
RZ 3534 (# 99547) 01/26/04
Electrical Engineering 62 pages

Research Report

The ZRL High-Speed Wireless LAN Testbed:
OFDM Physical Layer Architecture and Implementation

Simeon Furrer, Jens Jelitto, Wolfgang Schott, and Beat Weiss

IBM Research GmbH
Zurich Research Laboratory
8803 R̈uschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report will be distributed outside of IBM up to one year after the IBM publication date.
Some reports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich

1 of 62

The ZRL High-Speed Wireless LAN Testbed:

OFDM Physical Layer Architecture

and Implementation

Version 1.0
01/22/2004

Simeon Furrer, Jens Jelitto, Wolfgang Schott, and Beat Weiss

IBM Zurich Research Laboratory, 8803 Rüschlikon

Abstract

A prototype of a broadband wireless LAN with three mobile stations has been
designed and built at the IBM Zurich Research Laboratory. Each station operates in
conformance with the IEEE 802.11a WLAN standard and comprises a 5-GHz radio
frontend realized with analog vendor components, a digital baseband implemented in a
FPGA, and a medium-access control executed on an ARM9 embedded processor. This
document describes the architectural design of the OFDM-based physical layer and
provides details on the implementation of the analog radio frontend, the digital baseband
and its interface to the MAC.

2 of 62

1 Introduction

In the next generation of IP-based mobile communication systems, broadband radio
LANs will enable a variety of new wireless services and applications in the office, at
home, and on the move. High-speed wireless communication between mobile and control
stations will be required to bring the tremendous amount of information provided by the
World Wide Web to the mobile user. In addition, the provision of high-speed data
services as well as multi-media entertainment applications in hot-spot cells, such as
conference centers, airports, hotel lobbies, and similar public places, will continuously
gain in importance.

In the United States, broadband radio LANs have been specified in the IEEE 802.11a

standardization group [1]. The 802.11a wireless LAN will satisfy the increasing
bandwidth demand by providing data rates up to 54 Mbit/s. The radio is operated in
frequency bands between 5.1 and 5.8 GHz. The physical layer transmission scheme
applies Orthogonal Frequency Division Multiplexing (OFDM) with variable-rate
modulation and coding, allowing selectable user data rates between 6 and 54 Mbit/s. In
OFDM-based systems [2], the user data stream is split into parallel streams of reduced
rate, which are then modulated on separate subcarriers. By appropriately choosing the
frequency spacing between subcarriers, the carriers are made orthogonal, allowing some
spectral overlap between the subchannels, which leads to a better spectral efficiency than
using simple frequency-division multiplexing. OFDM is especially attractive for high-
speed wireless LANs because it is robust against multi-path propagation, intersymbol
interference, and against narrowband interference. Access to the radio channel by
multiple users is controlled by a Carrier Sense Multiple Access / Collision Avoidance
(CSMA/CA) scheme as defined in the 802.11 Medium Access Control (MAC) protocol
[3]. This Ethernet-like protocol allows an easy integration of the radio LAN into an IP-
based backbone network.

We have designed and implemented an 802.11a WLAN testbed at the IBM Zurich

Research Laboratory (ZRL). The testbed consists of three standard compliant mobile
station prototypes operated without centralized control (ad-hoc mode). Each mobile
station comprises a radio frontend, a digital baseband/MAC unit, and an interface to a
host computer as illustrated in Figure 1.1.

Figure 1.1: 802.11a WLAN mobile station prototype (overview)

PC
Interface Micro

Controller
FPGA

Digital Baseband and
Medium Access Control

ARM 9
Controller

FPGA

host
RF

Frontend

 3 of 62

This report describes the OFDM-based physical layer (PHY) design and implemen-

tation of the mobile station prototype of the high-speed ZRL WLAN testbed. Section 2
presents the overall architecture of the mobile station. We also describe the partitioning
of the prototype into several functional units and their mapping onto commercially
available hardware and software components. In Section 3, we focus on the physical layer
architecture. The interface between the physical layer and the MAC is specified, and
basic PHY procedures are discussed. Section 4 provides details on the design and
implementation of all signal-processing units required to implement the transmit (TX)
and receive (RX) functions of the digital baseband. Finally, Section 6 deals with various
implementation aspects of the radio frontend.

 4 of 62

2 WLAN Mobile Station Architecture

The ZRL high-speed WLAN prototype consists of three 802.11a-conform mobile

stations. Each station has been implemented with a radio frontend, digital baseband/MAC
unit, and peripheral personal computers, as indicated in Figure 2.1.

Digital Baseband and
Medium Access Control

ARM Logic Module XCV2000E

ARM Integrator/AP Board

ARM Core Module CM920T EMT

host

PCI-PCI

debug

Ethernet RS232

Multi-ICE

JTAG

RF
 Frontend

PCI/host
bridge

SRAM/
Flash

PC
I S

lo
t

PCI bridge
controller

AHB/APB
bridge

IRQ
timer

UART

AHB system bus

PCI bus

AP
B

pe
rip

he
ra

l b
us

ARM Integrator/AP Board

AHB system bus

SSRAM/
Flash

ARM Logic Module

Xilinx
XCV2000E

control

I/Q out

I/Q in

AHB system bus

ARM920T

AHB/
AHB
Bridge

SRAM
DRAM

AHB memory bus

ARM Core Module

ADC

DAC

RF Interface
Board

Analog Discrete
Components

PAmixer

LNAVCO

filter

Figure 2.1: 802.11a WLAN mobile station prototype

A 5-GHz radio frontend has been designed with discrete vendor components. It has

been implemented on two boards: one comprises all analog components required such as
low-noise amplifier (LNA), power amplifier (PA), synthesizer, mixer, and filters, while
the other mainly carries the digital-to-analog (D/A) and analog-to-digital (A/D)
converters. The frontend is attached to ARM development boards via two digital data I/O
interfaces and one control interface. The latter can be used to program the frontend so
that the radio signals are emitted in one of the eight pre-defined channels in the
lower/middle U-NII frequency band (see Figure 2.2).

The digital baseband/MAC unit has been implemented on three ARM development

boards, namely the integrator/AP board, the core module CM920T-ETM, and the logic
module LM-XCV2000E [4].

The core module executes the MAC protocol firmware on the real-time operating

system VxWorks on an ARM920T embedded controller, which can access, via a memory
bus, local memory that stores the 802.11 MAC firmware, and via a bridge the system bus
to communicate with components located on the integrator board and logic module.

 5 of 62

f [GHz]
5.15 5.18 5.20 5.22 5.24 5.26 5.28 5.30 5.32 5.35

U-NII lower band U-NII middle band

U-NII=Unlicensed National Information Infrastructure

Figure 2.2: Frequency channels of 5 GHz radio frontend

The logic module mainly carries a XILINX XCV2000E FPGA. On this device, digital

signal-processing functions are implemented that are required to transmit and receive
OFDM frames over the air interface, to communicate asynchronously via the AHB
system bus with the MAC, and to control the radio frontend. More details on the physical
layer functions implemented in the FPGA are given in Figure 2.3.

Xilinx XCV2000E

PHY OFDM TX chain

PHY OFDM RX chain

TX
FIFO

RX
FIFO

AHB system bus

AHB bus
decoder

AHB
slave
PHY

IRQ
control

PHY finite state
machinesync

radio
frontend
interface

unit

clock
generator

AHB slave
RAM

controller

AHB clk
domain

RF clk
domain

control

I/Q out

I/Q in

Figure 2.3: Physical layer functions implemented in FPGA

The integrator board mainly provides I/O and control functions to attach peripherals to

the AHB system bus. The ARM development boards have been connected via an
Ethernet card, a serial link, and a JTAG interface to a computer for downloading the
MAC code to the memory, to program the FPGA, and to debug the prototype. Typical
wireless applications can be executed on a host computer that can be connected to the
integrator board via a PCI-PCI bridge.

 6 of 62

3 Physical Layer Architecture

The physical layer has been architected so that it complies with the 802.11a standard
and can be efficiently implemented with commercially available hardware components.
In this Section, we give an overview on the PHY architecture selected, specify the
PHY/MAC interface with abstract service primitives, and describe the behavior of the
physical layer by means of the receive and transmit procedures.

3.1 Overview

Figure 3.1: Physical layer functional architecture

Figure 3.1 shows an overview of the functional architecture of the physical layer,

which consists of the digital baseband and the radio fontend. The digital baseband
comprises the TX chain, the RX chain with demodulation/equalization unit and the
inner/outer receiver, and a finite state machine (FSM) controlling the operation of the

Radio-Frontend

Demodulation
Equalization

Radio Frontend Transmitter

Outer Receiver

Inner Receiver

P
ac

ke
t c

om
po

se
r

S
cr

am
bl

er

C
on

vo
lu

tio
na

l
E

nc
od

er

P
un

ct
ur

in
g

In
te

rle
av

er

S
ub

ch
an

nl

M
ap

pi
ng

W
av

ef
or

m
 s

ha
pe

IF
FT

G
ua

rd
 in

te
rv

al

in
se

rti
on

D
A

 c
on

ve
rs

io
n

IQ
 m

od
ul

at
io

n

D
e-

S
cr

am
bl

er

V
ite

rb
i D

ec
od

er

D
e-

P
un

ct
ur

in
g

D
e-

In
te

rle
av

er

D
em

ap
/L

LR
C

om
p

In
ne

r r
ec

ei
ve

r

IQ
 d

em
od

ul
at

io
n

P
ac

ke
t

D
ec

om
po

se
r

E
qu

al
iz

at
io

n

 PHY TX state machine

 PHY RX state machine

Pilot Preamble

parameters
Sync (timing, freq)
Gain control (AGC)

Guard removal

Channel-
Estimation &

Tracking

FF
T

M
ix

/D
ow

ns
/F

ilt
er

A
D

 c
on

ve
rs

io
n

P
H

Y
 (S

A
P

)
st

at
e

m
ac

hi
ne

 7 of 62

physical layer. These functions are implemented in the FPGA on the logic module as
illustrated in Figure 2.3.

To facilitate the understanding of the subsequent sections, a high-level overview on

the functions implemented in the PHY TX and RX chain is given. Some technically
important details are skipped on purpose.

When the MAC executed on the ARM controller requests the transmission of a PHY

Service Data Unit (PSDU) with a given data rate and length, the payload and physical
layer control information are clocked via the AHB system bus into the TX FIFO buffer
and control registers (see Figure 2.3). After all control fields have been written, the
physical layer FSM activates, configures, and triggers the OFDM TX chain. The data
provided by the MAC is clocked from the TX FIFO into the TX chain. The packet
composer maps the PSDU into a PHY Protocol Data Unit (PPDU), which also comprises
the PHY Convergence Protocol (PLCP) header with the DATARATE and PSDU
LENGTH field. The data field of the PPDU is scrambled, encoded, punctured, and
interleaved (see Figure 3.1). The data symbols are then mapped on complex symbols
according to the modulation scheme chosen before they are modulated on subcarrriers.
Some carriers are skipped for subsequently inserting pilot signals. The modulation can be
implemented efficiently by performing a 64-point Inverse Fast Fourier Transform (IFFT).
The number of samples at the output of the IFFT is further increased to 80 by inserting a
guard interval (cyclic extension). The samples are then parallel-to-serial converted and a
PLCP preamble is put in front for receiver training. Filtering can then be applied to shape
the waveform. Next, the preamble and samples are D/A-converted, I/Q-modulated, up-
converted to the 5-GHz frequency band, amplified and finally transmitted over the air.
Details on the implementation of the functional units of the TX chain are given in Section
4.2.

When a radio signal is received at the antenna, it is amplified with an LNA, down-

converted to an intermediate frequency band, I/Q-demodulated, and A/D-converted. The
analog signal is over-sampled by a factor of two. Filtering and down-sampling to the
baseband are performed before the digital samples are fed to the inner receiver that
exploits known features of the PLCP preamble for detecting signal reception, adjusting
the gain of the received signal, compensating frequency offsets, and removing the guard
interval. After serial-to-parallel conversion, the 64 subcarriers of the OFDM signal are
demodulated by using a Fast Fourier Transform (FFT). Channel estimation and
equalization are then performed to remove some adverse effects of the radio channel. To
apply soft-decision Viterbi decoding for estimating the transmitted data sequence, the
input samples to the Viterbi decoder are pre-processed in the Log-Likelihood Ratio
(LLR) computation, de-interleaving, and de-puncturing unit. After de-scrambling the
decoded data, the packet decomposer reconstructs the likely transmitted PSDU, stores it
into the RX FIFO, and sends an interrupt to the ARM controller (see Figure 2.3). The
interrupt triggers the execution of an interrupt service routine that immediately passes the
received packet and additional control data via the system bus to the MAC protocol.
Details on the implementation of the functional units of the RX chain are given in Section
4.3.

 8 of 62

3.2 Physical Layer Service Primitives

The physical layer provides a set of services to the MAC layer, which are abstractly

described by means of PHY service primitives in the IEEE 802.11 specification [1, 3].
Most of these services are implemented in the prototype in accordance with the standard
and are provided to the MAC at the PHY service access point (SAP). This Section
documents the implementation differences compared with the IEEE specification.

PHY_TXSTART.req(E_TX_VECTOR, TIMEPOINT)

The primitive PHY_TXSTART.req is a request by the MAC to the PHY to start a packet
transmission. The parameter list E_TX_VECTOR is an extended version of the
TX_VECTOR as defined in [1] and includes all information necessary for a packet
transmission. The parameters are defined in Table 3.1. A packet transmission is started at
the point in time indicated by the parameter TIMEPOINT (see Table 3.2).

Table 3.1: E_TX_VECTOR parameters

Parameter Type Explanation
LENGTH INTEGER PSDU length (including

CRC): 0-4095 (12 bits)
DATARATE CHAR Data rate:

6,9,12,18,24,36,48,54 Mbit/s
(see encoding rule in [1])

SERVICE BITSTRING Service field (16 bits)
TXPWR_LEVEL INTEGER Transmit power level:

1-8 (4 bits)
PSDU_HEADER CHARSTRING PSDU header
PSDU_PAYLOAD_POINTER CHARSTRING_PTR Pointer to PSDU payload
PSDU_PAYLOAD_LENGTH INTEGER PSDU payload length

Table 3.2: TIMEPOINT parameter

Parameter Type Explanation
TIMEPOINT UINT32 Point in time (time-stamp):

0-2^31-1 (32 bit)
TIMEPOINT=0; immediate execution

Implementation notes: The parameters LENGTH, DATARATE, SERVICE, and
TXPWR_LEVEL are written to dedicated control registers in the FPGA, whereas the
strings PSDU_HEADER and PSDU_PAYLOAD are consecutively written into the
TX_FIFO that has been flushed in advance. The parameter TIMEPOINT has to be
written to a dedicated control register in the FPGA after all other parameters have been
written.

