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Designing Anonymous Applications With Accountability Using

idemix Anonymous Credentials

Els Van Herreweghen

Abstract

Anonymous credential systems [11, 10, 12, 13, 19] allow anonymous yet authenticated and accountable trans-
actions between users and service providers. As such, they represent a powerful technique for protecting
users’ privacy when conducting Internet transactions. In this report, we show how to design privacy-friendly
yet secure and accountable applications using the idemix anonymous credential system introduced in [9],
based on protocols developed in [7]. In order to facilitate such design, we describe authentication, account-
ability and linkability features of the various idemix protocols as assertions on their in- and output parameter
values. Using these assertions, we demonstrate the design of an application using idemix credentials based
on the application’s authentication, accountability and unidentifiability requirements.
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1 Introduction

The protection of users’ privacy when performing Internet or web-based transactions is an important factor
in the acceptance and use of Internet and web services.

Solutions for minimizing release of personal information can be based on one of many proposed techniques
for anonymizing the transport medium used between users and service providers, e.g., [20, 15, 21]. This may
anonymize the user towards outsiders and, if desired, towards the service provider.

Service providers may require authentication (e.g., for controlling access to resources) or accountability of
users’ actions, in which case users need to prove their identity, or at least possession of a certificate or
capability of a certain type. Such a certificate may contain a pseudonymous identity of the user, or contain
only the necessary attributes required for accessing a certain service. However, when using certificates
as defined by X.509 [17] or SPKI [14], or even certificates specifically constructed for conveying policy or
authorization information as in [4], different uses of the same certificate still remain linkable to each other.
They can eventually identify a user through a combination of context and addressing information from one
or a series of transactions.

This linkability can be avoided by using an anonymous credential system (also called pseudonym system) [11,
10, 12, 13, 19]. In such a system, the organizations (service providers and credential issuers) know the users
only by pseudonyms. Different pseudonyms of the same user cannot be linked. Yet, an organization can
issue a credential to a pseudonym, and the corresponding user can prove possession of this credential to
another organization (who knows him by a different pseudonym), without revealing anything more than the
fact that the user owns such a credential.

[9] describes the design and implementation of the idemix credential system, based on protocols developed
in [7]. The idemix system is described in terms of high-level primitives; these allow reasoning about security
and privacy features, while hiding the complexity of the cryptographic protocols.

In this report, we describe authentication, accountability and unlinkability features of the various idemix
protocols in terms of assertions on their in- and output parameter values. This representation facilitates the
design of idemix -based applications based on authentication (authorization), accountability and unidentifi-
ability requirements of the application.

The report is structured as follows. In Section 2, we give an overview of terminology used. In Section 3,
we describe the idemix interfaces in more detail. These are the basic primitives described in [9] as well as
signed variants of nym registration. Signed nym registration procedures allow a user to sign a nym using a
(non-idemix ) signature key. They provide the basis for user accountability by generating a proof of linking
between a nym and the idemix -external certificate of a user.

Section 4 captures the result of each of the interactive protocols (nym registration, credential issuing and
showing) in an ‘assertion’ defining a relationship between both participating parties’ input and output values.
E.g., an assertion about nym registration captures the following: “After a successful run of a nym registration
protocol between a user and an organization, their respective nym values are related to each other as well
as to the user’s secret”. These assertions about the system’s building blocks allow us to concisely describe
an application consisting of idemix interactive protocol invocations. We also specify which assertions are
provable. Section 5 then specifies the result of local operations on transcripts (deanonymization and double-
spending detection) as a function of the assertions about the transcripts they are invoked on. We capture
relationships such as: “If a transcript is the result of a credential show protocol invocation with a local
deanonymization parameter set, then deanonymization with the correct deanonymization key will reveal the
nym the credential shown was issued on”. These local operations can produce transcripts with which the
results of their correctness can be proved; we can thus define provable assertions also about the results of
deanonymization and double-spending detection. The definitions in Sections 4 and 5 thus allow us to reason
about authentication (which credential was shown?) and provability (what can be proved with the various
signatures and transcripts produced?) As a user’s identity can be provably linked to a nym through the
signed nym registration procedures, the provability of actions based on such a nym and on the credentials
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issued on it allows to fulfill requirements of user accountability.

Section 6 re-visits the various protocols from the viewpoint of the user’s unidentifiability and the unlinkability
of his actions; it examines which values (identities, nyms, credentials) become linkable by a user executing
a certain protocol. By associating linkability assertions with individual idemix protocol executions, we can
then reason about the effect of a sequence of protocol steps on the linkability of a user’s actions, and on the
linkability between his actions and his identity.

Section 7 completes the detailed description of the idemix system by defining additional functions needed or
helpful in describing real applications. These are additional implementations of global deanonymization, as
well as functions such as revocation and certification.

In Section 8, the previous detailed description of idemix functionality is used to design an application.
The example shows how the assertions described in Sections 3 to 6 can be used be used to design an
application based on authentication and accountability requirements from organizations on the one hand,
and unidentifiability and unlinkability requirements from users on the other hand.

In Section 9, we discuss issues of trust related to user accountability and unidentifiability, accountability and
liability of organizations, and certification. Section 10 concludes the report.

2 Terminology

In this section, we introduce some terminology and concepts related to unidentifiability and accountability
as they will be used in this report.

2.1 Identity-Based vs. Attribute-Based Authentication and Authorization

Authentication is a service related to identification. Entity authentication as well as message authentication
corroborate the identity of an entity (e.g., a person, a computer, etc.) associated with a communication
channel or with a specific piece of information [22].

In traditional systems for access control, an entity’s authorization to perform an action or to act under a
certain role is typically derived from such identity authentication. This identity may have a global meaning, or
it may only have a meaning to some participants in the system; it may also be a pseudonym as defined in the
next section. In identity-based authorization, the authorization decision is thus based on the authenticated
identity or pseudonym; the verifying (and authorizing) party derives necessary access rights from this identity
or pseudonym.

Identity authentication of an authenticating party A to a verifying party (also called relying party) V can be
achieved using a digital certificate certifying the linking between A’s public key and its identity; this linking
is certified (signed) by a trusted entity, such as a certification authority CA. A can now convince V of its
identity by proving knowledge of the associated private key.

In this report, we will also discuss attribute authentication and attribute-based authorization. With attribute
authentication, an authenticating party A convinces a verifying party V of the fact that A owns certain
attributes; these attributes may but need not be unique to A and need not correspond to an identity.
Examples of attributes are the right to access a certain resource or the age of the attribute holder. We will
use the term ‘proving ownership of an attribute’ both for proving the exact value of an attribute (access
right, age) as for proving a property of the attribute (e.g., age ≥ 18).

As is the case with identity authentication, the fact that A owns an attribute needs to be certified by a
trusted authority. Using conventional certificates, this certification is realized by including the attributes
in A’s certificate. Using credentials as defined in Section 2.2, it is realized in a similar way, i.e., by the
certificate issuer signing a piece of information including the attributes and a public value associated with
A’s secret. As with certificates, A can then prove ownership of an attribute certified in a credential by
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proving knowledge of this secret.

Attribute-based authorization will then allow A to perform an action, such as accessing a resource, based on
the ownership of one or more attributes, rather than on its identity or on access rights derived from it by a
relying party.

In the context of attribute-based authorization, the term ‘attribute’ covers more than only the fields in a
certificate or credential carrying that name. It may stand for any property of the certificate or credential,
other than the identity of the certificate holder, from which the relying party can derive necessary privileges.
E.g., the fact that the certificate or credential used for authentication is signed by a certain issuer (i.e.,
can be verified using a specific public key) may be considered to be an attribute. Also, attribute-based
authorization does not exclude that the certificate or credential may contain an identity or pseudonym;
only, the authorization decision is not based on it. E.g., in the Secure Electronic Transactions (SET) [23]
protocol for credit-card payments, the customer’s account number is not visible to the merchant receiving
the payment; if the merchant’s acceptance of the payment is based only on the certificate being valid and
having been issued by a trusted bank, the merchant’s authorization decision (in this case, the decision to
grant access to a paid service or to deliver the purchased goods) is attribute-based.

2.2 Certificates and Credentials

A public-key certificate (short: certificate) is a piece of information signed by a trusted entity such as a
certification authority CA. It binds the identity or name of a certified entity (A) and possibly additional
relevant information (attributes) pertaining to A to the public key corresponding to a private key owned by
A and known only to A. The certified key can be a public encryption key: in this case, information encrypted
with A’s public key can be decrypted only using A’s private decryption key. Most often, we will talk about
certificates certifying public signature keys: in this case, A authenticates to V (convinces a verifier V of
its identity and/or of owning certain attributes) by proving ownership of the private signature key, e.g., by
digitally signing a piece of information with that private key. V verifies the authentication using the signed
information and the public key in A’s certificate. In order to verify the authenticity of this certificate (and
of A’s public key), V needs an authentic copy of CA’s public key.

Rather than a real name or globally meaningful identity, public-key certificates may contain a local identity.
A local identity is an identity which has a meaning only to specific parties in the system or is valid only for
a short period of time. Some examples of local identities are: an employee number in a certificate issued by
an employer; an account number in a certificate issued by a bank; or a temporary login name assigned to an
employee allowing the employee to fill out this year’s employee opinion survey.

When a local identity is used with the goal to hide the authenticating entity’s real name or global identity
from certain parties in the system or from outsiders, we will call the local identity a pseudonym (see also
Section 2.4); a certificate certifying it is called a pseudonym certificate. The public key in a pseudonym
certificate can be considered to be the pseudonym; a pseudonym certificate may but need not carry an
additional identifier.

A pseudonym certificate can be used for identity-based as well as for attribute-based authorization. In
the first case, authorization is based on the pseudonym; this requires that the relying party can link the
pseudonym to another identity or to privileges. In the latter case, authorization is based on accompanying
attributes in the certificate, and the relying party need not have any prior knowledge about the pseudonym.
Note that the relying party can link all the transactions with the same pseudonym certificate to each other
(and to the pseudonym), even if it cannot link the pseudonym to an identity.

Digital credentials can generally be defined as the digital equivalent of paper documents or other objects tra-
ditionally used to establish a person’s identity, attributes and privileges [5]. As such, a public-key certificate
is a special type of digital credential; we will, however, use the term credential in a more restricted sense.
The credentials discussed in this report belong to the class of anonymous credentials [11, 10, 12, 13, 19, 7].
Like a certificate, an anonymous credential is a certified piece of information allowing its owner to prove
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ownership of an identity and/or attributes contained in the certified data. Unlike a certificate, an anonymous
credential allows its owner, A, to provide such a proof without the need for the verifier, V , to see or obtain
(a copy of) the credential; A can authenticate (provide such a proof) multiple times without V being able
to link the various authentications to each other.

2.3 Belief, Provability, Non-Repudiation, Accountability and Liability

According to definitions by Kailar [18], an individual is said to believe a statement if he is convinced of that
statement; and a proof of a statement x is a set of statements that can collectively convey the validity of x
to an audience. Accountability is the property whereby the association of a unique originator with an object
or an action can be proved to a third party (i.e., a party other than the originator and the prover).

We illustrate these definitions with some examples. A may authenticate (sign) a message to V using the
private key corresponding to a public-key certificate issued by CA. In order to believe that the message is
signed by A, V needs to successfully verify the signature on the message with the public key in A’s certificate,
and also has to verify the authenticity of A’s certificate; the latter verification is done using an authentic
copy of CA’s public key. For V to trust that a message signed with A’s private key (more precisely: verified
using A’s public key) can indeed be attributed to A, V also needs to trust CA as well as the overall certificate
infrastructure.

The message signed by A may also constitute proof to a third party if this party also trusts CA and the
certificate infrastructure. I.e., using the signed message, V is able to prove to a third party that A made
the statement contained in the message, or: A is accountable for the signed message.

The notion of accountability as defined here is based on and related to the property of non-repudiation,
which is a service or property preventing the denial of previous commitments or actions [22]. Public-key
based digital signatures are often attributed this property. However, in order for a digital signature to
be considered non-repudiable and potentially legally binding, it should be established beyond reasonable
doubt that the person to whom the public key is claimed to belong is indeed the only entity who could
have made (or triggered the making of) the signature; that this person could verify and understood the
contents and meaning of the data being signed; and that he was aware of possible consequences and legal
interpretations of signing these data with this key. For this to be the case, many requirements have to
be fulfilled safeguarding the security of the various procedures in the public-key infrastructure, including
the generation of public/private keys, the generation of signatures, and the certification and registration of
public keys by certification and registration authorities.

Liability, or obligation by law, assumes accountability; in our interpretation, the term liability implies a
quantification of consequences for certain accountable facts. An individual is liable to perform a certain
quantifiable action (such as paying an amount of money) if he can be held accountable for a certain fact,
and if the quantifiable action is the liability value associated with this fact. The association between the
accountable fact and the liability value needs to be known to and accepted by the individual in order for the
individual to be held liable. The acceptance may be enforced by society, laws or the judicial system; e.g.,
a detention sentence is a generally accepted liability value for certain criminal behavior. In other cases, the
acceptance needs to be more explicit. When registering a digital signature key and obtaining a public-key
certificate, a person may accept a certain liability for data or transactions signed with that key (we will
use liability also as a short form for liability value). E.g., when the public-key certificate allows the user to
sign electronic payments, the user may accept a maximum liability for payments made with this certificate,
thereby protecting himself against the consequences of the private key being stolen. When the public-key
certificate allows the user to sign electronic contracts, the user’s liability upon digitally signing a contract
with that key may consist in being subject to the same dispute resolution procedure in court as is applied
for paper-based contracts.

Liability applies to legal entities. In our definition, a legal entity is any entity that can be held accountable
and liable before a court, and can be enforced to honor its liabilities. This can be a natural person, an
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organization or a company.

2.4 Pseudonyms and Pseudonymity, Anonymity, Linkability, (Un)identifiability

A pseudonym is an identifier with a local meaning. A user may choose or create his own pseudonym(s);
or, organizations issuing certificates or credentials may create pseudonyms for users. Some pseudonyms are
created based on inputs both from the user who will act under the pseudonym as from an organization
registering the pseudonym [7].

A transaction carried out under a pseudonym (e.g., using a pseudonym certificate) is a pseudonymous
transaction. As previously discussed, the use of pseudonyms assumes that it is not trivial, for at least some
participants in the system or for outsiders, to derive a real identity from the pseudonym. According to the
definition of anonymity in the following paragraph, the user in a pseudonymous transaction is anonymous
towards the party or parties that cannot map the pseudonym used to the user’s real identity.

An entity can be said to be anonymous towards another entity in a particular transaction if his identity in
that transaction is concealed from that other entity. Anonymity of an entity A is thus always considered
and specified with respect to one or more specific other entities in the transaction. E.g., in an electronic
payment transaction, a user may act under a pseudonym under which he is known by his bank but which
has no meaning to the merchant; in the transaction, which is pseudonymous, the user is anonymous towards
the merchant but not towards the bank.

Factors other than the transaction protocol and its use of pseudonyms influence whether a user’s identity
indeed remains concealed from a relying party, i.e., whether the user remains unidentifiable to the relying
party. In the above payment example, one can describe many scenarios through which the merchant could
obtain the user’s real name associated with a pseudonym. The user may inadvertently fill out his phone
number in an optional field of an online form presented by the merchant during the transaction; or, the
merchant may be able to derive the user’s real identity from network or addressing information obtained
during the transaction. Also, the merchant may recognize the pseudonym from a previous transaction where
such identification occurred; or, the bank may collude with the merchant and reveal the real name associated
with a pseudonym used. In some cases, the relying party has access to the list of real names of users owning
a certain certificate or credential, without being able to map an authentication using such a certificate or
credential to a specific user. An example is a voting procedure where the voting server knows the list of
voters but another, trusted, entity has issued the anonymous voting credentials to individual users. A user’s
vote is of course anonymous only within the (potentially small) set of voters; in the extreme case of the
number of voters being only one, the unique user’s vote is fully identifiable despite the use of the anonymous
voting process.

In the following, we will use the term anonymity towards an entity to indicate an intrinsic property of
a transaction or protocol; if a transaction is anonymous towards a certain party then it allows the user
to remain unidentifiable towards that party in the absence of identifying factors. Examples of identifying
factors are a bad choice of parameters (e.g., the user filling out his phone number), possible identification
through linking (e.g., the same pseudonym is used in another, identifiable transaction), parties colluding and
sharing information (e.g., the bank revealing a customer’s real name to the merchant), or system parameters
such as the size of the set of users within which anonymity is achieved (e.g., a very small number of voters
in the voting process). In this definition, the voting process with one voter remains anonymous even if the
unique user’s vote is identifiable.

Linkability between anonymous actions may thus have a high impact on the identifiability of each of the
individual actions. In the payment example, the merchant may not only identify a user through linking with
another, identifiable, transaction under the same pseudonym; also, the correlation of items purchased in both
transactions together gives the merchant more information about the user’s buying pattern and preferences;
when combined with yet more purchasing transactions, such a detailed profile may ultimately identify the
user.
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Identifiability is thus a property of a transaction which can evolve over time and takes these transaction
parameters, linkabilities, participants’ behaviors and system parameters into account. Thus, an anonymous
transaction can be identifiable because of transaction or system parameters; it can also become identifiable at
a later point in time due to linking with other transactions or information, or because of information sharing
between other entities. We cannot define identifiability as a property with a boolean value, as identifying
factors may merely increase a chance of identification; also, we will not claim to have an exact measure of
identifiability as we cannot quantify and take into account all of the potential identifying factors associated
with a transaction. A transaction’s (level of) (un)identifiability will be discussed only on a relative scale
and implies a comparison with other transactions regarding intrinsic anonymity and taking into account a
set of identifying factors which may have a varying impact on the chance of identification. E.g., a transaction
allowing identity escrow by a trusted party has a lower level of unidentifiability than a similar transaction
without identity escrow. Or, the payment transaction where a user simply has to trust his bank not to
reveal the user’s name to the merchant can be claimed to have a lower level of unidentifiability than a
similar transaction where only a dedicated trusted entity can deanonymize a payment. The latter claim
is true if that entity is trusted more than the bank with respect to deanonymization; it certainly holds
if the deanonymization is verifiable and accountable (i.e., the fact that deanonymization occurred can be
proved, and the conditions for deanonymization are concrete and verifiable). Also, the payment transaction
where the user fills out his street name and postal code has a lower level of unidentifiability than the same
transaction without the use of this parameter.

