
RZ 3521 (# 99537) 12/01/2003
Computer Science 13 pages

Research Report

Transport Layer Protocol Support for Large Federated
Peer-to-Peer Games

Sean Rooney, Rudy Deydier* and Daniel Bauer

IBM Research
Zurich Research Laboratory
8803 R̈uschlikon
Switzerland

{sro,dnb}@zurich.ibm.com

*Rudy Deydier contributed to this work while visiting the IBM Zurich Research Laboratory.

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available
at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich

Transport Layer Protocol Support

for Large Federated Peer-to-Peer Games

Sean Rooney, Rudy Deydier ?, Daniel Bauer

IBM Research, Zurich Research Laboratory
Säumerstrasse 4

8803 Rüschlikon, Switzerland

Abstract. A federated peer-to-peer game is constructed as a set of peer groups within which players
communicate with all other members and between which players can move. Federated peer-to-peer
games potentially allow a more scalable and fault tolerant gaming architecture than that achievable
using a central server. While the literature contains many proposals for such gaming infrastructure,
little work has been done describing the network protocols required to support such a model. Gaming
presents distinct challenges to network protocol designers, particularly in respect to its sensitivity to
latency and loss. We describe the algorithms and communication patterns of gaming specific network
protocols and present the results of our experiments. We show that a dedicated game transport protocol
achieves good end-to-end delay across very lossy, jittery networks.

1 Introduction

A game is a system in which some of the system states are considered by the participants to
be more desirable than others and whose unique purpose is the placement of the system by
the participants in these states. They achieve this through a set of well-defined operators.
Different participants may have different desired states.

A networked game is one in which state changes are performed across the network. In
practice two ways of achieving this are possible: each participant keeps a copy of the relevant
state locally, and all participants communicate the operations to be performed to all other
participants who use this information to update their local state; one reference copy of the
state is kept and all operations are transmitted to an actor which updates the state and
distributes it to all participants. The first system is commonly called peer-to-peer while the
second is a central server system. The second method is more efficient in resource usage as the
operations are transmitted only once and their execution is performed only once. However,
a large burden is placed on the actor who maintains the reference state.

A Massive Multiplayer On-line Game is a networked game in which many thousands of
players participate simultaneously in the same game, for example [13]. In the rest of this
paper we shall call such games large games or simply games. Currently commercial large
games use a central server approach in which the majority of the game logic is executed on
a server under the control of the game provider. A server farm has to be provisioned such
that it is capable of supporting a given number of players. The game provider cannot know
a priori how popular a game will be leading to a possibility that the server farm is too large
or too small. Moreover, a game’s popularity will inevitably change over times in ways which
are difficult to predict.

? Rudy Deydier contributed to this work while visiting the IBM Zurich Research Laboratory.

It is desirable that the amount of resources available to a game dynamically increases
with the number of players. Peer-to-peer architectures have this property but as the number
of messages increases as a square of the number of players such architectures are not usable
for large games. Work in the literature [5,8,11] has proposed using what we term a federated

peer-to-peer model in which a large game or simulation is broken up into smaller islands
corresponding to different areas of interest, for example virtual location, and within which
players may move. To the best of our knowledge no actual commercial large game uses the
federated peer-to-peer model.

A detailed description of the required underlying network support is lacking in the lit-
erature, making it difficult to evaluate their feasibility. Our work has attempted to address
this deficiency. Our investigation has involved the design and implementation of a generic
game transport protocol — Shaker —which allows the quasi reliable delivery of packets while
allowing both sender and receiver to make trade-off decisions about latency and loss.

The architecture rests on a multicast reflector capable of receiving packets from players
and distributing them to all other players present in the same group. We have given a descrip-
tion of the implementation and performance of an efficient multicast reflector elsewhere [3]
and this description is not repeated here.

2 Structure of a Federated Peer-to-Peer Game Architecture

Each peer group within the federated peer-to-peer game is handled by a multicast reflector.
The multicast reflector is an IP addressable entity capable of maintaining a list of end host
addresses to which game packets should be distributed.

