
RZ 3519 (# 93907) 07/07/2003
Computer Science 11 pages

Research Report

Efficient Programmable Middleboxes for Scaling Large Distributed
Applications

Sean Rooney, Daniel Bauer, Paolo Scotton

IBM Research
Zurich Research Laboratory
8803 R̈uschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available
at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich



1

Efficient Programmable Middleboxes for
Scaling Large Distributed Applications

Sean Rooney, Daniel Bauer, Paolo Scotton
IBM Research

Zurich Research Laboratory
Säumerstrasse 4

8803 Rüschlikon, Switzerland

Abstract—
A range of application classes is emerging in the Internet

whose characteristics differ considerably from those of the
point-to-point request/response protocols, which have dom-
inated its recent past. Sensor applications, peer-to-peer sys-
tems, and massive multiplayer on-line games are multi-point
applications that share both a need for the timely correlation
of data generated by different participants in a session and
a potentially unlimited number of session participants.

We propose the use of middleboxes residing in the net-
work to help in the scaling of these applications. As these
emerging applications are not readily subject to standard-
ization, we believe that a programmable model, in which
a given middlebox can be instrumented to support various
applications either simultaneously or over time, is desirable.
We describe our work to date in building such a middlebox
that makes use of hardware assists in its data path to main-
tain high performance.

I. INTRODUCTION

Designing distributed applications that scale involves
ensuring that the amount of data transmitted and pro-
cessed grows in an acceptable fashion with the number of
participants. Techniques that reduce the amount of data
transmitted, while allowing applications the same level
of information are desirable. For example, within the
existing Internet, web-page caching coupled with HTTP
request redirection enables Web sites to handle larger
loads than would otherwise be attainable. Caching as a
technique is least beneficial when information is quickly
changing; at some rate of change it brings no benefit at
all. Other techniques that can be used to reduce data are:

• intelligent forwarding, sending data only to some
subset of participants;

• aggregation, combining data from different partici-
pants before forwarding it;

• application-level filtering, dropping packets that are
no longer relevant, for example those out-of-date;

• attenuation, reducing the amount of data carried,
based on the association between the sender and the
receiver.

Currently none of these techniques is widely deployed
in the Internet as they are not readily applicable to point-
to-point request/response protocols.

Our contention is that emerging applications will re-
quire the deployment of these techniques in the network
to allow them to scale to large numbers of participants.
We identify three such application types: large sensor ap-
plications, peer-to-peer file-sharing systems, and massive
multiplayer on-line games. Our work involves designing
and building the devices capable of aiding the scalabil-
ity of these applications through the use of the functions
listed above.

The community has settled on the name middle-
boxes [1] for these intermediate devices, a middlebox ser-
vice being loosely defined as one that requires application
logic but is typically executed on a dedicated device in the
network.

Middlebox services are limited by the fact that the ap-
plication logic is instrumented either in an ASIC, thereby
reducing the flexibility of the device, or in software, re-
ducing the throughput it can sustain and therefore the lo-
cation in the network at which it can be deployed. A
Network Processor (NP) [2] is a processor that interacts
with special hardware, for example, in the form of co-
processors, to achieve faster packet-forwarding rates than
a conventional processor could sustain. Originally con-
ceived as a means of allowing equipment vendors to use
the same hardware across a range of different network de-
vices, NPs offer the possibility of allowing more complex
application-specific functions to be executed in the net-
work without degrading network performance on a gen-
eral purpose configurable middlebox.

Currently, we are building such a general purpose mid-
dlebox, which we term a booster box. A booster box may
run one or more application boosters – or boosters for
short. The term booster box is inspired from [3], which
described protocol boosters. Although our application
boosters are different in nature from protocol boosters,
they share the design principle that boosters, as much as



2

possible, should transparently improve performance.
We first describe our current implementation of the

booster box, then we present our experience in using it
to support application instances in each of the three target
classes.

II. ARCHITECTURE

The booster box is a one or two port general pur-
pose computation platform with an interface that al-
lows application-specific logic to configure the underly-
ing packet forwarding engine. In our implementation this
packet fowarding engine is an NP, but this is hidden from
the application. In fact, often we try out functions us-
ing the packet forwarding capabilities of a Linux kernel
before instrumenting equivalent capabilities on the NP.
From an application point of view there is no functional
distinction between these two forwarding engines. Multi-
ple distinct application boosters may be executed in paral-
lel. Arbitrary third parties are not allowed to run boosters
so although booster boxes need to be protected against
intruders, security concerns are no greater than those for
other pieces of network equipment.