3 Primitives and Parameters of the Anonymous Credential Sys-
tem

3.1 Basic primitives

In this section, we discuss in more detail the idemix primitives introduced in [9]. Figure 1 presents an
overview of the protocol primitives.

The various credential protocols and methods are illustrated using four participants: user (U ), credential
issuer (I ), credential verifier (V ), and deanonymizer (D). These participants represent the four possible
roles that entities can take in the system (a special type of issuer, the Root Authority, is introduced in
Section 3.3). An actual operational system may of course have multiple instantiations of each role; and some
entities may take two roles at a time. E.g., the same organization can both issue and verify credentials.

Nym registration, credential issuing and credential showing are interactive protocols, and are represented
in Figure 1 by double-headed arrows with the main protocol output for each participant drawn above the
corresponding end of the arrow (minor output parameters such as error or success codes are not represented).
Deanonymization and double-spending detection are non-interactive, local operations (by D and I , respec-
tively); the information (transcripts) on which they operate is obtained from the respective verifiers through
any synchronous or asynchronous communication medium, represented by broken single-headed arrows. The
protocols are briefly described in the next paragraphs; differences with the specifications in [9] are pointed
out and motivated subsequently.

Nym registration between U and I consists of U and I calling the respective primitives URegNym() and
ORegNym(), resulting in I obtaining OrgNymUI and U obtaining UserNymUI . I issuing a credential to
U consists of U and I calling UGetCred() and OIssueCred(), respectively, which results in U obtaining
UserCredUI ; I has no real protocol output but a successful protocol execution provides him with the infor-
mation that a credential of type CredInfoUI has been issued to OrgNymUI . When U shows a credential
to V , U and V call UShowCred() and OVerifyCred(), respectively, resulting in V obtaining a TranscriptUV

of the show protocol. If the local or global deanonymization option, with deanonymizer D , was used as
an option in the credential show, the verifier can send the transcript TranscriptUV for deanonymization
to D . D then calls DODeAnonLocal(), revealing the nym OrgNymUI the credential was issued on, respec-
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• Participants: U(ser), I(ssuer), V(erifier), D(eanonymizer)

• Nym Registration:

U : URegNym() ←−
UserNym

UI
OrgNym

UI

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ I : ORegNym()

• Credential Issuing:

U : UGetCred() ←−
UserCredUI

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ I : OIssueCred()

I stores {OrgNym
UI

, CredInfoUI}

• Credential Showing:

U : UShowCred() ←−
Transcript

UV

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ V : OVerifyCred()

• DeAnonymization:

V : −
Transcript

UV

−−−−−−−−−−−−−−−−−−−−−−−−−→

D : DODeAnonLocal() or

D : DODeAnonGlobal()

• Double-Spending Detection:

V1 : −
Transcript

UV1

−−−−−−−−−−−−−−−−−−−−−−−−−→

V2 : −
Transcript

UV2

−−−−−−−−−−−−−−−−−−−−−−−−−→

I : OCheckDblSp()

Figure 1: Anonymous Credential System: Overview of Basic Primitives

tively DODeAnonGlobal(), revealing the user’s nym OrgNymUR with a Root Authority (in case of global
deanonymization).

When calling OCheckDblSp() on two transcripts (from V 1 and V 2, which can be the same or different
verifiers) which result from showing the same one-show credential, the result reveals the nym on which the
credential was issued. [7] describes both on-line and off-line double-spending detection. With on-line double-
spending detection, every credential verification by V is checked for double-spending by I during the show
protocol execution, i.e. the execution of the show protocol fails if the credential is double-spent. With off-line
double-spending detection, the actual show protocol execution succeeds even if the credential is double-spent,
and I verifies transcripts after the fact. Here, we have represented only off-line double-spending detection
and assumed an interface where two transcripts are checked against each other. In a setting where every
new transcript needs to be verified against a database of existing transcripts, it is possible to optimize the
process by first searching for potentially matching transcripts and only call the OCheckDblSp() primitive on
the resulting candidates.

Figures 2 and 3 then show the key material (user secret, public and private keys) used in the system, as
well as the parameters and parameter contents of each primitive. For ease of reading, parameter instance
and type names are distinguished only by subscripts, e.g., UserSecretU is U ’s parameter of type UserSecret;
CommUI is a parameter of type Comm used by U and I in the current protocol instance. [ParXY ] is an
optional parameter of type Par used in a protocol execution between X and Y . DSKey, DPKey are a

8



• Key Material: U: UserSecretU , I: IssuerKeys
I
, V: VerifierKeys

V
, D: DeAnOrgKeys

D

• Parametrized Primitives

URegNym(CommUI , UserSecretU ) returns UserNym
UI

ORegNym(CommUI) returns OrgNym
UI

UGetCred(CommUI , UserSecretU , UserNym
UI

, CredInfoUI) returns UserCredUI

OIssueCred(CommUI , IssuerKeys
I
, OrgNym

UI
, CredInfoUI) returns void

UShowCred(CommUV , UserSecretU , UserCredUI , CredShowInfoUV ,

CredShowFeaturesUV , [UserNym
UV

], [Msg
UV

]) returns void

OVerifyCred(CommUV , VerifierKeys
V

, CredShowInfoUV , CredShowFeaturesUV ,

[OrgNym
UV

], [Msg
UV

]) returns Transcript
UV

DODeAnonLocal(DeAnOrgKeys
D

, Transcript
UV

) returns OrgNym
UI

DODeAnonGlobal(DeAnOrgKeys
D

, Transcript
UV

) returns OrgNym
UR

OCheckDblSp(IssuerKeys
I
, Transcript

UV1
, Transcript

UV2
) returns OrgNym

UI

Figure 2: Anonymous Credential System: Key Material and Parametrized Primitives

deanonymization private and public key; ISKey, IPKey are an issuing private and public key; and VSKey,
VPKey represent a verification private and public key.

When a credential is issued, it is verified by the user receiving it; when it is shown, it is verified by another
organization. In both cases, the public key of the issuing organization is necessary for verification; it is,
however, not visible as an individual parameter as it is part of a larger parameter structure. In UGetCred(),
the IPKey field in the CredInfo parameter contains the public credential issuing key needed by the user to
verify the credential received. Likewise, in OVerifyCred(), the IPKey field in the CredShowInfo parameter
(the use of this new parameter is explained in subsequent paragraphs) contains the public credential issuing
key needed by the verifier to verify the credential shown. In both cases, it is up to the verifying party (the
user receiving the credential, respectively the organization verifying the credential) to ensure that the public
key in CredInfo or CredShowInfo indeed belongs to the issuer he expects the credential to be issued by; this
can be done by matching the public key against the issuer’s public issuing key certificate (see Section 7.3).

Similarly, the user showing a credential needs the public verification key of the organization verifying the
credential. This public key is part of the CredShowFeatures parameter of the UShowCred() primitive; it is
the user’s responsibility to verify the correctness of this key before invoking UShowCred().

The primitives’ parameters and their contents are fundamentally the same as discussed in [9]. Following
are some minor differences:

• In [9], we discussed that expiration times or attributes that are (dynamically) shown or proved about a
credential may include ranges of values, while the (static) expiration times or attributes of a credential
are point values. Here, we have made this fact more explicit by the introduction of a new parameter
type, CredShowInfo, which is used instead of CredInfo to express which of a credential’s features are
actually shown or verified in the UShowCred() and OVerifyCred() primitives. From an implementation
perspective, we consider CredInfo to extend the CredShowInfo type by restricting ranges to point
values; we can thus assign a variable of type CredInfo to a variable of type CredShowInfo.
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• Contents of Composed Parameter Types

UserNym {OrgNym, UserNymSecret}

CredInfo {IPKey, MultiShow, [Expiration], [CredAttrs]}

CredAttrs {{AttrName, AttrValue}, ...}

Transcript {CryptoTrscr, CredShowInfo, CredShowFeatures, [OrgNym], [Msg]}

CredShowInfo {IPKey, MultiShow, [Expiration], [CredAttrs]}

CredShowFeatures {RelNym, VPKey, [LocalDeAnData], [GlobalDeAnData]}

LocalDeAnData {DPKey, DeAnCondition}

GlobalDeAnData {DPKey, DeAnCondition}

IssuerKeys {ISKey, IPKey}

VerifierKeys {VSKey, VPKey}

DeAnOrgKeys {DSKey, DPKey}

• Non-Cryptographic Primitive Types

Expiration, AttrName, AttrValue, DeAnCondition, Msg String (null: none)

MultiShow, RelNym Boolean

Figure 3: Anonymous Credential System: Parameter Types and Contents

• In [9], no explicit distinction was made between the key types for issuing and verification (‘OrgKeys’
in the parameter lists of the respective primitives). Here, we make the description more general by
introducing different key types; this does not exclude the use of the same key for both purposes by an
organization both issuing and verifying credentials.

• As discussed in [9], the credential show protocol can be used to produce a signature, optionally over
an additional message. In the following, we will assume this use of the show protocol, which will allow
the verifier to prove the showing of a credential after the fact. We have provided for the signing of an
additional message by modifying UShowCred() and OVerifyCred() to include an optional Msg argument,
representing the message being signed. We will sometimes refer to the signing of a message as part of
showing a credential as ‘signing the message with the credential’.

• In order to hide implementation details, we do not explicitly mention system parameters. It is assumed
that all the parties in the system call the various primitives (including the primitives to initialize key
material, which are not discussed here) using the same system-wide set of system parameters. There-
fore, previous parameters UserNymSysData, OrgNymSysData, DeAnOrgNymSysData, which included
entities’ keys as well as system parameters, were renamed UserSecret, IssuerKeys, DeAnOrgKeys.

• As discussed in [9], the primitives involving interactive protocols (nym registration, credential issuing
and showing) rely on a communication channel being set up between the parties involved in the protocol,
based on addressing information obtained at application level. In order to reason about the results
of a protocol execution, we now explicitly include these communication channels in the primitives’
parameter list. A communication channel Comm is a global entity with a finite duration, and with a
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client (originator) and a server (receiver) interface; intuitively, a user and an issuer calling URegNym(),
respectively ORegNym(), with the same Comm parameter, are communicating with each other.

Whereas anonymity of credentials and of credential shows preserves the anonymity of the user at the
application level, this anonymity has to be supported by anonymity of the user at the communication
level. Without this ‘sender anonymity’, the organization the user is communicating with, as well as an
external observer, could derive the identity of the user by tracing the communication. Many methods
have been proposed for anonymizing communication; some examples are Crowds [21], anonymizers [1],
Onion Routing [15] and Mix networks [16, 20]. When designing idemix applications, we assume the
presence of sender anonymity using one of these methods.

• In [9], we did not make a distinction between application-level transcripts and cryptographic tran-
scripts. Here, we want to more strictly separate information used and generated by the interactive
protocols from application-level information the calling application may want to store; we therefore
modified return value types of some of the operations as follows. Our definition of protocol tran-
script is now limited to the transcript TranscriptUV returned by credential verification OVerifyCred().
This transcript contains the cryptographic information CryptoTrscr generated by the credential ver-
ification; it also contains protocol parameters (CredShowInfoUV , CredShowFeaturesUV , UserNymUV

and MsgUV ) that may be needed by an after-the fact verifier of the transaction, or a transaction
deanonymizer, to extract public keys, deanonymization conditions and other arguments. ORegNym()
now only returns an OrgNym - the issuer application may of course choose to store additional in-
formation (called X in [9]) in an application-level transcript. OIssueCred() has no return value; the
issuer may store application-level information indicating what type of credential was issued on which
nym (the {OrgNymUI ,CredInfoUI} information in Figure 1, called ‘OrgCred’ in [9]), or referring to
additional cryptographic and/or application-level transcripts related to this credential issuing (e.g.,
the transcripts of the credential shows that were necessary in order for the issuer to issue the new
credential).

3.2 Signed Nym Registration

During registration of a nym, a user U can additionally authenticate to the nym issuer using a signature.
This signature uses a signature key the public part of which is certified by certification authority CA in a
certificate CertCA−U external to the idemix system. The signature provides the issuer of the nym with a
provable linking between the nym and the external certificate. The protocol in Figure 4 shows such a signed
nym registration procedure between a user U and an issuer I . The provable linking between the nym and
the external certificate is represented by U ’s signature SIGUI on OrgNymUI .

The details of the signed nym registration protocol are described in [6]. In the version presented here, we
add an optional Msg argument to these nym registration primitives. This allows the user to sign (and the
nym issuer to verify) the additional message and link it to CertCA−U and OrgNymUI . This can be trivially
realized by adding a hash of the Msg as argument to the user’s signature and the organization’s signature
verification function in the signed nym registration protocol.

Signed nym registration is most typically applied for the registration of a specially formed ‘root nym’ with
the Root Authority. The registration of such a root nym is a prerequisite for global deanonymization; it is
introduced in the following section and its use is illustrated in the example application in Section 8. Signed
nym registration can, however, be requested by any organization other than the Root Authority in order to
obtain a provable linking between a ‘normal’ nym and an external certificate.

3.3 Root Nym Registration

Root nym registration uses signed nym registration to register a root nym, which is a nym with special
features. Root nym registration is a prerequisite for enabling global deanonymization, as discussed in Sec-
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• Participants and Key Material:

User (U): UserSecretU , SSKey
U

, CertCA−U

Issuer (I): IssuerKeys
I

• Signed Nym Registration:

U : URegSignedNym() ←−
UserNym

UI
OrgNym

UI
, SIGUI

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ I : ORegSignedNym()

I stores {OrgNym
UI

, SIGUI , CertCA−U , [Msg
UI

]}

• Parametrized Primitives

URegSignedNym(CommUI , UserSecretU , SSKey
U

, CertCA−U , [Msg
UI

]) returns UserNym
UI

ORegSignedNym(CommUI , CertCA−U , [Msg
UI

]) returns OrgNym
UI

, SIGUI

• Additional Inputs and Outputs

SSKey
U

, CertCA−U U ’s signature secret key and public-key certificate (certifying the public key
SPKey

U
) in an external PKI

SIGUI A signature (using SSKey
U

) on OrgNym
UI

[and Msg
UI

], allowing I to prove
the linking between CertCA−U and OrgNym

UI
[and Msg

UI
]

Figure 4: Anonymous Credential System: Signed Nym Registration

tion 5.2. If root nym registration is applied, it is provided by a dedicated organization, which we will call
the Root Authority R; R enforces that every user registers exactly one root nym. A root nym can be used
in the same way as an ordinary nym; e.g., R can issue a credential on it. A credential issued by R on a root
nym is called a root credential.

Root nym registration enables global deanonymization because of following features of the root nym, the
external certificate and the registration process:

• The root nym is formed in a special way such that it is a component of all the other nyms of the same
user (related to the same UserSecretU ). This feature is a result of the root nym depending only on
the user’s secret UserSecretU and public system parameters. It ensures that global deanonymization of
any credential show transaction by the same user (of any credential issued on any nym) will reveal the
user’s root nym. Of course, mechanisms have to be in place to ensure that a user’s nyms indeed are
formed correctly, i.e., that they are properly linked to the user’s root nym. The mechanism to verify
that a new nym is correctly linked to a user’s root nym is the verification of that user’s root credential
relative to this new nym. Showing a credential relative to a nym is discussed in Section 4.6; how it is
applied to global deanonymization is discussed in Section 5.2.

• The use of the signed nym registration procedure (as part of root nym registration) ensures that R has
a provable linking between the root nym and an external certificate CertCA−U . This external certificate
is issued by a Certificate Authority CA trusted with guaranteeing a unique linking between CertCA−U

and a legal entity. (In further discussion, we often assume that U is a human user; note, however, that
U could be another type of legal entity, such as a company.). This guarantee is necessary to provide
a real means of recourse in case of, e.g., criminal misuse of a credential.

Figure 5 shows the root nym registration process. Inputs and outputs of the root nym registration primi-

12



• Participants and Key Material:

User (U): UserSecretU , SSKey
U

, CertCA−U

Root Authority (R): IssuerKeys
R

• Root Nym Registration:

U : URegRootNym() ←−
UserNym

UR
OrgNym

UR
, SIGUR

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ R : ORegRootNym()

R stores {OrgNym
UR

, SIGUR, CertCA−U , [Msg
UR

]}

• Parametrized Primitives

URegRootNym(CommUR, UserSecretU , SSKey
U

, CertCA−U , [Msg
UR

]) returns UserNym
UR

ORegRootNym(CommUR, CertCA−U , [Msg
UR

]) returns OrgNym
UR

, SIGUR

• Additional Inputs and Outputs

SSKey
U

, CertCA−U U ’s signature secret key and public-key certificate (certifying the public key
SPKey

U
in an external PKI

SIGUR A signature (using SSKey
U

) on OrgNym
UR

[and Msg
UR

], allowing R to prove
the linking between CertCA−U and OrgNym

UR
[and Msg

UR
]

Figure 5: Anonymous Credential System: Root Nym Registration

tives (URegRootNym() and ORegRootNym()) are identical to the ones of their counterparts for signed nym
registration (URegSignedNym() and ORegSignedNym()). The fact that UserNymUR and OrgNymUR now
represent a root nym will, however, result in a different assertion about the result of the protocol execution;
this is shown in Section 4.3.

The goal of the external authentication in signed and root nym registration is a (provable) linking of a nym
with a legal entity. One could also achieve this using a paper passport or other means of identification (as
opposed to CertCA−U ) combined with a handwritten signature. On the one hand, this would obviate the need
for prior registration of U with an external CA; but, on the other hand, it would require a more elaborate
registration procedure by the organization (I or R) registering the nym. When designing applications using
signed and root nym registration, we will always assume that the external authentication is done as depicted
in Figures 4 and 5, i.e., using CertCA−U and a signature (SIGUI or SIGUR) with SSKeyU .

4 Assertions on Nyms, Credentials and Transcripts Resulting from
Interactive Protocols

After successful execution of an interactive protocol, both participants’ protocol outputs are related; e.g.,
UserNym and OrgNym are related. As each participant’s output depends on both participants’ invoca-
tion parameters, such a relationship is global; it typically cannot be expressed as a relationship between
parameters of one participant’s primitive invocations alone.

