
RZ 3531 (# 99544) 01/23/04
Electrical Engineering 4 pages

Research Report

On Networking Multithreaded Processor Design:
Hardware Thread Prioritization

Andreas D̈oring and Maria Gabrani

IBM Research GmbH
Zurich Research Laboratory
8803 R̈uschlikon
Switzerland
{ado,mga}@zurich.ibm.com

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available
at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich



ON NETWORKING MULTITHREADED PROCESSOR DESIGN: HARDWARE

THREAD PRIORITIZATION

Andreas Döring and Maria Gabrani
IBM Zurich Research Laboratory

Säumerstrasse 4, CH-8803, Rüschlikon, Switzerland
{ado, mga}@zurich.ibm.com

Abstract– Packet processing applications in network-

ing equipment must fulfill very high throughput require-

ments. At the same time, packet processing differentia-

tion by means of packet classification, such as voice vs. e-

mail, or DiffServ, must be obeyed. An efficient way to ful-

fill both requirements is to use numerous hardware threads

combined with thread prioritization. This paper proposes

a new thread prioritization method for a hardware multi-

threaded processor. The originality of the method is iden-

tified in the derivation mechanism of the thread priori-

ties, which is based on inputs from three distinct sources;

namely, the threads themselves, a control unit such as

an operating system, and external sources such as timers

or synchronization coprocessors. These sources are ex-

plicitly selected to fulfill the requirements of their distinct

nature, namely software, middleware and hardware. The

proposed method achieves the desired thread differentia-

tion without hindering performance or increasing costs,

as demonstrated by initial experimental results.

I. Introduction

The main drivers for hardware multithreading are the
reduction of the time a thread stalls and of the number
of context switches as well as the increase of the average
utilization of a processor’s computation units. A thread
stalls while waiting for a response from the memory or a
coprocessor or due to synchronization issues. This delay
is imposed by the increasing gap between the processor
cycle frequency and the memory and communication la-
tency. Software multithreading can reduce the stalls but
with coarser response times. Context switches are expen-
sive and should be performed only when no other option
exists. In a processor an average of 10% of its compu-
tational units are used. With hardware multithreading
and the appropriate scheduling, the average utilization
of the computational units increases.
In a processor or processor core with hardware mul-

tithreading support (MTP), several threads can be exe-
cuted concurrently. The threads that are not stalled com-
pete for the processing resources such as arithmetic-logic
units or memory interfaces. This competition has to be
resolved by selecting a thread whose instructions will be
executed next. In such processors, if there is no control
over the way instructions are issued, a single thread can
be executed slower than it would be on a single-threaded
processor system.
MTPs are typically designed for systems with real-time

constraints, such as network and media processors. In
these fields the execution time requirements of threads

may vary depending on several issues. In many systems,
tasks of varying importance are assigned to the threads
of a processor. For example a control task is typically
more urgent than a data-processing task. The real-time
requirements may be quite diverse. For instance, the la-
tency of voice samples in an intermediate network system
is more critical than that of an e-mail. Similarly, quality-
of-service demands that certain tasks be prioritized over
others. Therefore it is important to guarantee thread
execution differentiation.

These requirements are even more eminent for proces-
sors in the networking domain, such as network proces-
sors and controllers. Reasons for this include the opera-
tional time horizon of these processors, which is ruled by
the Gb/s rates, the additive latency per node, and the
cost of buffer space, among others. To that end, a mecha-
nism that controls the way instructions are issued from
threads is of high value. This instruction selection me-
chanism has to guarantee that the most important tasks
are executed first. At the same time, the effort of the con-
trol of instruction selection should be very low, because
it impacts the total amount of processing capacities for
the application.

Accordingly, the problem this paper deals with is
twofold: first, how to define an effective thread priori-
tization scheme and, second, how to do so at minimal
cost.

The paper answers the first question by (a) considering
three separate sources that influence the priority of a
thread in a distinct way, and (b) by introducing a novel
way of combining these sources to create a priority value
for each thread, called the physical priority. This value
is used by the instruction issue unit in the processor.
The three sources are the application, a processor control
unit, for example as part of an operating system, and
the external input, all of which meet the requirements of
their different natures, namely software, middleware and
hardware.

The paper answers the second question by (a) design-
ing a hardware component that realizes the thread prio-
ritization method described above, and (b) designing the
component in such a way that the overall cost is limited.

The paper is organized as follows. We start by out-
lining the related work. In Section II we introduce
the proposed method for hardware thread prioritization.
Implementation issues of the method are described in
Section III. The simulator used and the first results
on thread differentiation, performance and cost are dis-
cussed in Section IV. We close the paper in Section V



with a summary and directions for further study.

