the simulator. However, since the adversary is polynomial-time, it will
enter a final state after a polynomial number of steps, which implies that the steps of the combined ma-
chine are also polynomially bounded at the time the adversary halts. Since the definition of combination
(cf. [38] ensures that a combined machine enters final state as soon as a contained master scheduler
enters final state, we conclude that the combination of a polynomial-time adversary (which is a master
scheduler) and the simulator SimH is polynomial-time.

6.1.3 The Ordering Property of the Real Ordered System

We finally address the ordering property of the real ordered system. If the ordering property Req OSM for
the specification (Theorem 4.1) and the simulatability property between the specification and the real
ordered system (Theorem 6.1) has been proved, it follows easily that the real ordered system also fulfills
the property ReqOSM, which is captured in the following theorem.
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Theorem 6.2 (Ordering Property of the Real System for Ordered Secure Message Transmission)
Let Sys

OSM,real
n,L,E ,S be the real system for ordered secure message transmission defined in Section 5.4

for arbitrary parameters n,L, E ,S , and let ReqOSM be the integrity property of Definition 4.1. Then
Sys

OSM,real
n,L,E ,S |=poly ReqOSM provided that the encryption and signature schemes used are secure. 2

Proof. Theorem 6.1 yields the relation Sys
OSM,real
n,L,E ,S ≥poly

sec Sys
OSM,spec
n,L , and Theorem 4.1 gives

Sys
OSM,spec
n,L |=perf ReqOSM, which implies Sys

OSM,spec
n,L |=poly ReqOSM. Now Theorem 3.1 implies

Sys
OSM,real
n,L,E ,S |=poly ReqOSM, since membership in ReqOSM(SOSM

H ) is decidable in polynomial time for
all SOSM

H , since the send-list and the receive-list are of polynomial length in a polynomial-time config-
uration.

7 Formal Verification of the Bisimulation

In this section, we describe how Theorem 6.1 is formally verified in the theorem proving system
PVS [33]. As we already showed in the previous section, it is sufficient to prove that the two collections
M̂hybr and M̂spec are contained in a deterministic bisimulation.

7.1 Defining the Machines in PVS

In order to do so, we first describe how the machines are formalized in PVS. We subsequently made
minor adaptations in the definition of the machines to deal with polynomial runtime more concisely,
which do not invalidate the proof.3

Since the formal machine descriptions are too large to be given here completely, we use the machine
THOSM

H as an example. The complete machine descriptions and the proof are available online.4

We denote the number of participating machines by N , and for a given subset H ∈ {1, . . . , N},
we denote the number of honest users by M := #H. As defined in Section 4.2, the machine THOSM

H
has 2M input ports {inu?, from advu? | u ∈ H}. In PVS, we number these input ports 1, . . . , 2M ,
where we identify 1, . . . ,M with the user ports and M +1, . . . , 2M with the adversary ports. Similarly,
THOSM

H has output ports {outu !, to advu ! | u ∈ H}, which also are numbered 1, . . . , 2M . In PVS, we
define the following types to denote machines, honest users, and ports:

MACH: TYPE = subrange(1,N) %% machines
USERS: TYPE = subrange(1,M) %% honest users
PORTS: TYPE = subrange(1,2*M) %% port numbers

The subrange(i,j) type is a PVS built-in type denoting the integers i, . . . , j. We further define a
type STRING to represent messages.

In Section 4.2.3, the different possible inputs to machine THOSM
H are listed, e.g., (snd init),

(rec init, u), . . . In PVS, the type of input ports is defined using a PVS abstract datatype [32]. The
prefix m1i in the following stands for “inputs of machine 1”, which is THOSM

H , and is used to distin-
guish between inputs and outputs of the different machines.

m1_in_port: DATATYPE
BEGIN
m1i_snd_init: m1i_snd_init?

3Unfortunately, we are currently not able to incorporate these changes in the PVS proof, since PVS is not freely accessible
for commercial use, which prohibits us from using it as we are currently affiliated with IBM. The existing proof was developed
when the authors were affiliated with Saarland University.

4http://www.zurich.ibm.com/∼mbc/PVS/OrdSecMess.tgz
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m1i_rec_init(u: MACH): m1i_rec_init?
m1i_send(m: STRING, v: MACH): m1i_send?
m1i_receive_blindly(u: USERS, i: posnat): m1i_receive_blindly?
m1i_receive(u: MACH, m: STRING): m1i_receive?
m1i_stop: m1i_stop?