Here, we try to express these global relationships between, on the one hand, instances of primitive invocations
and their parameters and, on the other hand, the contents of the nyms, credentials and transcripts established.
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They take the form of postconditions, called assertions, on protocol inputs and outputs from successful
primitive invocations. The choice of representing protocol executions using such a global view will enable
us to represent an interactive protocol execution with one statement or assertion; this will facilitate the
description of applications.

We will also specify which of the assertions are provable; e.g., the signature resulting from a signed nym
registration procedure proves a relationship between an external certificate and a nym; the transcript from
a credential show with certain parameters proves that a credential was shown with these parameters.

When the provability of an assertion is important in describing applications, we will make it explicit by
its naming. E.g., after signed nym registration, the issuing organization can prove the linking between the
newly registered nym and the user’s external certificate; the resulting assertion is called SignedNymProof().

Provability, together with the possibility to link nyms (and actions based on them) to external certificates,
and thus to ‘real users’, form the basis for user accountability in the idemix system.

4.1 Nym Registration

URegNym(CommUI ,UserSecretU ) returns UserNymUI ,
ORegNym(CommUI) returns OrgNymUI

→ Nym(UserSecretU ,OrgNymUI ,UserNymUI).

If a user and an issuer invoke URegNym() and ORegNym() on the same CommUI channel with inputs as
indicated, then the respective outputs UserNymUI and OrgNymUI are linked by the resulting Nym assertion.
Nym is an assertion about a global relationship between values. It can informally be expressed as: “OrgNymUI

and UserNymUI are the issuer’s and user’s representation of the same nym, and are related to the user’s
UserSecretU”.

4.2 Signed Nym Registration

URegSignedNym(CommUI ,UserSecretU ,SSKeyU ,CertCA−U ,MsgUI) returns UserNymUI ,
ORegSignedNym(CommUI ,MsgUI) returns OrgNymUI ,CertCA−U ,SIGUI ,MsgUI

→ Nym(UserSecretU ,OrgNymUI ,UserNymUI),
→ SignedNymProof(SIGUI ,CertCA−U ,OrgNymUI ,MsgUI).

A signed nym registration results in a Nym() assertion as well as a SignedNymProof() assertion. SignedNymProof()
expresses the existence of a proof, in SIGUI , that OrgNymUI and MsgUI are signed with the private key the
public counterpart of which is certified in CertCA−U . As the values in SignedNymProof() are all known to
I , I can prove this signed linking.

MsgUI in the above may be null; this will, in general be the case for parameters indicated as being optional
in Figures 2 to 5, unless their value is explicitly used in any of the preconditions.

4.3 Root Nym Registration

URegRootNym(CommUR,UserSecretU ,SSKeyU ,CertCA−U ,MsgUR) returns UserNymUR,
ORegRootNym(CommUR,MsgUR) returns OrgNymUR,CertCA−U ,SIGUR,MsgUR

→ RootNym(UserSecretU ,OrgNymUR,UserNymUR),
→ SignedNymProof(SIGUR,CertCA−U ,OrgNymUR,MsgUR).

The RootNym() assertion indicates that the nym is of this special root nym type; the SignedNymProof()
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assertion, as with signed nym registration, expresses the provable linking between the nym and the message
with the external public key and certificate.

Moreover, a root nym is also a nym:

RootNym(UserSecretU ,OrgNymUR,UserNymUR)
→ Nym(UserSecretU ,OrgNymUR,UserNymUR).

4.4 Credential Issuing

Nym(UserSecretU ,OrgNymUI ,UserNymUI),
CredInfoUI .IPKey = IssuerKeysI .IPKey,
UGetCred(CommUI ,UserSecretU ,UserNymUI ,CredInfoUI) returns UserCredUI ,
OIssueCred(CommUI , IssuerKeysI ,OrgNymUI ,CredInfoUI)
→ Cred(OrgNymUI ,UserCredUI ,CredInfoUI).

If OrgNymUI and UserNymUI are U ’s nym with I related to UserSecretU , and U and I invoke UGetCred()
and OIssueCred() on the same CommUI channel to issue a credential on OrgNymUI , and the IPKey in
the requested CredInfo is indeed the public credential issuing key IPKeyI in the IssuerKeys used by I for
credential issuing, then the invocation by U and I of UGetCred() and OIssueCred() with inputs as indicated
results in a UserCredUI about which we can make the resulting Cred assertion: “UserCredUI is a valid
credential with features CredInfoUI (including IPKeyI) on OrgNymUI”.

Note that the condition CredInfoUI .IPKey = IssuerKeysI .IPKey is actually a precondition for the success
of the respective UGetCred() and OIssueCred() invocations; this is not captured in our notation. As our
focus is on representing the relationship between successful invocations (with specific parameter values) and
resulting assertions, this does not pose a problem.

4.5 Showing a Credential - Not Relative to a Nym

Cred(OrgNymUI ,UserCredUI ,CredInfoUI),
Nym(UserSecretU ,OrgNymUI ,UserNymUI),
Fulfills(CredInfoUI ,CredShowInfoUV ),
CredShowFeaturesUV .RelNym = false,
CredShowFeaturesUV .VPKey = VerifierKeysV .VPKey,
UShowCred(CommUV ,UserSecretU ,UserCredUI ,CredShowInfoUV ,CredShowFeaturesUV , null1,MsgUV ),
OVerifyCred(CommUV ,VerifierKeysV ,CredShowInfoUV ,CredShowFeaturesUV , null1,MsgUV )

returns TranscriptUV

→ ShowTranscript(TranscriptUV ,UserCredUI ,CredShowInfoUV ,CredShowFeaturesUV , null,MsgUV ).

If UserCredUI is a valid credential with features CredInfoUI (including IPKeyI) on UserNymUI , UserNymUI

is related to UserSecretU and OrgNymUI , the credential features CredInfoUI fulfill the CredShowInfoUV

features that U wants to show to V in this particular UShowCred() invocation, and the verification key of V
matches the verification key VPKey in CredShowFeaturesUV , then an invocation by U and V of UShowCred()
and OVerifyCred() on the same CommUV channel with inputs as indicated results in a TranscriptUV about
which the resulting ShowTranscript assertion holds. As the credential show is not relative to a pseudonym
shared with V (CredShowFeatures.RelNym = false), UserNym in UShowCred(), OrgNym in OVerifyCred(),
and OrgNym in the ShowTranscript assertion are null1.

1The value of the UserNym (OrgNym) parameter in UShowCred() (OVerifyCred()) should be null; one can however assume
that even non-null input values are not taken into account in the protocol if CredShowFeatures.RelNym = false.
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ShowTranscript is a global assertion linking UserCredUI to the show protocol parameters and the transcript.

In Section 3.1, we assumed that the credential show protocol results in a proof. We can state this as follows:

ShowTranscript(TranscriptUV ,UserCredUI ,CredShowInfoUV ,CredShowFeaturesUV , null,MsgUV )
→ SigProof(TranscriptUV ,CredShowInfoUV ,CredShowFeaturesUV , null,MsgUV ).

The SigProof() assertion expresses that, with TranscriptUV , V can prove that:

• the credential specified in CredShowInfoUV was shown with CredShowFeaturesUV ;

• the optional MsgUV was signed together with it (‘was signed with the credential’).

4.6 Showing a Credential - Relative to a Nym

Cred(OrgNymUI ,UserCredUI ,CredInfoUI),
Nym(UserSecretU ,OrgNymUI ,UserNymUI),
Fulfills(CredInfoUI ,CredShowInfoUV ),
CredShowFeaturesUV .RelNym = true,
CredShowFeaturesUV .VPKey = VerifierKeysV .VPKey,
Nym(UserSecretU ,OrgNymUV ,UserNymUV ),
UShowCred(CommUV ,UserSecretU ,UserCredUI ,CredShowInfoUV ,CredShowFeaturesUV ,UserNymUV ,MsgUV ),
OVerifyCred(CommUV ,VerifierKeysV ,CredShowInfoUV ,CredShowFeaturesUV ,OrgNymUV ,MsgUV )

returns TranscriptUV

→ ShowTranscript(TranscriptUV ,UserCredUI ,CredShowInfoUV ,CredShowFeaturesUV ,OrgNymUV ,MsgUV ).

As the credential is shown relative to a pseudonym shared with V (CredShowFeatures.RelNym = true),
UShowCred(), OVerifyCred() and the ShowTranscript() assertion have UserNymUV , respectively OrgNymUV

as parameters; in addition, UserNymUV and OrgNymUV have to be linked by a Nym assertion in order for
the credential show protocol to succeed.

We can again state an assertion about provability:

ShowTranscript(TranscriptUV ,UserCredUI ,CredShowInfoUV ,CredShowFeaturesUV ,OrgNymUV ,MsgUV )
→ SigProof(TranscriptUV ,CredShowInfoUV ,CredShowFeaturesUV ,OrgNymUV ,MsgUV ).

The SigProof() assertion now expresses that, with TranscriptUV , V can prove that:

• the credential specified in CredShowInfoUV was shown with CredShowFeaturesUV ;

• the optional MsgUV was signed together with it;

• OrgNymUV was the signer’s nym with V .

5 Local Operations on Transcripts

Using assertions on nyms, credentials and transcripts as preconditions, we can now describe the results of
the methods for deanonymization and double-spending detection in terms of the inputs and outputs of the
interactive protocols.

5.1 Local Deanonymization

Nym(UserSecretU ,OrgNymUI ,UserNymUI),
Cred(OrgNymUI ,UserCredUI ,CredInfoUI),
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ShowTranscript(TranscriptUV ,UserCredUI ,CredShowInfoUV ,CredShowFeaturesUV ,OrgNymUV ,MsgUV ),
CredShowFeaturesUV .LocalDeAnData.DPKey = DeAnOrgKeysD.DPKey
→ LDeanonymizable(DeAnOrgKeysD,TranscriptUV ,OrgNymUI).

If a transcript TranscriptUV was generated during a credential show with local deanonymization using a
deanonymizer’s DPKeyD, then the LDeanonymizable() assertion holds. The LDeanonymizable() assertion
expresses the following relationship between DeAnOrgKeysD,TranscriptUV and OrgNymUI : if DODeAnonLocal()
is called on TranscriptUV with DeAnOrgKeysD, it will return OrgNymUI , the nym on which the credential
was issued.

Note that the deanonymization condition LocalDeAnData.DeAnCondition is not taken into account. The
approach taken, for local as well as for global deanonymization, is that the invocation, not the outcome
of the deanonymization operation, should depend on the deanonymization condition being fulfilled. Thus,
D can (but should not) successfully invoke DODeAnonLocal() even if the deanonymization condition is not
fulfilled.

By showing UserCredUI with local deanonymization using DPKeyD, the resulting TranscriptUV contains an
encryption EVD(OrgNymUI) of U ’s nym with I , verifiably encrypted with D ’s public deanonymization key
DPKeyD (actually, the encrypted value is not the nym itself but a validating tag which I can associate with
OrgNymUI ; in this discussion, we will not make this distinction). V can verify that the encrypted nym is
indeed the nym the credential was issued on. V trusts D to decrypt this information if the deanonymization
condition is fulfilled; as OrgNymUI has no meaning to V , V has to rely on I to take appropriate action or
provide other information associated with OrgNymUI .

5.1.1 Local Deanonymization With Proof of Correctness

The protocols described in [6] allow a deanonymizing organization to prove the correctness of a deanonymiza-
tion, i.e., to prove that the resulting OrgNym is indeed the one encrypted in the deanonymized transcript.
This can be done interactively or non-interactively. As this proof is a valuable feature in building secure
applications, we will define also specific primitives for deanonymizations producing such a proof.

For local deanonymization, we define a new operation DODeAnonLocalWProof() which returns a deanonymiza-
tion transcript DeAnTranscript rather than only a nym. The deanonymization transcript contains the nym
as well as a (non-interactive) proof of correctness of the deanonymization. We also define an assertion
LDeAnProof() capturing what is proved by the deanonymization transcript.

LDeanonymizable(DeAnOrgKeysD,TranscriptUV ,OrgNymUI),
DODeAnonLocalWProof(DeAnOrgKeysD,TranscriptUV ) returns DeAnTranscriptDUV

→ LDeAnProof(DeAnTranscriptDUV
,TranscriptUV ,OrgNymUI).

If the above LDeanonymizable() assertion holds, then the transcript DeAnTranscriptDUV
returned by the

DODeAnonLocalWProof() invocation satisfies the LDeAnProof() assertion. The latter implies that, with
DeAnTranscriptDUV

, any party can be convinced that TranscriptUV indeed contained the encryption of
OrgNymUI contained in TranscriptUV . The double-subscript notation in TranscriptUV indicates that D
deanonymizes a transcript TranscriptUV .

5.2 Global Deanonymization

Global deanonymization works quite differently than local deanonymization. It is based on the fact that U
carried out a root nym registration with Root Authority R. We assume that the identity (or, at least, the
credential issuing public key) of R is known to all the organizations in the system, e.g., by making it part
of the system parameters. Alternatively, R’s issuing public key can be made an additional parameter of the
GlobalDeAnData structure.

Consider the case where V verifies a credential CredUI issued by I with global deanonymization enabled.
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If the verification is successful, the resulting transcript TranscriptUV should contain EVD(OrgNymUR), a
verifiable encryption of U ’s registered root nym with D ’s public deanonymization key DPKeyD. If U ’s nym
with R is indeed a root nym of which R knows a provable mapping to an external certificate, and U ’s nym
with I is correctly linked to that root nym (is related to the same UserSecretU ), this is indeed the case.

We can represent this as follows:

RootNym(UserSecretU ,OrgNymUR,UserNymUR),
Nym(UserSecretU ,OrgNymUI ,UserNymUI),
Cred(OrgNymUI ,UserCredUI ,CredInfoUI),
ShowTranscript(TranscriptUV ,UserCredUI ,CredShowInfoUV ,CredShowFeaturesUV ,OrgNymUV ,MsgUV ),
CredShowFeaturesUVI

.GlobalDeAnData.DPKey = DeAnOrgKeysD.DPKey
→ GDeanonymizable(DeAnOrgKeysD,TranscriptUV ,OrgNymUR).

The GDeanonymizable() assertion expresses that, if DODeAnonGlobal() is called on TranscriptUV with
DeAnOrgKeysD, it will return OrgNymUR.

Of course, in order to then derive an external identity from OrgNymUR, the root nym also should have been
registered using the external authentication:

SignedNymProof(SIGUR,CertCA−U ,OrgNymUR,MsgUR)

The above set of assertions could, in principle, be realized by the corresponding protocol executions: root
nym registration (RootNym() and SignedNymProof() assertions), nym registration with I (Nym()), creden-
tial issuing by I (Cred()) and showing of the latter credential (ShowTranscript()). However, the result of
DODeAnonGlobal() depends on OrgNymUI being formed correctly w.r.t OrgNymUR; neither I nor V can
rely on this relationship without the issuing and verification of a root credential.

The following series of exchanges then realizes the above assertions while also verifying the relationship
between OrgNymUR and OrgNymUI .

In this example, we directly represent the execution of an interactive protocol by means of the resulting
assertion, and introduce shorthand notations for individual assertions. E.g., RootNym

UR
is a shorthand

notation for a RootNym assertion resulting from a root nym registration between U and R.

U ↔ R : RootNym
UR

= RootNym(UserSecretU ,OrgNymUR,UserNymUR);

SignedNymProof(SIGUR,CertCA−U ,OrgNymUR,MsgUR);

R stores {OrgNymUR,SIGUR,CertCA−U ,MsgUR}

U ↔ R : CredUR = Cred(OrgNymUR,UserCredUR,CredInfoUR)

U ↔ I : Nym
UI

= Nym(UserSecretU ,OrgNymUI ,UserNymUI)

U ↔ I : ShowTranscript
UIR

= ShowTranscript(TranscriptUIR
,UserCredUR,CredShowInfoUIR

,

CredShowFeaturesUIR
,OrgNymUI ,MsgUIR

),

with CredShowFeaturesUIR
.RelNym = true

and CredShowInfoUIR
.IPKey= IPKeyR

U ↔ I : CredUI = Cred(OrgNymUI ,UserCredUI ,CredInfoUI)

U ↔ V : ShowTranscript
UVI

= ShowTranscript(TranscriptUVI
,UserCredUI ,CredShowInfoUVI

,

CredShowFeaturesUVI
, null,MsgUVI

),

with CredShowFeaturesUVI
.GlobalDeAnData.DPKey = DPKeyD
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In a first exchange with R, U registers a root nym with R, resulting in the RootNym() and SignedNymProof()
assertions; R stores the {SIGUR,CertCA−U ,OrgNymUR,MsgUR} relationship. In a second exchange with R,
U then establishes a root credential CredUR that will allow him to convince I of the linking between a valid
root nym and the nym it will later share with I . In the following two exchanges with I , U establishes a nym
Nym

UI
with I and shows his root credential relative to the newly established Nym

UI
(the double-subscript

notation ShowTranscript
UIR

captures the fact that U shows to I a credential issued by R). This convinces
I that Nym

UI
is related to the nym on which the root credential was issued; if it was a correctly formed root

nym, then Nym
UI

is derived from it. In the third exchange with I , U then obtains a credential CredUI on
Nym

UI
. U finally shows the latter credential to V , using global deanonymization with DPKeyD.

In the above scenario, V only directly verifies the credential CredUI ; V cannot verify that U has a well-
formed root nym with R and that the nym that U shares with I is correctly derived from that root nym.
V thus has to rely on I and R for the following:

• V relies on R for issuing a root credential only on a well-formed root nym (of which it knows a provable
mapping with an external legal entity); in case R issues credentials other than such root credentials,
one expects R to use a dedicated key iskeyR for issuing root credentials (on root nyms) and (an)other
key(s) ISKey′

R for other credentials;

• V relies on I to verify that U has registered a nym with R, and that the nym Nym
UI

on which I will
issue CredUI is derived from that (root) nym; I does this by verifying the root credential relative to
Nym

UI
in ShowTranscript

UIR
.

