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Abstract 
 

A prototype of a broadband wireless LAN with three mobile stations has been 
designed and built at the IBM Zurich Research Laboratory. Each station operates in 
conformance with the IEEE 802.11a WLAN standard and comprises a 5-GHz radio 
frontend realized with analog vendor components, a digital baseband implemented in a 
FPGA, and a medium-access control executed on an ARM9 embedded processor. This 
document describes the architectural design of the OFDM-based physical layer and 
provides details on the implementation of the analog radio frontend, the digital baseband 
and its interface to the MAC.  
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1 Introduction 
 

In the next generation of IP-based mobile communication systems, broadband radio 
LANs will enable a variety of new wireless services and applications in the office, at 
home, and on the move. High-speed wireless communication between mobile and control 
stations will be required to bring the tremendous amount of information provided by the 
World Wide Web to the mobile user. In addition, the provision of high-speed data 
services as well as multi-media entertainment applications in hot-spot cells, such as 
conference centers, airports, hotel lobbies, and similar public places, will continuously 
gain in importance.  

 
In the United States, broadband radio LANs have been specified in the IEEE 802.11a 

standardization group [1]. The 802.11a wireless LAN will satisfy the increasing 
bandwidth demand by providing data rates up to 54 Mbit/s. The radio is operated in 
frequency bands between 5.1 and 5.8 GHz. The physical layer transmission scheme 
applies Orthogonal Frequency Division Multiplexing (OFDM) with variable-rate 
modulation and coding, allowing selectable user data rates between 6 and 54 Mbit/s. In 
OFDM-based systems [2], the user data stream is split into parallel streams of reduced 
rate, which are then modulated on separate subcarriers. By appropriately choosing the 
frequency spacing between subcarriers, the carriers are made orthogonal, allowing some 
spectral overlap between the subchannels, which leads to a better spectral efficiency than 
using simple frequency-division multiplexing. OFDM is especially attractive for high-
speed wireless LANs because it is robust against multi-path propagation, intersymbol 
interference, and against narrowband interference. Access to the radio channel by 
multiple users is controlled by a Carrier Sense Multiple Access / Collision Avoidance 
(CSMA/CA) scheme as defined in the 802.11 Medium Access Control (MAC) protocol 
[3]. This Ethernet-like protocol allows an easy integration of the radio LAN into an IP-
based backbone network.  

 
We have designed and implemented an 802.11a WLAN testbed at the IBM Zurich 

Research Laboratory (ZRL). The testbed consists of three standard compliant mobile 
station prototypes operated without centralized control (ad-hoc mode). Each mobile 
station comprises a radio frontend, a digital baseband/MAC unit, and an interface to a 
host computer as illustrated in Figure 1.1.  

Figure 1.1: 802.11a WLAN mobile station prototype (overview) 
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This report describes the OFDM-based physical layer (PHY) design and implemen-

tation of the mobile station prototype of the high-speed ZRL WLAN testbed. Section 2 
presents the overall architecture of the mobile station. We also describe the partitioning 
of the prototype into several functional units and their mapping onto commercially 
available hardware and software components. In Section 3, we focus on the physical layer 
architecture. The interface between the physical layer and the MAC is specified, and 
basic PHY procedures are discussed. Section 4 provides details on the design and 
implementation of all signal-processing units required to implement the transmit (TX) 
and receive (RX) functions of the digital baseband. Finally, Section 6 deals with various 
implementation aspects of the radio frontend. 
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2 WLAN Mobile Station Architecture 

 
The ZRL high-speed WLAN prototype consists of three 802.11a-conform mobile 

stations. Each station has been implemented with a radio frontend, digital baseband/MAC 
unit, and peripheral personal computers, as indicated in Figure 2.1. 
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Figure 2.1: 802.11a WLAN mobile station prototype 

 
A 5-GHz radio frontend has been designed with discrete vendor components. It has 

been implemented on two boards: one comprises all analog components required such as 
low-noise amplifier (LNA), power amplifier (PA), synthesizer, mixer, and filters, while 
the other mainly carries the digital-to-analog (D/A) and analog-to-digital (A/D) 
converters. The frontend is attached to ARM development boards via two digital data I/O 
interfaces and one control interface. The latter can be used to program the frontend so 
that the radio signals are emitted in one of the eight pre-defined channels in the 
lower/middle U-NII frequency band (see Figure 2.2). 

