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U. Dürig, O. Züger, A. Knoll, P. Vettiger, and G. Binnig

IBM Research GmbH
Zurich Research Laboratory
8803 R̈uschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available
at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich



Nonlinear Mechanical Coupling of Harmonic Oscillators Applied for a Vibrational

AND Function
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Abstract
This report describes a nonlinear mechanical coupling scheme for two perpendicular motions by means of a conventional

spring. The nonlinear coupling scheme is applied for the design of a purely mechanical AND function that couples a superposition
of two parallel input vibrations to an output oscillator that vibrates orthogonally to the input oscillators. The performance
of the AND function was numerically simulated for a variety of coupling parameters and input amplitudes. Upper limits on
the coupling strength were found for fixed input amplitudes, and, similarly, upper limits of the input amplitudes exist for fixed
coupling parameters. Beyond these critical values, the motion of the output was found to become chaotic. A modified version
of the AND function acting as a mechanical modulator was numerically investigated for application as a mechanical power
amplifier. In a frequency up-converter configuration, a significant amplification of the vibrational power fed into the modulator
can be achieved. The feasibility of the nonlinear mechanical coupling and its application for a vibrational AND function were
demonstrated in an experimental setup.

I. INTRODUCTION

Given the limitations of the conventional semiconduc-
tor design of logic functions, alternative device concepts
have been considered. At very small length scales, molec-
ular [1] or even atomic [2] devices have been studied,
whereas optical switching devices are needed for signal
processing based on light [3].

In this paper, we explore the feasibility of a mechanical
implementation of the AND function. The principle of
operation is the nonlinear coupling of an output oscillator
to two input oscillators.

The nonlinear coupling of mechanical oscillators is still
an active field of interest regarding its application in dy-
namic vibration absorbers [4]. An effective way to miti-
gate vibrations in an oscillating structure is to couple a
second oscillator to the structure. The danger of struc-
tural system failure can be reduced if an effective energy
transfer from the structure to the absorber is established
at the resonance frequency ω0 of the primary structure.

If the second oscillator is coupled to the first in such
a way that (i) the two oscillators represent two normal
vibration modes of the system, (ii) the coupling between
the two oscillators is nonlinear, and (iii) the lower reso-
nance frequency is one half of the higher resonance fre-
quency, then autoparametric resonance is established [5–
7]. Under these conditions an effective energy transfer
occurs from the exited structure to the second oscilla-
tor [6]. Recent examples of experimental studies of such
systems can be found in [6, 7]. Parametric excitation of
mechanical oscillators can also be used for amplification
and noise squeezing of mechanical oscillations [8].
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For our purpose we use very similar concepts to estab-
lish the mechanical AND function and to optimize the
energy transfer of the two input oscillators to the output
oscillator. A purely nonlinear coupling to the output os-
cillator is established. A system with dimensions that are
typical of a micromechanical implementation is studied
numerically. In addition, a modified version of the AND
function acting as a mechanical modulator is numerically
investigated for application as a mechanical power am-
plifier. Finally, in an experimental setup, the feasibility
of the nonlinear mechanical coupling and its application
for a vibrational AND function are demonstrated.

II. NONLINEAR MECHANICAL COUPLING OF

HARMONIC OSCILLATORS

Nonlinear effects in a system of coupled oscillators are
usually obtained by driving the system at large ampli-
tudes such that nonlinearities of the coupling potential
become significant. An alternative way of realizing non-
linear coupling between oscillators is shown in Fig. 1. The
oscillators vibrate in orthogonal directions, and a conven-
tional spring couples the two motions of the oscillators.
In contrast to the nonlinearities obtained for large vi-
bration amplitudes, the nonlinear coupling between the
orthogonal motions is already effective at small ampli-
tudes.

The coupling potential Uc between the oscillators can
be written as

Uc(z, y) =
1

2
kc

((

z2 + (lc + y)2)1/2
)

− lc

)2

. (1)

The force component in y-direction, Fy, is given by the
y-component of the potential gradient ∇Uc:

Fy =
∂Uc

∂y
+ kc(lc + y)

(

1 −
lc

(z2 + (lc + y)2)
1/2

)

. (2)
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FIG. 1: Nonlinear mechanical coupling of orthogonal motions
with a conventional spring.