Alternatively, V can choose not to trust I for verifying the linking between the nyms, and to verify the
linking itself. This now requires that U share a nym with V , and that U shows both credentials (CredUR

and CredUI) to V relative to this nym:

U ↔ R : RootNym
UR

= RootNym(UserSecretU ,OrgNymUR,UserNymUR);

SignedNymProof(SIGUR,CertCA−U ,OrgNymUR,MsgUR);

R stores {OrgNymUR,SIGUR,CertCA−U ,MsgUR}

U ↔ R : CredUR = Cred(OrgNymUR,UserCredUR,CredInfoUR)

U ↔ I : Nym
UI

= Nym(UserSecretU ,OrgNymUI ,UserNymUI)

U ↔ I : CredUI = Cred(OrgNymUI ,UserCredUI ,CredInfoUI)

U ↔ V : Nym
UV

= Nym(UserSecretU ,OrgNymUV ,UserNymUV )

U ↔ V : ShowTranscript
UVR

= ShowTranscript(TranscriptUVR
,UserCredUR,CredShowInfoUVR

,

CredShowFeaturesUVR
,OrgNymUV ,MsgUVR

)

U ↔ V : ShowTranscript
UVI

= ShowTranscript(TranscriptUVI
,UserCredUI ,CredShowInfoUVI

,

CredShowFeaturesUVI
,OrgNymUV ,MsgUVI

),

with CredShowFeaturesUVI
.GlobalDeAnData.DPKey = DPKeyD

We have assumed that I does not have its own requirement to verify a root credential before issuing CredUI ;
if such a verification is a condition, an additional show of CredUR to I is necessary.

By verifying both credentials relative to OrgNymUV , V verifies that the nyms on which the credentials are
issued are related. V now only has to rely on R to issue root credentials only on correctly formed root nyms.

19



5.2.1 Global Deanonymization With Proof of Correctness

Similar as for local deanonymization, we can define a new operation DODeAnonGlobalWProof() and a new
assertion GDeAnProof():

GDeanonymizable(DeAnOrgKeysD,TranscriptUV ,OrgNymUR),
DODeAnonGlobalWProof(DeAnOrgKeysD,TranscriptUV ) returns DeAnTranscriptDUV

→ GDeAnProof(DeAnTranscriptDUV
,TranscriptUV ,OrgNymUR).

The reasoning is the same as for the case of local deanonymization: if the GDeanonymizable() assertion
holds, then the transcript DeAnTranscriptDUV

returned by the DODeAnonGlobalWProof() invocation will
satisfy the GDeAnProof() assertion.

The GDeAnProof() assertion implies that DeAnTranscriptDUV
not only contains the result of the deanonymiza-

tion (OrgNymUR) but also a proof of correctness of the deanonymization.

5.3 Double-Spending Detection

ShowTranscript(TranscriptUV ,UserCredUI ,CredShowInfoUV ,CredShowFeaturesUV ,OrgNymUV ,MsgUV ),
Cred(OrgNymUI ,UserCredUI ,CredInfoUI),
CredInfoUI .MultiShow = false,
→ DblSpDetectable(OrgNymUI ,UserCredUI ,TranscriptUV ).

The showing of a one-show credential results in a DblSpDetectable() assertion; this assertion implies that
a second show of the same credential UserCredUI causes OCheckDblSp(), when called on both transcripts
with the correct issuer keys, to reveal OrgNymUI on which UserCredUI is issued.

5.3.1 Double-Spending Detection With Proof of Correctness

Also a result of double-spending detection can be proved correct, in this case by the issuer who detects
double-spending, using the primitive OCheckDblSpWProof():

CredInfoUI .IPKey = IssuerKeysI .IPKey,

DblSpDetectable(OrgNymUI ,UserCredUI ,TranscriptUV1
),

DblSpDetectable(OrgNymUI ,UserCredUI ,TranscriptUV2
),

OCheckDblSpWProof(IssuerKeysI ,TranscriptUV1
,TranscriptUV2

) returns DblSpTranscriptIUI

→ DblSpProof(DblSpTranscriptIUI
,TranscriptUV1

,TranscriptUV2
,OrgNymUI).

DblSpTranscriptIUI
is the transcript of the double-spending detection; it includes OrgNymUI . The double-

subscript notation in DblSpTranscriptIUI
implies that I verifies double-spending of a credential CredUI .

6 Assertions on Linkability

6.1 Anonymity, Linkability and Identifiability

In the previous sections, we have focused on a description and features of the idemix protocols which allows
to show fulfillment of an organization’s requirements. Assertions on credential shows can fulfill requirements
of authentication (what was proved?); provable assertions about credential shows, deanonymization and
double-spending detection, together with the provability of the relationship between a nym and a user
through signed or root nym registration, can fulfill requirements of user accountability.

When designing applications, an important requirement by the user is also unidentifiability, realized through
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anonymity and unlinkability of his actions. If a user requires that a certain action requiring a credential
show be unconditionally unidentifiable, this clearly excludes a credential show with a global deanonymization
option.

In Section 2.4, we defined anonymity as being a protocol-intrinsic property, and unidentifiability to result
from anonymity in the absence of factors causing linkability with an identity. However, when discussing
a specific system such as idemix, we have to concretely define anonymity properties of its protocols. E.g.,
signed nym registration can certainly be considered to be an identifiable action, if the key and certificate
used for signing are identifiable. However, even if our discussions of accountability assume CertCA−U to be
identifiable, one can consider scenarios where signed nym registration uses a pseudonym certificate. Do we
then define the signed nym registration protocol to be anonymous or not?

For the sake of clarity and consistency, we define all the idemix interactive protocols to be intrinsically
anonymous. According to this definition, also signed and root nym registration are anonymous; identifiability
of the user’s certificate and signature key then makes the registered nym identifiable by introducing a
linking between the nym and the certificate. Similarly, the showing of a credential, even with the global
deanonymization option set, is anonymous; identifiability results if global deanonymization is applied and
the user’s external certificate is identifiable.

In this section, we describe assertions about linkability of nyms, credentials and credential shows related to
executions of the various primitives; these allow to reason about the identifiability of a user’s actions as a
consequence of a linkability to identifiable items. For each of the idemix protocols in Section 4, we define its
linkability characteristics by expressing whether nyms or the user’s identity are linkable to the result of the
protocol execution; this linkability can be towards the organization involved in the protocol (e.g., issuing or
verifying organization) or towards another organization (e.g., a deanonymizing organization).

We define a new assertion:

Linked(Org,Cond,Value1,Value2)

expressing that Org can link the values Value1 and Value2. Cond is a condition that may restrict Org’s right
to do so. E.g., Org may be a deanonymizing organization that is able to link a transcript to a nym but
should only do so under a certain condition.

Intuitively, if two organizations each have their own linkability knowledge, then a collaborating set of both
organizations combines that knowledge:

Linked(Org1,Cond1,Value11
,Value12

),
Linked(Org2,Cond2,Value21

,Value22
)

→ Linked({Org1 AND Org2},Cond1,Value11
,Value12

),
→ Linked({Org1 AND Org2},Cond2,Value21

,Value22
).

Also, linkability is symmetric:

Linked(Org,Cond1,Value1,Value2)
→ Linked(Org,Cond1,Value2,Value1).

and transitive:

Linked(Org,Cond1,Value1,Value2),
Linked(Org,Cond2,Value2,Value3)
→ Linked(Org, {Cond1 AND Cond2},Value1,Value3).

The linkabilities we can express are the ones related to the choice of protocol and its options. Some ex-
amples:
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• A credential show relative to a nym obviously links the transcript to this nym;

• A deanonymizable credential show makes a later linking possible of the transcript to a nym by the
deanonymizing organization;

• Showing of a one-show credential makes a linking possible of the transcript to a nym by the credential
issuer, if a second show transcript of the same credential exists;

• As part of showing a credential, a user may sign a message which is unique; this message may identify
the user or make the credential show linkable to another transaction linked to the same message;

• A credential may have a unique attribute which the issuer can link to the nym it was issued on.

The showing of a credential, even if not relative to a nym and not deanonymizable, may thus become fully
or partially identifiable if only one or a small set of users has this type of credential. One reason can be that
the issuer purposely gave it some unique attribute, as discussed above. Another reason can be that the set of
users owning and using a credential of the same type is (still) too small. In the first case, the identifiability
is feature inherent in the credential and protocol definition and we will define its effect on linkability. In
the second case, the linkability is dynamic and is a result of how the system is actually used; this cannot be
predicted by knowledge of the protocols used.

Thus, there are hidden linkabilities which we cannot capture with our reasoning. The small user set owning
a specific type of credential is one example; another example is traceability of communication which may
identify a user in an otherwize unidentifiable idemix transaction. A hidden linkability may also exist if a
user signs an identifying message which he believes not to be identifying.

The linkability factors that are not related to the choice of idemix protocols and their parameters have
to be taken into account by good system design and deployment as well as user education. Anonymous
communication should be available and used; a credential of a specific type should not be used unless the
group of users owning and using such a credential is large enough; and user agents as well as organizations
should help users to avoid including identifiable information in messages if this identifiability is not a design
feature of the system; if, on the contrary, it is an intended feature, this should be visible to users.

Thus, using good system design and deployment, hidden linkabilities may be excluded. In such a system,
linkability assertions as we discuss here are a meaningful way of expressing or discovering potential identifi-
ability factors.

In the following paragraphs, we now derive linkability assertions for each of the idemix protocols. When
designing a specific application, we can then translate unidentifiability requirements into requirements about
the absence of linkabilities. We will illustrate this with our example application in Section 8.

We do not attempt to develop a logic of linkability; the linkability assertions as we define them are merely
intended to help us expressing, in an intuitive way, direct traceability of a user’s identity or nyms through
various idemix protocol executions. Also, we do not attempt to make any probabilistic statements about
linkability; e.g., a credential attribute is either unique or not; in the former case, its showing can be linked
to its issuing; in the latter case, it cannot (however large or small the set of users using a credential with
this attribute). A statement about ‘unconditional unidentifiability’ of an action or set of actions thus only
claims that according to the associated linkability assertions as defined in the following, no linkability to an
identifiable item exists.

Note that the Linked() assertion does not distinguish between linkabilities which are provable and linkabilities
which are not. Although most Linked() assertions will be related to provable assertions, we also want to
capture linkabilities which are not provable. E.g., if a credential was shown relative to a nym, then the fact
that the show transcript is linked to this nym is provable. But, if an organization can link a credential to a
nym because the credential type (CredInfo) is unique, this linkability is not provable according to any of our
provable assertions. Whether or not the linking can be proved to a third party depends on the organization
being able to convince a third party that no other credential with the same CredInfo was issued.
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6.2 Nym Registration

From establishment of the Nym() assertion as a result of the protocol execution in Section 4.1, I ’s only result
is OrgNymUI and no linkability towards I results:

Nym(UserSecretU ,OrgNymUI ,UserNymUI)
→ −.

6.3 Signed Nym Registration

Signed nym registration as in Section 4.2 results in a Nym as well as a SignedNymProof() assertion. The
SignedNymProof() assertion creates a linkability, by I , between the established nym and the certificate used
for signing:

SignedNymProof(SIGUI ,CertCA−U ,OrgNymUI ,MsgUI)
→ Linked(I , null,OrgNymUI ,CertCA−U ).

CertCA−U here stands for the identity of the user: when something is linked to CertCA−U , we will say that
it is linked to the user.

If MsgUI is a generic message signed by all the users obtaining this type of nym with I , this is the only
resulting linkability. However, if Msg is a message unique to this instance of the nym registration protocol,
an additional linkability results. The assertion Unique() expresses the fact that a value is unique:

SignedNymProof(SIGUI ,CertCA−U ,OrgNymUI ,MsgUI),
Unique(MsgUI)
→ Linked(I , null,OrgNymUI ,CertCA−U ),
→ Linked(I , null,MsgUI ,CertCA−U ).

By transitivity, also a linking between MsgUI and OrgNymUI can be derived.

6.4 Root Nym Registration

Root nym registration results in RootNym and SignedNymProof assertions. The linkability effect of SignedNymProof
is the one described in Section 6.3; RootNym, as Nym, does not result in any linkability:

RootNym(UserSecretU ,OrgNymUR,UserNymUR)
→ −.

6.5 Issuing of a Non-Unique Credential

Anonymous credential issuing assumes that CredInfoUI is a generic credential type issued on a large set of
different nyms. In this case, it is still important for I to know he issued a credential of type CredInfoUI

on OrgNymUI (e.g., for revocation purposes); however, as there are many credentials of the same type, the
credential issuing does not result in any linkability information, i.e., a later use of the credential cannot be
linked back to the specific issuing instance (and the nym OrgNymUI) it was issued on:

Cred(OrgNymUI ,UserCredUI ,CredInfoUI),
¬Unique(CredInfoUI)
→ −.
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6.6 Issuing of a Unique Credential

If the CredInfo type of a credential is unique, then the linking between the nym and the type (CredInfo) is
relevant:

Cred(OrgNymUI ,UserCredUI ,CredInfoUI),
Unique(CredInfoUI)
→ Linked(I , null,OrgNymUI ,CredInfoUI).

6.7 Unconditionally Unidentifable Showing of a Credential

We refer to the protocol discussed in Sections 4.5. If the credential is not shown relative to a nym, then
TranscriptUV may not contain any identifiable parameters. However, linkability can still be introduced by
the use of either:

• local or global deanonymization (Section 6.10);

• a unique parameter such as a unique CredShowInfo, allowing to link the show transcript to a specific
credential with a matching CredInfo; or a unique Msg, allowing to link the show transcript to another
exchange related to Msg (Section 6.8).

If neither CredShowInfoUV nor MsgUV are unique, a credential can be shown in an unconditionally uniden-
tifable way if the show is neither relative to a nym nor deanonymizable:

ShowTranscript(TranscriptUV ,UserCredUI ,CredShowInfoUV ,CredShowFeaturesUV , null,MsgUV ),
¬Unique(CredShowInfoUV ),¬Unique(MsgUV ),
CredShowFeaturesUV = {false, null, null}
→ −.

6.8 Showing a Credential With Unique Parameters

If either CredShowInfoUV or MsgUV is unique, this has to be taken into account by an additional linkability.
However, this is relevant only if the unique feature in CredShowInfoUV (or MsgUV ) also occurs in another
linkability statement.

ShowTranscript(TranscriptUV ,UserCredUI ,CredShowInfoUV ,CredShowFeaturesUV ,OrgNymUV ,MsgUV ),
Unique(CredShowInfoUV )
→ Linked(V , null,TranscriptUV ,CredShowInfoUV ).

ShowTranscript(TranscriptUV ,UserCredUI ,CredShowInfoUV ,CredShowFeaturesUV ,OrgNymUV ,MsgUV ),
Unique(MsgUV )
→ Linked(V , null,TranscriptUV ,MsgUV ).

This linkability effect has to be combined with any other linkablities resulting from showing a credential
relative to a nym, showing a credential in a deanonymizable way, or showing a one-show credential.

6.9 Showing a Credential Relative to a Nym

The showing of a transcript relative to a nym makes the nym and the transcript linkable towards the verifier:

ShowTranscript(TranscriptUV ,UserCredUI ,CredShowInfoUV ,CredShowFeaturesUV ,OrgNymUV ,MsgUV ),
CredShowFeaturesUV .RelNym = true

→ Linked(V , null,TranscriptUV ,OrgNymUV ).
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6.10 Showing a Credential With Deanonymizaton

For all previous types of showing a credential, additional linking assertions result from the use of a deanonymiza-
tion option:

For local deanonymization:

LDeanonymizable(DeAnOrgKeysD,TranscriptUV ,OrgNymUI),
TranscriptUV .CredShowFeatures.LocalDeAnData.DPKey = DeAnOrgKeysD.dpkey,

TranscriptUV .CredShowFeatures.LocalDeAnData.DeAnCondition = DeAnConditionUV

→ Linked(D ,DeAnConditionUV ,OrgNymUI ,TranscriptUV ).

For global deanonymization:

GDeanonymizable(DeAnOrgKeysD,TranscriptUV ,OrgNymUR),
TranscriptUV .CredShowFeatures.GlobalDeAnData.DPKey = DeAnOrgKeysD.dpkey,

TranscriptUV .CredShowFeatures.GlobalDeAnData.DeAnCondition = DeAnConditionUV

→ Linked(D ,DeAnConditionUV ,OrgNymUR,TranscriptUV ).

6.11 Showing a One-Show Credential

When a one-show credential is shown, the transcript is conditionally linked to the nym on which the credential
was issued - the condition being double-spending of the credential:

DblSpDetectable(OrgNymUI ,UserCredUI ,TranscriptUV1
),

CredInfoUI .IPKey = IssuerKeysI .IPKey
→ Linked(I , dblspent,OrgNymUI ,TranscriptUV ).

The dblspent condition indicates that the presence of another transcript Transcript′UV satisfying the
DblSpDetectable() assertion will materialize the linking towards I .

7 Additional Procedures and Functionality

7.1 More On Global Deanonymization

In Section 5.2, we described how global deanonymization can be realized using a specific option in the
credential show protocol together with the showing of the root credential. Here, we discuss two additional
possibilities for achieving a similar functionality by using only the ‘local deanonymization’ protocol option.

We refer again to an exchange such as the one in Section 5.2. In order for a verifier V to have a guarantee
of obtaining CertCA−U under condition DeAnConditionUVI

, other possiblities exist:

• It can be achieved by cooperation between V and I both requiring local deanonymization in subsequent
show protocols, as shown in the exchange in Figure 6.

When verifying CredUI in the last exchange, V requires only local deanonymization (with DPKeyD

and DeAnConditionUVI
), and trusts I to have verified CredUR before issuing CredUI . This verification

(ShowTranscript
UIR

) was also done using local deanonymization, probably with the same DPKeyD

and a related condition DeAnConditionUIR
; and was relative to OrgNymUI .