 9 of 62

PHY_TXSTART.conf(TIMEPOINT)

The primitive PHY_TXSTART.conf confirms the reception of a primitive
PHY_TXSTART.req. The parameter TIMEPOINT is a time-stamp.

Implementation notes: The primitive is implemented with the interrupt EXP1 and the
interrupt service routine (ISR) intExp1SvcRou.

PHY_TXEND.req(TIMEPOINT)

The primitive PHY_TXEND.req can be used by the MAC to prematurely terminate a
packet transmission. The parameter TIMEPOINT is optional and is set by default to 0,
indicating immediate execution. All pending PHY_TXSTART.req�s are disabled if a
PHY_TXEND.req is issued.

Implementation notes: The function is not supported in the prototype.

PHY_TXEND.conf(TIMEPOINT)

The primitive PHY_TXEND.conf confirms the reception of a primitive
PHY_TXEND.req. The parameter TIMEPOINT is a time-stamp.

Implementation notes: The function is not supported in the prototype.

PHY_TXEND.ind(TIMEPOINT)

The primitive PHY_TXEND.ind indicates the end of a successful PHY packet
transmission. The parameter TIMEPOINT is a time-stamp. This primitive is not
standardized.

Implementation notes: The primitive is implemented with the interrupt EXP3 and the ISR
intExp3SvcRou.

PHY_CCARESET.req(TIMEPOINT)

The primitive PHY_CCARESET.req requests the PHY to reset the clear channel
assessment (CCA) finite-state machine. The parameter TIMEPOINT is optional and set
by default to 0, indicating immediate execution.

PHY_CCA.ind(STATUS, TIMEPOINT)

The primitive PHY_CCA.ind indicates an activity change on the wireless medium to the
MAC. The STATUS parameter is derived from the received signal strength indicator
(RSSI). Details are shown in Table 3.3. The parameter TIMEPOINT is a time-stamp.

 10 of 62

Table 3.3: STATUS parameter

Parameter Type Explanation
STATUS CHAR Status = 1: Indicates that the state of the medium

changed to BUSY (RSSI >= threshold).
Status = 0: Indicates that the state of the medium
changed to IDLE (RSSI <= threshold).

Implementation notes: The primitive is implemented with the interrupt EXP0 and the ISR
intExp0SvcRou. The ISR reads the STATUS parameter from a dedicated control register
implemented on the FPGA.

PHY_RXSTART.ind(E_RXSTART_VECTOR, TIMEPOINT)

The primitive PHY_RXSTART.ind indicates successful reception of the PLCP header to
the MAC. The parameter list E_RXSTART_VECTOR is an extended version of the
RX_VECTOR as defined in [1] and includes all necessary information for packet
reception. The parameters are defined in Table 3.4. The parameter TIME_POINT is a
time-stamp.

Table 3.4: E_RXSTART_VECTOR parameters

Parameter Type Explanation
LENGTH INTEGER PSDU length (including CRC):

0-4095 (12 bits)
RSSI INTEGER RSSI value
DATARATE INTEGER Data rate:

6,9,12,18,24,36,48,54 Mbit/s
(see encoding rule in [1])

SERVICE BITSTRING Service field: (16 bits)

Implementation notes: The primitive is implemented with the interrupt EXP1 and the ISR
intExp1SvcRou. The ISR reads all parameters from dedicated control registers
implemented on the FPGA.

PHY_RXEND.ind(E_RXEND_VECTOR, TIMEPOINT)

The primitive PHY_RXEND.ind indicates end of a PSDU reception. The parameter
E_RXEND_VECTOR associated with this primitive includes the parameters listed in
Table 3.5. The parameter TIMEPOINT is a time-stamp.

 11 of 62

Table 3.5: E_RXEND_VECTOR parameters

Parameter Type Explanation
NoError (=0): Complete PSDU
successfully received
CarrierLost (=1): A change of
the RSSI caused the CCA
status to return to IDLE before
complete PSDU reception
UnsupportedRate (=2): Rate
indicated in SIGNAL field is
not supported

RXERROR CHAR

FormatViolation (=3): PLCP
header can be received, but
parity check of the PLCP
header is invalid
NoError (=0): CRC check
successful

CRCERROR CHAR

Error (=1): CRC check failed
PSDU_HEADER CHARSTRING PSDU header
PSDU_PAYLOAD_PTR CHARSTRING_PTR Pointer to PSDU payload
PSDU_PAYLOAD_LENGTH INTEGER PSDU payload length

Implementation notes: The primitive is implemented with the interrupt EXP2 and the ISR
intExp2SvcRou. The routine requires a successful generation of the corresponding
PHY_RXSTART.ind message in advance. The RXERROR and CRCERROR parameters
are read from dedicated control registers on the FPGA. The PSDU header and payload
strings are generated by iteratively reading the RX_FIFO, and subsequently dividing the
string into header and payload according to the known lengths of header and payload.
The RX_FIFO is flushed by the ISR after its contents has been read.

3.3 Physical Layer Procedures

The behavior of the physical layer is controlled by the PHY top-level FSM depicted in

Figure 3.2. After switching the mobile station on or upon receiving a PHY_RESET.req
from the MAC, the physical layer is initialized and switched to the receive mode
indicated by the state s_PHYrx. A PHY_TXSTART.req issued by the MAC causes a
transition of the FSM to the state s_PHYtx. The transmit mode is terminated if the
physical layer signal sig_txend (end of transmission) occurs or a PHY_TXEND.req is
issued to stop transmission prematurely. In both cases, the FSM returns to the state
s_PHYrx to be prepared for receiving new packets over the radio channel.

The PHY top-level FSM can be further specified by the clear channel assessment

(CCA), transmit (TX), and receive (RX) state machines. These FSMs define all details of

 12 of 62

the PHY CCA, PHY TX, and PHY RX procedures; in the sequel, we will describe them
verbally.

Figure 3.2: Physical layer top-level finite-state machine

The PHY CCA procedure is executed while the receiver is turned on. Based on

received signal strength measurements performed by the radio frontend, the procedure is
used to determine whether the status of the radio channel is IDLE or BUSY. The CCA
FSM comprises two main states s_CCAidle and s_CCAbusy, indicating the last
monitored state of the radio channel. If the FSM toggles to a new state, the status of the
channel is reported with a PHY_CCA.ind to the MAC. The current channel status can
also be obtained by issuing a PHY_CCARESET.req.

The PHY TX procedure is illustrated in Figure 3.3. After the MAC has received a

clear-channel indication PHY_CCA.ind(IDLE), it can invoke the transmit procedure at
any time by issuing a PHY_TXSTART.req(E_TX_VECTOR, TIMEPOINT). Upon
receiving this primitive, the physical layer is switched in the time interval RX/TX from
the receive to the transmit mode, and is configured according to the E_TX_VECTOR
elements TXPWR_LEVEL and DATARATE. After switching, a PHY_TXSTART.conf
message is sent to the MAC, confirming the readiness of the TX chain.

At the time indicated by the parameter TIMEPOINT, the PHY starts transmitting the

PLCP preamble. Simultaneously, the MAC is informed with a PHY_CCA.ind message
about the change of the channel-medium status to BUSY. The generation of the PLCP

 13 of 62

header has to be started just in time to ensure that it can be seamlessly appended to the
preamble. The PLCP header contains the fields DATARATE (R), RESERVED (R),
LENGTH (L), parity (P), tail (T), and SERVICE (S), with the parity and tail bits being
generated in the PHY. All other parameters are elements of the E_TX_VECTOR. The
PLCP header is followed by the PHY service data unit (PSDU), comprising a PSDU
header and payload. It is extended with six tail bits, which are all set to zero. The
extended PSDU as well as the service field are scrambled and encoded in accordance
with the requested parameter DATARATE. To fit the number of coded bits into an
integer number of OFDM symbols, some PAD bits may be appended to the encoded
service data unit (C-PDSU).

Header PSDU Tail

Preamble R PadC-PSDUSR L P T

MAC

PHY

RF/
Air

PH
Y_

TX
ST

AR
T.

re
q

 (
E

_T
X_

VE
C

TO
R

, T
IM

EP
O

IN
T)

PH
Y_

TX
ST

AR
T.

co
nf

 (
TI

M
E

PO
IN

T)

PH
Y_

C
C

A.
in

d
 (

ST
AT

U
S=

Bu
sy

, T
IM

E
PO

IN
T)

Scrambling/
Encoding

PH
Y_

TX
EN

D
.re

q
 (

TI
M

EP
O

IN
T)

PH
Y_

TX
EN

D
.c

on
f

 (
TI

M
E

PO
IN

T)

PH
Y_

TX
EN

D
.in

d
 (

TI
M

EP
O

IN
T)

PH
Y_

C
C

A.
in

d
 (

ST
AT

U
S

=I
dl

e,
 T

IM
EP

O
IN

T)

Preamble Signal Data

RX/TX DO

Figure 3.3: Physical layer transmit procedure

The mapping of the PHY information fields to OFDM symbols is shown in the lower

part of Figure 3.3 and in more detail in Figure 3.4. The preamble consists of two 8-µs-
long frames. In the first frame, a training symbol of duration 0.8 µs is repeatedly
transmitted 10 times, while the second frame of the preamble consists of a 1.6-µs-long
guard interval (GI2) followed by two 3.2-µs-long training symbols. Both frames are
mainly used for signal detection, VGA gain adjustment, and for acquiring an initial,
coarse estimate of the frequency offset value at the receiver. After the preamble, the 4-µs-
long SIGNAL symbol and DATA symbols are transmitted. The SIGNAL symbol carries
the PLCP header without SERVICE field. It is transmitted with the most robust
combination of modulation and coding (6 Mbit/s). The 4-µs-long DATA symbols carry
the SERVICE field and the C-PSDU with PAD bits. The SIGNAL and each DATA
symbol also comprise a short guard interval (GI) of 0.8 µs in which a cyclic extension of

 14 of 62

the symbol is transmitted to eliminate intersymbol and intercarrier interference caused by
multi-path propagation.

signal detection,
VGA adjustment

coarse frequency
offset estimation,
timing estimate

channel estimation,
fine frequency
offset estimation,
symbol timing

 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 GI2 T1 T2 GI SIGNAL GI Data1 GI Data 2

rate
length

8 us 8 us 4 us 4 us 4 us

time

Figure 3.4: Training and data symbols of physical layer

The successful transmission of the packet causes a transition to the state s_PHYrx in
the PHY top-level FSM, which is indicated with a PHY_TXEND.ind. After a time
interval D0, a PHY_CCA.ind(IDLE) message reports to the MAC that the PHY is ready
to accept a new PHY_TXSTART.req. The MAC can always prematurely terminate the
TX procedure by sending a PHY_TXEND.req(TIMEPOINT).

H eader PSD U Tail

P ream ble R PadC -PSD USR L P T

M AC

PH Y

R F/
Air

PH
Y_

R
X

ST
AR

T.
in

d
 (

E_
R

XS
TA

R
T_

V
EC

TO
R

, T
IM

EP
O

IN
T)

P
H

Y_
C

C
A

.in
d

 (
ST

AT
U

S=
B

us
y,

 T
IM

EP
O

IN
T)

D ecod ing
D elay

P
H

Y_
R

XE
N

D
.in

d
 (

E
_R

X
EN

D
_V

EC
TO

R
, T

IM
EP

O
IN

T)

PH
Y_

C
C

A.
in

d
 (

ST
AT

U
S=

Id
le

, T
IM

EP
O

IN
T)

P ream ble S igna l D ata

D O D O

D 1

 Figure 3.5: Physical layer receive procedure

The PHY receive procedure is shown in Figure 3.5. When the PHY top-level FSM is

in the state s_PHYrx, the receive procedure is invoked upon detecting the reception of a
portion of the PLCP preamble followed by the PLCP header. In the case of receiving the
preamble, the radio frontend first reports a significant RSSI value change to the CCA

 15 of 62

FSM. As a consequence, a PHY_CCA.ind(BUSY) message indicates the channel-status
change to the MAC. In parallel, the received training symbols of the preamble are
compared with their known values and differences are compensated by adjusting the gain
of the received signal and correcting frequency offsets accordingly. After setting these
control parameters, the physical layer starts searching for end-of-preamble, indicating the
start of the PLCP header. The SIGNAL symbol is then decoded to determine the length
of the data stream to be received as well as the selected modulation type and coding
scheme. Once the SIGNAL symbol is decoded without errors, the proper demodulation
and decoding scheme is enabled to receive the OFDM data symbols carrying the encoded
PSDU header and payload. The first symbol also carries the SERVICE field. If all PLCP
header fields have been successfully received, a PHY_RXSTART.ind
(E_RXSTART_VECTOR, TIMEPOINT) is issued to the MAC. The parameters
associated with this primitive include the length of the PSDU, the RSSI, the data rate, and
the service field. By decoding all OFDM data symbols, the PSDU is reconstructed. After
removing the tail bits, the PSDU header and payload are transferred with a
PHY_RXEND.ind (E_RXEND_VECTOR, TIMEPOINT) message to the MAC. This
primitive is also used to report abnormal termination of the receive procedure to the
MAC. After the reception of the last OFDM symbol, the status of the radio channel will
usually transit to IDLE. Owing to decoding delay in the physical layer, this change will
be indicated to the MAC with a PHY_CCA.ind(IDLE) primitive before the
PHY_REXEND.ind is issued.

 16 of 62

4 Digital Baseband Implementation

The digital baseband of each 802.11a-conform mobile station of the ZRL high-speed
wireless LAN testbed has been implemented on a XILINX FPGA. In each prototype
implementation, all digital signal-processing functions required to transmit and receive
802.11a OFDM packets over the radio interface have been implemented. To fit all
functions into the FPGA and to satisfy stringent timing requirements, each functional unit
has been designed with respect to low gate-count and low latency. Moreover, an efficient
inter-block communication mechanism has been applied.

This section will first introduce the communication mechanism applied between

neighbor functional units in the PHY transmit and receive chain. Afterwards, details on
the design and implementation of the various hardware modules will be given. Finally,
latency issues will be discussed.