A. Related work

Only recently have multithreaded processors appeared
in products, especially in network processors, e.g., [1],
[4]. When there are few threads, the priority control is
less important, because the probability that more than
one thread is not stalled is strictly lower. Nevertheless,
the use of priorities for instruction selection has been
discussed but the aspect of low overhead for the software
was not considered.

The current methodologies investigated and discussed
in the literature concentrate on improving the overall
throughput of a multithreaded processor, e.g., [6], [10].
In the area of thread selection few solutions based on the
notion of thread prioritization exist. Those that exist
are mainly based on software mechanisms, e.g., [9]. The
state-of-the art study revealed only few hardware solu-
tions. These solutions are either highly software depen-
dent [5], or they use thread prioritization for performance
enhancement and not for guaranteed thread differentia-
tion [2], [3], [10].

II. The ACE Method

We have devised a thread-selection mechanism that de-
termines the physical priorities of threads from three dis-
tinct sources; namely the Application, the Control unit
and External, ACE. Each of these sources has a unique
knowledge of the various contributors to the system’s per-
formance.

More specifically, let us assume that the normal execu-
tion of a thread uses a medium priority from the view of
the thread. In some situations the thread may know that
the following execution is of lower priority, for example
when the thread requests an external resource it will need
at a later point and has other work to do first. In such a
case it may be favorable to run the thread with a lower
priority, and therefore normally with a lower instruction
rate, instead of running it first with normal priority and
then having to wait, for the requested item. In contrast,
when the thread has occupied a critical resource, such as
a semaphore of a frequently used data object, it can in-
crease its priority to a higher level to reduce the pressure
on this resource.

This can be accomplished by adding a single instruc-
tion. This instruction can be introduced either by the
programmer or automatically by a tool based on a for-
mal program analysis of profiling results from simulated
or actual execution runs. To allow all threads to exe-
cute the same code and reduce the overhead of the prio-
rity modification, a uniform way of accessing the thread’s
priority contribution is desirable. This is accomplished
by means of dedicated registers accessed via existing in-
structions, e.g., special-purpose registers (SPR) or device
control registers (DCR) in a PowerPC processor [8]. The
idea is that all threads use the same register number and
the hardware incorporates the identity of the thread that
executed the instruction.

(a) (b)

Figure 1
(a) Range of physical priorities for a single thread; (b) relative

priority ranges for multiple threads;

However, a thread usually does not know which other
threads run on the same processor. Therefore, there may
be threads with tasks of much higher or lower impor-
tance. To take this into account, a control unit that
controls the threads on the processors sets basic bi and
maximum mi priorities for each thread i, see Figure 1.
The maximum priorities are used to ensure that one tread
will not starve the others. The basic priorities assist in
maintaining a balance among the relative thread prior-
ities assigned by the control unit. If the priority value
set by the thread itself is si, the resulting priority is
ri = min(mi, bi + si).
The third contribution before the physical priority is

determined comes from external sources. One example
is a synchronization coprocessor. When it detects that
another thread requests a semaphore occupied by the
considered thread i, it may boost the priority temporarily
over the normal bound mi. In line with the mechanism
employed for the threads’ contribution, the control unit
introduces one more register ai. If the value delivered
from the external source is ei, the contribution to the
physical priority is pi = min(ai, ei)+ri, with ri as above.
Note that the maximum priority a thread can reach this
way is mi + ai. If several external sources are used, their
values can be combined either by adding them or using
their maximum.
We use the above sources to derive a physical priority

for the threads of a system. Note that this thread priori-
tization is possible at different stages of the thread execu-
tion, namely instruction fetch, instruction decode, regis-
ter rename, operand fetch, instruction dispatch, instruc-
tion issue and instruction completion. In other words,
the method we propose is processor architecture inde-
pendent, as illustrated in Figure 2, where we use the
processor architecture of [10].
The proposed component ACE communicates with the

CPU, i.e., application and control unit, by providing
thread priorities to the instruction selection and by re-
ceiving values from the CPU and from external sources.
Values can be transferred from the CPU to the ACE
component via registers in the proposed component. As
described above, the application software and the con-
trol unit may communicate with the proposed structure
by using existing instructions such as load and store or
access to dedicated registers. Otherwise, the communi-
cation can take place by mapping the control registers.



Figure 2
The ACE component and its interaction with an MTP.