A. Operation Taxonomy

Carpenter in [4] gives a taxonomy of middleboxes and
discusses their effect on the end-to-end principle that un-
derlines the Internet. A range of various possible middle-
boxes function are discussed, a distinction being made be-
tween middleboxes that terminate connections and those
that modify or divert packets on the fly. While booster
boxes support both modes of operation, we recognize the
problem of an invisible middlebox’s failure having an ad-
verse affect on network robustness. In consequence, from
the application’s point of view the booster box should be
fully transparent or fully opaque:

Booster Box

Access
Router Router

Edge

Clients

Classifier
Rules

Forwarding
Table

Classifier

Booster

Forwarder1 0

Fig. 1. Booster box operation in transparent mode

transparent mode: if the booster box is fully trans-
parent neither client or server are aware of its existence.
A booster box present on the path between client and
server intercepts packets belonging to the application,
processes and forwards them on as appropriate. If there
are no booster boxes on the path or if a booster box

fails, then packets reach the destination without being pre-
processed. To operate in this mode a booster box is in-
serted in a link between two routers e.g. between an ac-
cess router and an edge router. The traffic is sent through a
classifier which identifies the packets to be boosted. Pack-
ets are classified by source, destination address and port,
and protocol type — on-going work will extend the clas-
sification scheme to use arbitrary information in the pay-
load. Such packets are diverted to a piece of logic imple-
menting the booster functions while the rest of the traffic
is forwarded unchanged. Our assumption is that only a
small fraction of the overall traffic is handled by boosters.
Figure 1 illustrates this principle.

opaque mode: if a booster box is opaque, then to the
client it appears as another addressable end-point. In ef-
fect it is a network based server which may use NP sup-
port for network specific functions, for example, efficient
application-layer multicast as described in Section III-C.
A given booster box executing different boosters may be
opaque to certain applications and transparent to others.

B. Design

���������
���������
���������

�������
�������
�������

Booster

�������
�������
�������

�������
�������
�������

Booster

�������
�������
�������

�������
�������
�������

Booster

Network Processor Interface Card

Network Processor Device Driver

Data Forwarding Layer

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������Booster Box

Booster Layer

Booster
Library

Booster
Library

Booster
Library

Booster
Control
Point

Traffic
Input

Traffic
Output

Fig. 2. Booster Box Architecture Overview

At an abstract level the booster box can be thought of
as two distinct layers, as shown in Figure 2:

• a booster layer that contains the application-specific
code as well as some control functions;

• a data-forwarding layer that contains the code exe-
cuted upon the arrival of a packet in the data path.

This view is helpful for description and follows the
well known control/data division of a network element.
In practice, however, the division is not so crisp. When
a packet matches a classifier rule in the data path an op-
eration is performed on it. Whether this operation is ac-
tually performed by the network processor itself or redi-
rected to the main processor, is implementation specific.
It depends on the capabilities of the network processor,



3

the code currently instrumented on it and the complexity
of the operation. Ideally the application program writer
would supply an abstract description of the required op-
eration and the appropriate code would be generated for
the given environment. Building such a code generator
would be extremely complex. Instead we specify an API
between the two which minimally allows an application to
redirect or copy classified packets to a user level process,
but may contain other NP specific operations as well. This
approach is some what ad hoc, but is adequate for our cur-
rent needs.

At a practical level, boosters are Linux processes. The
application specific code of a booster is linked to a booster
library. This library contains the API through which
the application specific code instruments the data layer.
The API hides implementation details of the data layer
and uses an event handling mechanism based on asyn-
chronous operations. In addition, the booster library pro-
vides asynchronous versions of most socket library calls
as well as a timer service.

A booster box controller process running in the booster
layer coordinates the action of boosters. For example, be-
fore the booster library transmits a redirect request to the
NP, it first communicates with the controller to ensure that
the operation is allowed. This prevents boosters from in-
advertently interfering with each other. The booster con-
troller is also responsible for general management tasks,
such as installing new code on the NP, loading the kernel
modules that enable communication with it, etc.

The library offers interfaces to other general services
that we have found to be useful, for example, a directory
service in which the booster can store persistent state.

The data layer operates on individual packets as in-
structed by the booster layer. It consists of a classifier
that examines all incoming packets. The default action
is to forward incoming packets using a forwarding table
provided by the booster box control process. Non-default
actions consist of redirecting or copying packets. These
actions are defined by the boosters and downloaded to the
data layer by the booster library.

C. Implementation

Physically a booster box is a Linux PC with an IBM
network processor board attached across the PCI bus. The
NP board contains an IBM NP4GS3 processor that con-
trols three gigabit ethernet ports, out of which two are
used. The NP processes incoming packets without inter-
acting with other components in the system. It can be seen
as a programmable router on a card with an aggregated
performance of over 2000 MIPS.

Communication with the Linux host computer takes
place through virtual ethernet interfaces established by
the NP device driver. Packets that are sent out on a virtual

Kernel
Protocol Stack

Booster
Library

Booster

Booster
Library

Booster

NP Forwarder

NP Device Driver

Kernel Space

User Space

Virtual Interfaces

Linux PC

NP Interface Card

Physical
Port

Physical
Port

Physical
Port

Fig. 3. Data Flow Implementation

ethernet interface first traverse the kernel protocol stack
and are then forwarded to the NP by the device driver,
where they are transmitted over the corresponding physi-
cal port. Similarly, packets that arrive on a physical port
with a local destination are made available on the virtual
interfaces by the NP device driver. Figure 3 illustrates this
process.

One of the virtual interfaces is associated with the con-
trol point software on the NP. The NP service library pro-
vides a control API that allows, among other things, clas-
sifier rules and forwarding table entries to be maintained.
This service library uses message-passing to communi-
cate with the control point on the NP card. Messages are
sent and received through the virtual control interface, to
which they are forwarded by the NP device driver.