END m1_in_port

This defines an abstract datatype with constructors m1i snd init, m1i rec init etc. For ex-
ample, for given u, i, m1i receive blindly(u,i) constructs an instance of the above datatype,
which we identify with (receive blindly, u, i). Given an instance p of this datatype, we can use the
recognizers on the right side of the definition to distinguish between the different forms. For exam-
ple, m1i receive blindly?(p) checks whether the instance p of the m1i in port datatype
was constructed from the m1i receive blindly constructor. If it was, the components u and i
can be restored using the accessor functions u(·) and i(·); for example, u(p) returns the u component
of p. The accessor functions may be overloaded for different constructors (e.g., u is overloaded in
m1i rec init, m1i receive blindly and m1i receive).

The machine THOSM
H performs a step iff exactly one of the input ports is active. In this case, we call

the input ok, otherwise garbage. The type of the complete inputs to THOSM
H comprising all 2M input

ports is therefore either garbage, or the number u of the active port together with the input p on port u.
This is formalized in the following PVS datatype:

M1_INP: DATATYPE
BEGIN
m1i_garbage: m1i_garbage?
m1i_ok(u: PORTS, p: m1_in_port): m1i_ok?

END M1_INP

Similar datatypes m1 out port and M1 OUT are defined to denote the type of individual outputs, and
the type of the complete output of THOSM

H , respectively.
Next we define the state type of THOSM

H . As defined in Section 4.2.2, this state consists of seven
one- or two-dimensional arrays. In PVS, arrays are modeled as functions mapping the indices to the
contents of the array. For example [MACH,USERS -> nat] defines a two-dimensional array of
natural numbers, where the first index ranges over M, and the second ranges over H. The state type of
THOSM

H is defined as a record of such arrays. There is only one small exception: the array deliver OSM
u,v

stores lists of tuples (m, i) (e.g., see the “Send” transition), where m is a string and i ∈ N. It is
convenient in PVS to decompose this array of lists of tuples into two arrays of lists, where the first array
deliverOSM

u,v stores lists of messages m, and the second array deliv iOSM
u,v stores lists of naturals i. Lists

are defined as a recursive algebraic abstract datatype in the PVS library [32]. Altogether, this yields a
state type of eight arrays:

M1_STATE: TYPE = [# init_spec: [MACH,MACH -> bool],
sc_in_spec: [USERS -> nat],
msg_in_spec: [USERS,MACH -> nat],
msg_out_spec: [USERS,USERS -> posnat],
sc_out_spec: [USERS -> nat],
deliver_spec: [USERS,USERS -> list[STRING]],
deliv_i_spec: [USERS,USERS -> list[posnat]],
stopped_spec: [USERS -> bool] #]

The initial state m1 init is defined as a constant of type M1 STATE:

M1_init: M1_STATE = (#
init_spec := LAMBDA (w1,w2: MACH): FALSE,
...
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deliv_i_spec := LAMBDA (u1,u2: USERS): null,
stopped_spec := LAMBDA (u1: USERS): FALSE #)

The constructor null denotes the empty list. The machine THOSM
H is now formalized in PVS as a next-

state/output function mapping current state and inputs to the next state and outputs. We exemplarily give
the first few lines of the PVS code:

M1_ns(S: M1_STATE, I: M1_INP): [# ns: M1_STATE, O: M1_OUT #] =
IF m1i_garbage?(I) THEN

(# ns:=S, O:=m1o_garbage #)
%% do not change the state, output nothing

ELSE
LET ua1=ua(I), p=p(I) IN

%% ua1 is the active port number,
%% p is the input on this port

IF ua1<=M AND m1i_snd_init?(p) THEN
%% we have a send-init on a user port (<=M);
IF S‘sc_in_spec(ua1)<s1k AND NOT S‘stopped_spec(ua1) THEN

IF S‘init_spec(ua1,ua1) THEN
(# ns:=S WITH [ ‘sc_in_spec(ua1) := sc_in_spec(ua1)+1,

O:=m1o_garbage #)
%% increment sc_in_spec, but do not send any output

ELSE
(# ns:=S WITH [ ‘sc_in_spec(ua1) := sc_in_spec(ua1)+1,

‘init_spec(ua1,ua1) := TRUE ],
O := m1o_ok(M+ua1, m1o_snd_init) #)

%% increment sc_in_spec, set init_spec(ua1,ua1):=true
%% send m1o_snd_init to adversary port M+ua1

ENDIF
ELSE %% otherwise do nothing

(# ns:=S, Out:=m1o_garbage #)
ENDIF

ELSIF ua1>M AND m1i_rec_init?(p) THEN
...