The lowest-order series expansion of the above expression
[Eq. (2)] is

Fy = kc

(

y +
1

2Ic
z2

)

. (3)

The quadratic dependence of the force Fy on the z-
position of the input oscillator reflects the nonlinear part
of the coupling potential. A sinusoidal variation of z
generates an oscillatory force in the y-direction at twice

the frequency of the z-motion. The oscillator motion
z = A sin(ωt) of the input generates a second harmonic
force Fyz = kc/4lc cos(2ωt) acting on the output oscilla-
tor. Furthermore, the coupling spring adds a linear force
component Fyc = kc y to the output oscillator, result-
ing in a shift ∆f = fc(kc/k) of its resonance frequency.
Thus, in order to obtain a large vibration amplitude of
the output oscillator, the resonance frequency of the out-
put oscillator has to be adjusted at twice the input fre-
quency, i.e., at 2ω.

III. VIBRATIONAL AND FUNCTION

The nonlinear coupling between oscillators can be used
to implement a vibrational AND function. Two paral-
lel input oscillators are linearly coupled by springs, and
the resulting “sum” vibration is nonlinearly coupled to a
third oscillator that vibrates perpendicularly to the input
oscillators. A schematic of the AND function is shown in
Fig. 2

The input oscillators Osc1 and Osc2 are excited to the
vibration amplitudes z1 and z2, respectively. Both are
coupled by springs to a common coupling point denoted
as “z1 + z2” (more specifically, the forces from each os-
cillator are added at the coupling point). The stiffnesses
of these springs are kc1

and kc2
, respectively. For equal

stiffness, i.e., kc1
= kc2

, the motion zs of the coupling
point is proportional to the sum z1 + z2 of the two input

FIG. 2: Schematic of the vibrational AND function.

amplitudes (see below). The motion zs excites the out-
put oscillator Osc3 through the nonlinear coupling gen-
erated by the spring having its axis perpendicular to the
z-direction. The coupling spring has a stiffness kc3

and
a length lc3

at zero force. The total coupling potential is

Uc(z1, z2, zs, y3) =
1

2
kc1

(z1 − zs)
2 +

1

2
kc2

(z2 − zs)
2

+
1

2
kc3

(

(

z2
s(lc + y3)

2
)

1

2
− lc

)

. (4)

The motion zs of the coupling point is determined
by the constraint of zero total force in equilibrium,
i.e., ∂Uc/∂zs = 0. For small amplitudes z1, z2 and
y3, this condition approximately yields zs = (kc1

z1 +
kc2

z2)/(kc1
+ kc2

) For equal coupling springs kc1
= kc2

,
this expression simplifies to zs = 1

2
(z1 + z2), reflecting

the sum of the input amplitudes. Using this expression
in Eq. (3) yields a force component that is proportional
to the product z1 z2 of the input vibration amplitudes

Fy,z1·z2
= kc3

1

Ic3

z1 z2 . (5a)

For the input vibrations z1 = A1 cos(ω1t) and z2 =
A2 cos(ω2t), the corresponding force has a component
oscillating with the frequency ω1 + ω2,

Fy,ω1+ω2
= k3

1

2
A1 A2 cos ((ω1 + ω2)t) . (5b)

By choosing the resonance frequency ω3 of the output
oscillator such that it coincides with the sum frequency
ω1 + ω2, the amplitude y3 of the output oscillator be-
comes proportional to the product A1 A2 of the input
oscillators. Thus, the output oscillator only vibrates at
its resonance frequency if there is a nonvanishing vibra-
tion amplitude at both input oscillators simultaneously.
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IV. NUMERICAL SIMULATION OF THE VI-

BRATIONAL AND FUNCTION

A. Mathematical Model and Numerical Proce-

dures

Based on the model in Fig. 2, the response of the vi-
brational AND function was numerically simulated for
a variety of different coupling parameters kc1

, kc2
, kc3

,
and lc3

, and input amplitudes z1 and z2. The differential
equations describing the motion of the two input oscilla-
tors (Osc1, Osc2) and the output oscillator (Osc3) are

z̈1 +
ω1

Q1

ż1 + ω2
1z1 +

ω2
1

k1

∂Uc

∂z1

=
ω2

1

k1

F1 cos(ω1st), (6a)

z̈2 +
ω2

Q2

ż2 + ω2
2z2 +

ω2
2

k2

∂Uc

∂z2

=
ω2

2

k2

F2 cos(ω2st), (6b)