If DeAnConditionUVI
is fulfilled, ShowTranscript

UVI
can be (locally) deanonymized by D to reveal

OrgNymUI :

DODeAnonLocal(DeAnOrgKeysD,TranscriptUVI
) returns OrgNymUI
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U ↔ R : RootNym
UR

= RootNym(UserSecretU ,OrgNymUR,UserNymUR);

SignedNymProof(SIGUR,CertCA−U ,OrgNymUR,MsgUR);

R stores{OrgNymUR,SIGUR,CertCA−U ,MsgUR}

U ↔ R : CredUR = Cred(OrgNymUR,UserCredUR,CredInfoUR)

U ↔ I : Nym
UI

= Nym(UserSecretU ,OrgNymUI ,UserNymUI)

U ↔ I : ShowTranscript
UIR

= ShowTranscript(TranscriptUIR
,UserCredUR,CredShowInfoUIR

,

CredShowFeaturesUIR
,OrgNymUI ,MsgUIR

)

with CredShowFeaturesUIR
.LocalDeAnData = {DPKeyD,DeAnConditionUIR

}

and CredShowFeaturesUIR
.RelNym = true;

I stores {OrgNymUI ,TranscriptUIR
}

U ↔ I : CredUI = Cred(OrgNymUI ,UserCredUI ,CredInfoUI)

U ↔ V : ShowTranscript
UVI

= ShowTranscript(TranscriptUVI
,UserCredUI ,CredShowInfoUVI

,

CredShowFeaturesUVI
, null,MsgUVI

),

with CredShowFeaturesUVI
.LocalDeAnData = {DPKeyD,DeAnConditionUVI

}

Figure 6: Global Deanonymization Using Local Deanonymization: V and I Cooperating

The fact that ShowTranscript
UIR

was relative to OrgNymUI ensures to I (and allows I to prove) that
TranscriptUIR

is related to OrgNymUI .

SigProof(TranscriptUIR
,CredShowInfoUIR

,CredShowFeaturesUIR
,OrgNymUI ,MsgUIR

)

Thus, with cooperation from I , who can link OrgNymUI to TranscriptUIR
,TranscriptUIR

can then be
(locally) deanonymized by D to reveal OrgNymUR:

DODeAnonLocal(DeAnOrgKeysD,TranscriptUIR
) returns OrgNymUR

For the latter deanonymization to be enabled upon V ’s deanonymization condition being fulfilled,
DeAnConditionUIR

and DeAnConditionUVI
should be related: DeAnConditionUIR

has to be fulfilled
if DeAnConditionUVI

is fulfilled.

• It can be realized by V alone: V itself demands a locally deanonymizable show ShowTranscript
UVR

of
CredUR in addition to a show ShowTranscript

UVI
of CredUI . For V to verify the linking, ShowTranscript

UVR

then has to be relative to a nym shared between U and V . Consequently, this requires an additional
nym registration between U and V . Figure 7 illustrates the procedure.

By verifying that both CredUR and CredUI can be shown relative to OrgNymUV , V verifies that
the nyms on which both credentials are issued are related to the same UserSecret. Consequently, V
is assured that decryption by D of ShowTranscript

UVR
wil reveal the OrgNymUR of the user who

showed both credentials. When deanonymization of ShowTranscript
UVI

is required, V now only has
to ask D for (local) deanonymization of ShowTranscript

UVR
:

DODeAnonLocal(DeAnOrgKeysD,TranscriptUVR
) returns OrgNymUR
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U ↔ R : RootNym
UR

= RootNym(UserSecretU ,OrgNymUR,UserNymUR);

SignedNymProof(SIGUR,CertCA−U ,OrgNymUR,MsgUR);

R stores{OrgNymUR,CertCA−U , ,MsgUR}

U ↔ R : CredUR = Cred(OrgNymUR,UserCredUR,CredInfoUR)

U ↔ I : Nym
UI

= Nym(UserSecretU ,OrgNymUI ,UserNymUI)

U ↔ I : CredUI = Cred(OrgNymUI ,UserCredUI ,CredInfoUI)

U ↔ V : Nym
UV

= Nym(UserSecretU ,OrgNymUV ,UserNymUV )

U ↔ V : ShowTranscript
UVR

= ShowTranscript(TranscriptUVR
,UserCredUR,CredShowInfoUVR

,

CredShowFeaturesUVR
,OrgNymUV ,MsgUVR

)

with CredShowFeaturesUVR
.LocalDeAnData = {DPKeyD,DeAnConditionUVR

}

U ↔ V : ShowTranscript
UVI

= ShowTranscript(TranscriptUVI
,UserCredUI ,CredShowInfoUVI

,

CredShowFeaturesUVI
,OrgNymUV ,MsgUVI

)

Figure 7: Global Deanonymization Using Local Deanonymization: V Verifying Correct Linking of Nyms

7.2 Revocation

Traditional methods for certificate revocation are based on the fact that the relying party (the signature
verifier) can compare a certificate’s serial number or public key with items in a list of revoked (or, alter-
natively, valid) certificates. In an anonymous credential system, this type of revocation is impossible: the
relying party has no way of distinguishing one user’s credential from another user’s credential of the same
type.

Two methods can be considered for realizing revocation in the anonymous credential system. Using the first
method (described in [3, 2]), when I wants to revoke a credential it issued on a nym OrgNymIU , I simply
changes its issuing public key IPKeyI to IPKey′

I , and advertises this change to relying parties and owners of
credentials based on IPKeyI . All the credentials based on the old IPKeyI are now invalid, and each owner of
a credential based on IPKeyI has to go through an interactive re-issuing protocol with the issuer to have their
credential re-issued with the new key IPKey′

I . I simply does not re-issue the revoked credential. Revocation
of a credential thus involves that the issuer revokes and replaces his issuing key; and information of a relying
party does not consist of revocation lists but of the latest issuing organization’s IPKey. In terms of efficiency
for relying parties, this is quite advantageous, as they only need to keep track of this valid IPKey. In terms
of efficiency for the issuer and other users in the system, the interactive re-issuing is quite inefficient. One
can optimize the process for the other users. E.g., if U ’s credential based on IPKeyI was revoked, the other
users need not be notified but are made aware of the revocation at the moment they want to show their own
(invalidated) credential. At that point, they obtain the new issuer key (either from the verifier or from the
issuer) and initiate the re-issuing process.

A second method, based on dynamic accumulators, is described in [8]. Using this method, an issuer revoking
a credential also changes its public key, by changing a dynamic accumulator list of valid credentials, which
is part of the public key. The new public key is again distributed to users and relying parties; every user can
update (re-validate) their (invalidated) credential in a non-interactive computation, based on the information
in the accumulator. As the revoked credential is not anymore part of the accumulator, the revoked credential
cannot be re-validated.
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Both methods assume that each credential issuer keeps track of which credentials it issued with which key
and on which OrgNym. The second method can be realized more efficiently than the first method, especially
because it does not involve an interactive re-issuing of credentials. In following sections, when discussing
applications based on anonymous credentials, we will assume that one of the two mechanisms for revocation
is in place. We assume the existence of a high-level primitive.

ORevokeCred(IssuerKeys, OrgNym, CredInfo)

As mentioned in Section 3, a party relying on verification of a credential is responsible for verifying the
correctness of the issuer’s public key IPKeyI in the CredShowInfo parameter of the OVerifyCred() invocation;
the relying party should also verify that IPKeyI has not been revoked. This implies the existence of the
appropriate mechanisms for relying parties to verify an issuer key’s ‘good’ (non-revoked) state.

7.3 Certification

In Sections 3.2 and 3.3, we described how users can use an external certificate to securely link their root or
other nym to an externally validated identity.

Organizations, as well, need to link their idemix keys to an external certification infrastructure. For organi-
zations, several levels of certification exist: the organization, as a business entity (e.g., an on-line merchant),
may have an externally certified public signature key, the private key of which it uses to issue self-certified
idemix certificates for the keys needed in various transaction and communication roles. E.g., the on-line mer-
chant may self-certify idemix public issuing and/or verification keys (IPKey and/or VPKey) corresponding
to the ISKey/VSKey with which he issues/verifies idemix credentials; he may self-certify another signature
key to realize authentication and key exchange for protecting communication channels used in idemix as well
as non-idemix exchanges.

Certification of organizations’ idemix keys and other keys in the system is necessary in order for relying
parties (users and other organizations) to trust their authenticity and origin; it is also necessary for relying
parties to be able to derive liabilities or accountability based on transactions and credentials with these keys.
In the following section, we introduce an example application based on anonymous credentials; Section 9
illustrates the details of its certificate infrastructure and how it defines the liabilities and accountabilities of
the various parties.

8 Designing an Application

When designing an actual application scenario, we start with various sets of requirements. Requirements of
authentication related to an organization’s authorization decisions (called Rules in [9]), can be translated
into requirements on (assertions on) ‘show transcripts’; by their relationship with the protocol primitives,
these will in part determine which idemix credentials need to be shown in order to fulfill organizations’
authentication requirements. Requirements of user accountability determine various other options such as
signed or root nym registrations and deanonymization.

Users’ unidentifiability requirements then further narrow down the set of acceptable solutions. Of course,
a user may have unidentifiability requirements which collide with an organization’s accountability require-
ments; in practice, we will assume that a user using a organization’s service accepts this service’s account-
ability requirements. Fulfilling the user’s requirements then consists of making sure that these accountability
requirements are fulfilled with ‘minimal linkabilities’.

This section describes an application using the various idemix protocols. We show the design of the ap-
plication based on its authentication, accountability and unidentifiability requirements using the assertions
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• Key Material:

• U (User): {SSKey
U

, CertCA−U}, UserSecretU

• R (Root): {SSKey
R

, CertCA−R}, {ISKey
R

, CSKey
R

, CertR−R}

• K (Kiosk): {SSKey
K

, CertCA−K}, {ISKey
K

, VSKey
K

, CSKey
K

, CertK−K}

• L (LostFound): {SSKey
L
, CertCA−L}, {VSKey

L
, CSKey

L
, CertL−L}

• D (DOrg): {SSKey
D

, CertCA−D}, {DSKey
D

, CSKey
Dc

, CertD−D}

• Root Nym Registration and Obtaining Root Credential:

U : URegRootNym() ←−
CommUR1

: RootNym
UR

, SignedNymProof
UR

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ R : ORegRootNym()

R stores{OrgNym
UR

, SIGUR, CertCA−U}

U : UGetCred() ←−
CommUR2

: CredUR

−−−−−−−−−−−−−−−−→ R : OIssueCred()

R updates{OrgNym
UR

, SIGUR, CertCA−U , CredInfoUR}

• Payment and Obtaining Kiosk Credential:

U : URegNym() ←−−−−−−
CommUK1

: Nym
UK

−−−−−−−−−−−−−−−−−−−−−→ K : ORegNym()

U : UShowCred() ←−
CommUK2

: ShowTranscript
UKR

−−−−−−−−−−−−−−−−−−−−−−−−−−−→ K : OVerifyCred()

K stores {OrgNym
UK

, Transcript
UKR
}

U : Send() ←−
CommUK3

: Payment
−−−−−−−−−−−−−−−−−→ K : Receive()

U : UGetCred() ←−
CommUK3

: CredUK

−−−−−−−−−−−−−−−−−→ K : OIssueCred()

K updates {OrgNym
UK

, Transcript
UKR

, CredInfoUK}

Figure 8: Example Application: Key Material and Registration

developed in Sections 4 to 6. Details of the linking of organizations’ and users’ key material to an exter-
nal public-key infrastructure are discussed in Section 9 as part of a more general discussion on trust and
certification.

8.1 Introducing the Application

LostFound is an online service where items can be traded on-line. Users can use LostFound to advertise and
search for items, and can remain unidentifiable while doing so. All items should be traded for free, and users
are not allowed to use the service for commercial purposes. Users pay a small fee for accessing the service
during a certain amount of time; we allow for this fee to be paid by a non-anonymous bank transfer as long
as the actual use of the service later on is unidentifiable.

It is assumed that users cannot misuse the service when only searching for items. Thus, as long as users
only retrieve information, access can be unconditionally unidentifiable. When users advertise (post) items,
however, they can misuse the service by posting commercial or even illegal (e.g., drugs) advertisements.
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• Showing Credential To LostFound and Retrieving Data:

U : UShowCred() ←−
CommUL : ShowTranscript

ULK(Get)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ L : OVerifyCred()

U : Get() ←−−−−
CommUL : RetrievedData1
−−−−−−−−−−−−−−−−−−−−−−−−−→ L : Process()

U : Get() ←−−−−
CommUL : RetrievedData2
−−−−−−−−−−−−−−−−−−−−−−−−−→ L : Process()

• Showing Credential To LostFound and Posting Data:

U : UShowCred() ←−
CommUL : ShowTranscript

ULK(Post)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ L : OVerifyCred()

L stores Transcript
ULK(Post)

Figure 9: Example Application: Accessing LostFound

In the latter case, the misuse is considered criminal and the real identity of the user has to be provided
to authorities. In the former case, LostFound simply wants to be able to revoke the user’s subscription
credential.

Deanonymization is thus a clear requirement in the system: revealing an identity behind a transaction
implies the need for global deanonymization in posting transactions; revoking a credential implies local
deanonymization. We want to protect both users as well as organizations or authorities against uncorrect
or unfair functioning of the deanonymization process. Thus, we should give deanonymization rights to a
dedicated entity, a deanonymizing organization, which is independent as well from users as from organizations
or authorities in the system.

From the above description of high-level requirements, we can already derive which are the organizations
playing a role in the system, and what are the main interactions between users and organizations, as well as
between organizations.

LostFound is providing the actual service; a Root Authority (Root) ensures the external certification of users
and issues the root credentials necessary for supporting the global deanonymization process; a deanonymiza-
tion organization (DOrg) performs local and global deanonymization. We also introduce a Kiosk organization
implementing the function of verifying a bank payment or transfer and in return issuing an anonymous sub-
scription credential for accessing LostFound. We make this choice in order to more clearly separate this
functionality from the functionality of actually delivering the LostFound service; however, Kiosk and Lost-
Found can be operated by the same business entity, and the unidentifiability of users should be preserved
also if they share their user data.

Figure 8 introduces the participants in the protocols with their various keys and certificates, and shows the
protocol flows for registering with Root and Kiosk; Figure 9 shows the protocol flows related to accessing
LostFound. Figure 10 shows detailed assertions and primitive invocation parameters related to the exchanges
in Figures 8 and 9.

The reasoning behind the design of the actual protocol flows will be discussed in Section 8.4. First, we
discuss the various organizations’ key material and certificates, and the general security requirements of the
communication channels.

30



RootNym
UR

RootNym(UserSecretU , OrgNym
UR

, UserNym
UR

)

SignedNymProof
UR

SignedNymProof(SIGUR, CertCA−U , OrgNym
UR

, null)

CredUR Cred(OrgNym
UR

, UserCredUR, CredInfoUR)

Nym
UK

Nym(UserSecretU , OrgNym
UK

, UserNym
UK

)

ShowTranscript
UKR

ShowTranscript(Transcript
UKR

, UserCredUR, CredShowInfoUKR
,

CredShowFeaturesUKR
, OrgNym

UK
, null)

CredUK Cred(OrgNym
UK

, UserCredUK , CredInfoUK)

ShowTranscript
ULK(Get) ShowTranscript(Transcript

ULK(Get), UserCredUK , CredShowInfoULK
,

CredShowFeaturesULK(Get), null, null)

ShowTranscript
ULK(Post) ShowTranscript(Transcript

ULK(Post), UserCredUK , CredShowInfoULK
,

CredShowFeaturesULK(Post), null, PostedMessage)

CredInfoUR {IPKey
R

, true, Expiration
UR

, null}

CredShowInfoUKR
{IPKey

R
, any, Expiration

UKR
, any}

CredShowFeaturesUKR
{true, VPKey

K
, {DPKey

D
, CriminalMisuseCond}, null}

CredInfoUK {IPKey
K

, true, Expiration
UK

, null}

CredShowInfoULK
{IPKey

K
, any, Expiration

ULK
, any}

CredShowFeaturesULK(Get) {false, VPKey
L
, null, null}

CredShowFeaturesULK(Post) {false, VPKey
L
, {DPKey

D
, CriminalMisuseCond|OtherMisuseCond}, null}

Figure 10: Example Application: Parameters of Assertions and Primitives

8.2 Key Material, External Certificates and idemix Certificates

Root (R) and Kiosk (K ) will issue idemix credentials and thus need IssuerKeys; Kiosk and LostFound (L)
will verify credentials and need VerifierKeys; DOrg (D) needs DeAnOrgKeys; and all organizations need
keys for secure communication (see also Section 8.3). The user (U ), of course, has a UserSecret.

As discussed in Section 7.3, all parties (users as well as organizations) have signature private keys SSKeyX

and corresponding public-key certificates CertCA−X in an external Public-Key Infrastructure certified by
a Certification Authority CA. U uses this certificate, CertCA−U , for root nym registration with R; the
organizations use their signature key pairs and certificates to self-certify their idemix certificates (CertR−R,
CertK−K , CertL−L and CertD−D) containing their idemix issuing, verification and deanonymization public
keys as well as communication public keys. Detailed contents of these certificates will be discussed and
motivated in Section 9.3.

8.3 Security of the Communication Channels

8.3.1 Authentication, Integrity and Confidentiality

In Figures 8 and 9, a communication channel between parties X and Y is represented as CommXY[i]
;

the optional subscript indicates the sequence number in case X and Y execute multiple exchanges over
potentially different communication channels.

All communication channels are at least one-way authenticated (Y to X , indicated by underlining Y
in CommXY

i
) and integrity-protected. This can be realized by an SSL-type server authentication (with
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CSKeyY ) and session key establishment, and consecutive integrity-protection of the communication using
the established session key.

The authentication and integrity-protection allow the originator X to make sure it is communicating with
the correct (issuing, verifying or deanonymizing) organization Y . We state this requirement in order to avoid
denial-of-service situations such as a user establishing a nym with another organization than the intended
one, or a user showing a credential to another organization than the one from which he expects a service.

The need for confidentiality-protection depends on the data being exchanged on the communication channel.
The communication channels transporting only idemix protocols carry the cryptographic idemix protocol
exchanges, as well as meta-information exchanged by the state machines driving those cryptographic pro-
tocols. The cryptographic exchanges themselves do not exchange any information from which secrets can
be derived. Meta-information consists of information such as which credential is requested and issued on
which nym, or which credential is shown relative to which nym. The following lists, for the various idemix
protocols between a user and an organization, the information which can be derived by an observer of the
exchange. The use of subscripts to indicate parameter instances is the same as in Figures 1, 4 and 5.