The clients send unicast IP packets to the multicast reflector, which in turn generates
many unicast IP packets to send to registered members of the peer group. A given multicast
reflector may handle many different peer groups, different peer groups are distinguished in
our current implementation by the destination port. The multicast reflector does not use IP
multicast. IP multicast is inappropriate for our purpose as we require many, small multicast
groups to which members join and leave quickly. For a description of the limitations of
IP Multicast in this context see [9]. The multicast reflector is a means by which a client
can register an interest and receive the packets from a given peer-group, in this regard it
is similar to — but much simpler than — a publish/subscribe mechanism, e.g. Gryphon
event broker [1], whereby some party publishes information within some area of interest and
parties who have subscribed to that area of information receive it. Senders and receivers are
decoupled allowing the logic at both to be simplified; all packets are sent to the multicast
reflector and all packets are received from it1.

As well as the efficient distribution of packets the multicast reflectors serializes packets
(using a sequence number) and buffers packets up to some window size to allow packet re-
transmission. This contrasts with existing publish/subscribe systems in which sophisticated
QoS parameters, delivery polices and filter languages are performed by the notification server.
The basic data forwarding functions of the multicast reflector is simple permitting it to be

1 Note that when using the multicast reflector clients receive many more packets than they send; this is consistent
with the asymmetric properties of access technologies such as ADSL.

efficiently implemented in software or programmable hardware. Game specific logic instru-
mented at the clients makes use of these basic functions to support their own game specific
transport protocols.

Multicast
Reflector
(MCR)

Sender

Receiver

Client
Control
Server

get MCR Peer-Group mapping

Group MCR address

1

2

3

a

a

b

a

b

c

d

e

f

g

h

i

register with a

send/recv to a

unregister at a

Start
in Game
Group 1

Move to
Group 3

Client Game Logic

register with b

send/recv to b

Receiver

...

Receiver

Fig. 1. General Schema of a Generic Federated Peer-to-Peer Game

The allocation of multicast reflectors to peer-groups is performed by one or more control
servers. Clients obtain the association from the control servers and then use game specific
knowledge to determine to which set of peer groups they should join. Clients are responsible
for determining when and how they should change groups. The association of peer-groups to
multicast reflectors can be changed dynamically allowing the number of reflectors allocated
to a given group to be altered as a function of popularity. The clients alter their peer group
membership using a control protocol — the Mover — which we do not explain any further
here due to reasons of space. Figure 1 shows the structure of our generic federated peer-to-
peer architecture.

The set of generic mechanisms for handling loss and retransmission we have instrumented
as a simple protocol running over UDP that we call the Shaker. The rest of this paper de-
scribes the Shaker’s design and reports on its performance under different network conditions.

3 The Shaker Transport Protocol

Game traffic is typically highly dependent on latency, i.e. a packet which arrives at an
application late may be useless. As such, at-least-once transport protocols such as TCP are

not appropriate. TCP also suffers from a head of the line blocking problem by which out of
order packets are not delivered to an application until the missing packets arrive resulting
in increased latency. In consequence nearly all large games of which we are aware use UDP.

Games typically allow for late or lost packets within their logic using techniques, for
example dead reckoning [4], to mask the effect to the user. However not all information
transmitted to players is susceptible to such techniques; some information must be delivered
reliably in order to assure the coherence of the game. A selective retransmission mechanism
in which certain packets are retransmitted if there is a good chance that the retransmitted
packet will arrive in time is desirable. The commercial game framework defined in [10] de-
scribes a method of application-layer transmission between a central game server and client.
The application-layer protocol allows senders to distinguish between packets that should be
reliably and unreliably sent, keeping a copy of the reliable ones in memory in case of the need
for retransmission. Selective retransmission mechanisms have also been proposed for multi-
media streams [12]; the Selective Retranmission Protocol (SRP) is a Client/Server protocol
that allows a client to trade packet loss ratio against average packet latency in a continous
media stream.

UDP
Header

Shaker
Header

Packet Identifier

Sequence Number Oldest Sequence Number

Time Stamp

12 Bytes

Filled by the
multicast
reflector

Filled by the
Client

Retransmit
Flag

Unused

Update Alert
Flag

May be changed by multicast reflector

IP
Header

Game Payload

0 15 31

Fig. 2. Shaker Header

Within a federated peer-to-peer system, requiring clients to retransmit packets places the
burden on them to maintain packets in memory and to respond to retransmit requests. While
a sender may indicate that a packet should be delivered reliably a receiver need not agree,
for example it might decide that the minimum of one Round Trip Time (RTT) needed to
retransmit a packet is such that the packet would no longer be relevant, or it might consider
that its desired level of participation in the peer group from which the packet is emitted is so
low, that it would not be worthwhile. A packet that a sender decides should be sent reliably
is sent using the Shaker protocol; unreliable packets are just sent using UDP, and therefore

are not buffered at the multicast reflector. In summary, the Shaker is a transport protocol
that allows packets to be retransmitted between sender and receiver if both agree that it is
worthwhile, but unlike TCP does not offer totally reliable transport.