4.1 Inter-Block Decentralized Communication

To keep the control overhead for the large number of signal-processing units in the TX
and RX path small, a decentralized control architecture has been chosen. Every signal-
processing unit shall be able to work as autonomously as possible and exchange data bits
from/to the preceding/subsequent functional units whenever possible. A simple
handshake protocol was designed to coordinate the one-way data communication from a
first unit, called the �producer,� to a second unit, the �consumer�.

Whenever the producer unit has a valid data on its data output line (DATA), the
request line (REQ) is driven high to indicate a data transfer request. The acknowledge
(ACK) line is driven high by the consumer unit as soon as data can be accepted. The data
transfer is executed on the rising clock edge whenever REQ and ACK are high. This
handshake protocol allows zero latency, synchronous data communication at clock speed.
In the following, we highlight two templates from which most of the signal-processing
units were derived.

The first template is suitable for units that process data serially (or with low latency)

and is depicted in Figure 4.1. In normal operation mode, this unit produces a latency of
one clock cycle due to the input register (Ri). If the subsequent unit is unable to accept
data (ACK_IN low), the unit FSM changes the multiplexer positions to add a temporary
register (Ro) storing the current output data. The FSM will drive ACK_OUT low in the
next clock cycle and stop the data processing. When ACK_IN reaches high again, register
Ro is emptied and �removed�, and the unit continues processing data at the next rising
clock edge. (Examples based on template 1: scrambler, convolutional encoder, etc.)

 17 of 62

 Figure 4.1: Generic signal-processing unit for serial processing (�template 1�)

Template 2, shown in Figure 4.2, is appropriate for units working on blocks of data. It

implements two data buffers, one connected to the input and the other one to the output.
New data can be accepted at the input, processed by fin(.) and stored in the input buffer,
while at the same time data from the output buffer can be post-processed by fout(.) and fed
to the output. Two state machines, one for the input and one for the output, control the
communication to the preceding and subsequent units and coordinate the buffer switching
with two multiplexers M1 and M2. The buffers are switched simultaneously if the input
buffer is full and the output buffer empty. The unit�s latency depends on the time needed
to fill/empty the buffers. (Examples based on template 2: Interleaver, FFT, etc.)

Figure 4.2: Generic signal-processing unit for block processing (�template 2�)

logic

f(.)

unit
FSM

Ri
Ro

M
M

 REQ_IN

REQ_OUT

ACK_IN

DATA_OUT DATA_IN
fin(.) fout(.) buffer2

input
FSM

output
FSM

M1 M2

REQ_IN REQ_OUT

ACK_IN

DATA_IN

ACK_OUT

DATA_OUT

REQ_IN

ACK_OUT
buffer1

 18 of 62

4.2 TX Chain Functionality

4.2.1 Overview

The following paragraphs describe the functional units of the transmitter chain, their

basic behavior and implementation details. A block diagram of the TX chain is shown in
Figure 4.3. Note that always two data bits are clocked into the TX chain in parallel from
the TX FIFO and two data bits are clocked from the RX chain into the RX FIFO. All
functional units are implemented accordingly to exploit this parallelism, which decreases
the required clock rate of the TX/RX chain by a factor of two. The clock data rate was
chosen to be 40 MHz.

Figure 4.3: TX chain block diagram

4.2.2 CRC Generation

Each MAC frame consists of three basic components [3], as depicted in Figure 4.4:
• MAC header, containing frame control, duration, address and sequence control

information;
• frame body of variable length, containing frame-type-specific information, and
• Frame Check Sequence (FCS), containing an IEEE 32-bit cyclic redundancy code

(CRC).

Octets:2 2 6 6 6 2 6 0-2312 4

Frame
Control

Duration/
ID

Address
1

Address
2

Address
3

Sequence
Control

Address
4

Frame
Body

FCS

Figure 4.4: MAC frame format

The MAC frame is composed in the MAC layer. However, because of the numerical
complexity of the CRC generation, this FCS is generated in the physical layer hardware.
Therefore, the MAC frame transmitted to the TX chain contains four octets filled with

CRC

Packet

Composer

Scrambler

Convol.
Encoder

Puncturer

Inter-
leaver

Modulat.
Mapper

IFFT

Cyclic

Extension

PA/Data
Multiplex

Filter/Up-
Converter

PSDU
from MAC

to
DAC

Length
Rate

Reserved
InitScram

 19 of 62

�0�s in the FCS field. These �0�s are replaced by the actual FCS after it has been
generated in the CRC generation unit. The 32-bit FCS field is calculated over all MAC
header fields and the frame body field. The generator polynomial is

1xxxxxxxxxxxxxxG(x) 245781011121622232632 ++++++++++++++= .

The CRC update computation is done in parallel for every incoming byte. The
incoming data (2 bits per clock cycle) are stored in a byte memory until the next byte is
available for the CRC update. Note that the input bytes have to be reflected (MSB!LSB)
before the CRC update. When the entire frame, with exception of the last 32 bits (�0�s),
has been passed through the CRC update unit, the resulting CRC is used to overwrite the
last 32 bits of the MAC frame to generate the correct FCS. Before, the 32-bit CRC bytes
have to be reflected back. The output order of the FCS from left to right is given by

CRC Bits [24 ... 31 16 ... 23 8 ... 15 0 ...7]
 ↓
MAC frame [0 � end-32 | FCS].

4.2.3 Packet Composition

The packet composer unit forms the PPDU frame without the PLCP preamble symbols
as depicted in Figure 4.5. The PLCP preamble generation is described in Subsection
4.2.11.

RATE
4 bits

RESERVED
1 bit

LENGTH
12 bits

Parity
1 bit

Tail
6 bits

SERVICE
16 bits

PSDU= MAC
frame

Tail
6 bits

Pad
bits

 SIGNAL DATA

Figure 4.5: PPDU frame format without preamble

All required information for the fields RATE, RESERVED, LENGTH, SERVICE and
PSDU is delivered by the MAC layer. The transmit order for all fields is LSB first.

Table 4.1: Coding of RATE field

Rate (Mbit/s) Bits R1-R4
6 1101
9 1111
12 0101
18 0111
24 1001
36 1011
48 0001
54 0011

 20 of 62

The packet composer state machine composes the PPDU in the following steps:
• The data rates have to be coded according to Table 4.1.
• One RESERVED bit is appended.
• The PSDU length is encoded as the number of bytes in the LENGTH field.
• A parity bit is appended at bit position 17, which is generated as even parity bit

(number of 1�s including the parity bit is even),

16.bit....1bit0bitparity ⊕⊕⊕=

• Six SIGNAL tail bits are appended at bit positions 18-23, which are set to �0�.
• A two-byte SERVICE field is inserted at the beginning of the DATA field. It

consists of seven �0�s, which are used for the scrambler initialization.
Additionally, nine bits are reserved for future use and are set to �0� in the current
implementation.

• Next, the PSDU (MAC frame) as shown in Figure 4.4 is appended.
• At the end of the PSDU, six �0�s are appended, which are required to return the

convolutional encoder to the �zero state�. These tail bits have to be set back to
�0�s after scrambling. Therefore, the packet composer generates an output signal
that indicates the tail bits, which are than set back to �0� within the scrambler unit.

• Finally, in order to guarantee a data length, which is a multiple of the number of
coded bits per OFDM symbol, an appropriate number of pad bits have to be
added. The computation of this number is described in [1, Section 17.3.5.3].

Two input and output data are read and written in parallel in every clock cycle.

4.2.4 Scrambling

The scrambler unit scrambles the entire DATA field, including the SERVICE, PSDU,
TAIL and PAD bits. This function will prevent long runs of identical bits in the data
stream. Furthermore, in the case of necessary retransmissions, the selection of changed
scrambler initialization values results in different data patterns, which will increase the
probability of a successful frame retransmission.

The generator polynomial is given by

1xxS(x) 47 ++= .

The resulting standard scrambler implementation is shown in Figure 4.6.

Figure 4.6: Data scrambler, serial implementation

a0 a1a2a3a4 a5 a6

Data In

Data Out

Init scrambler

 21 of 62

All register values a0 to a6 are shifted to the left by one once per clock cycle, and the

register a0 is updated with the value 630 aaa ⊕= . We can rewrite the update operation for
two consecutive cycles as

1)(cycleaa2)(cyclea

1)(cycleaa2)(cyclea

520

631

⊕=

⊕=
.

To exploit the parallelism of the input data bits (2 input bits per clock cycle), a parallel
implementation of the scrambler is introduced. In the parallel implementation, the two
functions described above are executed in one clock cycle, and the register values are
then shifted by two. Therefore, the shift register of length 7 can be subdivided into an
�even� and an �odd� shift register of length 4 and 3, respectively. A block diagram of the
parallel implementation is shown in Figure 4.7.

Figure 4.7: Data scrambler, parallel implementation

The scrambling operation of consecutive data bits bi(0), bi(1), which are fed into the
scrambler unit in parallel, is done by the operation

(1)baa)1(b

(0)baa(0)b

i52o

i63o

⊕⊕=

⊕⊕=
.

The additional signal p_scram_en from the packet composer is used to indicate the tail
bits. These tail bits are set back to �0�, if p_scram_en = �0�.

4.2.5 Convolutional Encoding

The entire DATA field has to be encoded using a convolutional code of rate R = ½.
Additionally, several puncturing schemes are applied to generate different code rates (R =
½, ⅔, ¾). These puncturing schemes enable variable data rates, which are traded with the
error protection capabilities.

a0

a1

a2

a3

a4

a5

a6

Data In

Data Out

bi(1) bi(0)

bo(1) bo(0)

Init scrambler

 22 of 62

The convolutional encoder uses the generator polynomials g0 = 1338 and g1 = 1718
resulting in an encoder structure as depicted in Figure 4.8. The next input data i0 into the
encoder is assumed to reside in the input register r0.

Figure 4.8: Convolutional encoder with constraint length 7, serial implementation

To guarantee processing parallelism in the encoding unit, several modifications are
necessary. First, the shift register chain is subdivided into an even and an odd part with
the following mappings:

.or,or,or::odd
,er,er,er:even

,eri:input

352311

362412

000

aaa

aaa

a=

The equations for the output data can then be written as

.ooeeerrrrr)(iout
,ooeeerrrrr)(iout

21310632100B

32310653200A

⊕⊕⊕⊕=⊕⊕⊕⊕=
⊕⊕⊕⊕=⊕⊕⊕⊕=

The input data i1 following i0 appears at the input of the shift register with a delay of one
cycle. Therefore, input data i1 is assumed to reside in an additional input register r�1 and
can be mapped as

.ori:input 011 a−=

In the parallel implementation, the two consecutive bits i0 and i1 are concurrently shifted
into the encoder in one clock cycle, which implies a shift of all register values by two.
This in turn means that the �even� input data i0 resides in the even register chain, whereas
the �odd� data i1 resides in the odd register chain. The output equations for input i1 will
take the form

.eeooorrrrr)(iout
,eeooorrrrr)(iout

10310521011B

21310542111A

⊕⊕⊕⊕=⊕⊕⊕⊕=
⊕⊕⊕⊕=⊕⊕⊕⊕=

−

−

The resulting parallel implementation of the convolutional encoder is shown in Figure
4.9.

r6 r5r4r3r2r1
Data In

Data outB

r0
i0

Data outA

 23 of 62

Figure 4.9: Convolutional encoder with constraint length 7, parallel implementation

4.2.6 Puncturing
The puncturing unit takes the encoded data stream from the convolutional encoder and

applies different puncturing schemes depending on the target data rate. Higher data rates
are achieved by puncturing out certain encoded bits. The puncturing schemes are
described in detail in [1, Figure 115]. The four output data bits from the encoder as
depicted in Figure 4.9 are fed into the puncturing unit concurrently. Depending on the
puncturing scheme, up to four successive 4-bit-inputs are written into successive memory
cells. The memory size is chosen such that the number of output bits after puncturing is a
multiple of four, because always four bits have to be fed to the output in parallel. The
memory requirements are shown in Table 4.2.

Table 4.2: Input/output relationship and memory requirements in the puncturing unit

Rate Input bits Punctured bits Memory size Output bits Delay cycles
½ 1 × 4 = 4 1 × 0 = 0 1 × 4 = 4 1 × 4 = 4 1
⅔ 4 × 4 = 16 4 × 1 = 4 4 × 3 = 12 3 × 4 = 12 4
¾ 3 × 4 = 12 2 × 1 + 1 × 2 = 4 2 × 3 + 1 × 2 = 8 2 × 4 = 8 3

Implementation details are depicted in Figure 4.10. An input process writes 4 input

data bits per clock cycle into memory bank 0, until this memory is filled according to
Table 4.2. The subsequent input data are written into a second memory bank 1. At the
same time, an output process writes the data from memory bank 0 to the output. The
delay introduced by the data buffering is also shown in Table 4.2.

Note: The first OFDM symbol (= SIGNAL field) is always transmitted with 6 Mbit/s,

which corresponds to BPSK with coding rate ½. Therefore, the first 48 encoded bits are

e3

o3

e2

o2

e1

o1

i0

i1

e0

o0

outA(i1)

outB(i1)

outB(i0)

in0 in1 out0out1out2 out3

outA(i0)

 24 of 62

always treated correspondingly; the RATE information fed into the puncturing unit is not
used for the SIGNAL field bits.

Figure 4.10: Puncturing unit, parallel implementation

4.2.7 Interleaving

The block interleaving unit implements a two-step permutation [1, Section 17.3.5.6] of

the coded data bits within one OFDM symbol. The first permutation reads in the data bits
row by row and writes them out column by column, and therefore prevents burst errors in
the packet transmission by mapping adjacent coded bits onto nonadjacent subcarriers.
The second permutation ensures that adjacent coded bits are mapped alternately onto less
and more significant bits of the constellation, thereby long runs of low-reliability bits are
avoided.

in0 in1 in2 in3 out0out1out2 out3

in

0
1
2
3

½

⅔

¾

Rate memorypuncture

4

4

4

4

4

4

4

3

3

3

3

4

4

4

4 4 4

3

3

2

4

4

out

0
1
2
3

0
1

2

0

3
2
1

in_cnt out_cnt

Input process Output process

0

2

1

0

1

½

⅔

¾

4

4 4

 25 of 62

in0 in1 in2 in3 out2 out3 out4 out5

in

0
1
2
3

Rate

Input process Output process

4

6

M=2

out1 out0

6

M=4

6

M=16

6
M=64

P1 6

P2

P2

Figure 4.11: Interleaving unit, parallel implementation

A block diagram of the interleaving unit implementation is shown in Figure 4.11. Four
input bits are processed per clock cycle and stored in the first permutation unit�s (P1)
memory, which consists of 16×24 cells of one bit. Memory address generators for input
and output accomplish the first permutation task. Targeted for a resource-efficient FPGA
implementation, the permutation memory is physically organized as 24 columns of 16×1
SRAMs. This structure allows simultaneous read/write operations in multiple columns,
but only one cell per column can be accessed at a time. A memory map keeping the
address generation for input and output addressing simple and still permitting an output
of 1 bit (BPSK), 2 bits (QPSK), 4 bits (16QAM) or 6 bits (64QAM) in parallel is
depicted in Table 4.3. The number in the cells refers to the n-th bit of the input sequence.