Boosters are not aware of how the network processor
is integrated into the system or what type of network pro-
cessor is used. If no NP is present, then the operations are
carried out by the Linux kernel. From an application point
of view, there is no difference in functionality, only in per-
formance. Our performance measurements show that the
NP forwards packets in 15µs± 3µs virtually independent
of the offered load, the packet size and the number of clas-
sifier rules. In contrast, we found that Linux kernel for-
warding on a Pentium IV, 1.6 Ghz processor has a latency
in the range of one to several hundreds of microseconds,
depending on the packet size and the offered load. In ad-
dition, the NP is able to forward packets at the line rate of
1 Gbit/s, whereas software based forwarding in Linux is
able to sustain only an order of magnitude less.

Boosters use an API to access the booster library and to
invoke asynchronous operations. The asynchronous oper-
ations’ semantics allows applications to trigger an opera-
tion and process the results later. This model allows the
high degree of parallelism needed by the boosters to avoid
blocking on network operations. For example, an applica-
tion might want to redirect packets and at the same time
wait for control messages on a socket. Using the asyn-
chronous redirect and read operation, both can be trig-
gered and the results will be delivered as events. In the
case of the redirect operation, redirection events will be



4

triggered until the application decides to stop the redirec-
tion.

Event
Handler

Async. Op.
Thread

Event
Handler

Async. Op.
Thread

Event
Handler

Async. Op.
Thread

Init

Resource Mgr

Async.
Operations

Queue

Dispatcher

Result
Queue

Booster Library

Application Booster

Fig. 4. Booster Library

An overview of the booster library is shown in Fig-
ure 4. Asynchronous operations are triggered by the ap-
plication booster during the initialization as well as dur-
ing the execution of event handlers. A resource man-
ager resolves conflicts of operations that compete for the
same resources. Competing operations are handled us-
ing a FIFO strategy and put into the same asynchronous
queue. These queues are handled by a pool of threads
that execute the actual operations. Results produced by
asynchronous operations are put into a result queue from
which they are dispatched to the event handlers of the ap-
plication booster.

Figure 5 shows the steps in redirecting a packet. (1)
the application registers a callback function with a redi-
rect rule. (2) the library checks with the controller if the
rule is allowed. (3) the rule is mapped to the format un-
derstood by the NP and (4) to the Linux kernel. (5) a
packet arrives conforming to the rule. (6) it is directed to
the Linux kernel by the NP and then to the application (7)
by the Linux kernel. (8) the application callback function
is executed.

III. APPLICATIONS

In this section we describe our experience in using the
architecture described in Section II to enhance different
classes of applications, namely, sensor applications, peer-
to-peer file sharing systems and massive multiplayer on-
line game.

(1)

(2)

(3) (4)

(5)

(6) 

(7)

(8) 

Linux PC

NP Interface Card

Booster

Booster
Controller

kernel
user-space

Fig. 5. Steps in Redirecting a Packet

A. Sensor Applications

The decreasing cost of processing and communication
means that simple devices can be equipped with sensors
capable of gathering information about their environment.
These sensors transmit this data to agents typically res-
ident on the devices themselves and which are able to
process the raw data into useful information. Current
work [5] is investigating cheap sensors dropped into a
localized area and communicating via wireless technolo-
gies, e.g. bluetooth, to form a so called “sensor network.”

In certain circumstances the area of interest is too large
to be handled by such local sensor networks and addi-
tional information, e.g. historic data, not available to the
local sensors is needed to interpret the sensor data. In
such cases the information can be forwarded to a central
server.

Modern cars are equipped with both the means to mon-
itor their own electronics and the ability to communicate
with external agents. The set of protocols, services and
data formats is termed Floating Car Data (FCD) [6]. In
particular, vehicles can be used as probes to measure var-
ious aspects of the city, enabling new applications that
process the data to generate useful information, for exam-
ple dynamic urban traffic forecasts.

As pointed out by Estrin et al. [5], the disadvantage
of using central servers in vehicle information systems is
that they do not scale as the number of vehicles grows.
For a high enough packet arrival rate, the server starts los-
ing packets and the behavior of the application degrades.
On the other hand, using a pure sensor network approach
for urban traffic prediction is also not the ideal solution.
The amount of information exchanged among cars will
grow as a polynomial function of the number of cars.
As the size of the city and the number of cars grow, the
amount of information that can be exchanged will reach a
limit causing the traffic prediction to be localized or inac-



5

curate.
In a sensor network, sensors aggregate received data

before transmission, thereby reducing the total amount of
data that needs to be transmitted, e.g. a sensor that re-
ceives a temperature reading from a set of neighbors may
calculate the average temperature including its own read-
ing before further transmission. The set of techniques
used to reduce the amount of data or increase its accu-
racy, e.g. using probabilistic reasoning, is termed data
fusion [7] within the sensor community.

The booster box is a platform on which functions anal-
ogous to those used in data fusion applications can be
implemented and deployed in the Internet. Our proof-
of-concept application is a prototype of the infrastructure
needed for urban traffic prediction.

The prediction model is an extension of that used by
Peytchev et al. [8]. Their model uses two state variables:
queue length at the road’s exit traffic light and traffic den-
sity in the road. These are modeled as a set of discrete-
time linear difference equations, such that the value at
time k of the state variable only depends on the value at
time k−1. The values of the state variable for a given road
are affected by only those roads with which it shares a
junction. The model requires knowledge of the discharge
rates at each traffic light and of the probability of car turn-
ing into each outgoing link at an intersection. The results
of one iteration can be applied in the next in order to ob-
tain predictions an arbitrary number of time cycles into
the future — albeit with decreasing accuracy.