In a similar way we have formalized the machines THSM
H , {Mfilt

u | u ∈ H}, and SimH. The M ma-
chines Mfilt

u in the left part of Figure 7 have been combined into a single machine in PVS; however,
this is only syntactic and does not change the semantics. The combination of the machines THSM

H and
{Mfilt

u | u ∈ H} respectively THOSM
H and SimH is straightforward by composition of the correspond-

ing state transition functions: An input from H is always first handled by a machine Mfilt
u and THOSM

H ,
and then by THSM

H and SimH, respectively, and vice versa. This saves us from implementing the full
asynchronous scheduling algorithm in PVS for this example.

The only non-trivial choice we have made in the transliteration of the machines to PVS is the type
of the input- and output-ports. In a previous attempt, we did not use the abstract datatype definition of
M1 INP, but defined M1 INP as an array of 2M individual input ports; in order to model non-active
ports, we added an m1i inactive form to the input port type m1i in port. An input from M1 INP
was defined to be ok iff exactly one of the ports is different from m1i inactive. This obviously mod-
els the same valid inputs as the definition of M1 INP above. The problem with the array definition is that
extracting the active port number u involves an application of the choice-function ε in order to choose
the index u of the array for which the port is active. The application of the choice-function considerably
complicates the proofs in PVS, since the definition of ε is not constructive in PVS. In contrast, in the
definition using the abstract datatype, the active port number u can be constructively extracted from the
input by applying the accessor function of the abstract datatype. Due to constructiveness, the proofs in
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PVS become much simpler. This problem in the port definition also applies to the output ports of the
machines.

The rest of the transliteration of the machine definitions to PVS is straightforward. In the following,
we revert to standard mathematical notation for the sake of brevity and readability.

7.2 Proving the Bisimulation

In order to prove Lemma 6.1, we consider the following predicates on the states of the collections M̂hybr

and M̂spec and show them to be invariant.

• Stop Flags: This invariants consists of two subparts:

– ∀u ∈ H : stoppedOSM
u = stopped filt

u ∧ stopped SM
u = stopped sim

u ,

– ∀u ∈ H : stopped SM
u = 0 ⇒ stoppedOSM

u = 0,

• Inputs Counters: ∀u ∈ H : sc infilt
u = sc inOSM

u ,

• Output Counters: ∀u ∈ H : sc outfilt
u = sc outOSM

u ,

• Initialization Arrays: ∀u ∈ H, w ∈ M : init SM
w,u = init sim

w,u = initOSM
w,u ,

• User Messages: ∀u ∈ H, w ∈ M : msg infilt
u,w = msg inOSM

u,w ,

• Network Messages: This invariant consists of two subparts:

– ∀u,w ∈ H : msg outfilt
w,u = msg outOSM

w,u ,

– ∀u ∈ H with sc outOSM
u < max in adv(k), w ∈ M \H : msg outfilt

w,u = msg out sim
w,u,

• Message Array Content: ∀u, v ∈ H : deliver SM
u,v = deliverOSM

u,v ∧ deliv iSM
u,v = deliv iOSM

u,v ,

• Message Array Length: ∀u, v ∈ H : length(deliver SM
u,v ) = length(deliv iSM

u,v ), where length is
the PVS function delivering the length of lists,

• Message Array Length 2: ∀u, v ∈ H : length(deliverOSM
u,v ) = length(deliv iOSM

u,v ).

Each of the 9 invariants is formalized as a predicate φi(Shybr, Sspec) on the current states of the two
collections M̂hybr and M̂spec. The conjunction of all the φi yields the bisimulation relation φ. Let δhybr

and δspec denote the overall transition function of the machine collections M̂hybr and M̂spec, respectively.
The following theorem asserts that the invariants indeed are invariants of these collections:

Theorem 7.1 Let Shybr and Sspec be states of the two collections M̂hybr and M̂spec such that all invari-
ants φi(Shybr, Sspec), 1 ≤ i ≤ 9 hold. The transition functions δhybr, δspec preserve the invariants, i.e.,
for an arbitrary overall input I of M̂hybr and M̂spec we have

φi(S
′
hybr, S

′
spec) ∀i, 1 ≤ i ≤ 9

with (S′
hybr,Ohybr) := δhybr(Shybr, I) and (S ′

spec,Ospec) := δspec(Sspec, I). Furthermore, the initial
states initialhybr and initialspec satisfy all 9 invariants. 2

In PVS, this theorem is split into 9 lemmas, one for each invariant. Using the invariants φi, we prove
the following theorem:
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Theorem 7.2 Let Shybr and Sspec be states satisfying all invariants φi(Shybr, Sspec), 1 ≤ i ≤ 9, and let
I be an overall input of the collections M̂hybr and M̂spec. Then both collections make the same outputs
on all ports to the users and the adversary. 2

Together, Theorems 7.1 and 7.2 prove that the two systems are bisimilar, which finishes the proof of
Lemma 6.1, and hence also the proof of Theorem 6.1.