III. The ACE Component

The proposed ACE component comprises a basic struc-
ture, which consists of a set of registers for storing the
contributions of the several inputs, two adders, and two
minimum functions; see Figure 2. This structure is re-
peated for every hardware context in the processor. The
registers, adders and minimum functions work on bit vec-
tors of a common resolution w. An appropriate value for
the resolution depends on the intended applications and
the number of threads. A range of 8 to 16 is expected
to be appropriate. As the priorities are defined in terms
of relative numbers, the desirable resolution can be at-
tained with a resolution-setting circuit such as a rounder
or a sorter.
In Figure 2 each register (bi, ai, mi) is drawn twice.

This illustrates a proposed feature of the prioritization
component of containing several sets of registers that can
be switched very fast. In this way in exceptional situa-
tions, e.g., error handling, an appropriate configuration
can be established very quickly. The previous configura-
tion used for normal operation is conserved and can be re-
activated after the exceptional situation is resolved. In a
network processor, there is frequently a control point that
supervises numerous other processors and may switch be-
tween the normal and the exceptional operation register
set for some or all processors.

IV. Experimental Results

Several questions have to be answered to demonstrate
the value of the ACE approach for a given application.
The most important questions are: (a) How strong is
the steering impact of the priorities on a complex multi-
issue superscalar processor core? (b) Is the total through-
put impacted by the preference of a particular thread?
(c) How does the priority-based thread selection relate

Figure 3
Three cases of thread differentiation.

to other instruction selection policies, e.g., in- or out-of-
order instruction issue completion?

In order to emphasize the processor independence of
this approach, we used an abstract simulation model
based on a stochastic instruction stream (compare with
[7]). Only the instruction issue, execution and com-
pletion are really simulated, whereas the instruction
fetch, decoding and register renaming are covered by the
stochastic model. The model of an instruction stream
consists of a circular sequence of phases, in which each
phase is characterized by the distribution of instruction
types (e.g., load instruction or integer instruction) and
the access probabilities for source and destination reg-
isters. The processing resources and timing (number of
pipelines, acceptable instruction types per pipeline, size
of issue buffer, issue and completion width etc.) can be
configured via parameter data sets provided as an input
to the simulator.

With respect to questions (a) and (b), Figure 3 shows
the performance of eight threads for in-order issue/in-
order completion(II), out-of-order-issue/in-order comple-
tion (OI), and both out-of-order issue and comple-
tion(OO). As can be seen in all three cases the perfor-
mance in terms of completed instructions per cycle (IPC)
is highest for the thread with the highest priority and
monotonically decreases towards lower priorities. That
is, the priorities (applied only at instruction issue) are
effective in controlling which thread achieves the high-
est performance. The more freedom there is regarding
the selection of instructions (out-of-order issue and/or
completion), the stronger the effect, whereas the total
performance remains constant (1.90, 1.92 and 1.94 IPC
for the three issue/completion policies). The same ap-
plies for the percentage of discarded instructions due to
mispredicted branches (0.34 for II, 0.29 for OI and OO).

In another simulation series (Figure 4) we modify the
number of active threads. As can be seen, the perfor-
mance of the highest-priority thread stays nearly con-
stant while the total throughput is increased. Only for
a higher number of threads is a decrease of the highest
priority thread observed. The cause of this could be ana-
lyzed to lie in the constant number of slots for outstand-
ing loads. If the percentage of loads with cache misses
is decreased or the number of load slots is increased, the
competition for the load slots is reduced, and there are



Figure 4
Total performance and performance of highest priority thread for

different thread numbers.

fewer stalls at the load/store pipelines. We think that
such a resource increase is a better solution than applying
priorities within the pipelines. However, we plan more
simulations to explore this issue. The applied workload
for the results shown here is synthetic, oriented toward
in-house experience and the CommBench [11]. The com-
parably low instruction rate is due to the combination of
a high fraction of load instructions with data cache misses
(1%) and the memory latency of 120 clock cycles. These
assumptions are based on the expected clock frequency
of 6 GHz in the next generation of processor cores and
the cost-motivated use of standard memory (SDRAM),
which is also used by other units. Simulations with lower
memory latency (not presented here owing to space lim-
itations) show an expected higher performance for the
first thread, and consequently nearly reach the limit of
three IPC imposed by the assumed issue width.
The prototype implementation with 10-bit resolution

of the ACE unit in 0.13 µm CMOS standard cell tech-
nology required 0.015 mm2 area per thread including the
cost for the insertion sorter. This indicates that the cost
implied by the ACE approach itself is very low compared
to the cost for each thread in the processor core (e.g., reg-
ister set), which is considerably higher. Due to the lower
clock frequency in the ACE unit the power consumption
is not an issue.