We extended the model such that we could obtain pre-
dictions of the traversal time across roads. Knowing the
likely queue length and traffic density at some number of
traffic cycles in the future, the likely traverse time is cal-
culated. Traverse time has two components. The first is
the time it takes to drive through the road calculated from
the average speed and length of the road. The second
component is the time the car will be stuck in the queue
before it gets discharged. We measure the average speed
of a car on a road using the information transmitted from
the cars.

Figure 6 shows the various components in the exper-
imental setup. We used a city simulator to simulate the
behavior of 1000 cars moving around a small city. Packet
generators read data from the output of the simulation and
generate UDP packets containing the position and veloc-
ity of an individual car and using the same format as that
sent by the cars themselves. In addition, traffic lights also
communicate their state changes. Different packet gen-
erators are assigned to different parts of the city. These
packets are intercepted by the booster boxes, in the way
described in Section I, and their information is aggregated
in a format suitable for the prediction model. At every
traffic light state change on a given road, the booster box
communicates the queue length and the traffic density to

Area 1

Area 2

Packet Generators

Booster boxes
Servlet 

Front-End
Prediction Application

Back-End

Server

Tuplespace
with 

aggregated 
information

a->b ?

a-e-n-c-d-b TCET

UDP XML/RPC

UDP XML/RPC

Write Read

Tuplespace
with predictions Read Write

Route Finder
Application

Fig. 6. Aggregating Sensor Information

the server. In the case that packets are not intercepted by
a booster box, the server is also capable of accepting and
combining the raw data from a car with the aggregated
information.

In addition to aggregating information at the booster
box, we format the information such that the packets for-
warded to the server use XML/RPC over a long lived TCP
connection. This has two advantages, first, it allows us to
use standard server technology to implement the backend
server, e.g. Apache httpd associated with an IBM Web-
Sphere servlet engine, and second, the processed infor-
mation can be transferred reliably over the network in a
TCP friendly way.

The server calculates the prediction using the model
described, and outputs to a tuplespace. The tuplespace
plays the role of a broadcast medium. In a real appli-
cation the broadcast medium can be for example Digital
Audio Broadcast (DAB). A routing application running
on the in-car computer platform — the TCET in Figure 6
— periodical reads from the tuplespace to calculate short-
est time paths across the city.

In our experimental setup, each of the two data gener-
ators was connected to the server through a booster box.
Each booster box was implemented on a Linux machine
equipped with a Pentium II 233 MHz processor and 64
MB of RAM. The server also ran Linux but with a 1500
MHz processor and 1024 MB of RAM. The network used
to interconnect the devices was a 100 Mbit ethernet LAN.

Figure 7 shows how a server scales with and without
booster boxes. The graph plots the number of UDP pack-
ets received as a function of the number of packets sent.
The measurement was performed at the server when there
is no booster box and on the booster boxes themselves
when they are used.

The experiment without booster boxes started to lose
some packets at a load of less than 2,000 p/s and had
losses of more than 50% at 5,000 p/s. The experiments



6

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
Packets sent [p/s]

P
ac

ke
ts

 r
ec

ei
ve

d
 [

p
/s

]

no packet loss front-end server w/boosters

Fig. 7. System Performance and Packet Loss.

with booster boxes showed no significant loss until the
load was higher than 6,000 p/s, and at 11,000 p/s the loss
was about 25%. At the same rate the scenario without
booster boxes had nearly 90% loss.

The machines used in the test environment are much
less powerful than those that would be used in a real
system; therefore the absolute figures for load handled
are not truly representative. Of more interest is the gain
achieved by using the aggregation function on booster
boxes. Note that these booster boxes were eight times
slower than the server. The results showed that in the
test environment the use of the booster boxes reduces the
amount of packets the server has to handle by a factor of
10. Although the amount of data transferred is the same,
better performance is observed as the bottleneck is the
number of packets that can be handled, rather than the
throughput. A detailed analysis of the experiments and
the results can be found in [9].

B. Peer-to-Peer File Sharing Applications

Peer-to-Peer file sharing applications such as
Gnutella [10] build an overlay network of peer nodes
across the physical network and then flood requests over
this overlay. This approach has a well known scalability
problem [11], due to the incongruity of the physical and
overlay network topologies, leading to inefficient request
forwarding, and the inherently unscalablility of flooding.

Solutions to these problems have been proposed. For
example, Ratnasamy et al. [12] propose the use of an
Internet coordinate derived from the distance to well
known beacons to determine network closeness, while
others [11], [13] propose dividing the responsibility for
storing files across the set of peers based on file names,
such that a peer can forward requests in a more guided
way. Within the Gnutella community the scaling prob-
lem has led to the introduction of the concept of an ultra-
peer in which one of the peers in an area is denoted an

ultra-peer, and a two level hierarchy is created such that
leaf-peers connect to ultra-peers and ultra-peers connect
amongst themselves. The ultra-peers gather information
about attached leaf-peers, e.g. asking them for the entire
set of files they have, and exchange this information with
other ultra-peers in order to allow more guided file query
requests.