7.3 Verification Effort

The manual proof effort in PVS is rather small. The proofs make heavy use of the built-in PVS strategy
(grind), which expands definitions and performs automatic case-splitting. The main effort was to fig-
ure out the correct parameters for the (grind) command. The proof goals not resolved by (grind)
were proved with little manual assistance. However, looking for errors and thinking about the necessary
modifications of the machines was a time-consuming task. During our proof attempts, we simultane-
ously debugged the machines until we finally found the correct specifications of all machines. After
that, the proof itself turned out to be quite easy. Altogether, the formalization of the machines in PVS
took 2 weeks, and the development of the proofs took another week (given prior familiarity with PVS).
A complete checking of the proof takes about one hour on a 600 MHz Athlon processor.

8 Verification of the Ordered Channel Specification

In this section, we formally verify Theorem 4.1, i.e., that message reordering in our specification of
Section 4 is in fact prevented. the property seems to hold by construction, but experience shows that
such proofs made by ‘simply looking’ are often flawed. Even if proofs of this kind are made by hand
in a rigorous way, they often turn out to be apparently straightforward and dull which yields proofs
with faults and imperfections. Following our approach of the previous section, we formally verify the
integrity property in PVS. This will be described in the following. For reasons of readability and brevity,
we again use standard mathematical notation instead of PVS syntax. The PVS sources are available
online.4

According to Definition 2.1, we assume that the machine THOSM
H operates on an input set ITHOSM

H

(short I), a state set StatesTHOSM
H

(short S ), and an output set OTHOSM
H

(short O). For convenience, the
(deterministic) transition function δTHOSM

H

: I×S → S×O is split into δ : I×S → S and ω : I×S → O,
which denote the next-state and output part of δTHOSM

H

, respectively.
In order to formulate the property, we need a PVS-suited, formal notation of (infinite) runs of a

machine, of lists, of what it means that a list l1 is a sublist of a list l2, and we need formalizations of the
receive-list and send-list.

Definition 8.1 (Input sequence, state trace, output sequence) Let M be a machine with input set IM,
state set StatesM, output set OM, state transition function δ, and output transition function ω. Call
sinit ∈ StatesM the initial state. An input sequence i : N → IM for machine M is a function mapping
the time (modeled as the set N) to inputs i(t) ∈ IM. A given input sequence i defines a sequence of
states si : N → StatesM of the machine M by the following recursive construction:

si(0) := sinit,

si(t + 1) := δ(i(t), si(t)).

The sequence si is called state-trace of M under i. The output sequence oi : N → O of the run is defined
as

oi(t) := ω(i(t), si(t)).
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We omit the index i if the input sequence is clear from the context. For components x of the state type,
we write x(t) for the content of x in s(t). For example, we write deliver OSM

u,v (t) to denote the content at
time t of the list deliverOSM

u,v , which is part of the state of THOSM
H . 3

In the context of THOSM
H , the input sequence i consists of the messages that the honest users and the

adversary send to THOSM
H .

As our upcoming definitions uses the PVS-intern terminology of lists, we restate the definition
from [32], and further give the definition of sublists.

Definition 8.2 (Lists) A list over type T is the closure of applications of the constructor null yielding
an empty list, and the constructor cons(car : T, cdr : list[T ]) yielding a list with head car and tail cdr.
It holds car(cons(t, l)) = t and cdr(cons(t, l)) = l. The predicates null?(l) and cons?(l) are used to
test whether l is empty or non-empty, respectively. PVS provides functions length(l), append(t, l), and
nth(l, i) to measure the length of a list l, to append an element t at the end of the list l, and to access
the ith element of l (counted from 0). 3

Definition 8.3 (Sublists) A list l1 is called sublist of a list l2 (written l1 ⊆ l2) iff the following recursive
predicate is satisfied:

l1 ⊆ l2 : ⇐⇒ null?(l1)∨
cons?(l1)∧

(
car(l1) = car(l2) ∧ cdr(l1) ⊆ cdr(l2)
∨ l1 ⊆ cdr(l2)

)
.