ÿ3 +
ω3

Q3

ẏ3 + ω2
3y3 +

ω2
3

k3

∂Uc

∂y3

= 0 , (6c)

where ωn is the (angular) resonance frequency of the
corresponding oscillator, Qn is the quality factor of
the resonance, and kn is the spring constant describing
the coupling to the external driving force with ampli-
tude Fn. The frequency of the driving force matches
the resonance frequency of the coupled oscillator. The
resonance frequency of the coupled oscillator, ω1s, is
shifted with respect to the resonance frequency ω1 of
the free oscillator according to the relation ω1s =
ω1

(

1 + k−1
1 (∂2Uc)/(∂z2

1)
)

. A corresponding expression
relates ω2s to ω2 and ω3s to ω3. To excite the output
oscillator at its resonance frequency ω3s, the frequency
ω3 of the free oscillator is chosen such that the relation
ω3s = ω1s + ω2s is met for the actual coupling potential.

Starting from the initial positions z1 = 0, z2 = 0 and
y3 = 0 at t = 0, the differential equations (Eqs. (6a)-(6c))
are iteratively integrated for a time step dt by means of
the Runge–Kutta algorithm [9]. Prior to each integration
step, the position of the coupling point zs is calculated
from the zero-force condition ∂Uc/∂zs = 0 for the actual
positions z1, z2, and y3. During the iteration process,
the mean absorbed power Pa1

and Pa2
of the input oscil-

lators are calculated from the instantaneous energy flows
IE1

(t) = F1 cos(ω1st)ż1(t) and IE2
(t) = F2 cos(ω2st)ż2(t)

by filtering IE1
(t) and IE2

(t) with a second-order But-
terworth low-pass filter having a cutoff frequency ωLP of
20ω1s. Similarly, the mean dissipated powers Pd1

, Pd2
,

and Pd3
are calculated using equivalent low-pass filters

with the same cutoff frequency. Because the output os-
cillator (Osc3) is driven only by the nonlinear coupling to
the motion zs of the coupling point, the absorbed power
Pa3

in Osc3 is equal to the dissipated power Pd3
once the

vibration amplitudes have reached a steady-state value.
Thus, Pd3

reflects the amount of energy transferred from
the input oscillators to the output oscillator.

The numerical simulations were performed assuming
parameters that are typical of an AND function with
micromechanical dimensions. The resonance frequencies
were in the 1 kHz, and spring constants in the 10 N/m
range. Specifically, the resonance frequency of the input
oscillators were set to ω1 = 1000 Hz and ω2 = 1400 Hz;
the spring constants were k1 = 10 N/m and k2 = 16
N/m, and the Q-factors were Q1 = Q2 = 30. The
spring constants of the couplings to the coupling point
were kc1

= kc2
= 1 N/m, inducing a resonance fre-

quency shift of +0.049 for input oscillator 1 and +0.029
for input oscillator 2. The shifted resonance frequen-
cies were then ω1s = 1049 Hz and ω2s = 1441 Hz. The
resonance frequency of the output oscillator was set to
ω3s = ω1s + ω2s = 2490 Hz by adjusting ω3 for the ac-
tual parameter of the coupling spring constant kc3

. The
spring constant k3 of the output oscillator is set [9] to 10
N/m. The Q-factor of the output oscillator was set to
the same value as Q1 and Q2, namely, Q3 = 30. In a re-
alistic setup of a mechanical AND function, the coupling
from the coupling point to the spring connecting to the
output oscillator has a mechanical reduction (see Fig. 9
below). The motion of the coupling spring is reduced by
the factor called rc3

, i.e., y3 in the coupling potential Uc

is replaced by the expression rc3
y3. For the simulations

described here, the reduction factor was set to rc3
= 0.2.