The disadvantage of these techniques is that they re-
quire the development and deployment of new and more
sophisticated peer-to-peer file sharing systems. It is de-
batable whether the fact that these systems make better
use of network resources than existing ones is a sufficient
reason for their wide scale deployment. A better solution
is one in which existing systems are made to conform to
better practice without having to change the software run-
ning on clients’ end-stations. This can be achieved if the
network can intercept and manipulate file sharing opera-
tions.

The basic principle of our approach is to place booster
boxes at the ingress/egress links of a cluster, e.g. an ad-
ministrative domain. The booster box intercepts connec-
tion request messages issued by peers and “convinces”
those peers to connect to itself. The booster then becomes
the gateway with which all external clients must peer and
through which all intra-cluster requests for files must be
carried. If multiple booster boxes are scattered throughout
the network, they can uniquely or preferentially peer with
each other, creating a two level overlay. As the booster to
booster communication can use proprietary protocols for
exchanging information, they can use techniques such as
those described in [13]. Better scalability of the peer-to-
peer file sharing systems is achieved because the topology
of the overlay can be controlled and requests can be more
intelligently forwarded, without having to change the file
sharing system software running on the end-systems.

Our proof of concept uses the Gnutella file sharing sys-
tem. At the start of a Gnutella session, each Gnutella
client attempts to peer with some subset of Gnutella peers
learned about by other means, e.g. obtained from a well
known server. The Gnutella client opens a TCP connec-
tion to the remote client and then sends a Gnutella Con-
nect message to ensure that the remote client is running
Gnutella; if it is, the remote client sends a Gnutella OK
message. A Gnutella client can probe the network for ad-
ditional peers by sending Gnutella ping messages to exist-
ing peers, and these in turn will forward the ping message
to all their peers; this continues for some number of hops
across the overlay. A client receiving a ping and having an
interest in peering replies with a pong message containing
the address and port of itself, which is carried back across
the overlay.

We implemented a booster that intercepts Gnutella traf-



7

Message Interception

Booster Box

Ping A to B

Pong B to A

Client A Client B

Pong B to BB

Ping BB to B

Fig. 8. Interception of Gnutella Control Traffic

fic identified by the well known Gnutella port 1. This
booster intercepts and accepts the Gnutella TCP connec-
tion request from client’s in its local domain and acts as
it were the designated remote Gnutella client. The lo-
cal client may send ping messages across this connection,
in which case the booster may simply drop them or re-
ply with pongs containing the addresses of other clients
in the local domain with which it has already connected.
Figure 8 illustrates the message exchanges. When Client
A issues a ping to Client B the message is intercepted by
the booster box, which replies with a pong as if it were is-
sued by Client B. Depending on the logic used to form the
overlay network, the booster box may or may not connect
to Client B.

The result is that if the booster box is placed after the
unique access router of a given domain, then all hosts
within that domain can peer only with other hosts in that
domain or with the booster. The booster itself can peer
with other Gnutella clients outside the domain in the con-
ventional way. The booster makes the topology of the
overlay network more congruent with that of the physi-
cal one. Figure 9 depicts an example of this principle.
It shows how booster boxes inserted in the three clusters
minimize the connection on the links between clusters.
The booster waits until it has received a given Gnutella
query message multiple times before forwarding it out-
side the domain boundary, ensuring that a first attempt is
made to find the file locally before searching for it re-
motely. More advanced techniques can be envisioned,
e.g. creating indexes of hosts with given files, caching
commonly requested files etc.

The novelty in this approach is not the better file shar-
ing techniques per-se, but rather the ability to efficiently
extract identifiable peer-to-peer messages from gigabit
streams and then apply those techniques to them. An im-
portant benefit deriving from this approach is the dramatic
reduction of the traffic on clusters’ ingress/egress links.

1If Gnutella clients use ports other than the standard one then identifi-
cation of a Gnutella request can be achieved by looking at the payload.
This is possible using a programmable NP.

Booster Box

Cluster 1
Cluster 2

Cluster 3

Inter−cluster link

Gnutella overlay link

Clients

Cluster 1
Cluster 2

Cluster 3

Fig. 9. Clustering the Gnutella overlay network

C. Massive Multi-Player On-line Games

The term Massive Multi-Player On-Line Game (MM-
POG) has come to denote games with a large number of
participants played over the Internet, for example the Ev-
erQuest role-playing game [14]. Current MMPOGs use
a central server approach as peer-to-peer systems cannot
scale to the required number of players and centralizing
the logic in a single game server farm eases the problem
of administration. The latter is important as the game
provider charges clients for use of the game so security
and resilience are essential.

The number of simultaneous participants a game can
host is dependent on the amount of resources available
on the server farm, in particular the server I/0, network
bandwidth, processing cycles and memory. How exactly
these grow with number of participants is game depen-
dent, but as the games involve interactions between par-
ticipants this is almost certainly not less than linear. In
consequence to increase the number of simultaneous par-
ticipants by a factor of ten, at least ten time more re-
sources are needed.

As the infrastructure must be built before the popular-
ity of the game is known, this represents a large risk for
the game provider. The game may be more popular than
expected leading to congested infrastructure and perhaps



8

even game failure, or the game is less popular and the in-
frastructure is massively over-provisioned.