The second permutation (P2), used for modes 16QAM and 64QAM only, is conducted
by a state machine and corresponding multiplexers before the data is communicated to
the subsequent functional unit, i.e. to the modulation mapping.

 26 of 62

Table 4.3: Interleaver memory map
 0 1 2 3
 16 17 18 19
 32 33 34 35
 4 5 6 7
 20 21 22 23
 36 37 38 39
 8 9 10 11
 24 25 26 27
 40 41 42 43
 12 13 14 15
 28 29 30 31

M = 2
BPSK 44 45 46 47

 0 16 1 17 2 18 3 19
 32 48 33 49 34 50 35 51
 64 80 65 81 66 82 67 83
 4 20 5 21 6 22 7 23
 36 52 37 53 38 54 39 55
 68 84 69 85 70 86 71 87
 8 24 9 25 10 26 11 27
 40 56 41 57 42 58 43 59
 72 88 73 89 74 90 75 91
 12 28 13 29 14 30 15 31
 44 60 45 61 46 62 47 63

M = 4
QPSK 76 92 77 93 78 94 79 95

 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51
 64 80 96 112 65 81 97 113 66 82 98 114 67 83 99 115
 128 144 160 176 129 145 161 177 130 146 162 178 131 147 163 179
 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55
 68 84 100 116 69 85 101 117 70 86 102 118 71 87 103 119
 132 148 164 180 133 149 165 181 134 150 166 182 135 151 167 183
 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59
 72 88 104 120 73 89 105 121 74 90 106 122 75 91 107 123
 136 152 168 184 137 153 169 185 138 154 170 186 139 155 171 187
 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63
 76 92 108 124 77 93 109 125 78 94 110 126 79 95 111 127

M = 16
16QAM 140 156 172 188 141 157 173 189 142 158 174 190 143 159 175 191

 0 16 32 48 64 80 1 17 33 49 65 81 2 18 34 50 66 82 3 19 35 51 67 83
 96 112 128 144 160 176 97 113 129 145 161 177 98 114 130 146 162 178 99 115 131 147 163 179
 192 208 224 240 256 272 193 209 225 241 257 273 194 210 226 242 258 274 195 211 227 243 259 275
 4 20 36 52 68 84 5 21 37 53 69 85 6 22 38 54 70 86 7 23 39 55 71 87
 100 116 132 148 164 180 101 117 133 149 165 181 102 118 134 150 166 182 103 119 135 151 167 183
 196 212 228 244 260 276 197 213 229 245 261 277 198 214 230 246 262 278 199 215 231 247 263 279
 8 24 40 56 72 88 9 25 41 57 73 89 10 26 42 58 74 90 11 27 43 59 75 91
 104 120 136 152 168 184 105 121 137 153 169 185 106 122 138 154 170 186 107 123 139 155 171 187
 200 216 232 248 264 280 201 217 233 249 265 281 202 218 234 250 266 282 203 219 235 251 267 283
 12 28 44 60 76 92 13 29 45 61 77 93 14 30 46 62 78 94 15 31 47 63 79 95
 108 124 140 156 172 188 109 125 141 157 173 189 110 126 142 158 174 190 111 127 143 159 175 191

M = 64
64QAM 204 220 236 252 268 284 205 221 237 253 269 285 206 222 238 254 270 286 207 223 239 255 271 287

4.2.8 Modulation Mapping

The modulation mapping unit integrates the following functions:

• Generation of modulation symbols using 1, 2, 4 or 6 encoded input bits,
depending on the modulation alphabet (BPSK, QPSK, 16QAM, 64QAM).

• Generation of pilot symbols with BPSK modulation using a pseudo binary
sequence.

• Introduction of zero subcarriers into OFDM symbol.
• Generation of physical subcarrier mapping addresses for IFFT input buffer

addressing (note: this address generation is now also performed within the IFFT
wrapper function to save address lines in the case of FPGA split).

 27 of 62

Table 4.4: Encoding table for modulation mapping of input bits b0�b5 into I/Q outputs
BPSK QPSK 16QAM 64QAM

b0 0 1 b0 0 1 b0|b1 00 01 11 10 b0|b1|b2 000 001 011 010 110 111 101 100
I-out -1 +1 I-out -1 +1 I-out -3 -1 +1 +3 I-out -7 -5 -3 -1 +1 +3 +5 +7

 b1 0 1 b2|b3 00 01 11 10 b3|b4|b5 000 001 011 010 110 111 101 100
Q-out 0 0 Q-out -1 +1 Q-out -3 -1 +1 +3 Q-out -7 -5 -3 -1 +1 +3 +5 +7

The interleaver unit uses a 6-bit interface to provide the interleaved data bits to the

modulation mapping unit. However, only 1, 2, 4, or 6 bits are valid and used for the
mapping depending on the modulation scheme chosen. The modulation mapping is done
according to Table 4.4 [1, Tables 82-85]. Additionally, data scaling is performed using a
modulation-dependent normalization factor KMOD and an integer multiplier of 30,000 to
guarantee the highest possible precision in the subsequent IFFT unit. The KMOD and
scaling factors as well as the resulting I/Q-output values are summarized in Table 4.5.
The maximum output amplitude level is 32403, fitting to the 16-bit precision of the IFFT
unit.

Table 4.5: Scaling factors and amplitude levels of the modulation mapping unit

 KMOD scale = KMOD * 30000 scale * I/Q-out
BPSK 1 30000 ± 30000
QPSK 1/ª2 21213 ± 21213

16QAM 1/ª10 9487 ± 9487, ± 28461
64QAM 1/ª42 4629 ±4629, ±13887, ±23145, ±32403

To form one OFDM-symbol, 48 modulated data symbols have to be generated. Next,

4 pilot symbols are appended. The pilot symbols, which correspond to the set of logical
subcarriers [�21; �7; +7; +21], are defined by the mapping

P�21; �7; +7; +21 = ±1 * 30000 * [1; 1; 1; �1].

The sign bit is determined once for every OFDM symbol by using the output of a PN-
code generator with polynomial 1xxS(x) 47 ++= . This generator is initialized with �all
ones��; 1�s are replaced with �1 and 0�s with 1. The generator is the same as in the
scrambler unit. However, a serial implementation is used for the pilot generation. Finally,
12 zero subcarriers filled with 0�s are appended, as the outer subcarriers (�32��27,
27�31) and the 0�s (DC) subcarrier are not used for data transmission.

4.2.9 FFT/IFFT

The FFT/IFFT unit is shared between the TX and RX chains. A wrapper unit
guarantees the correct FFT operation mode by controlling a �forward-inverse flag�. The
flag is set to �0� for IFFT and to �1� for FFT operation.

The FFT/IFFT unit implementation uses the XILINX 64-point complex FFT/IFFT
core [5]. A single-memory-space configuration was chosen, which uses a common
memory as input and working buffer. This basic configuration is shown in Figure 4.12.

 28 of 62

The FFT core is used in scale mode, which performs a scaling by 2 on the first processing
pass. Therefore, the result is scaled up by 2 to compensate for this factor.

The processing time of the FFT core including the result-write operation takes 209

cycles (= 5.2 !s @ 40 MHz). The maximum allowable processing delay for real-time
operation per FFT unit is 4 !s. Therefore, two FFT units are instantiated in parallel to
guarantee real-time operation. This concept is depicted in Figure 4.13.

Figure 4.12: Single-memory-space FFT configuration

Figure 4.13: Double-FFT core configuration

A three-stage sequence of operations is used to perform the transform [5]:

• Data-load phase,
• compute phase, and
• data-output phase.

Output data

Input data

FFT core

FFT
processor

Phase Factor

Memory

Dual port block ram

Input/Working

memory

ram_mux

Input/Working
Memory RAM0

Input/Working
Memory RAM1

FFT1 core

FFT0 core

Output data
Input data

ram_mux

MWR START DONE

 29 of 62

Data-load phase: During the data-load phase, 64 input data are alternately written
into the input memories RAM0/1. This operation is initiated by asserting an input data
write strobe signal MWR to the FFT core. When 64 new input data have been loaded into
RAM0/1, the compute phase has to be initiated by asserting a START signal to the
FFT0/1 core. Both operations are controlled by the FFT/IFFT input state machine, which
is shown in Figure 4.14. If RAM0/1 is available and FFT0/1 is idle, a transition from the
Wait1/0 to Load0/1 state is performed and the associated write strobe MWR is assigned.
Then, 64 input data are written into RAM0/1 in state Load0/1. Note: For the IFFT, the
input addresses generated by the FFT core are not used. Instead, the logical-to-physical
address mapping, which is required after the modulation-mapping stage, is performed
during the data-load phase. The address generation for the input memories RAM0/1 is
done by a mapping-address lookup from a ROM table. The ROM table contains the
following address order, which corresponds to the output order of the modulation-
mapping unit:
[38,39,40,41,42,44,45,46,47,48,49,50,51,52,53,54,55,56,58,59,60,61,62,63,1,2,3,4,5,6,8,
9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,43,57,7,21,0,27,28,29,30,31,32,33,34,
35,36,37].

Compute phase: During the transition from Load0/1 to Wait0/1 or Load1/0, the

FFT/IFFT input state machine asserts the START signal to the FFT0/1 core to initiate the
compute phase. After this transition, the state machine waits for the next FFT1/0 core
(+RAM1/0) to become available for input data.

Figure 4.14: FFT/IFFT input FSM, controls data-load phase and compute-phase start

reset_FFTin

Wait1

Load0

Load1

Wait0

ram1 empty & FFT1 idle /
MWR1 -> FFT1 load phase, fill ram1

 cnt_in=63 /
START0 ->

FFT0 compute
phase,

cnt in=0

ram0 empty & FFT0 idle /
MWR0 -> FFT0 load phase, fill ram0

 cnt_in=63 /
START1 ->

FFT1 compute
phase,

cnt in=0
cnt_in=63 &

ram1 empty & FFT1 idle /
START0 ->

FFT0 compute phase, cnt_in=0
FFT1 load phase, fill ram1

cnt_in=63 &
ram0 empty & FFT0 idle /

START1 ->
FFT1 compute phase, cnt_in=0

FFT0 load phase, fill ram0

cnt_in<63 /
inputs -> ram0

cnt_in<63 /
inputs -> ram1

 30 of 62

The FFT core generates a DONE signal at the end of the compute phase. This signal
controls the FFT/IFFT output state machine, which is shown in Figure 4.15. When the
FFT0/1 DONE signal is asserted, the output FSM switches from the Wait0/1 to the
Output0/1 state. In this state, the next 64 output data are written into a memory of the
next functional unit. If the next unit is not ready to take data, the output process is stalled.
Also, if the subsequent FFT computation is finished before the current output data are
completely written, the subsequent FFT process is stalled (chip enable = �0�). The
RAM0/1 resources are released, when all 64 output data have been written into the next
unit. This in turn enables the FFT/IFFT input FSM to initiate the next load process. Note:
The output data are provided in bit-reversed order. Therefore, the data have to be
rearranged into their natural order during the write operation into the subsequent blocks.
In the receive chain, this unit (channel estimator) uses an internal address generator to
perform this reordering. This allows the removal of these address lines from the interface,
which is done to facilitate the split of the design onto two FPGA boards.

Figure 4.15: FFT/IFFT output state machine, controls data-output phase and release

of RAM resources

4.2.10 Cyclic Extension

The cyclic extension unit stores the IFFT output data into a memory and prepends the
physical subcarriers 48�63 as cyclic extension. This extension forms the guard interval.
The resulting symbol of length 80 forms one OFDM symbol.

reset_FFTout

Wait1

Output0

Output1

Wait0

FFT1 DONE /

 cnt_out=63 /
ram0 empty,
reset cnt_out

FFT0 DONE /

 cnt_out=63 /
ram1 empty,
reset cnt_out

cnt_out=63 &
FFT1 DONE /
ram0 empty,
reset cnt_out

cnt_out=63 &
FFT0 DONE /
ram1 empty,
reset cnt_out

cnt_out<63 /
ram0 busy,

FFT0 output phase

cnt_out<63 /
ram1 busy,

FFT1 output phase

 31 of 62

The cyclic extension unit applies a dual-ported RAM. The input data are written into
the address locations defined by the IFFT output address generator. Subcarrier data
48�64 are written concurrently into their corresponding address locations. Therefore, the
80 memory locations are filled within 64 cycles. The resulting OFDM symbol is written
to the frame-formatting unit. To guarantee continuous transmission, a swinging-buffer
concept is applied. While input data are written into RAM0, the OFDM symbol in RAM1
is output, and vice versa.

4.2.11 Frame Formatting

The frame-formatting unit is responsible for the concatenation of the PREAMBLE and
DATA symbols. After resetting the TX chain, this unit immediately starts to output the
short preamble. This is done by outputting 10 repetitions of the precomputed and stored
short preamble symbol. Next, 2½ repetitions of the precomputed long preamble symbol
are appended. The output of both preambles takes 16 !s. Within this 16-!s timeframe, the
TX chain has to finish the generation of the first data symbol. The data symbols are
consecutively appended to the preambles to form the transmit frame (PPDU). The frame-
formatting unit determines the timing behavior of the entire transmit chain. The output of
this unit needs to be continuous with a rate of 20 MHz. The input and therefore the TX
chain might be stalled during preamble operation and because the TX chain works on a
40-MHz clock.

 32 of 62

4.3 RX Chain Functionality

4.3.1 Overview

The following paragraphs describe the functional units of the RX chain, their basic
behavior and implementation details. A block diagram of the RX chain is shown in
Figure 4.16. Note that in every clock cycle the RX chain writes 2 decoded data bits in
parallel into the RX FIFO.