Our Shaker protocol uses the multicast reflector to decouple the senders belief that a
packet ought to be reliably delivered from a receiver’s decision as to whether it has to be.
The Shaker uses UDP as the basic transport mechanism between clients and the multicast
reflector.

There is one Shaker session for every peer-group that a client participates in. The Shaker

adds its own header — shown in Figure 2 — after the UDP header.

When a Shaker packet arrives at the multicast reflector the forwarding mechanism adds a
packet sequence number and the packet is stored in a buffer at the multicast reflector before
it is sent to all participants of the corresponding peer group. Note that all participants in
the peer group including the sender itself receive the packet; the transmission of the Shaker

packet back to the sender acts as an ACK allowing the sender to know that the multicast
reflector has received the packet and enabling the RTT between itself and the multicast
reflector to be continually recalculated.

C1 MCR C2 C3S1 S1 S1

op[-,a]

op[1,a]

op[1,a]
S2

S2
op[1,a]
S2

No Loss

Loss From Sender

C1 MCR C2 C3S2 S2 S2

op[-,b]

op[-,b]
op[2,b]

op[2,b]
S3

S3op[2,b]
S3

Timeout

(a)

Loss To Sender
C1 MCR C2 C3S3 S3 S3

op[-,c]

op[-,c]

op[3,c]

op[3,c]
S4

S4op[3,c]

op[4,c]

op[4,c]
S4

S4
op[4,c]
S4

Timeout

C1 MCR C2 C3S4 S4 S4

op[-,d]

op[5,d]

op[5,d]
S5

op[5,d]
S5

Loss To Receiver

win[1,5]

win[1,5]

win[1,5]

op[5,d]
S5

resend[5]

(b)

Fig. 3. Interactions within the Shaker protocol

Figure 3 shows the communication patterns under four conditions: no packet loss, loss
from sender, loss to sender and loss to receiver. The algorithm that senders use to calculate
the time they should wait for an ACK before sending is explained in Section 3.1. As the se-

quence numbers increase monotonically, a receiver can determine whether it has not received
a reliable packet by examining whether any sequence numbers are missing in the stream of
packets it receives. Noncontiguous arrival may be caused by out-of-order delivery as well as
loss, so the receiver waits some time before requesting the retransmission of the packet, the
algorithm for doing this is given in Section 3.2. If a receiver considers it worthwhile having
a missing packet retransmitted it sends a retransmit request to the multicast reflector. A
retransmitted packet is identified by the receiver as such by the corresponding flag in the
header; a retransmitted packet is already late and should be sent to the application with
minimum delay and in preference to non retransmitted packets in front of it in the queue.

The multicast reflector can only keep a finite number of already transmitted packets in
memory; packet retransmission is not possible for packets older than a certain threshold.
The multicast reflector writes the oldest retransmittable sequence number in the header of
each packet sent to the client.

Senders set a thirty two bit identifier in the Shaker header. The top sixteen bits identify
the sender while the bottom sixteen bits are a monotonically increasing series. Two packets
with the same identifier may arrive with different sequence numbers at the receiver. This
can occur in two cases: a sender times out too soon and resends a packet to the multicast
reflector that was already correctly received by it; the ACK was lost going back to the sender.
Receivers keep a window of recently received packet identifiers allowing them to detect and
discard duplicates.

3.1 Sender Retransmission Time Out

As the sender also receives its own packet, the RTT between the multicast reflector and the
sender can be calculated by placing the senders transmit time in the time stamp field of the
packet header and simply subtracting that from the time at reception.

A sender will retransmit a packet if some timeout has expired. Our first attempt used the
TCP Retransmission Time Out (RTO) [7] as shown in Algorithm 3.1; with the recommended
values of gain g for the EstimatedRTT is 0.125 and the gain h for the the mean variance D

is 0.25.