B. Coupling Efficiency for Various Coupling Pa-

rameters

The coupling efficiency from the inputs to the output
was explored by varying the parameters kc3

and lc3
from

1 to 1000 N/m and 5 to 300 um, respectively. The in-
put force amplitudes F1 and F2 were chosen such that
the resulting vibration amplitudes z1 and z2 were be-
tween 0.001 and 3 µm. The performance of the AND
function was analyzed both by the power transfer effi-
ciency η = Pd3

/(Pa1
+ Pa2

) and the amplitude gains
g1 = y3 rms/z1 rms and g2 = y3 rms/z2 rms. True rms values
were calculated because of the significant nonharmonic
contributions to the vibration amplitude y3(t). Both the
power values and the amplitude values were calculated
after an integration time τi of about 60 ms. This time pe-
riod corresponds to about six times the slowest response-
time constant in the system, i.e., the response time of
input oscillator 1, which is τ1 = 2Q1/ω1 = 9.1 ms. The
integration step width, dt, was determined by dividing
the oscillation period of the fastest oscillator in the sys-
tem, i.e., the output oscillator Osc3, into 50 equal steps.
The resulting time-step width was dt ' 7µs.

Figure 3 shows the power transfer efficiency η and the
output vibration amplitude y3 rms as a function of the
length scale lc3

for various stiffnesses kc3
of the coupling

spring. The input amplitudes were z1 = z2 = 0.7µmrms.
The power transfer efficiency η has a maximum of ' 0.1
for kc3

= 1000 N/m at lc3
' 50µm. For these param-

eters, up to 10% of the input power can be transferred
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to the output oscillator. The vibration amplitude y3 rms

of the output oscillator has a maximum. Position and
height of the maximum depend on the coupling constant
kc3

. For small values of kc3
, the position of the max-

imum appears to be below lc3
= 5µm and the height

reaches values slightly larger than y3 rms = 0.15µm; for
kc3

> 100 N/m, the position of the maximum moves to
values of lc3

> 10µm, whereas the height decreases to
less than y3 rms = 0.1µm.

FIG. 3: (a) Power transfer efficiency and (b) output vibration
amplitude for a variable length lc3 of the nonlinear coupling
at various stiffnesses kc3

of the coupling spring.

If the length lc3
is reduced to less than 5 µm or the

stiffness kc3
of the spring increased to values above 1000

N/M, the amplitude y3 of the output will no longer attain
a steady-state value but become chaotic. Thus, its detec-
tion after a fixed integration time is meaningless for the
characterization of the coupling efficiency η and of the
amplitude gains g1 and g2. These limits for lc3

and kc3

for achieving a steady-state output amplitude are only
valid for the input amplitudes z1 = z2 = 0.7µmrms; for
larger (smaller) amplitudes, the lower limit for lc3

be-
comes larger (smaller) and the upper limit for kc3

be-
comes smaller (larger).

C. Coupling Efficiency for Variable Input Ampli-

tudes

Owing to the nonlinearity of the coupling, the output
amplitude does not a priori scale with the input ampli-
tudes. For this reason, the dependence of the output

amplitude y3 on the input amplitudes z1 and z2 was in-
vestigated for fixed parameters lc3

and kc3
of the nonlin-

ear coupling. The values of these parameters were chosen
such that the power transfer was maximum for the input
amplitudes z1 = z2 = 0.7µmrms, i.e., lc3

+ 20µm and
kc3

= 300 N/m. Figure 4(a) shows the dependence of
the power transfer efficiency η = Pd3

/(Pa1
+ Pa2

) on z1

for various values of z2. As expected for an AND func-
tion, the maximum output power is obtained if a large
signal amplitude is applied to both inputs. If at least one
of the inputs has a low amplitude, the output power is re-
duced significantly. Figure 4(b) shows the output/input
amplitude gain g1 = y3 rms/z1 rms with the other input
amplitude z2 on a constant level. For small z2, the gain
g1 stays constant for small z1 and becomes larger as z1 is
increased to more than 0.5 µm. For large z2, however, the
gain g1 decreases as the amplitude z1 is increased, which
contradicts a proper operation of the AND function.

FIG. 4: (a) Power transfer efficiency and (b) output vibration
amplitude for varying input amplitudes z1 and z2.

For the range of input vibration amplitudes investi-
gated here, the output amplitude reaches a stable value
at the end of the integration time (∼ 60 ms) for any
combination of the two amplitudes z1 and z2. For larger
amplitudes, however, the output amplitude no longer be-
comes stable, and its time evolution becomes chaotic.