Figure 4.16: RX chain block diagram

4.3.2 Inner Receiver

The inner receiver unit is the first computational unit in the receive chain working on
data received over the transmission channel after filtering and down-sampling to 20 MHz.
The main tasks of the inner receiver are

• signal detection and timing synchronization using correlation and matched
filtering methods,

Filter/
Down-

Sampling

Inner

Receiver

Frequency
Correction

FFT

Cyclic

Extension

Channel

Estimation

Equalizer

SF

FIFO

LLR

De-

Interleaver

De-

Puncturer

from
ADC

Viterbi

Decoder

De-

Scrambler

Packet

De-
composer

CRC

Check

Extract
Pilots +

Frequency
Tracking

IQ

Plot

Length
Rate

Reserved
Detect
Service

CRC_ok

PSDU
to MAC

 33 of 62

• frequency offset estimation and initiation of analog and digital frequency offset
compensation, and

• power estimation and closed-loop automatic gain control by adjusting a variable
gain amplifier in the analog frontend.

The main functional blocks of the inner receiver unit are shown in Figure 4.17. These

blocks work concurrently on the input data. They are controlled by the inner receiver
FSM, which is discussed in detail in [6, 7]. Some control information has to be
interchanged between the inner receiver FSM and the computational unit. Most
importantly, the signal PERIOD is used to distinguish between the short and long
preamble phases. This signal is set to �0� until the short preamble (with periodicity of 16
samples) has been detected. Once the end of the short preamble is found, the signal
PERIOD is set to �1� to indicate the reception of the long preamble (with periodicity of
64 samples) to the computational units.

Figure 4.17: Inner receiver computational unit

In the following paragraphs, the blocks of the computational unit and their behavior
are described briefly. More comprehensive descriptions can be found in [6, 7].

Matched Filter1 (MF1): This block takes the most significant 8 bits from the input

data and does a matched filter operation on these data. The reference sequence is the
nominal response of an ideal channel to the transmission of a short preamble symbol
(coeff0�15). This filter operation is implemented as a transposed FIR filter structure
performing the operation

AGC_power

AGC_power

16 64
128

Pd16

Pd64

Rd64

Rd16

abs(Pd)

phase(Pd)

data_in MF1

MF2

tapped
delay line

Metric16
numerator

Metric64
numerator

Metric
denominator

11:4

11 (sign)

�0�

Cordic

Metric16/64
wind. detect

Frequency
offset

PERIOD

mf1

mf2

LP_out

∆p

m16_window

gain_correct

m64_window

data_out

AGC gain
mapper

 34 of 62

215

0k

*
k15knn coeffdata_iny ∑

=
−− •= .

This transposed structure is well suited for hardware implementation, as the parallel
addition of 16 intermediate filter results can be omitted ([6], see Figure 6.3). However,
this block still is computational very expensive because in theory it requires 16 complex
multipliers (= 64 real multipliers) and 2 adders/subtractors in parallel (the implementation
requires fewer multipliers owing to �0�-coefficients etc.). Finally, the squared magnitude
of the matched filter response is output, which requires 2 additional multipliers and one
adder. The squared magnitude is used to prevent an additional square-root operation.

Matched Filter2 (MF2): To minimize the complexity of this matched filter with

length 64, only the sign bits of the input data and of the reference sequence are compared,
and the 64 results are summed. The complex sign-bit multipliers can be replaced by a
look-up table with 4 inputs (signs of real and imaginary parts of data and coefficients)
and 2 outputs (real and imaginary parts of the sign-bit multiplications). Finally, the
squared magnitude of the matched filter response is output, which requires 2 multipliers
and one adder. Again, the squared magnitude is used to avoid a square-root operation.

Tapped delay line: The input data have to be stored in a tapped delay line to perform

cross-correlation operations and to save some history of the input data until the correct
timing synchronization has been determined. This tapped delay line is organized as a
chain of distributed memory blocks with block length of 16. This assures a very efficient
implementation [6] compared with register chains. The tapped delay line storing the input
data comprises three taps, which correspond to delays of 16, 64 and 128 data samples.
The first two taps are used for the correlation operations with periodicity 16 and 64,
respectively. The third tap is required to store the long preamble, which is twice as long
as a normal OFDM symbol. Finally, after timing synchronization, the first and second
halves of the long preamble are output in parallel via �LP_out� and �data_out� as
indicated in Figure 4.17. The two parts of the long preamble are further processed and
averaged in the frequency-correction unit.

Metric16/64 numerator: To find periodic structures in the received signal, the

numerator of the periodicity metric [7] is computed as cross-correlation between the input
data and a delayed (by 16/64 samples) version of this signal,

∑
=

−−− •=
63/15

0k

*
k64/16nknn data_indata_in64/16Pd .

An iterative implementation is possible using the update formula

.data_indata_indata_indata_in64/16Pd64/16Pd *
64)/*(162n64/16n

*
64/16nn1nn −−−− •−•+=

The implementation of this operation is depicted in Figure 4.18. Here, the correlator only
performs the complex multiplication *

64/16nn data_indata_in −• .

 35 of 62

In the iterative implementation, care has to be taken to prevent a bias in the register. This
is achieved by correctly resetting it before correlation calculation. Note that for
periodicity 64 the numerator is divided by 4 to compensate for the 4-fold summation
length.

Figure 4.18: Iterative implementation of cross-correlation computation

Cordic: The outputs of the Metric16/64 numerator blocks are fed into a cordic
processor to estimate the magnitude and phase of the complex metric values. Note that
the magnitude is scaled by a factor 1.6468 as a result of the cordic implementation. This
scaling factor needs to be compensated for in the calculation of the threshold values,
which are required for periodicity detection. The cordic is implemented as on-line
processor [6] with 12 processing stages. After 6 processing stages, one pipeline stage is
introduced to meet the target processing speed of 20 MHz (sample input speed).

Metric denominator: The denominator computation is conceptually identical to the

numerator computation as shown in Figure 4.18, but here an auto-correlation with
elements *

nn data_indata_in • is computed. Both denominators (16/64) are determined in
parallel using a tapped delay line with taps at correlation delays of 16 and 64.

Metric16/64 window detect: The periodicities of the short and long preambles result
in correlation values, which remain on a certain plateau level as long as the input signals
maintain the periodicity. This behavior is used to detect the short- and long-preamble
reception by tracing the plateau phases [7]. A running sum is used to find the plateaus,

()
()

••≤−
••>+

=
−

−

64/16Rd1.6468met_thr64/16Pd if1,0Smax
64/16Rd1.6468met_thr64/16Pd ifS1,Smin

S 64/16
1n

64/16
max

64/16
1n64/16

n .

The detection of the short/long preamble is indicated to the inner receiver FSM if
64/16

max
64/16

n SS = .

Frequency offset: The frequency-offset estimation is performed by averaging the
estimated phase values �phase_Pd� over 16 consecutive phase values, as shown in Figure
4.19. Additionally, the averaged phases are divided by the periodicity 16/64 to estimate
the phase offset ∆p. The related frequency offset is

correlator

tapped
delay line 16/64

data_in
delayed
16/64

-

+

+
Pd16/64

 36 of 62

π2
MHz20p

πT2
pf •∆
=

∆
=∆ .

In addition to the phase offset ∆p the unnormalized ∆p_x64 is output, which serves as a
more precise estimation for the frequency-correction unit.

Figure 4.19: Frequency-offset estimation unit

Coarse (analog) frequency update: The frequency-offset estimate resulting from the

short preamble is used to program a direct digital synthesizer (DDS), which in turn
adjusts the mixer frequency for the IF down-conversion. The output frequency of the
DDS is determined by the formula

32
in

out 2
CLK∆phasef •

=

with ∆phase as 32-bit tuning word to be fed into the DDS, CLKin = 120 MHz as DDS
reference clock, and fout as DDS output frequency in MHz. Hence, the DDS tuning word
is generated by

32323232out 2
MHz120π2
MHz20p2

3
12

MHz120
fMHz402

MHz120
f∆phase •

•
•∆

+•=•
∆+

=•= .

The first term 1/3 × 232 = 1,431,655,765 = 01010101010101010101010101010101b of
∆phase is used as standard update value for the DDS (e.g. after reset). The second term,
which is the frequency-correction term, is updated after successful frequency estimation
within the short preamble period. The value π is presented by the integer value 32767 at
the output of the frequency offset estimator, which results in a frequency-scaling factor of

10430
π

32767scalef =

= .

Hence, the second term of ∆phase can be simplified to

10923p2
3
1p2

12010430π2
20pset∆phase_off 1532 •∆=∆=•
••

•∆
= .

AGC gain mapper: The basic functionality of the gain control loop is described in [6,

7]. The AGC block takes the estimated signal energy computed in the metric denominator
unit (see Figure 4.17) as input and calculates a power error value. This error value is used

�0�

tapped
delay line 16

phase_Pd
16/64 -

+

+

∆p
16/64

m16/64
window

Div16/64

∆p_x64

 37 of 62

to update the gain of the variable gain amplifier (VGA) and to adjust the received power
accordingly. As the VGA characteristic is exponential, the iterative gain update can be
described by

.∆ggg dB
n

dB
n

dB
1n +=+

The AGC gain mapper, which outputs dB
1ng + after every iteration, needs to find dB

n∆g as a
function of the estimated signal energy nE ,

()

[].dB
E
Elog10E

Ef∆g

tar

ndB
nerr,

dB
nerr,NL

dB
n

=

=

The logarithm is not computed explicitly. Instead, the input energy nE is compared with
certain thresholds to find a quantized measure for the deviation from the target energy

tarE . The thresholds are precomputed according to

10
)thr(E

tarthr

dB
err

10EE ⋅= .

The predefined thresholds and the associated nonlinear mapping into gain-correction
values are shown in Table 4.6. If the energy error is less than ±0.25 dB relative to the
target value, no gain correction is performed (0∆gdB

n =). In the case of a positive energy
error between +0.25 and +1 dB, the gain correction term will be �0.015625 dB to slightly
decrease the VGA gain. Higher energy-error values result in a nonlinear (over-
proportional) increase of the gain-correction terms. Note: The target energy term in the
implementation is tarE = 2789.5.

Table 4.6: Predefined threshold energies and nonlinear mapping into dB
n∆g

)thr(EdB
err ±0.25dB ±1dB ± 2.5dB ±4.5dB ±6.5dB

dB
n∆g "0.015625dB "0.03125dB "0.1dB "0.25dB "0.4dB

4.3.3 Digital Frequency-Offset Correction

Fine frequency-offset correction

The inner receiver unit computes the fine phase-offset estimate ∆p from the long

preamble. The frequency-offset correction unit de-rotates the complex input data by the
estimated phase

n))∆ppj(exp(data_innT))∆ffπ(2jexp(data_indata_out residresid +∆−⋅=+∆−⋅=

with n as time index and "presid as residual phase offset. This rotation operation is done
by a cordic algorithm. To prevent overflow and to avoid the compensation of the cordic

 38 of 62

scaling factor (1.6468), the input data are divided by 2. The necessary scaling is then
done implicitly in the equalizer. The cordic is fed with the time-variant phase

πmodn)(delta_p⋅ .

To remove the frequency offset from the entire Long Preamble (LP) (from which the
offset is estimated), the first LP symbol is stored in the inner receiver and then fed into
the frequency-correction unit in parallel with the second LP. After parallel frequency
compensation, both LP parts are averaged and passed to the FFT unit, as shown in Figure
4.20. Note that the cyclic extension of the LP has already been removed in the inner
receiver to prevent additional latency.

Figure 4.20: Frequency correction and average for long preamble

Frequency-tracking loop

To compensate the residual frequency error after the fine frequency correction, an

additional frequency-tracking loop has been implemented. This loop is driven by the pilot
subcarriers. The four pilots P�21; �7; +7; +21 are separated at the output of the FFT. The long
preamble pilots PLP:�21; -7; +7; +21 = [1; �1; 1; 1] are used for pilot-channel estimation as
described in Section 4.3.5 and saved as reference values. The pilots within the data
symbols are then used to estimate the residual frequency offset and phase noise:

• First, the polarity introduced to the pilot subcarriers (see Section 4.3.5) has to be
removed using a LFSR.

• Next, the pilot at logical address 21 is inverted to fit the PA pilot reference.
• The pilot-correlation terms)exp(rrPP

LPdataLPdata PPPP
*
LPdata ϕϕ −⋅= are determined for

all 4 pilot subcarriers.
• The phase angle residϕ∆ is estimated from the mean of the correlation terms,

which can be viewed as a weighted sum of the phase angles per pilot subcarrier. A
cordic rotation is used for the angle computation.

• The frequency correction is done in the time domain within the digital frequency
correction unit in order to minimize inter-carrier interference. For small frequency

Mean

LP1

LP2

- ∆p

LP_mean

Cordic2

Cordic1

n-64

n

 39 of 62

deviations (compared with the subcarrier spacing), the transformation into the
time-domain correction phase is ∆presid ≈ γ$2/64, with γ as loop gain (set to ¼ in
the current implementation).

4.3.4 Cyclic Extension Removal

The cyclic extension removal unit takes the input data frame from the inner receiver at
a sample rate of 20 MHz. It than periodically removes 16 samples forming the guard
interval and forwards the 64 samples belonging to one OFDM symbol into the FFT input
buffer (see Section 4.2.9). The input FSM toggles between two states �cyclic extension
removal� and �read data from input�. Note: The first OFDM symbol received by this unit
is the average of the two halves of the long preamble. For this preamble symbol, the
cyclic extension will already be removed in the inner receiver unit for complexity
reasons. Therefore, the input FSM is initialized to start in the �read data from input� state.

Figure 4.21: Timing issues in cyclic extension unit

To guarantee real-time operation, the input data have to be written into a FIFO. The
timing requirements are shown in Figure 4.21. The FFT computation following the cyclic
extension removal stage takes 5.2 !s (210 cycles @ 40 MHz). The next input samples for
this FFT unit arrive after 4.8 !s (2 × 16 cycles cyclic extension (CE) + 1 × 64 cycles data
@ 20 MHz). Therefore, the next input data have to be buffered. As the RX chain runs at
40 MHz, the latency introduced can be removed again later by using a FIFO. As soon as
the FFT is completed, data are clocked into the FFT input buffer at 40 MHz from the
FIFO. In parallel, input data are written from the inner receiver into the FIFO at 20 MHz.
Hence, the overlap introduced can be compensated for during the data-load phase.

The output FSM starts writing data to the output ports if the FIFO is not empty. The

output data are written into the FFT memory in natural order, using the internal address
generator of the FFT core (see Section 4.2.9).