Algorithm 3.1: Jacobson’s RTO Algorithm()

Error ←MeasuredRTT − EstimatedRTT
EstimatedRTT ← EstimatedRTT + g ∗ Error
D ← D + h ∗ (‖Error‖ −D)
RTO ← EstimatedRTT + 4 ∗D

RtxT imeouttriggered : EstimatedRTT ← 2 ∗ EstimatedRTT

We found that in practice over a real WAN — measured between France and Switzerland
— that the RTO was often twice the actually RTT, and the Root Mean Square Error (RMS)
of this estimator as high as 90% of the actual mean RTT.

There are two reasons for this: the first is the TCP backoff algorithm, which doubles the
value of the EstimatedRTT after each retransmission timeout, the second is that even when
the error between the EstimatedRTT and the actual RTT reaches zero, the mean variance D

converges slowly to zero — during this time the RTO is higher than the RTT. This is quite in
keeping with TCP’s conservative use of network resources, however, it adds a large penalty
for game traffic when the RTT is varying and some loss is experienced. In order to reduce
this lagging affect of the mean variance, we reduce the weight given to the mean variance
in the calculation of the RTO from 4 to 2 — this incidentally was the original weight that
Jacobson proposed [7].

Games because of their logic are implicitly rate-based, i.e. the packet sending rate will not
grow in an unbound way, but in general is limited by the speed of human interaction, as such
we do not see the need for any flow control in the basic data sending rate — although just
as for UDP an application could instrument such an mechanism on top of the infrastructure
if thought necessary.

To reduce the large penalty paid for the backoff algorithm, we do not double the Estimat-

edRTT when a timeout occurs. We increase the EstimatedRTT by a factor k — in our tests
set to 0.1 — when three consecutive retransmission timeouts occurs, if the RTO has not been
updated meanwhile. If a packet arrives after it is timed out we still use the RTT to update
the RTO. Note that Karn’s algorithm — which avoids updating the RTT when a packet
is retransmitted — does not apply in our case as the sender can distinguish retransmitted
packet from the original ones by their timestamps.

Our algorithm reacts to losses only if they are sustained as the objective is not that of
slowing down the sending rate but to allow the RTO to track the RTT more closely by
assuming the timeout is due to a slight increase in RTT.

Algorithm 3.2: Shaker Algorithm In Case of Timeout()

comment: Modify the EstimatedRTT in case of consecutive RTX

counter ← 0
while true

do



















































if pktReceived=ownPacket
then counter ← 0

if RTX Timeout

then



















counter ← counter + 1
if counter=3

then

{

EstimatedRTT ← (k + 1)× EstimatedRTT
counter ← 0

Algorithm 3.2 shows the means the Shaker uses for calculating the RTO. By trying to
keep the RTO as close to the RTT as possible the Shaker will often timeout too soon and
sends unnecessary additional packets if the RTT is varying. We examine these effects in
Section 3.4.

Figure 4 shows the measured Root Mean Square (RMS) error of the RTT estimator of
the TCP retransmission timeout algorithm, and the Shaker’s own timeout algorithm, for

0

20

40

60

80

100

120

0 20 40 60 80 100
R

M
S

 /
m

ea
nR

T
T

 (
%

)
Standard Deviation of RTTs

Mean TCP RMS
Mean SHAKER RMS

Fig. 4. RMS error of the TCP and Shaker RTT estimators

a mean RTT of 100 ms over a range of variances. The TCP estimator was applied to our
Shaker protocol with the unmodified backoff algorithm, and the measurements were made
using a single client sending packets to the multicast reflector, which sent them back using
the mechanisms discussed previously. The wide fluctuations of the RMS error of the TCP
RTT estimator for a fixed variance ratio is due to the backoff algorithm introducing errors
into the estimated RTT, and consequently creating slightly higher estimations of the RTO.

3.2 Receiver Retransmission Time Out

A receiver can identify that a packet may have been lost by a missing sequence number. It
cannot know if the packet has actually been lost or simply will arrive out of order. Waiting
will encur a latency penality while an immediate request for retransmission may cause a large
number of unnecessarily retransmitted packets. In addition, a receiver should not request the
retransmission of a lost packet if it will arrive too late to be useful. The application initialises
a given Shaker session with a game specific RelevancyT ime, which is the maximum time
that a packet is useful after it was emitted. For instance, for a stratgey game this value might
be 500ms, while much lower for a FPS (First Person Shooter). The receiver does not know
when a packet actually was transmitted, but it knows that it will take at least one RTT
between itself and the multicast reflector to retransmit it. Since it takes at least 0.5 RTT to
recognize that a packet is lost after being forwarded by the multicast reflector, a request for
the packet is not considered worthwhile if RTO > RelevancyT ime− RTO/2, that is if the
RelevancyTime is less than 1.5∗RTT . In this case, the protocol layer notifies the application
layer that a packet is presumed lost.