D. Bias Stress on Coupling Spring

In the model used so far, the spring of the nonlinear
coupling was assumed to have zero stress when the input
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amplitudes z1 and z2 were zero. However, this assump-
tion is not a necessary restriction for the nonlinear cou-
pling. If a bias stress Fb = kc3

yb is applied to the spring,
the coupling potential is modified slightly by replacing y3

with the expression y3 +yb in Eq. (4). As a consequence,
the initial position of y3 at t = 0 no longer is y3,0 = 0.
The position y3,0 is determined by the condition of the
static equilibrium ∂Uc/∂y3 + k3y3 = 0 for z1 = z2 = 0.

The coupling potential changes fundamentally when a
bias stress is applied to the coupling spring. Figure 5
shows the potential as a function of the position of the
sum point zs for either compressive (yb < 0) or expansive
bias stress (yb > 0). For expansive stress, the curvature
of the potential at zs = 0 increases, resulting in a positive
shift of the resonance frequency. For compressive stress,
however, the potential splits into two equivalent minima.
For small amplitudes of zs, the motion is confined to ei-
ther one of the two minima where the system initially was
at t = 0. For larger amplitudes, however, the system can
exceed the barrier at zs = 0, initiating a sudden increase
of the vibration amplitude zs as the input amplitude is
increased. As a consequence, the excitation of the out-
put oscillator rises accordingly and results in a significant
increase of the amplitude y3.

This highly nonlinear behavior is reflected in the trans-
fer efficiency η and the amplitude gains g1 and g2 of the
AND function. Figure 6 shows the power transfer effi-
ciency η in (a) and the amplitude gain g1 in (b) for four
different compressive stress bias values yb. For no or low
compressive stress (yb = 0,−2µm), the power transfer
in (a) continuously increases and the amplitude gain in
(b) becomes slightly smaller as the input amplitude z1

is increased. Above a critical amplitude z1 ' 3µm, the
coupling efficiency η drops slightly and increases again for
larger values of z1. For yb = −4µm, however, the power
transfer to the output oscillator is almost independent of
z1; the output is driven by the second input oscillator
only. For this specific bias stress, the input amplitude
z2 = 1µm is large enough to raise the energy of the sys-
tem above the potential barrier at zs = 0, see Fig. 5, and
enables a large oscillation of zs between the two branches
of the potential curve. This behavior is also reflected in
the amplitude gain curve in Fig. 6(b). The slope of −1
for yb = −4µm reflects the independence of the output
amplitude y3 rms of the input for small values of z1. For a
slightly larger compressive stress of yb = −6µm, the out-
put amplitude y3 abruptly increases for a narrow range
of input amplitudes z1 above 1 µm.

Compressive stress on the coupling spring could be
used to obtain significantly larger output vibration val-
ues for the same input levels. Furthermore, because of
the pronounced nonlinearity for a specific range of in-
put amplitudes, compressive stress could be used to set
a threshold for the input amplitudes to generate a de-
tectable output signal. However, in both cases, the bias
stress has to be accurately tuned to obtain the specific
properties. In a micromechanical device, this might be a
difficult if not even impossible requirement to fulfill.

FIG. 5: Total potential U as a function of the “sum point”
coordinate zs for either compressive (yb < 0) or expansive
bias stress (yb > 0) applied to the coupling spring.

V. MECHANICAL POWER AMPLIFICATION

The nonlinear coupling of the two input oscillators to
a third output oscillator can be viewed as an amplitude-
mixing element for vibrations. One of the inputs acts
as the high-frequency carrier input, the other is the low-
frequency modulator input. The nonlinear coupling gen-
erates an oscillatory force at both the sum frequency (up-
per sideband) and the difference frequency (lower side-
band) of the input oscillators. In the case of negligi-
ble loss in the nonlinear coupling, the power transfer
to the output is governed by some fundamental rela-
tions called the Manley–Rowe equations [10]. Neglecting
higher-order sidebands, these equations are as follows.
For the upper sideband ωc + ω1

Pc

ωc
+

P+

ωc + ω1

= 0 (7a)

P1

ω1

+
P+

ωc + ω1

= 0 (7b)

and for the lower sideband ωc − ω1

Pc

ωc
+

P−

ωc − ω1

= 0 (8a)

P1

ω1

−
P−

ωc − ω1

= 0 . (8b)

Pc and P1 denote the power absorbed at the carrier input
and at the modulator input, respectively, and ωc and ω1