4.3.5 Channel Estimation

The channel-estimation unit, which follows the FFT processor, performs the following
tasks:

• Sort bit-reversed input data from the FFT output into natural order using an
internal address generator (addr_in),

• perform physical-to-logical mapping of the frequency domain data using a second
internal address generator (addr_out),

 FFTLoad0<3.2!s

 FIFOLoad0=3.2!s Available proc. time = 4.8!s

CE Data CE Data CE Data

Load0= 3.2!s

FFT0= 5.2!s
Overlap -> FIFO required

�

 40 of 62

• estimate and store channel coefficients for every subcarrier (channel estimator),
and

• feed frequency domain data and associated channel coefficients ci in parallel into
equalizer.

A block diagram of the channel estimator is shown in Figure 4.22.

Figure 4.22: Channel-estimation unit

The removal of the bit-reversed order of the FFT output data is done by the �addr_in�

generator during the data-input process. The address generator is implemented in the
estimation unit to remove the address lines from the interface. The input address
generator periodically generates 64 addresses [0 16 32 48 4 20 36 52 8 24 40 56 12 28 44
60 1 17 33 49 ... 15 31 47 63].

A diagram of the input FSM is depicted in Figure 4.23. At the beginning of the RX

operation, the first 64 input data (long preamble) are sampled into RAM0. The input FSM
then waits for the subsequent input data blocks to be written alternatingly into RAM1/0.
Once a buffer is filled, the signal ram_req1/0 = �1� indicates the availability of the data
for the output process. The switch ram_mux is driven by the input FSM and controls the
address multiplexers and input/output behavior as indicated in Figure 4.22.

The channel-estimation task is performed in parallel with the input operation of the

long preamble. A least-squares estimator [8] is implemented to calculate the complex
channel coefficients

write enable
(we)

ci

data_in

data_in

addr

addr

addr

RAM0

RAM1

RAM_ci

addr_in
generator

addr_out
generator

ram_mux

we

not(we)

we

channel
estimatordata_in

�1�

�0�

LPflag in

data_out

ci_out

 41 of 62

i

i
i ce_datalp_referen

lp_datac = .

Because the long-preamble reference data can only take on the values �1 or +1, the
channel estimation is done by the following routine, which can be very easily
implemented in hardware:

 // channel estimator
 for all elements of long PA

 if lp_reference_datai == -1
then ci = -1 * lp_datai
else ci = lp_datai

 end if
end for

The estimated channel coefficients are written into the memory RAM_ci during the long-
preamble phase.

Figure 4.23: Channel-estimation input FSM, controls data-input phase and allocation

of RAM resources

reset_ESTin

Input0

Wait0

Wait1

Input1

 ram_ack1=�1� /

cnt_in=63 /
ram_req0 = �1�,

(LPflag_in=�false�)

ram_ack0=�1 /

ram_ack1=�0� /
ram_req0=�1�,
ram_mux=�0�

ram_ack0=�0� /
ram_req1=�1�,
ram_mux=�1�

cnt_in<63 / cnt_in++
ram_mux=�0�

cnt_in<63 / cnt_in++
ram_mux=�1�

cnt_in=63 /
ram_req1 = �1�

 cnt_in=63� &
ram_ack1=�1� /
ram_req0 = �1�,

(LPflag_in=�false�)

 cnt_in=63� &
ram_ack0=�1� /
ram_req1 = �1�,

 / ram_req0 = �0�,
 ram_req1 = �0�,
 LPflag_in=�true�

 42 of 62

Figure 4.24: Channel-estimation output FSM, controls data-output phase and release

of RAM resources

The output FSM controls the data-output phase as shown in Figure 4.24. If the input

FSM indicates the availability of an input buffer RAM0/1 by assigning a logical �1� to
ram_req0/1, the output FSM starts to write the 48 data subcarrier samples and the
associated channel coefficients to the output. During the output process, the output
address generator is responsible for the physical-to-logical address remapping. Following
the output operation, the signal ram_ack0/1 is set to �1� to indicate that the associated
memory is available for the next input data.

data in lp_data(0�63) payload(0�63) payload(64�127) � payload(end-63 �end)
data out c(0�47) d_out(0�47) d_out(48�95) � d_out(end-47 �end)
ci out c(0�47) c(0�47) c(0�47) � c(0�47)

Figure 4.25: Input-output timing and data contents

The input-output timing behavior and the data contents are shown in Figure 4.25. Note
that the first output-data block contains the channel coefficients. The equalizer unit will
then be used to calculate the required quantities |ci|2 from the first channel-estimator
output-data block by using the complex multiplier implemented there (first symbol: ci *
ci

*, payload symbols: datai * ci
*).

reset_ESTout

Output0

Wait0

Wait1

Output1

 ram_req1=�1� /

cnt_out=47 /
ram_ack0 = �1�,

(LPflag_out=�false�)

ram_req0=�1 /

ram_req1=�0� /
ram_ack0=�1�

ram_req0=�0� /
ram_ack1=�1�

cnt_out<47 /
cnt_out++

cnt_out<47 /
cnt_out++

cnt_out=47 /
ram_ack1 = �1�

 cnt_out=47 &
ram_req1=�1� /
ram_ack0 = �1�,

(LPflag_out=�false�)

 cnt_out=47 &
ram_req0=�1� /
ram_ack1 = �1�,

 / ram_ack0 = �0�,
 ram_ack1 = �0�,
 LPflag_out=�true�

 43 of 62

4.3.6 Equalization

A complex single-tap equalizer is used to compensate for the channel distortion. Every
subcarrier signal is equalized (in amplitude and phase) by the associated channel
coefficient ci.. The equalized modulation- symbol estimates are usually generated by

2
i

*
ii

i

i
i |c|

cdata
c

datadata_sym •
== .

However, the division by |ci|2 is not performed to reduce the RX chain complexity.
Instead, this operation has been moved into the log-likelihood computation unit (see
Section 4.3.8), resulting in a simplified equalizer comprising only one complex multipli-
cation per incoming data sample,

.cdata_symcdatadata_eq 2
ii

*
iii •=•=

As was shown in Figure 4.25, the first 48 input data from the channel estimator contain
the channel coefficients. The complex multiplier is used in this mode to calculate the
weighting factors |ci|2. These coefficients are stored in a memory and are subsequently
output periodically in parallel with the associated equalized data values.

To reduce the complexity of the multipliers, the input data are first divided by 8
(reduction from 16 to 13 bit). Next, the input data and channel coefficients are limited to
the range ±255, resulting in a data width of 9 bits. This limitation is possible without
performance degradation, as the FFT operation results in a downscaling factor of 64
(amplitude downscaling by 8). The limitation still enables the compensation of rather
large channel fluctuations in the range of |ci|max = 5|ci|perfect, where |ci|perfect stands for the
theoretical channel coefficients with ideal power control and frequency flat channel
characteristics.

The scaled and limited data and channel coefficients are multiplied using four 9×9 bit

multipliers because the complex multiplication *
iii cdatadata_eq •= can be decomposed

as

)imag(c)real(data)real(c)imag(data)eqimag(data_

)imag(c)imag(data)real(c)real(data)eqreal(data_

iiiii

iiiii

•−•=

•+•=
.

The results are scaled down by 4 to be presentable with 16-bit precision (15 bits for |ci|2,
no sign bit).

4.3.7 SIGNAL FIELD FIFO for Processing Delay

The units following the equalizer stage need to know the data rate and length
parameters of the data packet currently received. This information is encoded in the
SIGNAL FIELD (see Figure 4.5). All further receiver processing starting with the log-
likelihood computation needs to wait for the decoded SIGNAL-field information.

 44 of 62

Therefore, a FIFO is introduced to buffer the equalized data and squared channel
coefficients |ci|2.

The FIFO forwards the first 48 samples containing the SIGNAL field into the

remaining RX chain. Afterwards, the output is disabled until the SIGNAL-field decoding
has been completed. The latency is on the order of 150 cycles, where the main latency of
137 cycles is introduced by the VITERBI decoder (VD).

After deferring the data output for the predefined latency period, the data output

process to the log-likelihood unit is re-enabled. As the FIFO and the processing units are
able to work with 40 MHz, the latency can be reduced during the payload-decoding
process.

4.3.8 Log-likelihood Ratio (LLR) Computation

To enable soft-decision Viterbi decoding instead of a hard-decision de-mapping, a
suitable LLR computation unit is required. In [9], a LLR computation has been presented,
which allows the usage of a simple soft-input VD that need to be aware of several bit
types with different importance.

The equalized samples at the input of the LLR computation unit correspond to

weighted estimates of the transmitted modulation symbols,

.cdata_symdata_eq 2
iii •=

Each complex input symbol corresponds to 1, 2, 4, or 6 transmitted bits, depending on the
modulation mapping (see Table 4.4). The real and imaginary parts of the received
symbols can be treated independently as 2-, 4-, or 8-PAM signals. Hence, each PAM
symbol corresponds to 1, 2, or 3 bits. Note that for BPSK the imaginary part is not used.
The modulation mapping (Gray encoding) between the bits and the PAM symbols and
their corresponding amplitudes is visualized for 64QAM in Figure 4.26. We observe that
the bits b0/b3 are always �1� for positive and �0� for negative symbol amplitude values.
Hence, these bits determine the sign of the symbols and have the highest significance.
The bits b1/b4 = �1� correspond to the PAM symbols with small magnitude (±1, ±3) and
b1/b4 = �0� to symbols with large magnitude (±5, ±7). Hence, the bits b1/b4 are also
called �first-magnitude bits� with medium significance. Finally, the bits b2/b5 distinguish
the small-magnitude values and the large-magnitude values and represent the least
significant bits.

The knowledge about the bit significance can be exploited in the LLR computation. As
indicated by the blue line in Figure 4.26, the LLR corresponding to the sign bits b0/b3
can have larger likelihood ratio values than the LLRs for the less significant bits. This
supports the fact that the correct sign of a received symbol can be detected with a higher
reliability than the associated magnitude. The �first-magnitude� bits b1/b4 can have
higher likelihood ratio values than the �second-magnitude� bits b2/b5, as indicated by the
green and red lines.

 45 of 62

Figure 4.26: Modulation mapping for Gray-encoded 64QAM and LLR plot showing

the significance of the bit positions

In [9], the following LLR have been derived:

xc(x)Λ 2
i

(1,0) •=

|)x|(2c(x)Λ

2xif,1)2(x
2x2if,x

2xif,1)2(x
c(x)Λ

2
i

(2,1)

2
i

(2,0)

−•=

>−
≤≤−

−<+
•=

000000 001000 011000 010000 110000 111000 101000 100000

000001 001001 011001 010001 110001 111001 101001 100001

000011 001011 011011 010011 110011 111011 101011 100011

2 4 6-2 -4 -6 I

Q

b0
b3

b1
b4

b2
b5

PAM

0 0 0 -7
0 0 1 -5
0 1 1 -3
0 1 0 -1
1 1 0 +1
1 1 1 +3
1 0 1 +5
1 0 0 +7

2 4 6-2 -4 -6

LLR

 I (Q)

b0 (b3)

b2 (b5)

b1 (b4)

b0b1b2b3b4b5

 46 of 62

<−
≤≤−

•=

<−
≤<−
≤≤−

•=

<−
≤<−
≤<−
≤≤−
−<≤−+
−<≤−+

−<+

•=

x4if,x6
4x0if,2x

c(x)Λ

x6if,)x2(5
6x2if,x4
2x0if,)x2(3

c(x)Λ

x6if,3)4(x
6x4if,2)3(x
4x2if,1)2(x

2x2if,x
2x4if,1)2(x
4x6if,2)3(x

6xif,3)4(x

c(x)Λ

2
i

(3,2)

2
i

(3,1)

2
i

(3,0)

Note that idata_symx ≡ and 2
iw,

2
i /σ1c ≡ . Furthermore, the notation d)(q,Λ describes a

LLR, where q is the number of bits associated to a symbol (q = 1: 2-PAM, q = 2: 4-PAM,
q = 3: 8-PAM) and d is the bit number (d = 0: b0-�sign bit�, d = 1: b1, d = 2: b2). It can
be observed that for large values of x the slopes of the LLRs increase. However, the
number of soft bits for the representation of the LLRs needs to be limited to 5. This in
turn limits the dynamic range of the LLRs. Moreover, the LLR computation presented
above requires many comparisons and is numerically rather complex.

To simplify the LLR computation, the following simplifications have been made:

• The piecewise linear LLR computation has been further linearized to prevent
heavy usage of comparators.

• The multiplication with 2
ic has been omitted for the data symbols because the

normalization with this factors is skipped in the equalizer stage. Instead, the
thresholds have to be adapted. This can be done without multipliers, as will be
shown later.

• The quantization is done very efficiently without a bank of comparators using the
number representation.

The LLR computation formulas have been simplified to

y(y)Λ (1,0) =

yc2(y)Λ

y(y)Λ
2

i
(2,1)

(2,0)

−=

=

 47 of 62

<−

≤≤−
=

−=

=

yc4if,yc6
c4y0if,c2y

(y)Λ

yc4(y)Λ

y(y)Λ

2
i

2
i

2
i

2
i(3,2)

2
i

(3,1)

(3,0)

with 2
ii cxdata_eqy •=≡ . The threshold comparisons have been reduced to a

minimum. Furthermore, the input data y appears only directly or as absolute value: all
multiplications have been removed. The values 2

i
2

i
2

i c6,c4,c2 can be calculated by

simple shift operations and one addition .c4c2c6 2
i

2
i

2
i += Note that the scaling with

the factor KMOD as defined in Table 4.5 is compensated for by moving this factor into

the LLR computation as 2
i

~
2

i cKMOD(rate)c •= , resulting in one real multiplication.