• URegNym() - ORegNym(): OrgNymUI

The exchange during a nym registration procedure allows any observer to derive the resulting OrgNym;

• URegSignedNym() - ORegSignedNym(): OrgNymUI ,CertCA−U ,SIGUI , [MsgUI ]
When registering a signed nym, the user additionally sends the external certificate, the signature, and
the message to be signed; this meta-information is visible also to an observer;

• URegRootNym() - ORegRootNym(): OrgNymUR,CertCA−U ,SIGUR, [MsgUR]
With a root nym registration, an observer acquires the same information as with a ‘normal’ signed
nym registration;

• UGetCred() - OIssueCred(): OrgNymUI ,CredInfoUI

During a credential issuing exchange, the user has to send meta-information to the issuer indicating
on which nym he wants which type of credential. This meta-information is visible to an observer of
the communication;

• UShowCred() - OVerifyCred(): CredShowInfoUV ,CredShowFeaturesUV , [OrgNymUV ], [MsgUV ]
When showing a credential, the user sends meta-information to the issuer indicating what he wants to
show about the credential, the specific protocol options and possible parameters for deanonymization,
(optionally) the nym relative to which the credential is shows, and (optionally) a message to be signed.
This meta-information is visible to observers.

Thus, with exception of the ‘potential’ linkabilities towards deanonymizers or credential issuers resulting from
deanonymization or showing a one-show credential (see Sections 6.10 and 6.11), an observer acquires the same
linkability information as the organization(s) participating in the exchanges. This is not a problem, as the
idemix protocols are designed exactly to protect a user’s unidentifiability also towards these organizations.
The communication channels carrying idemix protocols need thus not be confidentiality-protected as long
as the communication channel provides sender anonymity.

The only reason, then, for protecting the confidentiality of data transmitted over these communication
channels would be that the organization considers the exchanges to be business-sensitive information: e.g.,
the organization does not want observers to know how many credentials of a certain type he issued, or how
many times he verified a certain type of credential to authorize service access.

We can thus conclude that the user’s unidentifiability does not depend on the confidentiality-protection of
his idemix exchanges; again, as long as the sender anonymity of the communication channel is protected.

As to the need for confidentiality-protection of communication channels transporting application data, we
can state the following:
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• The data retrieved from and posted to L is publicized at some point. Thus, as long as the user retrieving
or posting it remains unidentifiable, encrypting this information does not additionally protect the user’s
privacy. Again, confidentiality-protection may be more in the interest of L, who may want to make
sure that only paying customers can look at the data posted or retrieved.

• Another type of application data is the data exchanged for the non-idemix payment. As the user does
not expect this payment to be anonymous, a simple account or user identifier in the payment may
not need confidentiality-protection. Of course, if sensitive information such as a credit card number
is exchanged, it would need appropriate confidentiality-protection; this should be taken care of by the
payment protocol used.

8.3.2 Sender Anonymity

As discussed in Section 3.1, anonymity at the application level has to be supported also by anonymity of the
user at the communication level. We assume the use of one of the methods mentioned for anonymyzing the
user in a communication; some of these methods provide their own integrity- or confidentiality-protection.

8.3.3 Linking

In some cases, a sequence of several exchanges (such as showing a credential and receiving a new creden-
tial) have to be securely linked in one authenticated communication session in order to ensure the desired
application-level security. These cases will be discussed on an individual basis.

8.4 Protocols for Registration and Service Access

We now derive the protocols satisfying the various requirements. By discussing the requirements from
organizations and users for specific exchanges (e.g., posting application data), we will derive the exact
protocol flows as depicted in Figures 8 and 9, as well as the contents of their parameters in Figure 10.

For each exchange, we will analyze the following requirements:

• Organization requirements:

– which condition(s) has (have) to be fulfilled: the receipt of a payment (an idemix -external condi-
tion), or the verification of an idemix credential;

– idemix linkability and deanonymization requirements: e.g., an idemix transaction has to be se-
curely linked to a nym, or to another idemix transaction; or, it has to be deanonymizable;

– application linkability requirements: e.g., an idemix transaction has to be securely linked to an
actual application action (e.g., obtaining the actual service or data has to be linked to showing
the necessary credential).

The first two sets of requirements define the idemix access rules as defined in [9]; in case of a cre-
dential show condition, they define the CredShowInfo and CredShowFeatures for the credential show
invocation. The third set of requirements will define whether a secure communication channel has to
link an idemix transaction to an application action.

• User requirements: whether the transaction may or may not be linkable in a certain way to a user’s
identity or nyms.

Requirements such as deanonymization are related to the final application between U and L; they create
requirements for the exchanges between U and K ; these will in turn show the need for a root credential
and root nym registration. Thus, we will start the analysis with the final exchange which is the actual
application: retrieving data from, or posting data to, LostFound.
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8.4.1 Retrieving Data From LostFound

Organization Requirements

• U may retrieve (Get()) application data (RetrievedData) from L on condition of having paid for
the service; payment for the service can be proved by a credential from K (with an appropriate
expiration). There is no need for U to sign an additional message in the show transcript. Thus, a
ShowTranscript

ULK(Get) is required with:

CredShowInfoULK
= (IPKeyK , any,ExpirationULK

, any),
ShowTranscript

ULK(Get).Msg = null

The use of any means that so far there is no requirement by L on the value of the parameter or field.

• The access need not be identifiable; thus, no linkability with a nym or deanonymization is required;
this means there are no requirements on CredShowFeaturesULK(Get) other than the specification of L
(VPKeyL) as verifier:

CredShowFeaturesULK(Get) = {any,VPKeyL, any, any}

• Showing the credential and retrieving the data should be linked by the same communication channel
in order to make sure that the data is delivered to the user who showed the credential.

User Requirements

To fulfill the access condition, U will show a credential with CredInfoUK fulfilling CredShowInfoULK
. I.e.,

CredInfoUK = {IPKeyK , any,ExpirationUK , any}, with ExpirationUK ≥ ExpirationULK

U requires the access to be unconditionally unidentifiable, and thus unlinkable to any nym or identity.
Neither CredShowInfoULK

nor ShowTranscript
ULK(Get).Msg is unique (we do not consider the expiration

date in CredShowInfo as an attribute that makes a credential show unique); according to Section 6.7, the
credential show is unconditionally unidentifiable if it is neither relative to a nym, nor deanonymizable,
regardless of the number of accesses:

CredShowFeaturesULK(Get) = {false,VPKey
L
, null, null},

CredInfoUK .MultiShow = CredShowInfoULK
.MultiShow = true

Thus, U also chooses

ShowTranscript
ULK(Get).OrgNym = null

Also, as L does not require any specific attribute for the kiosk credential:

CredShowInfoULK
.Attrs = any,

U may prefer that

CredInfoUK .Attrs = null

to avoid any identifiability through attributes.

Figure 9 shows the user retrieving data after showing the credential. After ShowTranscript
ULK(Get), U can

perform a number of Get() operations within the same secured communication session CommUL, fulfilling
the organization’s requirement to link the showing of the credential to the retrieval of the data; L processes
them but need not store any transcripts.
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8.4.2 Posting Data To LostFound

Organization Requirements

• U may post application data (PostedMessage) to L on condition of having paid for the service; payment
for the service can be proved by a credential from K of the same type as for retrieving data. Thus, a
ShowTranscript

ULK(Post) is required with the same CredShowInfo as for data retrieval:

CredShowInfoULK
= {IPKeyK , any,ExpirationULK

, any}

• The transaction needs both global and local deanonymization, depending on criminal or other misuse.
As K and L belong to the same business entity, the issuer (K ) of the credential can be assumed
to be cooperating with the verifier (L) and can guarantee the global deanonymization. E.g., using
the technique in Section 7.1, L then needs to implement only local deanonymization in order to also
allow global deanonymization in case of criminal misuse. Deanonymization is the responsability of the
dedicated deanonymization organization D :

CredShowFeaturesULK(Post) =
{any,VPKeyL, {DPKeyD, CriminalMisuseCond|OtherMisuseCond}, any}

In designing our application, we have assumed the presence of a Root organization R; we will refer to
the nyms and credentials it issues as root nyms and root credentials. However, by choosing to realize
global deanonymization using local deanonymization, we will not actually exploit the specific fact that
the nyms R registers are root nyms (RootNym()). However, we do rely on R to ensure a linking between
the nyms it registers and external certificates; we will, thus, exploit the fact that R registers signed
nyms. To be precise, we rely on R to only issue a credential (as accepted by K ) on a nym which was
registered in a signed nym registration procedure using a signature key and certificate for which a user
can be held accountable.

• L has another requirement: if ever deanonymization occurs, it does not suffice to prove the linking
between U and the credential show; the linking between the user and the posted message must also
be provable to a third party in order to guarantee U ’s accountability for the posted information. This
cannot be achieved by linking the credential show and the posting through a secure communication
channel, as such a linking cannot be proved to other parties. A provable linking can only be achieved
if the posted message is also signed with the credential:

ShowTranscript
ULK(Post).Msg = PostedMessage

• As the PostedMessage application data is already linked to the credential show, no additional appli-
cation linking is needed.

User Requirements

U requires the access to be unlinkable to any nym or identity unless one of the above specified condi-
tions for deanonymization is fulfilled. ShowTranscript

ULK(Post).Msg is unique but does not occur in any
other transaction; we do not consider CredShowInfoULK

unique (verification of the expiration date should
not make a credential show unique); from Sections 6.7 to 6.11 , we then conclude that the user requirement
is fulfilled if there are no other ways of deanonymizing, and if the show is not relative to a nym:

CredShowFeaturesULK(Post).GlobalDeAnData = null,
CredShowFeaturesULK(Post).RelNym = false, and thus also

ShowTranscript
ULK(Post).OrgNym = null

Figure 9 shows the posting of data. L processes the request and stores the show transcript TranscriptULK(Post).
In case of misuse, this will ensure that L and K can perform the necessary deanonymization to take measures,
as discussed in Section 8.5.
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8.4.3 Obtaining the Credential from Kiosk

In this procedure, K issues the credential to access L on condition of having received the appropriate payment.
The payment can be any form of electronic payment and need not be anonymous (e.g., it can be a secure
credit-card payment).

Organization Requirements

• K issues a credential only on the nym of a user who paid. Thus, either the credential issuing or the
nym registration has to be securely linked to the payment. Also, K issues a credential on a nym only
if K knows it can retrieve the user’s root nym if the global deanonymization condition is fulfilled. We
decided earlier that local deanonymization of a root credential show suffices for this.

Thus, the procedure involves a Nym
UK

establishment (necessary to issue the credential CredUK on),
a locally deanonymizable root credential show ShowTranscript

UKR
, a payment, and the credential

issuing CredUK . The root credential show can be securely linked to Nym
UK

by making it relative
to Nym

UK
. The payment can be securely linked to the credential issuing by a secure communication

channel.

CredUK ’s CredInfoUK was already specified in the previous paragraphs. As for ShowTranscript
UKR

,
it requires a credential issued by R with a certain expiration limit and no specific attributes, local
deanonymization (in case of criminal misuse only) and a showing relative to Nym

UK
and verifiable by

K :

CredShowInfoUKR
= {IPKeyR, any,ExpirationUKR

, any},
CredShowFeaturesUKR

= {true,VPKey
K
, {DPKey

D
, CriminalMisuseCond}, any},

ShowTranscript
UKR

.OrgNym = Nym
UK

.

User Requirements

To fulfill ShowTranscript
UKR

, U shows a credential with CredInfoUR fulfilling CredShowInfoUKR
. Thus,

CredInfoUR = {IPKeyR, any,ExpirationUR, any} with
ExpirationUR ≥ ExpirationUKR

ShowTranscript
UKR

is directly linked to Nym
UK

. U ’s requirement is that the link between Nym
UK

and a
root nym or real identity is revealed only when the local deanonymization condition is fulfilled, and that
there are no other ways of deanonymizing (regardless of the number of uses of the root credential). As
CredShowInfoUKR

is not unique (except for the expiration, which we do not consider an identifying factor),
and ShowTranscript

UKR
.Msg = null, it follows that

CredShowFeaturesUKR
.GlobalDeAnData = null

CredInfoUR.MultiShow = true

Also, as

CredShowInfoUKR
.Attrs = any,

the user may prefer that

CredInfoUR.Attrs = null

to avoid any identifiability through attributes in the root credential.
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Figure 8 shows the protocol flows. The payment and the issuing of the credential both use the same secure
communication channel CommUK

3
, fulfilling K ’s requirement for linking these two exchanges.

Note that the order of the exchanges could be changed, as long as K has the same guarantees: namely,
that the credential is issued to someone who paid, and on a nym that can be linked with a root nym. This
guarantee could also be achieved by securely linking the payment with Nym

UK
establishment in CommUK1

,
instead of linking it with the CredUK issuing in CommUK3

.

8.4.4 Registering to Root

The goal of this procedure is for U to obtain the root credential needed to prove registration with R and
therefore a linking with an external certificate. U will have to show this credential in order to obtain a
subscription credential from Kiosk. As mentioned before, the fact that R issues root nyms (RootNym())
as opposed to ‘regular’ nyms (Nym()) is strictly speaking not exploited by our choice of deanonymization
procedure; we could thus replace the root nym registration with a signed nym registration procedure.

Root nym registration and root credential issuing are standard procedures: R requires that it knows a
provable linking between the root nym with an external certificate before issuing the root credential on
it; the contents of CredUR were discussed in previous paragraphs. The user knows that his root nym
and root credential (the latter if shown in a deanonymizable way) are linkable to his external certificate
CertCA−U . One parameter option still to be chosen is the contents of MsgUR during root nym registration
(SignedNymProof

UR
): as Root needs no other proof than the linking with CertCA−U , we can conclude that

SignedNymProof
UR

.Msg = null.

Figure 8 shows the root nym registration and root credential issuing. After the root nym registration, R
stores the mapping between OrgNymUR and CertCA−U (and the proof SIGUR of this mapping). After issuing
the root credential, R updates this information with CredInfoUR.

Note that absence of authentication of R to U on CommUR1
would allow another organization to impersonate

R. The impersonator would know a linking between U ’s real identity and the established nym, and U would
assume the nym is shared with R. However, the impersonator could not issue a root credential on the nym,
as this credential issuing would require the knowledge of IssuerKeysR. The user would not be able to perform
any operations with the nym. The only threat is thus one of denial of service. Absence of authentication of
R to U on CommUR2

poses no threat as the issuing of the credential includes an authentication of R using
its IssuerKeysR.

8.5 Verifying Organizations’ Accountability Requirements

In this Section, we now verify that our design satisfies our accountability goals. I.e., we verify that, after a
message posting, L and K have the appropriate information to, together, locally or globally deanonymize the
transaction. We illustrate the correctness of the deanonymization results by applying the derivation rules in
Section 5 to the actual parameters of this transaction.

Figure 11 shows the deanonymization steps in a possible scenario. We have assumed deanonymization with
proof: this will allow any party relying on the deanonymization result to verify its correctness; but also, to
hold D accountable for the deanonymization (see also Section 9.1.2).

After any message posting, the assertions RootNym
UR

, SignedNymProof
UR

, CredUR, Nym
UK

, ShowTranscript
UKR

,
CredUK , and ShowTranscript

ULK(Post) hold, with the respective parameters as in Figure 10.

When the content PostedMessage of a data posting transcript shows misuse, L can send the associated
TranscriptULK(Post) to D with the request to deanonymize it; this deanonymization returns OrgNymUK

and the correctness proof DeAnTranscriptDUL
. This can be derived as follows:
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• Step 1: Deanonymization to retrieve OrgNym
UK

L : Send() −−−−−−
CommLD

1
: Transcript

ULK(Post)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ D : Receive()

D : DODeAnonLocalWProof()

L : Receive() ←−
CommLD

1
: OrgNym

UK
, DeAnTranscript

DUL

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− D : Send()

• Step 2: Deanonymization to retrieve OrgNym
UR

K : Send() −−−−−−−−
CommKD1

: Transcript
UKR

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ D : Receive()

D : DODeAnonLocalWProof()

K : Receive() ←−
CommKD

1
: OrgNym

UR
, DeAnTranscript

DUK

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− D : Send()

Figure 11: Example Application: Local and Global Deanonymization

From Figure 10:

Nym(UserSecretU ,OrgNymUK ,UserNymUK),
Cred(OrgNymUK ,UserCredUK ,CredInfoUK),
ShowTranscript(TranscriptULK(Post), UserCredUK , CredShowInfoULK

, CredShowFeaturesULK(Post), null,
PostedMessage),
CredShowFeaturesULK(Post).LocalDeAnData.DPKey = DPKeyD.

From Section 5.1, it follows that an invocation of

DODeAnonLocalWProof({DSKeyD,DPKeyD}, TranscriptULK(Post))

will return DeAnTranscriptDUL
with

LDeAnProof(DeAnTranscriptDUL
,TranscriptULK(Post),OrgNymUK)

Based on OrgNymUK and the data posting transcript with PostedMessage provided by L, K can de-
cide whether or not to revoke CredUK . In case of misuse motivating global deanonymization, the second
deanonymization step will also be executed in order to provide for global deanonymization of ShowTranscript

ULK(Post).
K then retrieves the stored {OrgNymUK ,TranscriptUKR

,CredInfoUK}. From Figure 10:

ShowTranscript(TranscriptUKR
, UserCredUR, CredShowInfoUKR

, CredShowFeaturesUKR
, OrgNymUK , null)

From Section 4.6, it follows:

SigProof(TranscriptUKR
, CredShowInfoUKR

, CredShowFeaturesUKR
, OrgNymUK , null)
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Thus, K can prove the relationship between TranscriptUKR
and OrgNymUK . K then asks D for local

deanonymization of TranscriptUKR
to obtain OrgNymUR (and DeAnTranscriptDUK

):

From Figure 10:

ShowTranscript(TranscriptUKR
,UserCredUR,CredShowInfoUKR

, CredShowFeaturesUKR
, OrgNymUK , null),

CredShowFeaturesUKR
.LocalDeAnData.DPKey = DPKeyD

From Section 5.1, it follows that an invocation of

DODeAnonLocalWProof({DSKeyD,DPKeyD}, TranscriptUKR
)

returns DeAnTranscriptDUK
with

LDeAnProof(DeAnTranscriptDUK
,TranscriptUKR

,OrgNymUR)

With OrgNymUR, K can obtain the associated CertCA−U from R, who has stored {OrgNymUR, CertCA−U ,
SIGUR, CredInfoUR}. Note that the linking between OrgNymUR and CertCA−U is also a provable linking
according to (from Figure 10):

SignedNymProof(SIGUR,CertCA−U ,OrgNymUR, null)

Thus, from a post transcript, D can locally deanonymize TranscriptULK(Post) to obtain OrgNymUK ; K can
link OrgNymUK to a TranscriptUKR

, D can deanonymize TranscriptUKR
to obtain OrgNymUR, and R can

link OrgNymUR to CertCA−U . Each of the linkings is provable, as can be seen from the framed statements.