5



FIG. 6: (a) Power transfer efficiency and (b) amplitude gain
as a function of input amplitude z1 for fixed input amplitude
z2. For yb = −4 µm and small input amplitude z1, the output
amplitude is independent of z1. The output is driven by the
input amplitude z2.

are the corresponding frequencies. The power transferred
to the upper and lower sideband is −P+ and −P−, respec-
tively (note that absorbed powers are positive). Rewrit-
ing Eq. (7b), the power gain G+ = −P+/P1 in the upper
sideband is given by G+ = (ωc +ω1)/ω1. For a large car-
rier frequency ωc � ω1, the gain is approximately given
by G+ = ωc/ω1, and the output power rises linearly with
the carrier frequency ωc.

For the lower sideband, however, the power gain is neg-
ative, i.e., G− = −P−/P1 = −(ωc − ω1)/ω1 < 0. Because
the output emits power, P− is negative by convention,
and because G− < 0, also the input power P1 must be
negative. Accordingly, there is a power flow from the
carrier input via the output oscillator to the modulator
input. Thus, the modulator input oscillator can be ex-
cited without any signal being applied to the modulator
input. The tendency to self-oscillations renders the lower
sideband amplifier potentially unstable.

The performance of the upper sideband amplifier was
simulated by means of the same procedure as for the
vibrational AND function. Unlike the AND function,
however, the resonance frequency of one of the inputs was
varied to investigate the power gain for various carrier
frequencies fc. Figure 7(a) shows the power gain G+ =
Pd3

/Pa1
as a function of the modulator input amplitude

z1 for various carrier frequencies fc and for a fixed carrier
input amplitude z2 = 2.2. µm. For low input amplitudes
z1, the power gain varies as z−2

1 , indicating a constant

output amplitude, whereas the input power rises as z2
1 .

For input amplitudes in the range z1 = 0.1 to 2µm, the
power gain G+ is independent of z1, as demanded for a
linear amplifier. Above z1 ' 2µm, the carrier amplitude
zc is smaller than the modulator amplitude z1, and the
output amplitude is dominated by the absorbed power at
the modulator input. As a consequence, G+ drops as z1

is increased further.
The amplitude gain g+ = y3 rms/z1 rms of the upper

sideband modulator is shown in Fig. 7(b). The linear
drop of g+ for small input amplitudes indicates that the
output amplitude y3 is independent of the modulator in-
put amplitude z1. The amplitude gain is constant in the
range z1 = 0.1 to 2µm and drops at z1 > 2µm, reflect-
ing the corresponding behavior of the power gain G+ at
these input amplitudes z1.

FIG. 7: (a) Power gain G+ and (b) amplitude gain g+ of the
upper sideband modulator for a variable modulator input am-
plitude z1 and for various carrier frequencies fc and constant
carrier input amplitude zc = 1 µm. Constant power gain G+

is achieved for input amplitudes in the range z1 = 0.1 to 2 µm.

Unlike the power gain G+, however, the amplitude gain
g+ is almost independent of the carrier frequency fc.

The power gain G+ increases wit larger fc, as shown
in Fig. 8 for various carrier amplitudes zc. The depen-
dence of G+ on fc is almost linear, as predicted by the
Manley–Rowe equations, (7a) and (7b). For these equa-
tions, the entire power output was assumed to be con-
fined to the upper sideband. In reality, however, the non-
linear coupling transfers power into other frequency com-
ponents such as the multiple harmonics of the input fre-
quencies (2ω1, 2ωc, 3ω1, 3ωc, ...) higher-order sidebands
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(ωc±2ω1, ωc±3ω1, ...). As a result, the magnitude of the
power in the upper sideband ωc+ω1 is smaller than what
is expected from the (simplified) Manley–Rowe equations
[(7a), (7b) and (8a), (8b)].

FIG. 8: Power gain G+ of the upper sideband modulator for
variable carrier frequency fc and various carrier amplitudes
zc. The modulator frequency is f1 = 1000 Hz, and the input
amplitude is z1 = 1 µm. G+ increases linearly with fc.