Let k ∈ N0. The list l1 is called sublist of the k-prefix of l2 (written l1 ⊆k l2) iff the following recursive
predicate is satisfied:

l1 ⊆k l2 : ⇐⇒ null?(l1)∨
cons?(l1) ∧ k ≥ 1∧

(
car(l1) = car(l2) ∧ cdr(l1) ⊆

k−1 cdr(l2)
∨ l1 ⊆k−1 cdr(l2)

)
.

3

The following lemma summarizes some facts on lists and sublists:

Lemma 8.1 Let l1, l2, l3 be lists over some type T , let t ∈ T , and k, k ′ ∈ N0. It holds:

1. k ≤ length(l1) =⇒ nth(append(t, l1), k) =

{
nth(l1, k) if k < length(l1)

t otherwise

2. l1 ⊆ l2 =⇒ l1 ⊆ append(t, l2)

3. l1 ⊆ l2 =⇒ append(t, l1) ⊆ append(t, l2)

4. l1 ⊆k l2 =⇒ l1 ⊆k append(t, l2)

5. k < length(l2) ∧ l1 ⊆k l2 =⇒ append(nth(l2, k), l1) ⊆
k+1 l2,

that is, one may append the kth element (counted from 0) of l2 to l1 while preserving the prefix-
sublist property.

6. k′ ≥ k ∧ l1 ⊆k l2 =⇒ l1 ⊆k′

l2

7. l1 ⊆k l2 =⇒ l1 ⊆ l2
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8. l1 ⊆ l2 ∧ l2 ⊆ l3 =⇒ l1 ⊆ l3

2

All claims are proved by induction on the recursive structure of the lists.

Definition 8.4 (Receive- and send-list) Let i be an input sequence for machine THOSM
H , and let s and

o be the corresponding state-trace of THOSM
H and the output sequence, respectively. Let u, v ∈ H. The

receive-list is obtained by appending a new element m whenever v receives a message (receive,m, u)
from THOSM

H . The send-list is obtained by appending m whenever u sends a message (send,m, v) to
THOSM

H . Formally, this is captured in the following recursive definitions:

recvlistiu,v(t) :=





null if t = −1,

append(m, recvlistiu,v(t − 1)) if t ≥ 0 ∧ oi(t) = (receive,m, u)

at outv !.

recvlistiu,v(t − 1) otherwise

sendlistiu,v(t) :=





null if t = −1,

append(m, sendlistiu,v(t − 1)) if t ≥ 0 ∧ i(t) = (send,m, v)

at inu?.

sendlistiu,v(t − 1) otherwise

3

We now are ready to give a precise, PVS-suited formulation of Theorem 4.1, i.e., the integrity property
we are aiming to prove:

Theorem 8.1 For any THOSM
H input sequence i, for any u, v ∈ H, u 6= v, and any point in time t ∈ N,

it holds
recvlistiu,v(t) ⊆ sendlistiu,v(t). (1)

In the following, we omit the index i. 2

Proof (sketch). The proof is split into two parts: we prove recvlistu,v(t − 1) ⊆ deliverOSM
u,v (t) and

deliverOSM
u,v (t) ⊆ sendlistu,v(t − 1). The claim of the theorem then follows from Lemma 8.1.8.

The second claim deliverOSM
u,v (t) ⊆ sendlistu,v(t − 1) is proved by induction on t. Both induction

base and step are proved in PVS by the built-in strategy (grind), which performs automatic definition
expanding and rewriting with Lemma 8.1.

The first claim recvlistu,v(t−1) ⊆ deliverOSM
u,v (t) is more complicated. The claim is also proved by

induction on t. However, it is easy to see that the claim is not inductive: in case of a (receive blindly, u, i)
at from advv?, THOSM

H outputs (receive,m, u) to outv !, where (m, j) := deliverOSM
u,v [i], i.e., m is the

ith message of the deliverOSM
u,v list. By the definition of the receive-list, the message m is appended

to recvlistu,v. In order to prove that recvlistu,v ⊆ deliverOSM
u,v is preserved during this transition, it is

necessary to know that the receive list was a sublist of the prefix of the deliver OSM
u,v list that does not

reach to m. It would suffice to know that

recvlistu,v(t − 1) ⊆i deliverOSM
u,v (t).