Out-of-order delivery maybe a transient phenomena due to a change in route, or long
lived, for example due to load balancing between routes. At the detection of a missing packet,
the receiver waits a certain time before requesting its retransmision. This time is a function
of both RelevancyTime and the mean variance D of the EstimatedRTT. In times of low
variance in RTT, D≈0, the receiver assumes that the packet is lost and immediatly asks for
its retransmision. Otherwise it waits either twice the variance if it less than the the maximum
amount of time we can wait before the packet becomes irrelevant, or the maximum amount of
time if it is greater. The reasoning behind using a function of the mean variance of the RTT

is that out-of-order-delivery indicates that the packets are coming over multiple different
paths having different RTTs. In practise we found two times D was adequate.

Our algorithm for the Receiver Retransmission Time Out (RRTO) is as follows:

Algorithm 3.3: RRTO()

comment: Compute the RRTO based on RelevancyT ime and D

if RelevancyT ime < 1.5 ∗RTO

then











DiscardRequest

NotifyApplication : LostPacket
else RRTO = Min(RelevancyT ime− 1.5 ∗ EstimatedRTT, 2 ∗D)

3.3 Probability of Delivery within Bounded Time at Levels of Loss

Assuming a constant error rate of L between multicast reflectors and all clients and no packet
reordering, then the probability of a packet being sent from a sender to a receiver without
loss is: Px = (1− L)2. Assuming all clients have the same RTT with the multicast reflector
and this is symmetrical, as it takes at least one RTT after a packet was emitted by the
sender to recognize loss and at least one RTT to retransmit the packet, whether or not the
packet is lost from the sender to the multicast reflector, or from the multicast reflector to
the sender then, the probability of a packet arriving within n RTTs can be simply expressed
as: P (n) = 1− (1− Px)

n

So for example, for high loss probability, L=0.1 (i.e. 10%) then there is a 99.7% chance of
getting the packet to the receiver within 4 RTT, using Shaker. We emphasize that this is the
theoretical best-case under simplfying assumptions. In the next section we test the actual
measured performance of the Shaker across a network under various conditions of loss and
jitter. The measurements allow for the real effects of a network: variable RTT, out of order
delivery, consecutive packet loss, retranmission request loss.

3.4 Efficiency of the Shaker Protocol

We developed an simple game which allowed us to observe the performance of our protocol
in terms of synchronization, delay and loss. We used bucket synchronization between clients,
similar to that used in [6], in which time is divided into fixed length periods called rounds.
Each event is transmitted marked with the sender’s current round. Clients consider packets
received from other clients relevant if they were emitted in either the 3 previous or 3 following
rounds as well as the current round. The relevancy time of the game is the three previous
rounds plus the current one. A round is considered successful if a client receives all the
packets sent by other clients in that round while they are considered still relevant. Packets
are considered as having arrived TooLate if they are not received within the relevancy time.
TooLate packets occur in the following cases:

– the transmission of the packet took more than the RelevancyTime.
– the packet was lost, and the client received the retransmitted packet after the Relevan-

cyTime.
– the client received out of order packets, and was missing the packet. Then the request

did not arrive on time.

We chose a RelevancyTime of 240 ms for our game, this corresponds to an approximate
upper bound for FPS games [2]. The peer group size used was ten players, and players
remained in the game from start to finish. We tested the performance of the game with
losses from 0 to 50% and with RTT variance (jitter) from 0 to 100 % of the mean RTT value
set to 75ms. We carried out the measurements across a LAN using the nistnet [?] tool at the
multicast reflector to induce controllable loss and delay in the system. We used our Linux
implementation of the Shaker and multicast reflector. When the RTT variance is at 100%
the RTT of a given packet can be anything between 0 and 150 ms.

Figure 5(a) illustrates the percentage of TooLate packets plotted against the loss proba-
bility, for various levels of RTT variance. For a given loss probability, the higher the variance
in the RTT, the greater the probability of a a packet being TooLate, i.e. for a given value of
the x-axis, higher values on the y-axis correspond to higher jitter.