VI. NONLINEAR COUPLING WITH INTERNAL

RESONANCES

In the numerical simulations of the AND function and
the power amplifier described above, all couplings be-
tween the oscillators were assumed to have zero mass and,
consequently, no internal resonances. In a real system,
however, the coupling springs have internal resonances.
Yet for a well-designed system, these resonance frequen-
cies are significantly higher than the frequencies of the
oscillators. In this case, the model with no or infinitely
high resonance frequencies is a good approximation.

In a more realistic model of the vibrational AND func-
tion, a finite mass ms is added to the coupling. The
mathematical model describing the dynamics of the sys-
tem (Eqs. (5a)–(5c)) is extended by a differential equa-
tion for the motion of the mass ms.

z̈s +
ωs

Qs
żs + ω2

szs +
ω2

s

kc1
+ kc2

∂Uc

∂zs
= 0 . (9)

Instead of using the not well-defined mass ms of the
coupling to characterize the internal dynamics of the
coupling, the resonance frequency ωs of the coupling is
used in Eq. (9). This equation replaces the condition
∂Uc/∂zs = 0 used in the preceding sections to determine
the position zs.

For the numerical simulation of the AND function with
variable internal resonance frequency ωs, similar param-
eters as in Sect. IV were used for the coupling springs,
namely, kc1

= kc2
= 1/ N/m, kc3

= 500 N/m, rc3
= 0.2,

and lc3
= 30µm. The resonance frequencies of the uncou-

pled input oscillators were f1 = 1000 Hz and f2 = 1650

Hz, respectively. The coupling shifted the resonance fre-
quencies by +49 and +38 Hz, yielding f1s = 1049 Hz
and f2s = 1688 Hz. The output oscillator frequency then
was f3s = f1s + f2s = 2737 Hz. The Q-factors had equal
values, Q1 = Q2 = Q3 = 50. For the internal resonance
of the coupling system, negligible loss was assumed by
using a large Q-factor Qs = 104.

FIG. 9: Output amplitudes of the vibrational AND function
with variable internal resonance frequency of the nonlinear
coupling. (a) Input amplitudes z1 = z2 = 1 µm; (b) z1 =
1 µm, z2 = 0.1 µm, and (c) z1 = z2 = 5 µm. Multiples of
the input frequencies are marked in the plots (for the sake of
simplicity, the index “s” has been omitted).

The internal resonance frequency fs was varied from
200 to 8200 Hz for three different input amplitudes.
Figure 9(a) shows the output vibration amplitude as a
function of fs of the coupling for the input amplitudes
z1 = z2 = 1µm. The output amplitude y3 varies by
more than a factor of ten for different resonance frequen-
cies of the coupling. Characteristic amplitude peaks and
dips occur at multiples of the resonance frequencies f1

and f2 of the inputs and the outputs (for the sake of
simplicity, the index “s” denoting the shifted resonance
frequencies is omitted in this section). At reduced input
amplitudes (z1 = 1µm and z2 = 0.1µm), most of the
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peaks and dips disappear, and for a high internal reso-
nance frequency, the amplitude levels off at a well-defined
plateau (Fig 9(b)). For larger input amplitudes however
(z1 = z2 = 5µm), the motion of the output oscillator be-
comes chaotic and the output amplitude spectrum is very
noisy (Fig. 9(c)). The magnitude of the output ampli-
tude is no longer predictable, making the AND function
inapplicable.

This sections points to a severe problem for the design
of an AND function based on nonlinear mechanical cou-
pling. In order to achieve a high coupling efficiency of the
output, the stiffness of the spring has to be on the order of
magnitude of the spring constants of the oscillators. The
high stiffness is achieved by using a bulkier geometry of
the springs. As a consequence of the larger mass of the
spring, the internal resonance frequencies of the coupling
drop, making the output amplitude critically depend on
the actual internal resonance frequency at vibration am-
plitudes that are still below the critical values for chaotic
behavior. At larger amplitudes, the output amplitude no
longer reaches a stable value. Thus, in order to achieve a
proper functioning of the AND function, the inputs have
to have a built-in amplitude limiter or the amplitudes
have to be detected independently so as to trigger an
overload warning if their magnitudes are too large.