We now discuss the security requirements on the communication channels used, and other requirements
related to authentication in the deanonymization exchanges. Also here, we assume at least one-way (D to
L and D to K ) authentication in order to protect against denial-of-service attacks, and to prevent sending
sensitive information to a non-authorized party. As the deanonymization result is sensitive information, it is
important that in both cases D ’s response is sent only to the requestor of the deanonymization. This can be
achieved by ensuring that the response is sent over the same secured (integrity-and confidentiality-protected)
communication channel. Most likely, D also wants to authenticate the sender of the request: first, D does not
want to be used as a deanonymization oracle; second, it is probable that the requesting organization has to
be authenticated in order to securely verify the deanonymization condition. Authentication by the requestor
can be achieved by using also client-side authentication in the communication channel using CSKeyL, resp.
CSKeyK . Such a two-way authenticated communication channel is depicted in Figure 11 as CommKD.
Alternatively, L and K could sign the requests to D using their signature key (SSKeyL, resp. SSKeyK).
This makes L, resp. K , accountable for the deanonymization request itself. This may be preferable, e.g., if
D , when having deanonymized a transcript, needs to be able to prove that the deanonymization indeed was
requested by the specific organization.

Note that DeAnTranscriptDUK
(DeAnTranscriptDUL

) also includes the equivalent of a signature (with
DSKeyD) and therefore is also implicitly authenticated by D . This is a stronger authentication than the
authentication on the communication channel, as it also makes D accountable for the deanonymization of
the transcript itself as discussed in Section 9.1.2.

8.6 Verifying User Unidentifiability Requirements

In this section, we verify that the user’s unidentifiability requirements are met.
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According to Section 6, we can derive following linkability assertions from the credential, nym and transcript
assertions that hold after registration and payment.

RootNym
UR

→ −.

SignedNymProof
UR

→ (1) Linked(R, null,OrgNymUR,CertCA−U ).

As SignedNymProof
UR

.Msg = null, no additional linking results from SignedNymProof
UR

.

CredUR,¬Unique(CredInfoUR)
→ −.

As CredInfoUR is generic (not unique for the credential instance), no linking results from CredUR.

Nym
UK

→ −.

ShowTranscript
UKR

,
CredShowFeaturesUKR

.RelNym = true

→ (2) Linked(K , null,TranscriptUKR
,OrgNymUK).

ShowTranscript
UKR

,
CredShowFeaturesUKR

.LocalDeAnData.DPKey = DPKeyD,
CredUR,
Nym

UR

→ (3) Linked(D , CriminalMisuseCond,OrgNymUR,TranscriptUKR
).

As neither CredShowInfoUKR
nor ShowTranscript

UKR
.Msg (= null) are unique, no other linkabilities result

from ShowTranscript
UKR

.

With the CredUK credential obtained, U can now retrieve data or post messages; these transactions may
add additional linkability information.

8.6.1 Data Retrieval

Data retrieval is not relative to a nym, has no deanonymization option and no unique parameters and thus
does not result in linkability information. Data retrieval is thus unconditionally unidentifiable, which is
consistent with requirements.

ShowTranscript
ULK(Get)

→ −.

8.6.2 Message Posting

Message posting results in an additional ShowTranscript
ULK(Post) assertion. ShowTranscript

ULK(Post).Msg
(= PostedMessage) is unique, but does not occur in any other transaction. Thus, the only linkability follows
from deanonymization:

ShowTranscript
ULK(Post),

CredShowFeaturesULK(Post).LocalDeAnData.DPKey = DPKeyD,
Cred(OrgNymUK ,UserCredUK ,CredInfoUK),
Nym(UserSecretU ,OrgNymUK ,UserNymUK)
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→ (4) Linked(D , {CriminalMisuseCond|OtherMisuseCond},OrgNymUK ,TranscriptULK
).

The user can conclude that only OrgNymUK can be linked to the post transcript, and only in case of one
of the misuses mentioned. From (2), OrgNymUK can directly be linked to TranscriptUKR

and, from (3),
TranscriptUKR

to OrgNymUR in case of criminal misuse. From (1), OrgNymUR can directly be linked to
the user’s identity in CertCA−U . This is consistent with requirements.

9 Trust, Accountability, Liability and Certification

This section deals with measures needed to create a system where users can trust the correct application of
mechanisms protecting their unidentifiability, and organizations can trust the correct functioning of mecha-
nisms guaranteeing user accountability. We use the Lostfound application developed in Section 8 to illustrate
the challenges as well as the solutions.

Users fundamentally mistrust organizations: they expect organizations to collaborate with each other and
to combine their knowledge; any unconditional linkability, as well as any conditional linkability of which the
condition is fulfilled, can be considered public. E.g., the linking of a user’s external certificate to his root
nym is public; unidentifiability is threatened only when a user executes an action which is traceable to that
root nym.

From the linkabilities described in Section 6, the ones resulting from double-spending and deanonymization
are the only conditional ones. As for double-spending, the user can control the fulfillment of the condition;
in addition, the linkability is technically unfeasible if the condition is not met. The case is different for
deanonymization: the user may have less control over the fulfillment of the condition (e.g., because it is
subject to interpretation); in addition, we assume deanonymization to be technically feasible even if the
condition is not fulfilled.

Deanonymization thus takes a special place in a discussion about trust: it can have a far-reaching (negative)
effect on users’ unidentifiability; while at the same time being the only process where trust by users is
required.

In Section 9.1, we investigate trust required specifically in the deanonymization process. As many of the
issues are relevant to both users and organizations, we discuss trust in deanonymization from both users’
and organizations’ point of view. We discuss how accountability and verifiability of the deanonymization
process can help safeguarding fairness. These measures limit the need for ‘blind trust’ by at least exposing
and proving untrustworthy behaviour.

Section 9.2 then specifically discusses trust required by organizations in the system. Some issues are similar
to the ones discussed for the case of deanomymization; we again discuss measures that expose misbehaviour
by other organizations.

Exposure of misbehaviour or cheating may discourage such behaviour; it does, however, not provide any
guarantees that it is punished. Section 9.3 deals with these guarantees through liability-enhanced certifica-
tion as introduced in [24]. In Section 9.1.2, we then illustrate the concepts introduced in this section using
a LostFound deanonymization scenario.

9.1 Trust by Users and Organizations in Deanonymization

In the LostFound application, organizations’ accountability requirements are fulfilled by the application
of local and global deanonymization, on condition of misuse being shown; from the users’ perspective,
their unidentifiability is unconditionally protected during information retrieval; for information posting, it
is conditional on the absence of misuse.

In order for the deanonymization process to work as expected by both users and organizations, the following
have to be fulfilled:
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• Conditions under which accountability (deanonymization) is needed have to be stated in a concrete
enough way that D can either evaluate them automatically, or can at least make an evaluation which
can be considered fair by both parties (the user and the entity requesting deanonymization);

• The deanonymizer acts correctly, i.e., deanonymizes if and only if the condition is fairly evaluated to
be true.

The latter condition requires trust by users, who do not want unmotivated deanonymization to occur, as well
as by the organizations who need to rely on deanonymization in order to fulfill accountability requirements.
In the following paragraphs, we discuss the fairness of condition evaluation and deanonymization, and ways
to increase fairness (or decrease the amount of trust) through verifiability.

9.1.1 Fairness of Condition Evaluation

In fact, the entity evaluating the deanonymization condition need not be the deanonymizer D : just as liability
conditions in certificates can be subject to evaluation by a trusted Arbiter, deanonymization conditions
may be subject to evaluation by an Arbiter (or multiple Arbiters) other than the deanonymizer. E.g., in
CredShowFeaturesUKR

,

CriminalMisuseCond = {CriminalMisuseDesc,SPKeyLE}

would indicate that D is allowed to deanonymize if LE (a Law Enforcement entity) has attested, by a signa-
ture using its signature key SSKeyLE , that criminal misuse (as described in the description CriminalMisuseDesc)
has occurred.

OtherMisuseCond = {OtherMisuseDesc,SPKeyL,SPKeyA}

could indicate that D is allowed to deanonymize if LostFound as well as an arbiter organization A have
attested that other misuse (as described in OtherMisuseDesc) has occurred.

This separation of responsibilities has the advantage of separating idemix functionality from high-level ap-
plication (and possibly human) condition evaluation, and potentially allows to automate the condition eval-
uation by deanonymizers; also, it facilitates the definition of conditions that have to be evaluated by multiple
Arbiters.

The separation between condition evaluation and deanonymization may also result in an additional distri-
bution of trust. For this to be the case, D ’s deanonymization actions should be verifiable, as discussed in
the next paragraph.

9.1.2 Verifiability of Deanonymization: Correctness and Accountability

Verifiability of the deanonymizers’ actions by both users and organizations helps to reduce the level of trust
required. It should be verifiable that D performed a certain deanonymization (accountability), and that
the deanonymization was correct w.r.t. the deanonymized transcript (correctness). Both accountability and
correctness are achieved if deanonymization is always accompanied by the proof of correctness. Thus, users
as well as organizations can verify (and prove to another entity) who performed a deanonymization, and
whether it was correct.

9.1.3 User Trust Requirements Related to Deanonymization

Trust requirements by the user in the system are thus minimized through distribution of trust, separation
of duties and verifiability of actions.
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When a user U shows a credential issued by issuer I to verifier V , I and V together can under no condition
(unless in case of double-spending of a one-show credential) identify the user or its OrgNymU . This is true
even if the credential was shown in a deanonymizable way: the introduction of a deanonymizing organization
D as the only entity to be able to identify the user or OrgNymUI is a first separation of duties (and trust),
and protects the user against coalitions of issuers and verifiers.

As to the trust in a deanonymization organization D : if a user has a choice between multiple deanonymiz-
ers, this reduces trust requirements; as discussed in the previous paragraphs, the (verifiable) evaluation of
deanonymization conditions by dedicated (sets of) Arbiters, and the verifiability of the deanonymization
itself, introduces an additional separation of trust.

Accountability, verifiability and correctness need of course to be backed by appropriate liability of (in this
case) the deanonymization organization for its actions, or by a liability of the entity certifying D to revoke
D ’s keys in the event of D malfunctioning or misbehaving. These liabilities are discussed in Section 9.3.
Of course, revocation of keys does not solve (or appropriately punish) a misbehavior or malfunctioning
resulting in DSKeyD being stolen or even published. In such a case, D has to be held accountable for
existing transcripts being deanonymized without reason.

In conclusion, accountability and correctness, together with verifiable fairness of condition evaluation, protect
a user from being unfairly accused of actions he did not perform, and of losing his unidentifiability without
a valid reason.

9.1.4 Organizations’ Trust Requirements Related to Deanonymization

K and L in our example application, in order to rely on a fair deanonymization, need to rely on D to
deanonymize transcripts according to evaluated deanonymization conditions.

Verifiable fairness of condition evaluation, together with accountability and correctness of deanonymization,
also provide organizations such as K and L with a guarantee that deanonymization is done correctly and
fairly. However, for organizations, an additional source of unfairness could be that D is not available, or not
willing to respond to a request. This type of unfairness can be dealt with by introducing a ‘Fairness-Arbiter’
in the system: such an arbiter can be used as an intermediary in deanonymization (and other) requests
and can evaluate whether there is a response, and whether it is of the expected form. E.g., in the case of
deanonymization, the Fairness-Arbiter could verify that the response is either a deanonymization result, or
a (signed) motivation why deanonymization could not be performed, e.g., the absence of a positive condition
evaluation.

Though K and L (and any other entity relying on deanonymization) need to rely on D for deanonymization,
D ’s liabilities are concrete and can be high, as explained in the next section. Thus, the trust in the correct
functioning of accountability need not be higher than in a conventional PKI. In a conventional PKI, every
transaction is linked to the same (non-anonymous) certificate issued by a CA. However, in order to realize
accountability for a transaction, CA still may have to cooperate to map an identity in a certificate to a
real human identity; in addition, typical CA liabilities for guaranteeing such a mapping are unclear or
nonexistent.

9.2 Trust by Organizations in the System

For relying on correct functioning of the system, organizations have to trust more than only the deanonymiza-
tion process and deanonymizing organizations.

Firstly, in order for accountability requirements to be fulfilled, they also need to rely on obtaining ‘public
information’ from each other. In the LostFound application (see Section 8.5), R needs to be relied on to
make available (through publicizing or on request) the linkings between external certificates and root nyms;
K has to be relied on to make available root credential show transcripts of all the nyms on which it issued

43



subscription credentials.

Secondly, depending on business agreements and contracts, organizations may have obligations to each other
subject to certain credentials being shown. E.g., an organization accepting e-coins issued by an e-bank as
payment for a service expects that the e-bank will endorse a spent e-coin with ‘real money’. Depending on
the business relationship between L and K in the LostFound example, K may need to pay the subscription
amount paid by a user to L.

Fairness of (and thus trust in) all these processes again requires accountability and verifiability of the actions
leading to such an obligation. It can be verified that an e-coin issued by a specific e-bank was spent, and it
can be verified that the e-bank did (or did not) endorse the e-coin by crediting the receiving organization’s
bank account.

As mentioned before, verifiability and accountability may discourage but do not prevent misbehaviour; nor
do they specify consequences (liabilities or punishments) for the misbehaving party. In the following section,
we discuss the application of liability-enhanced certification to users’ and organization’s certificates.

9.3 Certificates, Liabilities and Contracts

Accountability of organizations or users for any idemix -related actions needs to be based on appropriate
registration and certification procedures for users and organizations in the system; appropriate certification
has to involve a liability of the certifier for actions with the certified key:

• User accountability is based on the enforced use of signed (in this case root) nym registration and the
existence of an external certificate CertCA−U , guaranteeing a linking to a legal entity.

• Accountability of a deanonymizing organization D is based on the fact that DPKeyD is certified by D ’s
signature key; this certification (and liability) has a value because D ’s signature public key SPKeyD

itself is certified by an entity, CA, who can make guarantees about or state liability for D (e.g., to
revoke D ’s keys upon misbehaviour or malfunctioning).

• A credential based on a credential issuing key ISKeyI has a value through appropriate self-certification
of IPKeyI by I using its signature key SSKeyI ; the signature public key SPKeyI again is certified by
CA, which provides a guarantee for actions or certificates signed with SSKeyI .

Not only idemix keys (issuing, verification and deanonymization) and signature keys have to be certified; also
the keys used for communication (e.g., SSL) have to be certified in order to provide secure authentication,
integrity and confidentiality of communication channels.

We now discuss the certificate infrastructure for our example application described in Section 8. Figure 12
shows the contents of various certificates.

9.3.1 Users’ External Certificates

The users’ external certificate CertCA−U is certified by a certification authority CA; it contains the user’s
(signature) public key SPKeyU as well as LiabCA−U , the liabilities of the certifying party. CertCA−U , as
well as the other certificates discussed in the following paragraphs, may contain additional attributes such
as expiration time which are not discussed here.

The main function of CertCA−U is to guarantee an unconditional linking with a human user. Therefore,
LiabCA−U carries a high liability for guaranteeing this linking:

LiabCA−U = {{LiabTp=Li, LiabAmount=$100000, LiabCondition=none, LiabVerifier=none}}

indicates an unconditional (LiabCondition=none, LiabVerifier=none) liability of $100000 for providing, to a
party relying on a signature with SSKeyU , the identity (LiabTp=Li) of a human user owning the certificate.
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CertCA−U SCA(CertdKeys = {SPKey = SPKey
U
}, Attrs = {CertTp = CERT, Liab = LiabCA−U})

X ∈ {R, K , L, D}

CertCA−X SCA(CertdKeys = {SPKey = SPKey
X
}, Attrs = {CertTp = CERT, Liab = LiabCA−X})

CertX−X SX(CertdKeys = CertdKeys
X−X

, Attrs = AttrsX−X)

AttrsX−X {CertTp = SELFCERT, Liab = LiabX−X , Addr = AddrX ,

Rules = RulesX , Contr = ContrX}

CertdKeys
R−R

{IPKey = IPKey
R

, CPKey = CPKey
R
}

CertdKeys
K−K

{IPKey = IPKey
K

, VPKey = VPKey
K

, CPKey = CPKey
K
}

CertdKeys
L−L

{VPKey = VPKey
L
, CPKey = CPKey

L
}

CertdKeys
D−D

{DPKey = DPKey
D

, CPKey = CPKey
D
}

Figure 12: Certificate Contents For LostFound Application Example

9.3.2 Organizations’ External Certificates

An organization X ’s external certificate CertCA−X follows the same format as the user’s. LiabCA−R,
LiabCA−K , LiabCA−L and LiabCA−D probably contain a liability for certain of the attributes AttrsCA−X

of these organizations. In addition, parties relying on these certificates want a liability for the correctness
of these organizations’ actions. As CA probably cannot take financial liability for these, its liability may be
limited to ensuring that behind each of these organizations there is a legal entity that can be held respon-
sible for incorrect actions. This is essentially again a liability of type Li: every organization can be held
accountable for its actions.

LiabCA−X = {{LiabTp=Ld, LiabAmount=$100000,
LiabCondition=‘attrs incorrect’, LiabVerifier=Arbiter},

{LiabTp=Li, LiabAmount=$100000,
LiabCondition=none, LiabVerifier=none}}

indicates that CA takes a data (LiabTp=Ld) liability of $100000 for correctness of AttrsCA−X (as witnessed
by Arbiter), and an unconditional identification (Li) liability of $100000 for mapping the entity X to a liable
human party or other legal entity. X can now express concrete liabilities for actions in its self-certified idemix
certificates.

Alternatively or additionally to this Li liability, CA may express a liability for revoking CertCA−X in certain
cases of misbehaviour.