Better server farm scalability could be achieved if some
of the computation could be delegated to the participant’s
computer. The total available computation to the game
would increase as with the number of participants. Peer-
to-peer games have this property, however, they are only
applicable to a small number of participants — as the
number of packets sent grows as a square of the number
of participants — or require communication over a broad-
cast medium, e.g. a LAN. It is also difficult to envisage
how a pure peer-to-peer system could be made reliable
and secure enough.

Our approach is to use a hybrid of the peer-to-peer and
central server model to obtain scalable but reliable MM-
POGs. We achieve this by:

• dividing a large game into multiple federated small
games each of a size that can be handled using a
peer-to-peer model;

• using fast dedicated multicast reflectors which han-
dle the communication for one or more of the small
games;

• separating the control and data planes, such that the
multicast reflectors are responsible for the fast data
forwarding, while servers continue to perform the
control and management functions.

Client 5

Client 4

Client 3

Client 1

Client 2

Control
Server

Booster Box 2

Booster Box 1

Game space

C3

C2

C5C4

C1

B1 B2

Game data flow (UDP)

Control data flow (TCP)

�������������
�

����������

	�	
�
�������
�

��������

�������������
�

Fig. 10. Hyrbid Game Architecture

At registration, clients obtain the virtual location /
booster box mapping from servers. They add and remove
themselves from multicast groups as they move within the
game. For reasons of space we limit ourselves in this pa-
per to a description of the data path. The architecture is
shown in Figure 10.

A booster box maintains the list of clients resident at
a given virtual location. The client sends data packets to

the booster box which then sends them to all co-located
clients. The client does not know the addresses of the
other clients, nor does it communicate with them directly.
Booster boxes may be all located at the providers server
farm, or scattered throughout the network. While the first
is easier to install and manage, distributing booster boxes
throughout the network allows better scalability — as all
the data traffic is not funneled to the same network access
point — and is more resilient.

The booster box implements the multicast reflector
function without requiring the network to support IP mul-
ticast. The clients send unicast IP packets to the address-
able booster box, which in turn generates many unicast IP
packets to send to the members of the peer group. The
booster box in effect acts as a LAN for the virtual lo-
cation. We implement this multicast function using the
multicast support offered by the NP.

UDP is generally preferred over TCP in games, how-
ever, the application developer must handle retransmis-
sion at the application level. As well as supporting the ba-
sic communication within the virtual location, the booster
box also offers support to the application for retransmis-
sion in the case of loss. The application uses application-
specific knowledge to determine if retransmission is de-
sirable or not.

The booster box multicasts the game packet to all play-
ers resident at the virtual location, including the sender of
the packet. The application can determine if the packet
were received by the booster box by the fact that the
same packet is received back from it. This packet in ef-
fect acts as the equivalent of a TCP ACK and allows the
protocol stack on the client’s computer to determine the
Round Trip Time (RTT) between client and booster box.
A client can distinguish the packets it sent from others
through a 32 bit packet identifier used in the header. The
client chooses a random number as packet identifier when
sending a packet and maintains a list of the recently sent
packets. Clients also maintain the list of recently received
packet in order to recognize duplicates.

The application decides whether a packet should be de-
livered reliable or not, if it is then after no acknowledg-
ment has been received within the RTT Time Out (RTO)
— as determined using the same algorithm as TCP —
it is retransmitted. The application also sets an upper
bound on how long to try retransmitting a packet. A
packet that an application specified should be sent reli-
ably is sent to the booster box with a reliable delivery flag
set. When such a packet arrives at a booster box, the for-
warding mechanism adds a packet sequence number and
the packet is stored in a buffer on the booster box. As the
sequence number increases monotonically, a receiver can
determine whether it has not received a reliable packet
by examining whether any sequence numbers are miss-
ing in the stream of packets it receives. Noncontiguous



9

arrival may be caused by out-of-order delivery as well as
loss. The application must wait some window of time be-
fore deciding that a packet has been lost and should be
retransmitted; how long it waits or even if it requests re-
transmission at all is application specific. A retransmit-
ted packet is identified as such by a flag in the header.
The booster box can only keep a finite number of already
transmitted packet in memory, so packet retransmission is
not possible for old packets. As game-related packets are
in any case only valid for a short period of time, this is
not a drawback. Booster boxes add the range of currently
retransmitable packets to each packet sent to the client.
As a client cannot distinguish inactivity from high levels
of loss, if no packet has been sent within a virtual loca-
tion for a certain period a “heart beat” packet is sent to all
clients in a location, repeating the sequence number sent
last and the lowest (oldest) available one it has in memory.
The heart beat carries no data and no packet identifier.

Games because of their logic are implicitly rate-based,
i.e. the packet sending rate will not grow in an unbound
way, but in general is limited by the speed of human in-
teraction, as such we do not see the need for any flow
control in the basic data sending rate — although an ap-
plication could instrument such an mechanism on top of
the infrastructure if it thought it necessary. Retransmis-
sions are not restricted by human interaction and as such
require special consideration. It is possible that requests
for retransmission become correlated, for example if the
booster box, or the network close to it, is subject to disrup-
tion. There is a danger that the requests for retransmission
may themselves cause more loss, which causes even more
retransmission. TCP congestion control probes the effec-
tive throughput of the network by adjusting the sending
rate as a function of the acknowledgments of successfully
transmitted packets. However, slow-start is not appropri-
ate when the timeliness of delivery is essential, instead
we allow a client to ask for retransmission of any missing
packets, but require the reception of all missing packets
or the expiration of a timeout before further request can
be made. The timeout is initially set to the RTO, but is ex-
ponentially increased at expiration. In this way, we avoid
the problem of positive feedback at the cost of reliable
delivery.