VII. MACROMECHANICAL MODEL OF THE

VIBRATIONAL AND FUNCTION

The feasibility of the nonlinear mechanical coupling
scheme was tested on a macromechanical model of a
vibrational AND function. The experimental setup is
shown in Fig. 10. Aluminum cantilevers with a thick-
ness t = 0.5 mm and a width w = 8 mm act as input
and oscillators. The lengths of the two input cantilevers
were l1 = 45 mm and l2 = 33 mm, respectively. The
output cantilever at the higher frequency had a length
of l3 = 25 mm. The coupling between the inputs was
V-shaped and cut from stainless steel foil having a thick-
ness of 0.2 mm. The lengths of the two legs were lc1

= 20
mm and lc2

= 15 mm, respectively, and the width was
2.5 mm. The nonlinear coupling spring was made from
the same foil and was S-shaped, making the spring stiff in
the direction of the input vibration and soft in the direc-
tion of the output vibration. The length of the unloaded
spring was lc3

= 20 mm.
The spring constants of the cantilevers were esti-

mated from the dimensions using the formula k =
(1/4)Ew(t/l)3, where E is Young’s modulus. For the
levers we obtained k1 = 200, k2 = 500 and k3 = 1100
N/m, and for the couplings kc1

= 120, kc2
= 300 and

kc3
= 2300 N/m. The resonance frequencies of the input

cantilevers were f1 = 202 and f2 = 259 Hz, with the
Q-factors Q1 = 230 and Q2 = 200. The frequency of
the output oscillator was adjusted to match the condi-
tion f3 = f1 + f2, i.e., f3 = 461 Hz. The corresponding
Q-factor was Q3 = 120.

FIG. 10: Experimental setup of the vibrational AND function.

The cantilevers were excited by the magnetic force be-
tween a small permanent magnet glued onto the can-
tilevers and a small coil located close to the magnet.
The vibration signal of the cantilevers was detected by
miniature microphones located about 2 mm away from
each cantilever. The output AC voltage from the micro-
phones was calibrated by using a large excitation of the
cantilevers and measuring the resulting vibration ampli-
tude with an optical microscope.

Figure 11 shows the output amplitudes detected as in-
put 1 is varied from about 20 to 400 µm for a set of
different amplitudes of input 2. The output amplitude
increases almost linearly (slope = 1) with the input am-
plitudes, indicating that the AND function is driven be-
low the chaotic limit. For large input amplitudes on both
inputs, the resulting output amplitude reaches a vibra-
tion amplitude of as much as several 100 µm. Thus, a
significant fraction of the power adsorbed at the inputs is
transferred to the output, indicating that the nonlinear
coupling is rather strong.
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FIG. 11: Output vibration amplitude of the macroscopic
model of the vibrational AND function as one of the input
amplitudes is varied and the other kept constant.

VIII. CONCLUSION

We have demonstrated the feasibility of a mechanical
AND function by means of nonlinearly coupled oscilla-
tors. Two input oscillators are coupled to a orthogonally
vibrating output cantilever by a coupling spring, which
results in an effective nonlinear coupling already at small
amplitudes. The functionality of the system was demon-
strated in an experimental setup and studied numerically.

The equations describing the system have been solved
numerically for parameters typical of a mechanical re-
alization with micromechanical dimensions. The power
transfer efficiency η and the amplitude gains g1 and g2

were explored as a function of input amplitudes and cou-
pling parameters with or without an additional bias stress
on the coupling spring.

For moderate input amplitudes and optimized coupling
parameters, the power transfer efficiency increases with
increasing amplitudes and reaches a maximum of η ≈ 0.1.
If at least one of the inputs has a low amplitude, the
output power is reduced significantly, as required for an
AND function. Upper limits on the coupling strength
were found for fixed input amplitudes, and, similarly, up-
per limits of the input amplitudes exist for fixed coupling
parameters. Beyond these critical values, the motion of
the output was found to become chaotic. An appropri-
ate compressive bias stress on the coupling spring could
be used to obtain significantly larger output amplitudes
and to set a threshold for the input amplitudes in or-
der to generate a detectable output signal. However, the
bias stress has to be accurately tuned, which might be
difficult to achieve in a micromechanical implementation.

The same setup can be viewed as a mechanical power
amplifier. A low frequency modulator signal at one of the
inputs can be amplified by supplying a high frequency
carrier signal to the other input. If the output oscillator
is tuned to the sum frequency of the two input oscillators,
a power gain independent of the input amplitude can be
established for a certain range of input amplitudes.
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