9.3.3 Organizations’ idemix Certificates

Depending on the role of the organization, its idemix self-signed certificate CertX−X certifies one or more
other public keys IPKeyX , VPKeyX , DPKeyX , CPKeyX . RulesX in AttrsX−X contains access rules as
described in [9]; ContrX expresses the set of an organization’s guarantees or promises towards parties relying
on the various certified keys; LiabX−X expresses various liabilities taken by X . These may be liabilities for
credentials issued by X using ISKeyX , for verifications using VSKeyX , for deanonymizations with DSKeyX ,
or for not fulfilling part of the guarantees in ContrX . Some examples are:

• ContrR captures the fact that R should be able to provide an external CertCA−U for a valid root nym
OrgNymUR. More precisely, if an OrgNymUR is the deanonymization result of the show of a root
credential, then R has to be able to provide a verifiable linking (SIGUR,CertCA−U ,OrgNymUR). Also
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for root credentials that are being revoked, R still has to be able to provide this linking during a certain
period of time. If contr breach condR is a condition expressing that the above contract guarantee is
not fulfilled, and Arbiter is an entity trusted to verify that the conditions for providing the linking were
fulfilled and the guarantee was not honored, then the following expresses R’s liability for not providing
the linking:

LiabR−R = {{LiabTp = Lt,LiabAmount = $100000,
LiabCondition = contr breach condR,LiabVerifier = Arbiter}, . . .}

where the liability type (LiabTp=Lt) indicates that this is a transaction-related liability.

• ContrD could include the service of deanonymizing a transaction if and only if the deanonymiza-
tion condition is fulfilled. A condition contr breach condD1

for contract breach could then be a
refusal or incapacity to deanonymize a transaction if the deanonymization condition is satisfied (as
witnessed by the Arbiter in the liability condition); another example of a contract breach condition
contr breach condD2

would be a deanonymization that was carried out without its deanonymization
condition being fulfilled (again as witnessed by the Arbiter), or without D being able to show that an
authorized party requested the deanonymization.

LiabD−D = {{LiabTp = Lt,LiabAmount = $100000,
LiabCondition = contr breach condD1

,LiabVerifier = Arbiter},
{LiabTp = Lt,LiabAmount = $100000,

LiabCondition = contr breach condD2
,LiabVerifier = Arbiter}, . . .}

• ContrL captures the fact that L should be able to provide a transcript TranscriptULK(Post) for every
item posted on LostFound. If contr breach condL is a condition expressing that the above contract
guarantee is not fulfilled, and Arbiter is a trusted arbiter for this conditon:

LiabL−L = {{LiabTp = Lt,LiabAmount = $100000,
LiabCondition = contr breach condL,LiabVerifier = Arbiter}, . . .}

• ContrK captures the fact that K should be able to provide a transcript TranscriptUKR
for every nym

Nym
UK

registered with K ; this transcript, in itself, bears the proof that it is related to Nym
UK

. If
contr breach condK is a condition expressing that the above contract guarantee is not fulfilled, and
Arbiter is a trusted arbiter for this conditon:

LiabK−K = {{LiabTp = Lt,LiabAmount = $100000,
LiabCondition = contr breach condK ,LiabVerifier = Arbiter}, . . .}

9.4 A Scenario Illustrating Trust in Accountability and Anonymity: Law En-
forcement and Credential Revocation

With the certificate contents defined above, and the definition of the various transactions and their pa-
rameters in Figures 8 to 10, we can now give some concrete illustrations of trust and liability related to
certification.

We will again consider the accountability and anonymity requirements stated in Section 8 and verified in
Sections 8.5 and 8.6; this time, we will analyse them from the point of view of trust needed, by either the
organization relying on accountability, or the user relying on unidentifiability.
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9.4.1 Trusting Accountability and Deanonymization

Consider the following scenario: an item posted on LostFound is judged by LE , the law enforcement entity,
to represent criminal abuse (e.g., PostedMessage is an illegal drugs advertisement). LE requires that the
identity of the user who posted the message be revealed in a provable way.

Other organizations involved in this process are L, K , D , R and an Arbiter. Arbiter is essentially a ‘Fairness-
Arbiter’ verifying whether responses to requests are obtained and whether they have the correct format and
contents; it also judges the various contract breach conditions listed in Section 9.3.3.

Depending on who drives the various processes to obtain nyms, transcripts etc., we can describe multiple
deanonymization scenarios. In one scenario, LE would contact L with the request to deanonymize the
transaction; L would then be responsible for contacting K and D , etc. However, this would make L partially
responsible for deanonymization, which would have to be expressed in its liabilities; L would have to take a
liability of another organization on which it depends.

In order to clearly separate liabilities and responsibilities of individual organizations, we assume that LE is
driving the deanonymization process: LE contacts one organization at a time and requests a specific service.
The scenario is shown in Figure 13. We also assume that, when asking for a linking or deanonymization, LE
also receives the proof of the linking or of the correctness of the deanonymization result. This proof allows
Arbiter to verify the correctness of the response.

The communication channels between LE and each of the organizations it contacts are mutually authenti-
cated and confidentiality-protected. Authentication by LE allows the various organizations to verify that an
authenticated entity (LE ) is the one requesting the information; authentication by the organization receiving
a request allows LE to verify that it does not send sensitive deanonymization requests to other than the
intended organization; encryption protects the sensitive data (requests as well as responses) from being read
by unauthorized parties. The deanonymization requests by LE will, in addition, be digitally signed: this
allows the deanonymizing organization D serving the request to prove that the actual request occurred.

In an exchange with L, LE requests and receives the transcript related to the PostedMessage advertisement.
TranscriptULK(Post) in itself carries the proof that it is the transcript related to PostedMessage. Thus, both
Arbiter and LE can verify and prove that the response is correct.

From D , LE then requests deanonymization of this transcript. In the signed request, LE includes also
CriminalMisuseDesc and PostedMessage: this allows D to prove not only that the deanonymization request
was made by LE , but also fulfills the CriminalMisuseCond as defined in Section 9.1.1 and will allow D to
prove this. The response contains OrgNymUK as well as the proof of correctness DeAnTranscriptDUL

; again,
both LE and Arbiter can verify the correctness of the result.

LE then asks K for the root credential show transcript related to OrgNymUK . The transcript returned,
TranscriptUKR

, carries the proof of being related to OrgNymUK , which can again be verified and proved by
LE as well as Arbiter.

In a second exchange with D , LE then asks deanonymization of TranscriptUKR
. LE again includes Criminal-

MisuseDesc and PostedMessage. However, as TranscriptUKR
is not related to PostedMessage, LE needs to

provide D with a proof of this relationship. This is done by sending along OrgNymUK and TranscriptULK(Post).
D has cached or re-verifies the linking between OrgNymUK and TranscriptULK(Post); as TranscriptUKR

can
be proved to be related to OrgNymUK , D is convinced that TranscriptUKR

is indeed generated by the same
user who generated the criminal posting. The result of this second deanonymization consists of OrgNymUR

and DeAnTranscriptDUK
; also this result can be verified and proved.

In a final step, LE requests U ’s external certificate from R. Once more, including the proof SIGUR of the
linking in the response allows the correctness of this linking to be verified and proved.

In each of the above steps, LE requests a service for which the responding organization has taken some
responsibilities and liabilities. Concretely, according to our liabilities specification in Section 9.3.3, unfair
behaviour in the various steps would result in either of the following contract breach conditions being fulfilled:
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LE → L : request trscr, PostedMessage

LE ← L : TranscriptULK(Post)

LE → D : SIGLE(request dean, CriminalMisuseDesc, PostedMessage,TranscriptULK(Post))

LE ← D : OrgNymUK , DeAnTranscriptDUL

LE → K request trscr,OrgNymUK

LE ← K : TranscriptUKR

LE → D SIGLE(request dean, CriminalMisuseDesc, PostedMessage,TranscriptUKR
,

OrgNymUK ,TranscriptULK(Post))

LE ← D : OrgNymUR, DeAnTranscriptDUK

LE → R : request cert,OrgNymUR

LE ← R : CertCA−U ,SIGUR

Figure 13: A Scenario Illustrating Trust in Accountability and Anonymity

• contr breach condL, if L does not return a correct transcript of the message posting;

• contr breach condD1 , if D does not respond with a correct deanonymization result and proof for either
deanonymization request;

• contr breach condK, if K does not reply with a correct root credential show transcript;

• contr breach condR, if R does not return the correct external certificate.

As the presence as well as the correctness of a response can be verified by Arbiter, the relying party (LE
in this case) is protected against unfair or uncorrect behaviour by the responding organization according to
the (high) liability amounts in the various organizations’ idemix certificates.

9.4.2 Trusting Anonymity and Unlinkability

Let us now look at the above scenario from the user’s point of view, who wants to trust that his rights to
unidentifiability are respected.

Getting TranscriptULK(Post) from L, or obtaining TranscriptUKR
from K , is not tied to any condition to

be fulfilled, and neither CertK−K nor CertL−L contain liabilities for giving away this information without
reason. Indeed, this information may as well be considered public as a party receiving it cannot use the
transcripts without deanonymization by D . This is also the reason why we did not require LE to sign these
requests: no liability is attached to giving the response without proving an appropriate reason.

In order for the user to be unfairly deprived of unidentifiability, at least one of the deanonymizations must
be unfair. If this is the case, it fulfills contr breach condD2 .
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Clearly, U cannot be unfairly accused of misuse as this would require proofs which do not exist, including
deanonymization transcripts which provably fulfill contr breach condD2 . However, D could collude with LE
or another entity to deanonymize even if the deanonymization condition is not fulfilled; as long as they do
not use the result to accuse U of the stated misbehaviour, this collusion is difficult to prove. One way to
protect against this is making all D ’s actions auditable, e.g., by having Arbiter or another monitor audit all
deanonymizations handled by D .

10 Conclusion

In this report, we have shown how to design secure applications based on the idemix anonymous credential
system. We first described the idemix protocols at a detailed enough interface level to be able to concretely
specify applications based on them. Based on these interfaces, we also were able to define relationships, ‘asser-
tions’, between nyms, credentials and credential show transcripts resulting from idemix interactive protocol
executions. These assertions not only represent compact and intuitive building blocks for describing complex
applications using idemix credentials for attribute-based authorization; they also allow to describe account-
ability and linkability consequences resulting from idemix protocol executions. Therefore, they are necessary
in order to build applications based on authentication, accountability and unidentifiability requirements of
the various parties (users and organizations) in the system.

We illustrated these findings with an example application involving a two-step deanonymization process. We
constructed the protocols used by the application based on authentication, accountability and unlinkability
requirements of users and organizations, and showed that the resulting application indeed fulfilled these
requirements.

Correctness of the application protocols, however, is only one step in showing the correct operation of the
overall system; it does not give any indication on the correct behaviour of various parties on which users or
organizations in the system rely; nor does it stipulate consequences or liabilities related to such misbehaviour.
E.g., a deanonymization organization may behave unfairly towards relying organizations as well as towards
users. The last section of this report dealt with these issues of fairness and trust. We showed how various
organizations’ behaviour can be made verifiable; and how users’ and organizations’ trust in the correct
operation of other organizations could be minimized by defining appropriate liabilities in organizations’
certificates.
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A A Generic Certificate Format

In this appendix, we describe the certificate format used in Section 9.

The definition of our generic certificate format is inspired by following requirements:

• Certificates should allow to express liabilities taken by the certificate issuer, as introduced in [24]. A
liability can be related to

– correctness of data in the certificate (liability of type Ld);

– transactions made with (the private key associated with) the certificate (liability of type Lt);

– being able to reveal of the certificate holder for a pseudonymous certificate (liability of type Li).

• The certificate notation should allow to distinguish between externally certified and self-certified cer-
tificates. In the example in Section 9, an external CA certifies a user’s or organization’s master public
signature key (of type SPKey) in an external certificate; organizations self-certify special purpose-keys
(such as credential issuing, communication security, deanonymization or verification keys) using their
master private signature key (of type SSKey).

• The certificate notation should also allow to express a certificate request as a special type of certificate.
This notion was introduced in [24]. Though this feature is not exploited in the examples in this report,
it is added for completeness as we expect future work to refer to the generic certificate format in this
appendix.

In order to provide a unified representation for all certificates, certificate requests and self-signed certificates,
we define a generic notation. Note that the certificate notation presented here merely serves to facilitate our
discussion and does not claim to be a general all-purpose format (e.g., the key and certificate types discussed
are limited to the ones needed in our application). The notation is shown in Figure 14. Naming of certificate
fields and values is kept intuitive; e.g., AttrsY −X is the value of the field Attrs in the certificate CertY −X .

An entity Y signing a message can do so with any of a number of keys certified for him. As only signatures
with master keys and (credential- or certificate-) issuing keys are relevant to our discussion, we introduce a
simple notation which allows us to distinguish between these different signatures: SY (Msg) and CertY −X are
signed with Y ’s master signature key; while SYi

(Msg) and CertYi−X are signed with Y ’s special-purpose issu-
ing key (private key ISKeyY with public counterpart IPKeyY ). Issuing and other special-purpose keys, such
as keys for verification, deanonymization (re-identification) and securing communication, were introduced in
Section 3.1.

In a certificate CertY −X (CertYi−X), an entity Y certifies, by a signature with a master signature key
SSKeyY (issuing key ISKeyY ) a key or set of keys CertdKeysY −X (CertdKeysYi−X) belonging to entity X
together with a set of attributes AttrsY −X (AttrsYi−X).

Depending on the relationship between entities Y and X , CertY −X (or CertYi−X) represents different types
of certificates:

• Y = X . With CertX−X , an entity (organization) X self-certifies special-purpose public keys using a
‘master’ signature key. This type of certificate is introduced in Section 9.3.

• Y and X are different identities belonging to the same user, such as C and P (for a customer’s real
and pseudonym identity) as used in this chapter. Such a certificate is the equivalent of the CERT REQ
(certificate request) type certificate in [24]: it is at the same time a request for a certificate as a self-
certification by C of a public key (and attributes) for P . A certificate request carries two liabilities:
one is the desired issuer liability in the requested certificate; a second type of liability is that taken by
the requestor for the public key on which he is requesting a certificate. The latter liability was not
discussed in [24] but is clearly needed to bootstrap user liability and accountability.
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CertY−X certificate certifying X ’s public key(s), signed with Y’s master signature key

=SY (CertdKeys = CertdKeys
Y−X

, Attrs = AttrsY−X)

CertYi−X certificate certifying X ’s public key(s), signed with Y’s issuing key

=SYi
(CertdKeys = CertdKeys

Yi−X
, Attrs = AttrsYi−X)

X , Y identifiers (names) of entities

Y i entity Y in its credential or certificate issuing role (signing with its issuing key ISKey
Y

)

Z stands for either Y or Y i

SPKey
Y

, SSKey
Y

Y ’s (master) signature public/private key pair

IPKey
Y

, ISKey
Y

Y ’s public/private key pair for issuing certificates or credentials (Section 3.1)

VPKey
Y

, VSKey
Y

Y ’s public/private key pair for verifying credentials (Section 3.1)

DPKey
Y

, DSKey
Y

Y ’s public/private key pair for deanonymizing (Section 3.1)

CPKey
Y

, CSKey
Y

Y ’s public/private key pair for securing communication (Section 3.1)

SY (Msg) signature on Msg with SSKey
Y

(corresponding to signature public key SPKey
Y

)

SYi
(Msg) signature on Msg with ISKey

Y
(corresponding to issuing public key IPKey

Y
)

CertTp CERT| CERTREQ| SELFCERT

CERT certificate type for traditional certificate

CERTREQ certificate type for certificate request

SELFCERT certificate type for self-signed certificate

CertdKeys
Z−X

X ’s (public) keys certified in CertZ−X

= {[SPKey = SPKey
X

], [IPKey = IPKey
X

], [VPKey = VPKey
X

], [DPKey = DPKey
X

],

[CPKey = CPKey
X

]}

AttrsZ−X attributes in CertZ−X

={CertTp = CertTp
Z−X

, [Liab = LiabZ−X ], [LiabReq = LiabReq
Z−X

],

[CertrKeyReq = CertrKeyReq
Z−X

], . . .}

Ld liability type for data liability

Lt liability type for transaction liability

Li liability type for identity liability

LiabAmount amount of a liability item

LiabCondition condition under which a liability item becomes effective

LiabVerifier identifier of entity trusted to verify a LiabCondition

LiabZ−X liability taken by the certifier; consists of zero or more liability items

as defined in [24]

={{LiabTp = {Ld|Lt|Li}, LiabAmount = . . . , LiabCondition = . . . , LiabVerifier = . . .}∗}

LiabReqZ−X (in CertZ−X of type CERTREQ) liability requested by the certifier of CertZ−X to be present in

the requested certificate; same structure as LiabZ−X

= SPKey
Y

(for Z = Y ), = IPKey
Y

(for Z = Yi)

CertrKeyReqZ−X (in CertZ−X of type CERTREQ) public issuing key of requested certificate

Figure 14: Generic Certificate Format
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• Y and X belong to different entities. This is the case of a traditional certificate where an entity Y
certifies a key or set of keys for another entity X .

CertdKeysZ−X (Z standing for Y or Y i) may thus contain a signature public key SPKeyX associated with
entity X , or any special-purpose keys. Note that also public encryption keys could go here; they are however
not used in this report.

AttrsZ−X contains all the attributes and liabilities associated with CertZ−X . The only mandatory element
in AttrsZ−X is a field CertTp indicating whether CertZ−X is a traditional certificate (CertTp=CERT), a cer-
tificate request (CertTp=CERTREQ) or a self-signed certificate (CertTp=SELFCERT); other fields are optional
and their presence may depend on this CertTp.

The names (identities) of certifying entity and certified entity may also belong in AttrsZ−X . We will however
consider public keys to be (pseudonym) identities; we will thus not explicitly mention identities in certificates.
Also protocol and role identifiers as used in [24] are not anymore explicitly mentioned; they can be assumed
to be captured by the combination of key types and liability conditions.

Other attributes may be defined on a per-application basis. E.g., in the example in Section 9.3, creden-
tial issuing organizations include addressing information, access control rules and contract information as
attributes in their self-signed certificates. LiabZ−X is the liability taken by the certificate issuer for the cer-
tified key(s). In case the certificate is of type CERTREQ, the issuer (signer) of a certificate request is the user
requesting the certificate, and LiabZ−X is the liability of the user for the public key on which he requests a
certificate of type CERT. In that same case, LiabReqZ−X may indicate the desired liability in the requested
certificate; and CertrKeyReqZ−X indicates the desired issuing public key (and implicit issuer’s identity) of
the requested certificate.
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