Figure 11 summarizes the fields of the booster header
encapsulation. The use of the various fields have been ex-
plained in the previous description; the RTO is used by
the booster box in the calculation of the heart beat inter-
val, as it is also received by all other clients, it may be
used by application logic.

The booster box behaves similarly to the master com-
ponent of the “Multicast Transport Protocol” (MTP) de-
scribed in [15]. However, MTP offers a richer set of
functions, in particular a rate-based flow-control mech-

Data UDP
Header

Booster
Header

Sequence Number Oldest Sequence Number

Packet Identifier

RTO

 Reliable 
Delivery

Flag

 Retransmit 
Flag

24 Bytes

Filled by
the 

booster box

Filled by
the client

Heartbeat
Flag

May be altered
by the 

booster box

Fig. 11. The Booster Data Path Encapsulation

anism that is implemented using a token-passing scheme.
The token-passing scheme limits the amount of paral-
lelism and also significantly adds to the delay and there-
fore cannot be used for networked games. Levine et
al. [16] describes a method of application-layer trans-
mission between a central game server and client. The
application-layer protocol allows senders to distinguish
between packets that should be reliably and unreliably
sent, keeping a copy of the reliable ones in memory in
case of the need for retransmission; congestion avoidance
is not considered.

Figure 12 shows some of the most important data path
operation scenarios. The evolution of the client’s game
state is denoted by Si. In the first case the client sets the
packet identifier a and the booster box adds the sequence
number 1. In the second case the packet is lost on the
path from the sender to the booster box, the client resends
the packet after the timeout. In the third the packet is lost
from the booster box to the sender, the sender retransmits
the packet, with the same identifier c and the booster adds
a new sequence number, all the clients receive the new
packet, but recognize it as being a duplicate due to the
packet identifier and ignore it. The sender may also ask
for the retransmission of the packet from the buffer due to
the fact it is missing sequence number 3, but will ignore it
when it arrives. In the last case a packet is lost on the way
to the receiver. In the scenario shown, the next packet
sent is a heartbeat packet, although a data packet would
serve the same purpose, the receiver realizes it is missing
packet 5 and asks for its retransmission.

In summary, the booster box offers a means for reli-
able delivery of packets within some time period, if both
sender and receiver think it is worthwhile.

IV. RELATED WORK

Packaging multiple configurable middlebox functions
in the same network element allows ISPs to reduce the



10

C1 BB C2 C3S1 S1 S1

op[-,a]

op[1,a]

op[1,a]
S2

S2
op[1,a]

S2

No Loss

Loss From Sender
C1 BB C2 C3S2 S2 S2

op[-,b]

op[-,b]
op[2,b]

op[2,b]
S3

S3op[2,b]

S3

Loss To Sender
C1 BB C2 C3S3 S3 S3

op[-,c]

op[-,c]

op[3,c]

op[3,c]
S4

S4op[3,c]

op[4,c]

op[4,c]
S4

S4
op[4,c]

S4

C1 BB C2 C3S4 S4 S4

op[-,d]

op[5,d]

op[5,d]
S5

op[5,d]

S5

Loss To Receiver

win[1,5]

win[1,5]

win[1,5]

op[5,d]

S5

Timeout

Timeout

resend[5]

Fig. 12. The Data Path Operations

number of distinct middleboxes and thereby decrease
costs. An example of a commercial configurable middle-
box is CoSine’s IPSX switch [17]. The IPSX is a middle-
box divided such that each subscriber is allocated a sepa-
rate virtual router upon which a range of distinct middle-
box function, e.g. NAT, content filtering, IPSec etc, can
be applied. The IPSX shows the importance of offering
higher level services in the network, however its focus is
on the efficient consolidations of existing functions, for
example using ASICs, rather than the deployment of en-
tirely new ones.

The model of computation whereby a client owns the

computing resource on which they run their processes has
been the dominant one for more than two decades. Recent
work has challenged this model. Within the field of out-
sourcing, instead of a client purchasing the entire set of
servers on which their software is run by the outsourc-
ing agent, economies of scale can be achieved by allow-
ing the same set of servers to be shared between clients,
for example [18]. While in the field of scientific comput-
ing the Grid [19] is an initiative to formalize this pool-
ing of resources by creating virtual organization abstrac-
tions, which are formed from a grid of pooled computers
and exist for the duration of an activity. Current OS re-
search is investigating the means by which the same net-
work based server can be securely and efficiently shared
between many different clients e.g. [20], [21] — typically
through the creation of virtual machines — and how dis-
tributed virtual machines can collaborate together to form
service specific networks [22]. Our work focuses on how
application logic can make use of network specific hard-
ware in order to better scale certain types of large dis-
tributed applications. That said, if resource control mech-
anisms were required between boosters then techniques
such as those described in [20] could be applied.

Srisuresh et al. [1] propose a framework for allow-
ing middleboxes to be configured by trusted third parties.
In this framework the application specific code is instru-
mented as a midcom agent, either running on the middle-
box itself or communicating with it across the network. It
is similar in spirit to the work described here, but limits it-
self to control path functions. For example, in the creation
of an IP telephony session, the SIP messages are handled
by the midcom agent, whereas the RTP/RTCP messages
are handled by the middlebox itself.