Our protocol, even faced with high levels of loss (50 %) and jitter (50 %) still manages to
transmit on average 90% of the packets on time. For an FPS losing some round information
can be dealt with by using dead-reckoning algorithms, ensuring that the game would be
playable even at very high levels of loss. By way of comparision the behavior of UDP would
be a line such that x=y, i.e. all lost packets are TooLate.

(a) (b)

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35 40 45 50

T
oo

 L
at

e
P

ac
ke

ts
 /

T
ot

al
 R

ec
ei

ve
d

P
ac

ke
ts

 (
%

)

Loss Ratio

Too Late Packets

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35 40 45 50

T
oo

 L
at

e
P

ac
ke

ts
 /

T
ot

al
 R

ec
ei

ve
d

P
ac

ke
ts

 (
%

)

Loss Ratio

Too Late Packets

Ratio of Late Pkts, Loss and Jitter Ratio of Late Pkts, Loss but no Jitter

Fig. 5. Ratio of Late Packets, specific network conditions

In Figure 5(b), we isolated the loss parameter to verify the effects of loss without jitter
on the Shaker. We notice that only the combined effects of jitter and loss creates conditions
that makes the Shaker wait too long on the receiver side before requesting a packet.

It is not possible to give a meaningful comparision between the Shaker and TCP in terms
of reactivity to loss as under such high levels of loss TCP quickly reaches the upper bound
of its timeout algorithms — 64 seconds; all that can be said is that TCP is not appropriate
for games over lossy networks.

For relatively low loss conditions (less than 20%) we conclude that our protocol’s two
timeout algorithms are adequate to fulfill the requirements of both loss and latency, even
when the variance of the RTT is very high.

We also noticed that the amount of TooLate packets is very low in the case of jitter
without loss, since the retransmission of packets only provides redundant packets that are
filtered by the protocol on the receivers’ side. The useless retransmitted packets are not
considered as TooLate as they are not transmitted to the application.

(a) (b)

0

500

1000

1500

2000

0 5 10 15 20 25 30 35 40 45 50

R
et

ra
ns

m
is

si
on

s
(o

ut
 o

f 2
00

0
R

ou
nd

s)

Loss Ratio

Useless Retransmissions
Retransmissions sent

0

500

1000

1500

2000

0 5 10 15 20 25 30 35 40 45 50

R
et

ra
ns

m
is

si
on

s
(o

ut
 o

f 2
00

0
R

ou
nd

s)

Loss Ratio

Useless Retransmissions
Retransmissions sent

(TCPLike) (Shaker)

Fig. 6. TCPLike and Shaker Retransmission Ratios

Our protocol trades reactivity against unnecesary retransmissions. The RTO tracks the
RTT much closer than for TCP, leading to timeout and retransmission of packets in the case
that the RTT rises. In order to quantify how much overhead the Shaker’s RTO algorithm
has over that of TCP, Figure 6, plots both the total number of packets retransmissions and
the number of unnessary ones against loss probability and RTT variance, for both the TCP
and Shaker RTO algorithm. The Shaker retransmits larges number of unnecessary packets
when variance is high and loss is low. For example, as Figure 6 shows, at 10% loss with
100% RTT variance, the TCP algorithm leads to about 250 retransmits of which about half
are useless, while the Shaker retransmits about 450, of which more than half are useless.
The Shaker mistakes more frequently an upperward change in the RTT with loss, due to the
lower weight given to the variance in calculating the RTO, leading to a higher fraction in the
number of retransmits which are useless. The Shaker retransmits more often as it adjusts its
RTT more conservatively after loss.

Figure 7(a) shows the additionnal overhead that the two timeout algorithms place on the
network and the receiver, i.e. the cost we pay for the systems better reactivity. It plots the

(a) (b)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45 50

R
at

io
 U

se
le

ss
 P

kt
s

/ P
kt

s
R

ec
ei

ve
d

(%
)

Loss Ratio (%)

Useless Packets Ratio

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25 30 35 40 45 50

R
at

io
 U

se
le

ss
 R

eq
ue

st
s

/ P
kt

s
R

ec
ei

ve
d

(%
)

Loss Ratio (%)

Useless Packets Ratio

Total Useless Packets/Received Packets Ratio Useless Requests/Received Packets Ratio

Fig. 7. Ratio of Late Packets in the Shaker

fraction of uselessly received packets to the total number of received packets. Packets can be
uselessly received for four reasons:

– the sender retransmits a packet due to loss of the ACK, the receiver may then get this
packet twice;

– the sender retransmits a packet due to too early timeout, this differs from the previous
case as both sender and receiver get the useless packet;

– a receiver asks for a packet to be retransmitted due to out of order delivery;
– a receiver asks for retransmission of a packet it has already received. This can occur if

the sender has sent the packet twice.