V. Conclusions

We have introduced a novel thread prioritization me-
chanism, called ACE, that combines three sources to in-
fluence a thread’s priority in a distinct and unique way.
The three sources are the application, a control unit, and
external input that meet the requirements of their differ-
ent natures, namely software, middleware, and hardware.
The input of these sources is structured in such a way
that differentiation between threads can be obtained in
a relative way, which considerably simplifies the decision
and input update process. The impact of the various
sources on each thread’s priority can be controlled by a
control unit, e.g. operating system, without invoking the
control program after every change of a source’s contri-
bution. This is done by assigning soft priority ranges
per thread. The priority ranges are restricted by hard
bounds to avoid thread starvation. The priorities used
for instruction selection can be modified from the men-

tioned sources with minimal software or hardware effort.
The ACE method is processor architecture independent
and can be introduced to a core with low design effort. It
can be used with a wide range of hardware thread num-
bers and a selected number of sources to accommodate
different customer requirements.
We have presented initial experimental results. We

have implemented a stochastic model of the architecture
of [10] and a preliminary version of the ACE mechanism
that incorporates only the input from the control unit.
Our simulation results clearly illustrate that the ACE ap-
proach achieves stronger and guaranteed differentiation
of threads with different priorities without impairing the
processor’s performance.
Our initial results are promising. We are currently

working towards adding the other two sources in our si-
mulator. We also intend to test the ACE method with a
more accurate processor model. Finally, we aim to com-
bine our approach with existing performance-boosting
and cost-reducing techniques, such as those presented in
[3] and [10], to evaluate their co-functioning.

VI. Acknowledgments

The authors thank Patricia Sagmeister for her valuable
input on system modeling and performance evaluation.

VII. References

[1] Adiletta, M., Rosenbluth, M., Bernstein, D., Wolrich, G.,
and Wilkinson, H., “The Next Generation of Intel IXP Net-
work Processors”, Intel Technology Journal, Vol. 06, No. 03,
August 15, 2002.

[2] Brinkschulte, U., Kreuzinger, J., Pfeffer, M., and Ungerer,
T., “A Scheduling Technique Providing a Strict Isolation of
Real-time Threads”, Proc. of Seventh IEEE International
Workshop on Object-oriented Real-time Dependable Systems
(WORDS’02), San Diego, CA, January 7-9, 2002.

[3] Dorai, G., K., Yeung, D., and Choi, S., “Optimizing SMT
Processors for High Single-Thread Performance”, Journal of
Instruction Level Paralellism, Vol. 5, April 2003, pp. 1-35.

[4] IBM Corporation, “Network Processor 4GS3 Overview”, Ap-
plication Note, October 1999.

[5] Kimura, K., Kiyohara, T., and Yoshioka, K., “Multithreaded
Processor for Processing Multiple Instruction Streams Inde-
pendently of Each Other by Flexibly Controlling Throughput
in Each Instruction Stream”, US Patent 6105127, Aug., 1997.

[6] Luo, K., Mukherjee, S., S., and Senze, A., “Boosting SMT
Performance by Speculation Control”, Proc. of 15th Int. Par-
allel and Distribited Processing Sysmposium (IPDPS’01),
San Francisco, CA, April 23-27, 2001.

[7] Nussbaum, S., and Smith, J., E., “Modeling Superscalar
Processors via Statistical Simulation”, Proc. of Int. Confer-
ence on Parallel Architectures and Compilation Techniques
(PACT’01), Barcelona, Spain, September 8-12, 2001.

[8] www.ibm.com/chips/techlib/techlib.nsf/productfamilies/
/PowerPC

[9] Snavely, A., Tullsen, D., M., and Voelker, G., “Symbi-
otic Jobscheduling with Priorities for a Simultaneous Mul-
tithreading Processor”, Proc. of Int. Conf. on Measurement
and Modelling of Computer Systems (Sigmetrics 2002), Ma-
rina Del Rey, CA, June 15-19, 2002.

[10] Tullsen, D., M., Eggers, S., J., Emer, J., S., Levy, H., M., Lo,
J., L., and Stamm, R., L., “Exploiting Choice: Instruction
Fetch and Issue on an Implementable Simultaneous Multi-
threading Processor”, Proc. of the 23rd Int. Symposium on
Computer Architecture (ISCA’96), Philadelphia, PA, May
22-24, 1996, pp. 191–202.

[11] Wolf, T., and Franklin, M., “CommBench - a telecommuni-
cations benchmark for network processors”, Proc. of IEEE
Int. Symposium on Performance Analysis of Systems and
Software, Austin, TX, Apr. 2000, pp. 154-162.