Table 4.7: Soft input mapping for Viterbi decoder and associated quantization levels
for LLRs saturated to [�1024, 1023]

Viterbi input meaning Quantization values (2�s compl.) quantization range
11111 strongest 1 01111xxxxxx 960�1023
11110 second strongest 1 01110xxxxxx 896�959

... � � �
10000 weakest 1 00000xxxxxx 0�63
01111 weakest 0 11111xxxxxx �64��1

... � � �
00001 second strongest 0 10001xxxxxx �960��897
00000 strongest 0 10000xxxxxx �1024��961

The resulting LLR values $ need to be adapted to the input-mapping scheme of the

Viterbi decoder unit. This task requires a mapping of 16-bit LLRs onto 5-bit Viterbi soft
inputs, which are described in Table 4.7. First, the LLRs are saturated to [�1024, +1023]
or, equivalently, to [10000000000, 01111111111] in 2�s complement representation. This
range has to be quantized to 25 = 32 levels, resulting in 2048/32 = 64 = 26 values per
quantization level. Hence, the lowest 6 bits are not relevant for the quantization process.
Therefore, the lowest quantization level corresponds to 10000xxxxxx (�1024 to �961)
and the highest quantization level to 01111xxxxxx (960 to 1023). The quantization levels
are also shown in Table 4.7. A comparison of the first and third columns reveals a very
simple mapping scheme: To create the soft inputs it is sufficient to invert the sign bit of
the saturated LLR value and then take the resulting 5 most significant bits as Viterbi input
bits. This mapping procedure prevents heavy usage of comparators, which would be
required for other quantization mappings. Depending on the modulation mapping, 1
(BPSK), 2 (QPSK), 4 (16QAM), or 6 (64QAM) soft bits are output in parallel for each
complex input symbol.

 48 of 62

4.3.9 De-Interleaving

The de-interleving unit inverses the operation carried out in the transmitter chain. Its
structure is very similar to that of the interleaver described in Section 4.2.7. The major
differences are the following:

• Instead of bits, LLR values, each consisting of 4 bits, are processed.
• Input: 1 to 6 LLR values are processed in parallel at the input. Permutation 2 is

reversed on the fly at the input and the LLRs are stored in memory (see
interleaver for memory map).

• Output: 4 LLR values are produced in parallel at the output.

4.3.10 De-Puncturing

Figure 4.27: De-puncturing unit, parallel implementation, output erasure bit

E:�xxxx� in parallel with associated soft bits

in0 in1 in2 in3 out0out1out2out3

in

0
1
2
3

½

⅔

¾

Rate
memory

20

out

0
1
2
3

0

3

in_cnt out_cnt

Input process Output process

0

2

1

½

⅔

¾

20

19�15 14�10 9�5 4�0 bit

1

20

20

20

20

20

0

2

1

2

20

 h �00000�

E:�0000�

E:�1000�

E:�1000�

E:�1000�

E:�1000�

E:�0110�

E:�0001�

E:�1000�

E0E1E2 E3
4

Erasure bits

bit 19�15 14�10 9�5 4�0

de-puncturing

 49 of 62

A certain number of encoded bits have been removed from the data stream during the
puncturing process in the transmitter (see Section 4.2.6). The de-puncturing unit has to
re-introduce these erased bits into the data stream before Viterbi decoding to regenerate
the coding rate ½. The implementation of the de-puncturing process is shown in Figure
4.27. However, the erasure bits are unknown to the receiver. Therefore, a neutral soft bit
has to be inserted. As no neutral soft bit is defined in the mapping table (Table 4.7), the
inserted bits are labeled by additional erasure bits, which are output in parallel with the
associated soft bits. The generation of the erasure bits is depicted in Figure 4.27 as
E:�xxxx�, where E:�1000� corresponds to the insertion of a soft bit at output out3. The
inserted soft bits are marked as hatched rectangles and filled with the value �00000�.

Four soft bits are fed into the Viterbi decoder concurrently with the four associated
erasure bits. Note: The first OFDM symbol (= SIGNAL field) is always transmitted with
6 Mbps, which corresponds to BPSK with coding rate ½. Therefore, the first 48 encoded
bits are always treated correspondingly; the RATE information fed into the de-puncturing
unit is not used for the SIGNAL field bits.

4.3.11 Viterbi Decoding

The Viterbi decoder unit is implemented as a core [10] with a fixed set of parameters:
• Code with constraint length 7, rate ½ and generators (133)8 and (171) 8;
• soft input bits;
• decision depth equal to 64;
• radix-4 architecture with 64 ACS processors;
• de-puncturing unit interface present;
• BER estimation unit not present.

 VITERBI_DEC CORE

Branch
Metric
Unit

Survivor
Metric
Unit

Add
Compare

Select
Unit

D_VAL_O
DATA_O[1:0] OBUF

OBUF

DATA1_I [9:0] IBUF

D_VAL_I IBUF

N_CLK IBUF

EDATA1_I [1:0] IBUF

CLK IBUF

DATA2_I [9:0] IBUF
EDATA2_I [1:0] IBUF

N_RST IBUF

Figure 4.28: Viterbi decoder core block diagram

A general block diagram of the core is shown in Figure 4.28. The four input soft bits

are provided as two pairs at the inputs DATA1_I and DATA2_I. Equivalently, the four
input erasure bits are provided as two pairs at the inputs EDATA1_I and EDATA2_I.

 50 of 62

Note that the generator polynomials in the TILAB core are (171 133)8, whereas 802.11a
uses (133 171)8 so that the de-punctured data and the erasure bits have to be swapped at
the VITERBI decoder input to fit to the associated generator polynomial. The output
consists of 2 decoded bits in parallel at port DATA_O.

The Viterbi core is controlled by an FSM as depicted in Figure 4.29. After reset, the

first 48 data values (24 encoded soft bits) are clocked into the Viterbi core. Next, a
number of dummy bits have to be clocked into the core, before the decoded data are
available at the decoder output. This is done by repeating the last data values and by
labeling these data as erasure bits. The latency consists of a decoding delay Ddecod = 128
clock cycles and an additional processing delay Dproc = 9 clock cycles. After this
latency, the SIGNAL field has been completely decoded. Hence, the transmission
parameters data rate (Prate) and length (Plength) are available for the RX chain. The
Viterbi core has to be reset, before the SERVICE and DATA fields can be decoded. This
is done by assigning VITnreset = �0� to the port N_RST. Next, the SERVICE field and
the DATA field of length Plength*8bit are clocked into the core. These values have been
stored in the SIGNAL field FIFO until the data rate and packet-length decoding process
has been completed (see Section 4.3.7). Finally, to clock out the decoded bits, 128
dummy values are clocked into the core by labeling these values as erasure bits.

Figure 4.29: Viterbi decoder control FSM

4.3.12 Descrambling

The entire DATA field including SERVICE, PSDU, TAIL and PAD bits, has been
scrambled in the transmitter (see Section 4.2.4); the SIGNAL field remains unscrambled.
In the RX chain, the same scrambler as described in Figure 4.7 for the TX chain can be
used.

reset

Signal
field

Signal
tail

cnt<24 enc. bits /
cnt++

 /
 VITnreset=�0�

cnt<Ddecod / cnt++,
erase=�1111'

cnt=24/
 cnt=0

Wait

cnt<Dproc /
cnt++

cnt=
Ddecod/

cnt=0

Reconfig

cnt<VITreset /
cnt++

cnt=
Dproc /
(Prate,

Plength)

Service
field

Data
field

cnt<16 service bits /
cnt++

cnt<Plength*8 /
cnt++

cnt=16/
 cnt=0 Data

tail

cnt<Ddecod /cnt++,
erase=�1111�

cnt=
Plength/

cnt=0

End

cnt=
Ddecod /

cnt=VITreset / cnt=0,
VITnreset=�0�

cnt=16 & Plength=0/
 cnt=0

 51 of 62

Random values are used to initialize the scrambler registers. However, the

initialization values are not known in the RX chain. Therefore, these values have to be
determined on the fly in the descrambler unit. This initialization can be done as follows:

• Register value a0 as depicted in Figure 4.6 is updated in every clock cycle with
630 aaa ⊕= .

• The first 7 bits of the SERVICE field are 0�s. Hence, for the first seven clock
cycles the scrambled data output can be written as 063 a0aadata_out =⊕⊕= .
The first seven scrambled bits are identical to the register values for any
initialization.

• In the receiver, a correct initialization of the descrambler requires that the
registers contain the same bit sequence as described above at the end of the
SERVICE field. Hence, the initialization of the descrambler can easily be done by
clocking the seven bits containing the (scrambled) SERVICE field into the
descrambler registers as shown in Figure 4.30.

• The descrambled output can be determined as data_inydata_out ⊕= . The output
for the SERVICE field is determined by 0data_indata_in =⊕ .

• The parallel implementation can be derived directly from Figure 4.7 by introdu-
cing the SERVICE field switch, resulting in Figure 4.31. Note that in the parallel
implementation one transition state has to be introduced. While the last (7�s)
SERVICE field bit bi(0) is clocked into register a1, the switch for the first
RESERVED field bit bi(1) already has to be switched into the normal
descrambling mode.

Note also that the first 24 bits of the SIGNAL field are directly forwarded to the output
by skipping the descrambler.

Figure 4.30: Data descrambler, serial implementation

a0 a1a2a3a4 a5 a6

Data Out

SERVICE

y

Data In

 52 of 62

Figure 4.31: Data descrambler, parallel implementation

4.3.13 Packet Decomposition

After descrambling, the packet-decomposition unit separates the received PPDU frame
according to its structure, which was shown in Figure 4.5. The FSM of this unit is
depicted in Figure 4.32. In the first part, the fields RATE, RESERVED, LENGTH are
stored in registers. These values are fed back into the RX chain using the ports Prate,
Preserved, and Plength. A parity check is executed over these fields, and the result is
output to port Pparity. After the determination of the parity bit, an additional signal
DETECT0 is raised to inform the PHY-RX state machine.

Figure 4.32: Packet-decomposer FSM

a0

a1

a2

a3

a4

a5

a6

Data In

Data Out

bi(1) bi(0)

bo(1) bo(0)

SERVICE

 t+1 t

 /
Plength, Pparity, DETECT0

reset

Rate Reserved +

Length0

 /
reset parity

/
 Prate

Length

/
 Preserv Length11+

Parity
/

Signal
tail

Service
field

/
PSDU

/
 DETECT1

End

cnt=
Plength*8 /
DETECT2

cnt<Plength*8 /
cnt++, PSDU_out

no
PSDU

Plength=0/
 DETECT1

cnt=
Delay /

DETECT2

 53 of 62

Next, after the removal of the SIGNAL tail bits, the SERVICE field is saved into
registers. The end of the SERVICE field or, equivalently, the start of the PSDU is
indicated by the signal DETECT1. Finally, the PSDU is output. The end of the PSDU is
indicated by the signal DETECT2. The signals DETECT0�DETECT2 are forwarded to
the MAC layer to indicate the actual status of physical data reception.

4.3.14 CRC Check

The packet decomposer outputs the entire PSDU or MAC frame. Before the frame is
passed to the MAC layer, the CRC check is done in the PHY hardware to save computa-
tional power in the MAC layer. The CRC value is generated exactly in the same way as
in the transmitter (see Section 4.2.2). The input bits are stored in a memory until the next
byte is formed. Next, the CRC update is performed (the input bytes have to be reflected
MSB!LSB). After the reception of the entire PSDU including the FCS field, the
resulting CRC value has to be compared bitwise with the so-called magic number
0xc704dd7b, which describes the expected remainder polynomial,

bddchex
bin 1011

3

7
0111

456

1101

81011

1101

121415

4
0100

18

0
0000

7
0111

242526

1100

3013 .1xxxxxxxxxxxxxxxxxC(x) +++++++++++++++++=

If the bitwise comparison result is zero, the correctness of the CRC check is indicated

to the MAC by a signal P_CRC_OK = �1�.

Note that the CRC check unit performs a word alignment at its output. If the PSDU
length is not a multiple of 32 bits, the unit appends the necessary number of 0�s at the end
of the frame. This operation is required because the subsequent FIFO (interface to MAC)
works on a word basis rather than byte-wise.

4.4 PHY Latency Considerations

In the following subsection, some fundamental latency considerations for the physical
layer implementation are discussed, which are essential to meet the allowable PHY
characteristics as defined in the 802.11a standard [1, Table 93]. The critical times that
have to be met by the PHY layer are the SIFS (short inter-frame spacing) time and the
CCA (clear channel assessment) time. Here, we only concentrate on the SIFS time. The
SIFS is the time from the end of the last symbol of the preceding frame to the beginning
of the first symbol of the preamble of the subsequent frame as seen at the air interface.
This is shown in Figure 4.33, where a data reception has to be acknowledged after SIFS.
The SIFS includes the following delays:

oundTime.RxTxTurnaringDelayMACProcessyRxPLCPDelaRxRFDelaySIFS +++=

 54 of 62

Figure 4.33: DCF timing details

In the following, the delay (RxPLCPDelay) introduced by the receive chain units is
described in detail.

There is only a few clock cycles� worth of latency introduced by the RX-filter/decimator.
In the inner receiver, the incoming data have to be stored in a tapped delay line until the
timing synchronization is done. The introduced latency can be removed by using a FIFO
concept, where the output data towards the FFT are written at twice the input rate (40
MHz). The FFT compute time is T1_FFT = 3.65 µs, the output buffering takes another
T2_FFT = 1.6 µs (64 cycles @ 40 MHz). These times are currently fixed because a
predefined Xilinx FFT core form is used. To be able to calculate an FFT every 4 µs, two
FFTs are instantiated and used alternatingly (see Section 4.2.9) in the current implemen-
tation. The resulting FFT latency is TFFT = 5.25 µs. The de-interleaver has to read 48 data
@ 40 MHz from the input before being able to output data, which introduces a latency of
T1_IL = 1.2 µs. The data output will take T2_IL = 0.3 ... 1.8 µs (BPSK: 48 data / 4 parallel
streams @ 40 MHz ...; 64QAM: 288 data / 4 parallel streams @ 40 MHz). All units
between the de-interleaver and the Viterbi decoder process 4 data streams in parallel to
decrease the latency and to feed the radix-4 Viterbi core. The resulting de-interleaver
latency is TIL ≤ 3µs. The de-puncturing unit expands data by a maximum factor of 3/2 for
rate 3/4. Hence, the maximum latency introduced by the de-puncturing unit is TPUNCT =
0.9 µs. The Viterbi decoder uses a radix-4 architecture with a decision delay of 64 cycles.
The core introduces a delay of 2 × 64 + 8 cycles, resulting in TVIT = 3.4 µs. The CRC
check is done on the fly and does not introduce additional latency. The overall worst case
delay of the baseband implementation is currently

TFFT + TIL + TPUNCT + TVIT = 5.25 µs + 3 µs + 0.9 µs + 3.4 µs = 12.6 µs.

Hence, the implementation meets the SIFS timing requirements, leaving about 3 µs for
the transmit preparation of the ACK frame.