Figure 7(b) shows the percentage of the useless packets that are due to the RRTO algo-
rithm mistaking out-of-order packets for loss. This is always less than 2%. Waiting twice the
variance seems to keep unneccesary requests for retranmission minimal. The effect due to
unnecessary receiver retransmission can be further decreased by the application by increas-
ing the relevancy time parameter. However, as Figure 7(a) shows, the additional network
load as measured on the receiver side varies between 10 % and 30% increasing with loss
probability. The main reason for the increase is due to losses of ACK packets to senders,
leading them to send the same packet two or more times. Note that the percentage increases
in network load is independent of the number of clients since the decision to retransmit or
request retranmission depends only on the conditions between the client and the multicast
reflector. The additional load is less than 15% for loss probabilties inferior to 10%.

4 Conclusion

We have described the design and implemention of a quasi-reliable transport protocol —
Shaker — for use in federated peer-to-peer games. This protocol has been designed to allow
for the fact that games requires low latency and some selective reliability in packet delivery.

The protocol allows the game designer to trade-off reactivity across a lossy network against
the transmission of redundant packets. As senders and receivers are disconnected the game
designer might configure this per player, i.e. if the player’s access bandwidth is limited only
transmit using UDP and never request retransmissions, but use the Shaker and UDP if
bandwidth is more abundant. It would be possible to alter the trade-off dynamically over
time. We have quantified both the benefit and the cost of the use of the Shaker through
measurement across a wide range of network conditions.

References

1. M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra. Matching events in a content
based subscription system. In In Eighteenth ACM Symposium on Principles of Distributed Computing (PODC
’99), Atlanta GA, USA, May 4–6 1999.

2. G. Armitage. An Experimental Estimation of Latency Sensitivity In Multiplayer Quake 3. Technical report,
Centre for Advanced Internet Architectures, 030405A, 2003.

3. D. Bauer and S. Rooney. The Performance of Software Multicast-Reflector Implementations for Multi-Player
Online Games. In Proc. of the Fifth International Workshop on Networked Group Communications (NGC’03),
Munich, Germany, Sept. 2003.

4. Y. Bernier. Latency Compensation Methods in Client/Server Game Protocol Design and Optimization. In
Proceedings of GDC 2001.

5. A. Bharambe, S. Rio, and S. Seshan. Mercury: A Scalable Publish-Subscribe System for Internet Games. In
NetGames 2002 – First Workshop on Network and System Support for Games, Braunschweig, Germany, Apr.
2002.

6. C. Diot and L. Gautier. A Distributed Architecture for Multiplayer Interactive Applications on the Internet.
IEEE Networks magazine, 13(4):6–15, July/August 1999.

7. V. Jacobson. Congestion Avoidance and Control. ACM Computer Communications Review, 18(4):314–329, Aug.
1988.

8. E. Léty and T. Turletti. Issues in Designing a Communications Architecture for Large-Scale Virtual Environ-
ments. In Proceedings of the First International Workshop on Group Communications, Pisa Italy, 1999.

9. B. N. Levine, J. Crowcroft, C. Diot, J. Garcia-Luna-Aceves, and J. F. Kurose. Consideration of Receiver Interest
for IP Multicast Delivery. In Proc. IEEE Infocom, volume 2, pages 470–479, 2000.

10. D. Levine, B. Whitebook, and M. C. Wirt. A Massively Multiplayer Manifesto. Butterfly.net, Inc., 123 East
German St. Shepherdstown WV 25554, May 2002. Version 1.1.

11. K. Morse. Interest management in large-scale distributed simulations. Tech report 96-27, Dept. of Information
and Computer Science, University of California, Irvine, 1996.

12. M. Piecuch, K. French, G. Oprica, and M. Claypool. A Selective Retransmission Protocol for Multimedia on the
Interner. In Proceedings of the SPIE International Symposium on Multimedia Systems and Applications, Boston
MA, USA, 2000.

13. Sony Online Entertainment Inc. EverQuest. http://www.everquest.com, 2002.