Then the claim follows from Lemma 8.1.5.
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We therefore strengthen the invariant to comprise the prefix-sublist property. However, the i in the
above prefix-sublist relation stems from the input (receive blindly, u, i), and hence is not suited to state
the invariant. To circumvent this problem, we recursively construct a sequence last rcv blindlyu,v(t)

which holds the parameter i of the last valid (receive blindly, u, i) received by THOSM
H at from advv?;

then
recvlistu,v(t − 1) ⊆l deliverOSM

u,v (t) with l = last rcv blindlyu,v(t)

is an invariant of the system. We further strengthen this invariant by asserting that last rcv blindlyu,v(t)

and the j’s stored in the deliverOSM
u,v list grow monotonically. Together this yields the inductive invariant.

We omit the details and again refer the to the PVS files available online.

8.1 Verification Effort

Together, the development of the inductive invariant and its proof took 2 weeks, which included some
failed approaches in strengthening the invariant to become inductive. The proof of the invariant takes
500 proof commands. A further week and 350 proof commands were needed for the development of
the sublist theory, which can be reused in future verification projects. The main difficulty during the
verification of the invariant was finding the stronger inductive invariant. Once the correct invariant was
found, its proof was quite easy. Before we started the formal verification, we had a hand-written proof
of Theorem 8.1. However, the proof was incomplete in the sense that we did not prove some needed
invariants; in fact, we did not even notice that we used these invariants in our hand-made proofs, because
of our intuitive understanding of the system.

9 Conclusion and Outlook

In this paper, we have addressed the problem how cryptographic protocols in asynchronous networks
can be verified both machine-aided and sound with respect to the definitions of cryptography. We
have established a preservation theorem for integrity properties stating that the verification of integrity
properties of abstract specifications automatically carries over to the concrete implementations if the
implementation is secure in the sense of simulatability. Moreover, we have shown that logic deriva-
tions among integrity properties are valid for the concrete systems in the cryptographic sense, which
makes them accessible to theorem provers. As an example, we have presented a specification of secure
message transmission with ordered channels, which we formally validated using the theorem proving
system PVS. Furthermore, we used formally verified bisimulations to derive a secure implementation.
Together with the preservation theorem these results imply that the correctness of the verified property is
equivalent to the security of the underlying cryptographic primitives, i.e., if the primitives for encryption
and digital signatures are secure with respect to their respective security definitions, the integrity prop-
erty holds for the concrete implementation. This yields the first formal verification of a cryptographic
protocol that is sound with respect to the cryptographic definitions. We hope that our work paves the
way for the actual use of automatic proof tools for many similar cryptographically faithful proofs of
security protocols.
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A Postponed Proofs

Proof. (Lemma 3.1) Let SA denote the set of specified ports the adversary connects to, i.e.,

SA := {p | p ∈ S \ ports(H)c}.

Roughly speaking, we will define a new machine H1 which is inserted between the system and the
adversary such that H1 uses all ports of SA. Combination of H1 and H will yield the new honest user Hs.
However, we will at first concentrate on the machine As.

If the configuration conf is polynomial-time, let the adversary A be bounded by L(k) for a poly-
nomial L and the security parameter k. We now define the new adversary As of confs starting with its
ports.
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• First of all, every port p ∈ ports(A) that does not connect to a specified port, i.e. pc 6∈ SA, is also
a port of As.

• For every simple port p ∈ ports(A) with pc ∈ SA, As has a port p′ of the same kind.

• For every clock-out port p/! ∈ ports(A) that connects to the specified ports, i.e. p/!c ∈ SA, As

has a clock-out port pcr
/! and an additional output port pcr!.5

• As has additional ports pAs
?, pH1

!, pH1

/! which will be needed for synchronizing the communica-
tion with H1 and ports pmask back?, pmask!, pmask

/! needed to make the machine H1 polynomial-
time in case of a polynomial-time configuration conf .

We assume without loss of generality that all these primed and additional ports are new ports of the
configuration. Internally, As maintains an array O′ save = (O ′ savep/!)p/!∈ports(As) over Σ+ initialized
with ε everywhere and two arrays (out buff p!)p!∈Sc

A
and (masked p?)p?∈Sc

A
over {0, 1} initialized with

0 everywhere.
The array out buff will be used to indicate the buffers between A and the corresponding specified

ports of the system which have nonempty contents. The array masked will be used to explicitly tell H1

which input ports it has to “cut off”, i.e., which ports it has to mask with a length bound 0.
The behavior of As is now defined as follows. On an arbitrary given output O = (Op)p∈ports(A) and

the given state s′ of the blackbox A, the corresponding output O ′ = (O′
p)p∈ports(As) of As is derived by

the following algorithm. Initially, all components of O ′ are set to ε. They are automatically reset to ε at
every call of δA.