 55 of 62

However, the latency can still be reduced considerably by implementing the following
changes:

• The use of a more appropriate custom FFT:
o one FFT with twice the number of butterflies reduces T1_FFT by 50% to

1.825 µs,
o use of a Decimation-in-Time FFT to eliminate T2_FFT completely because

the input data reordering can be done on the fly.
• The shortening of the Viterbi core decoding delay to 32 (instead of 64) is possible

with marginal performance loss and reduces the latency to TVIT32 = 1.7 µs.
Introducing these changes would result in a PHY latency of approximately 7.5 ... 8 µs.

Another approach to reduce the latency of the receive chain is to increase the FPGA
clock speed. However, the current clock speed of 40 MHz was chosen under the
following constraints:

• The RF frontend delivers a 40-MHz clock, which is used for the AD/DA-
converters and as symbol clock frequency reference.

Higher clock frequencies will cause problems for the place-and-route algorithm and
would require more algorithm pipelining.

 56 of 62

5 Radio Frontend Implementation Issues

The radio frontend of the mobile station prototype of the ZRL high-speed wireless
LAN has been developed in a joint project with the Laboratory for Electromagnetic
Fields and Microwave Electronics of the Swiss Federal Institute of Technology (ETH)
Zurich [11]. The radio frontend consists of the RF interface board, which is attached via a
control interface and two data interfaces to the digital baseband implemented in the
FPGA, and a set of commercially available analog components such as low-noise
amplifier, power amplifier, synthesizer, filter, etc. The frontend is compatible with the
802.11a specification.

In this Section, we describe the radio frontend architecture, specify the interface
between the digital baseband and the frontend, and discuss some filter design issues.

5.1 Radio Frontend Architecture

Figure 5.1: 802.11a radio frontend architecture

The 802.11a-compliant analog radio frontend design applies a heterodyne radio
architecture (see Figure 5.1). It can be operated in one out of the eight 20-MHz-wide

LNA

I
Q

DDS

RSSI

PLL

40 MHz
Quartz TP

BP

BP

BP

BP

Q
IModulator

 57 of 62

channels in the lower and middle U-NII frequency band between 5.15 and 5.35 GHz.
Switching between the channels can be performed within a fraction of 1 µs.

By default, the radio frontend is operated in the receive mode. The analog receive path

has been designed with the aim to operate with a minimum input signal sensitivity of �90
dBm, to provide a wide dynamic range of 60 dB, and to keep the phase noise and inter-
modulation distortion at a low value. As shown in Figure 5.1, any incoming signal at the
antenna is first filtered and passed via the RX-TX antenna switch to the low-noise
amplifier MGA-86576 [12] that amplifies the signal by 20 dB. Then the amplified RF
signal is down-converted with a mixer to the intermediate frequency (IF) band at 280
MHz. The carrier signal necessary depends on the channel selected and is provided by the
PLL frequency synthesizer. Next the IF signal is filtered with a SAW filter with a
bandwidth of 17 MHz. Its output signal is monitored by a power detector (logarithmic
amplifier AD8310 [13]) to derive the received signal strength indicator (RSSI) value; this
value is converted with a 6-bit flash A/D converter CA3306 [15] and passed via the RF
interface board to the baseband-processing unit. The filtered IF signal is then scaled in
amplitude with several amplifiers and attenuators. Two adjustable FET attenuators adjust
the amplitude of the signal in the range from �17 dB to 46 dB; the gain value is set
according to a control voltage that is determined by the baseband-processing unit and
generated with a 10-bit D/A converter [13]. The filtered and scaled IF signal is fed to the
I/Q demodulator that down-converts the IF signal to the in-phase and quadrature
component of the complex baseband signal. This is accomplished by splitting the IF
signal into two signals with identical phase characteristic. Two identical mixers are then
used to down-convert the components to the baseband by using a synthesized 280-MHz
clock signal and a 90º-phase-shifted version of it, respectively. The I and Q components
of the signal are then fed to the RF interface board for A/D conversion and further
processing.

At the request of the physical-layer FSM, the radio frontend can be switched into

transmit mode. The transmit path has been designed with the goal of transmitting a radio
signal with a power of 200 mW in one of the 20-MHz-wide 5-GHz frequency bands and
keep the phase-noise, inter-modulation distortion, and spurious signal content at a low
level. When the frontend is transmitting, the I and Q components of the complex
baseband signal are up-converted with the I/Q modulator to the IF band at 280 MHz, and
then in two further up-conversion steps to the target frequency band between 5.15 and
5.35 GHz. The pre-defined nominal signal power level is adjusted with digitally
controlled attenuator circuits and the power amplifier MAAM26100-P1 [14]. To convert
the digital signals �AGC control� and �transmit-power control� to analog signals, low-
cost D/A converters [13] with a latch circuit in front were selected. The radio signal
generated is then fed via the RX-TX antenna switch and filter to the antenna and
transmitted over the air.

To satisfy the 802.11a physical layer specification, the frequencies of all carrier

signals are derived from a single 40-MHz quartz oscillator. The Analog Devices
ADF4112 RF PLL Frequency Synthesizer and the AD9850 Direct Digital Synthesizer
(DDS) generate all carrier signals that are required to convert the baseband signal via the

 58 of 62

IF band of 280 MHz to the target band and vice versa [13]. The PLL and the DDS are
controlled by the baseband signal-processing unit via the radio frontend interface.

5.2 Radio Frontend Interface

Figure 5.2: 802.11a Radio frontend with interface signals

Figure 5.2 shows the block diagram of the analog radio frontend with all interface

signals. The interface comprises 38 digital and 4 analog signals, which are used to control
the radio frontend and exchange data between the digital baseband and the analog radio
frontend components. The analog and digital radio-interface signals are defined in Tables
5.1 and 5.2.

 59 of 62

Table 5.1: Digital radio-frontend interface signals

Digital in- and outputs38Total signals
Transmit Power value4 inputsSeL_data[3..0]
Transmit Power set1 inputSeL_set
Antennea Switch1 inputAnS
PLL programming3 inputsPROG[2..0]
DDS register data8 inputsDDS_data[7..0]
DDS write clock1 inputDDS_w_clk
DDS frequency update1 inputDDS_fq_ud
RSSI DAC clock1 inputD_CLK
Received Signal Strength Indicator6 outputsRSSI[5..0]
RSSI DAC clock1 inputRSSI_enable
AGC value10 inputsAGC_data[9..0]
Automatic Gain Control value set1 inputAGC_set
RemarksNumber of PinsSignal Name

Table 5.2: Analog radio-frontend interface signals

Transmitter Q signal, impedance = 50 Ohm1.2[Vpp] / 1.5[V]Qein
Transmitter I signal, impedance = 50 Ohm1.2[Vpp] / 1.5[V]Iein
Receiver Q signal, impedance = 50 Ohm2[Vpp] / 2[V]Qaus
Receiver I signal, impedance =50 Ohm2[Vpp] / 2[V]Iaus
RemarksRange / DC OffsetSignal Name

Figure 5.3 shows the block diagram of the radio interface that connects the analog 5-

GHz radio frontend (RFE) to the digital baseband signal-processing unit implemented in
the FPGA. The interface consists of several A/D and D/A converters, analog and digital
low-pass filters, up- and down-sampling devices, and some analog and digital signal-
conditioning circuits. The converters and all required analog components have been
implemented on the RF interface board, whereas all digital processing functions have
been integrated into the XILINX FPGA.

The A/D and D/A conversions are performed with the Dual D/A Converter AD9763

and Dual A/D Converter AD9238 [13] at a rate of 40 MHz. The sampling rate is thus
twice the Nyquist rate and, therefore, two-times oversampling is applied. The in-phase
and quadrature components of the digital transmit signal are represented with 10 bits,
whereas the components of the received signal are quantized with 12 bits. Up-sampling
of the digital baseband signal from a 20-MHz sampling rate to 40 MHz and down-
sampling of the oversampled receive signal to the Nyquist rate is implemented in the
FPGA as an additional signal-processing unit in the TX and RX chain, respectively.

The low-pass filters are required to shape the signal spectrum, perform signal

smoothing, and avoid aliasing effects. Identical filter functions are implemented in the
corresponding in-phase and quadrature channels of the transmit and receive paths;

 60 of 62

especially in OFDM-based systems, any imbalance in the two channels would lead to a
severe performance degradation [16]. In addition, we decided to use the same filters in
the transmit and receive path to advantageously re-use hardware resources.

Figure 5.3: Radio interface block diagram

Because oversampling is applied, each filter function can be implemented with partly

analog and partly digital means. This allows the implementation of the filter function by
means of a commercially available analog filter with relaxed filter requirements and a
digital filter that mainly determines the overall characteristic. As the main part of the
filter is implemented digitally, exact copies of the digital filter can be provided in the
corresponding in-phase and quadrature channels, thus avoiding the introduction of a
severe I/Q imbalance.

The analog filter is a seventh-order Chebyshev filter with a ripple of less than 0.1 dB

and a �3 dB cutoff frequency at 14 MHz. The group delay deviation is less than 15 ns at
frequencies below 9 MHz. The digital filter is a programmable 19-tap half-band FIR
filter with a distributed arithmetic filter architecture. Further characteristics of the filter
are two-times oversampling, a latency of 8 clock cycles, and the use of a Hanning
window.

To eliminate DC offsets on the received analog signals, a first-order 50-kHz high-pass

filter is inserted between the radio frontend and the A/D converters. Moreover, the
input/output standard of all digital signals is LVTTL (3.3V) compliant. To satisfy the
requirements of LVTTL levels for all digital signals, some conditioning circuits are
necessary, as indicated in Figure 5.3

Xilinx FPGARFE
5GHz

Digital Signal
Conditioning
Circuits

40 MHz 40 MHz

RSSI[0..5] RSSI[0..5]

RFE[0..30] RFE[0..30]

Analog Signal
Conditioning
Circuits
(Amplitude,
DC-Level)

DAC

DAC

ADC

ADC

10

10

12

12

40 MHz

40 MHz

40 MHz

40 MHz

Down-
Conv.

Down-
Conv.

Digital Signal
Processing Unit

14 MHz

14 MHz

14 MHz

14 MHz

10 MHz

10 MHz

10 MHz

10 MHz

10 MHz

I

Q

I

Q

Up-
Conv.

Up-
Conv.

 61 of 62

6 Summary

To evaluate the potential of the broadband WLAN technology for next-generation
mobile communication systems, a WLAN testbed with three mobile stations has been
designed and built at the IBM Zurich Research Laboratory. The physical layer of the
WLAN has been implemented in accordance with the IEEE 802.11a specification.
Therefore, OFDM has been applied as basic transmission technology, and the radio
frontend has been developed for operation in the 5-GHz frequency band.

In this document, we have disclosed the architectural design of a mobile station that

consists of a radio frontend, digital baseband/MAC unit, and additional peripheral test
and debug equipment. We have briefly described the mapping of these units to hardware
components that are available on a set of ARM software/hardware development boards.
Emphasis, however, has been given to the description of the OFDM-based physical layer
architecture. We have specified the PHY/MAC interface with service primitives and
described the basic behavior of the physical layer by means of the basic receive and
transmit procedure.

The major portion of the report has been devoted to the implementation of the digital

baseband. Hardware implementations of all digital signal-processing algorithms required
to transmit and receive 802.11a OFDM packets over the air interface have been given.
Moreover, we have discussed the communication mechanism applied between the
functional units. The design of all functional units has been tailored so that all units fit
into a commercially available FPGA and the stringent latency requirements of the
802.11a standard can be satisfied.

Finally, a 5-GHz radio frontend implementation has been presented that has been

jointly developed with engineers from the ETH Zurich.

 62 of 62

7 References
[1] �IEEE P802.11a/D7.0 - 1999, Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY) Specification: High Speed Physical Layer in the 5 GHz Band,� IEEE, New
York, July 1999.

[2] R. van Nee and R. Prasad, �OFDM for Wireless Multimedia Communications,� Artech
House, Boston and London, February 2000.

[3] �IEEE Standard 802.11 - 1997, Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specification,� IEEE, New York, November 1997.

[4] Data Sheets and User Guides for ARM Integrator/AP, Integrator/CM920T, and
Integrator/LM-XCV600E+, http://www.arm.com/

[5] Xilinx Product Specification: High-Performance 64-Point Complex FFT/IFFT V1.0.5,
http://www.xilinx.com/

[6] P. Coronel, �Implementation of Digital Signal Processing Algorithms for an OFDM-Based
Broadband Wireless Local Area Network,� IBM Research Report, RZ 3428, January 2003.

[7] P. Coronel, S. Furrer, J. Jelitto, D. Maiwald, W. Schott, and B. Weiss, �Acquisition and
Adjustment of Gain, Receiver Clock Frequency, and Symbol Timing in an OFDM
Receiver,� CH8-2002-0053, submitted to EPO, December 2002.

[8] S. Furrer and D. Dahlhaus, �Mean Bit-Error Rates for OFDM Transmission with Robust
Channel Estimation and Space Diversity Reception,� in Proc. of the 17th Int�l Zurich
Seminar on Broadband Communications 2002 (IEEE, Piscataway, NJ, 2002), pp. 47-1 - 47-
6, February 2002.

[9] F. Neser, �OFDM: Coding Aspects,� IBM Internal Report, March 2000.

[10] Telecom Lab Italia: VIP library data sheet, Viterbi Decoder Macro,
http://www.telecomitalia.com/

[11] M. Stadler, �The 802.11a Radio Frontend Project�, Preliminary Technical Report and
Presentation, ETH Zurich, Switzerland, August 2003.

[12] Data sheet for MGA-86576 SMT Amplifier, Agilent, http://www.agilent/

[13] Data sheets for ADF4112 RF PLL Frequency Synthesizer, AD9850 125 MHz complete
DDS Synthesizer, AD1161 10-bit Monolithic D/A-Converter, AD8310 Fast Voltage-Out
DC-440 MHz 95 dB Logarithmic Amplifier, 10-bit 125 MSPS Dual D/A Converter
AD9763, 12-bit 65 MSPS Dual A/D Converter AD9238, Analog Devices,
http://www.analog.com/

[14] Data sheet for MAAM26100-P1 Power Amplifier, M/A-COM, http://www.macom.com

[15] Data sheet for 6-bit 15 MSPS, Flash A/D Converter, Intersil, http://www.intersil.com/

[16] S. Furrer, J. Jelitto, W. Schott, and B. Weiss, �Modulation and Demodulation of OFDM
Signals,� CH8-2003-0081, submitted to EPO, January 2004.