V. CONCLUSION

The popularity of hypertext documents led to the
need for specific network infrastructure elements such as
HTML caches and URL-based switches. We contend that
a range of new, large, and distributed applications will
have a similar impact on the Internet and will require sim-
ilar dedicated support. This paper has outlined some ini-
tial work on prototyping a middlebox capable of assisting
in the scaling of these applications. As these applications
are rather diverse, and because of their novelty difficult to
standardize, we have chosen a programmable approach,
in which different application-specific pieces of logic can
be instrumented on the same platform.

REFERENCES

[1] P. Srisuresh, J. Kuthan, J. Rosenberg, A. Molitor, and A. Rayhan,
“Middlebox communication architecture and framework,” Re-
quest for Comments 3303, IETF Network Working Group, Aug.
2002.



11

[2] Niraj Shah, “Understanding Network Processors,” Tech.
Rep., University of California at Berkeley, Sept. 2001,
http://www-cad.eecs.berkeley.edu/˜niraj/web/research/
network processors.htm.

[3] D.C. Feldmeier, A.J. McAuley, J.M. Smith, D. Bakin, W.S. Mar-
cus, and T. Raleigh, “Protocol Boosters,” IEEE JSAC, Special
Issue on Protocol Architectures for the 21st Century, vol. 16, no.
3, pp. 437–444, Apr. 1998.

[4] Brian Carpenter, “Middleboxes: Taxonomy and issues,” Request
for Comments 3234, Internet Engineering Task Force, Feb. 2002.

[5] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar., “Next Cen-
tury Challanges: Scalable Coordination in Sensor Networks,” in
Mobicom, Seattle, USA, 1999.

[6] ISO, “Transport information and control systems reference model
architecture(s) for the tics sector, iso/tr 14813-1:1999,” Tech. Rep.,
ISO, Standards of TC 204, 1999.

[7] Lawrence Klein, “Sensor and Data Fusion Concepts and Applica-
tions,” in SPIE Optical Engineering Press TT14, 1993.

[8] E. Peytchev, A. Bargiela, and R. Gessing, “A Predictive Macro-
scopic City Traffic Flows Simulation Model,” in In Proceedings
of European Simulation Symposium ESS’96, Genoa, 2, pp. 38-42.,
1996.

[9] Annie Chen, Navendu Jain, Angelo Perinola, Tadeusz Pietraszek,
Sean Rooney, and Paolo Scotton, “Experience in Building Scal-
able Real-Time Telematics Applications,” Available as IBM ZRL
Research Report, Dec 2002.

[10] “The Gnutella Protocol Specification v0.4,” http://www.
clip2.com\slash{}GnutellaProtocol04.pdf,
Document Revision 1.2.

[11] Antony Rowstron and Peter Druschel, “Pastry: Scalable, dis-
tributed object location and routing for large-scale peer-to-peer
systems,” in Proc. IFIP/ACM International Conference on Dis-
tributed Systems Platforms (Middleware), Nov. 2001, pp. 329–
350.

[12] Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott
Shenker, “Topologically-Aware Overlay Construction and Server
Selection,” in IEEE Infocom, June 2002.

[13] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and
Scott Shenker, “A Scalable Content Addressable Network,” in
Proc. ACM SIGCOMM, Aug. 2001, pp. 161–172.

[14] Sony Online Entertainment Inc., “EverQuest,”
http://www.everquest.com, 2002.

[15] S. Armstrong, A. Freier, and K. Marzullo, “Multicast transport
protocol,” Request for Comments 1301, Internet Engineering Task
Force, Feb. 1992.

[16] David Levine, Bart Whitebook, and Mark Conway Wirt, A Mas-
sively Multiplayer Manifesto, Butterfly.net, Inc., 123 East German
St. Shepherdstown WV 25554, May 2002, Version 1.1.

[17] CoSine Communications, “IPSX Service Processing Switch Fam-
ily,” Data sheet, Cosine Communications Inc, 2002.

[18] Sean Rooney and Anthony Bussani, “Client Delegated Control
within an ASP Infrastructure,” Journal of Communications and
Networks, vol. 3, no. 1, Mar. 2001.

[19] Ian Foster, “The Anatomy of the Grid: Enabling Scalable Virtual
Organizations,” Lecture Notes in Computer Science, vol. 2150,
2001.

[20] Andrew Whitaker, Marianne Shaw, and Steven D. Gribble, “Scale
and Performance in the Denali Isolation Kernel,” in Proceedings
of the Fifth Symposium on Operating Systems Design and Imple-
mentation (OSDI 2002), Boston, MA, Dec. 2002.

[21] K. Fraser, S. Hand, T. Harris, I. Leslie, and I. Pratt, “The
XenoServer Computing Infrastructure, a project overview,” Cam-
bridge University, 2001.

[22] L. Peterson, D. Culler, T. Anderson, and T. Roscoe, “A Blueprint
for Introducing Disruptive Technology into the Internet,” in
In Proceedings of the 1st Workshop on Hot Topics in Networks
(HotNets-I), Princeton, New Jersey, USA, October 2002., 2002.