• Preliminary Step: First of all, As checks whether A masked one of its own input ports connected
to the specified ports using a zero length bound, which it can easily do, because it knows the
current state s′ of the blackbox. For every masked input port p? 6∈ S c

A, i.e., a port connected to
an unspecified port of the system, it masks this input too; for every non-masked input port of this
kind, it sets the length bound to the runtime of A in the polynomial case and to infinity in the
remaining cases. For every masked input port p? ∈ S c

A, it sets masked p? := 1. Afterwards, it sets
O save := O (i.e., it saves the whole output tuple, since it will need the tuple after it has been
scheduled by H1 again) and encodes the whole array masked into c ∈ Σ∗. Finally, it outputs c at
pmask!, 1 at pmask

/!. Informally speaking, As has to tell H1 which ports it should mask, so it stores
them in the array masked and sends the whole array to H1.

• Step 1: p! 6∈ S c
A: At first, As simply goes through the tuple and sets O ′

p! = Op! for every port p!
with p! 6∈ S c

A. This case ensures that outputs to itself, to the system, and to the original honest
user H will simply be forwarded.

• Step 2: p! ∈ S c
A: Then, As goes through the tuple and sets O′

p′! = Op! for every port p! with
p! ∈ S c

A. If Op! 6= ε, As additionally sets out buffp′! := 1, i.e., it stores which buffers between As

and H1 have nonempty content.

So far we have considered outputs at the simple ports of A. Now As goes through the tuple and searches
for the first nonempty output at a clock-out port p/!.

• Step 3: p/! ∈ S c
A: If A outputs c at a clock-out port p/! ∈ S c

A, A′ encodes c and the whole array
out buffp into c′ ∈ Σ+. It then sets O′

pcr!
= c′, O′

pcr
/! = 1, and out buffp = 0 for all elements of

5The index cr serves as an abbreviation for “clocking request”. These ports will later be used to tell H1 which buffer it has
to schedule.
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the array and outputs O′. Informally speaking, As tells H1 what buffer have nonempty contents at
the moment, and that it should schedule the c-th message of buffer p̃ afterwards.

• Step 4: p/! 6∈ S c
A or no non-empty clock output at all : If A outputs c at p/! with p/!c 6∈ SA,

As encodes the whole array out buffp into c′ ∈ Σ+ as in the previous step but containing the
number 0 instead of the number c. It then sets O ′

pH1
! := c′, O′

pH1
/! := 1, O′ savep/! := c, and

out buffp = 0 for all elements of the array and outputs O ′.

We again briefly sketch the intuition behind this case. Messages intended for the system are
directly output, but no message is immediately scheduled. Again, As tells H1 all necessary in-
formation for delivering messages to the specified ports, but additionally, it stores which buffer it
has to schedule afterwards. Anticipating, H1 will give back control to As by construction after he
delivered the messages to the specified ports, so As will be able to schedule the desired buffer p̃.

If there is no nonempty clock output, As acts identically but sets O′ savep/! := ε instead. This
ensures that no buffer will be scheduled after the control comes back from H1 to As, so the master
scheduler will be scheduled just as in the original configuration conf .

The behavior of As on external inputs can be described quite simply.

• If As receives an input 1 at pAs
? (i.e., the machine H1 gives back the control), it simply outputs

O′ save and sets O′ savep/! = ε afterwards for all elements of the array. This case can only
occur as a direct consequence of Step 4 of the above algorithm. Inputs at other ports are simply
forwarded to their corresponding ports of A.

• If As receives an input 1 at pmask back? it sets all components of masked back to 0 and O :=
O save and proceeds with Step 1.

• If A enters final state, we define that As finishes the delivering of messages and enters final state
too. More precisely, it outputs its tuple derived by the above algorithm and stops. If Step 4 applies,
it additionally waits for a nonempty input at pAs

?, outputs the tuple O′ save , i.e., the scheduling
of the desired buffer, and enters final state after that.

Note, that As obviously can only do a polynomial number of steps between two successive calls of δA

by construction which yields a polynomial-time adversary As again if A is polynomial.
We can now turn our attention to the machine H1 which is defined as follows. Its ports are given by

• {p | pc ∈ SA}: Ports for connecting to the specified ports SA.

• {p′?, p′/! | p?c ∈ SA}: Input ports for connecting to As.

• {p′!, p′/! | p!c ∈ SA}: Output ports for connecting to As.

• {pcr? | p/!c ∈ SA}: Input ports for clocking requests of As.

• {pH1
?, pAs

!, pAs
/!}: Ports for synchronization with As.

• {pmask?, pmask back!, pmask back
/!}: Ports for making explicit changes of length bounds. As al-

ready described above, these ports will be used for masking certain inputs.

Internally, H1 maintains an array (buff coll p?)p?∈SA
over Σ+ initialized with ε everywhere. The behav-

ior of H1 is defined as follows.
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• If H1 receives an input c at pmask? it decomposes c into the array masked again. For every
masked p? = 1 it masks the input port p? using a zero length bound. For every masked p? = 0
it sets the length bound of p? to the runtime of A in the polynomial case; otherwise, it sets it to
infinity.

• If H1 receives an input c at a port p?, it outputs c at p′!, 1 at p′
/!. This case ensures that outputs

made by system are simply forwarded to the adversary.

• If H1 receives an input c′ at pcr?, it decomposes c′ into its original form c′ = c, (out buff p!)p!∈Sc

A
.

– In case c 6= 0, it does the following: For every element out buffp! 6= 0 it schedules the mes-
sage stored in p̃′ and saves them in buff coll p?.6 After that, H1 outputs the array buff coll p?

to the corresponding output ports p! and removes these elements from the array (which yields
an empty array again). Additionally, it outputs c at p/! (the corresponding clocking port for
requests at pcr?).

– In case c = 0, it collects all messages stored in the buffers p̃′ in buff coll p? again as in the
previous step. Finally, it outputs these messages at their corresponding ports and 1 at pAs

!, 1
at pAs

/!. This case ensures that the adversary A will be scheduled again, so he can eventually
schedule its desired buffer (cf. Step 4 of the description of As).

If the configuration conf is polynomial-time, we let H1 also stop after a polynomial number of steps.
A possible polynomial bound can simply be derived if you consider that H1 has to make less than
|ports(As)| outputs for collecting messages from the nonempty buffer. These messages are stored in the
corresponding arrays and finally output as a tuple. The number of ports is finite and does not depend on
the security parameter k, so the number of steps which H1 performs between two successive clockings
of itself in every run is constant, because masking of input ports is done not only by A but also H1.
Moreover, H1 can only be clocked either by the system or by the adversary. If it is clocked by the
system it immediately clocks As which has to be polynomial-time if A is polynomial-time as we showed
above. Thus, H1 can only perform a constant number of steps between two successive clockings of As.
If we denote this constant by cst, H1 simply stops after cst · LAs

(k) steps where the polynomial LAs
(k)

bounds the number of steps As can perform.
Putting it all together, H1 and As simply forward every message between the system Sys and the

original adversary A which is represented as a blackbox submachine of the newly defined adversary
As. Thus, we obtain identical views of the original adversary A, the system Sys , and the honest user H

in both configurations. To prove this more formally we could simply go through all possible cases of
outputs of A, H, and machines of the system and show that we obtain identical behaviors with respect
to the original machines H, A, and the machines of the system in both configurations. We omit it here
because it is a rather simple but tedious proof, and we believe that it is already clear by construction of
H1 and As and our above explanations.

As a direct consequence we obtain that the probability of the runs restricted to S does not change,
because H1 always outputs exactly the same tuple to the specified ports as the original A and the view of
all machines of the system and the view of H is identical in both configurations. We now combine H and
H1 into one machine Hs. This combination is well-defined in the underlying model and yields a closed
collection M̂ ∪ {Hs,As} again. Moreover, if conf is polynomial-time, H and A are polynomial-time by
precondition which implies that As and H1 are polynomial-time as shown above. Using the combination

6This is indeed possible, because the scheduled buffer will schedule H1 again by construction if it has a nonempty output.
This will always be the case, since H1 will only schedule buffers which he knows to be nonempty.
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of two polynomial-time machine yields a polynomial-time machine again (formally proved in [38], we
know that Hs also has to be polynomial-time yielding a polynomial-time configuration

confs = (M̂1,S1,Ha,As) ∈ Conf(Sys)

in this case. The view of any set of submachines of Hs and the probability of the runs restricted to S

does not change at combination of machines, which yields

view conf (H) = view confs(H) and runconf dS= runconfsdS .

Finally, S c ⊆ ports(Hs) holds by construction, which finishes our proof.
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