 
The digital baseband/MAC unit has been implemented on three ARM development 

boards, namely the integrator/AP board, the core module CM920T-ETM, and the logic 
module LM-XCV2000E [4].  

 
The core module executes the MAC protocol firmware on the real-time operating 

system VxWorks on an ARM920T embedded controller, which can access, via a memory 
bus, local memory that stores the 802.11 MAC firmware, and via a bridge the system bus 
to communicate with components located on the integrator board and logic module.  



  5 of 62 

f [GHz]
5.15 5.18 5.20 5.22 5.24 5.26 5.28 5.30 5.32 5.35

U-NII lower band U-NII middle band

U-NII=Unlicensed National Information Infrastructure 
 

Figure 2.2: Frequency channels of 5 GHz radio frontend  

 
The logic module mainly carries a XILINX XCV2000E FPGA. On this device, digital 

signal-processing functions are implemented that are required to transmit and receive 
OFDM frames over the air interface, to communicate asynchronously via the AHB 
system bus with the MAC, and to control the radio frontend. More details on the physical 
layer functions implemented in the FPGA are given in Figure 2.3.  
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Figure 2.3: Physical layer functions implemented in FPGA 

 
The integrator board mainly provides I/O and control functions to attach peripherals to 

the AHB system bus. The ARM development boards have been connected via an 
Ethernet card, a serial link, and a JTAG interface to a computer for downloading the 
MAC code to the memory, to program the FPGA, and to debug the prototype. Typical 
wireless applications can be executed on a host computer that can be connected to the 
integrator board via a PCI-PCI bridge. 
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3 Physical Layer Architecture 
 

The physical layer has been architected so that it complies with the 802.11a standard 
and can be efficiently implemented with commercially available hardware components. 
In this Section, we give an overview on the PHY architecture selected, specify the 
PHY/MAC interface with abstract service primitives, and describe the behavior of the 
physical layer by means of the receive and transmit procedures.    

3.1 Overview 
  

Figure 3.1: Physical layer functional architecture 

 
Figure 3.1 shows an overview of the functional architecture of the physical layer, 

which consists of the digital baseband and the radio fontend. The digital baseband 
comprises the TX chain, the RX chain with demodulation/equalization unit and the 
inner/outer receiver, and a finite state machine (FSM) controlling the operation of the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Radio-Frontend 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Demodulation 
Equalization 

Radio Frontend Transmitter 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Outer Receiver 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Inner Receiver 

P
ac

ke
t c

om
po

se
r 

S
cr

am
bl

er
 

C
on

vo
lu

tio
na

l 
E

nc
od

er
 

P
un

ct
ur

in
g 

In
te

rle
av

er
 

S
ub

ch
an

nl
 

M
ap

pi
ng

 

W
av

ef
or

m
 s

ha
pe

 

IF
FT

 

G
ua

rd
 in

te
rv

al
 

in
se

rti
on

 

D
A

 c
on

ve
rs

io
n 

IQ
 m

od
ul

at
io

n 

D
e-

S
cr

am
bl

er
 

V
ite

rb
i D

ec
od

er
 

D
e-

P
un

ct
ur

in
g 

D
e-

In
te

rle
av

er
 

D
em

ap
/L

LR
C

om
p 

In
ne

r r
ec

ei
ve

r 

IQ
 d

em
od

ul
at

io
n 

P
ac

ke
t 

D
ec

om
po

se
r 

E
qu

al
iz

at
io

n 

 PHY TX state machine 
 
 
 
 
 

 PHY RX state machine 

Pilot Preamble 

parameters
Sync (timing, freq) 
Gain control (AGC) 

Guard removal 

Channel-  
Estimation & 

Tracking 

FF
T 

M
ix

/D
ow

ns
/F

ilt
er

 

A
D

 c
on

ve
rs

io
n 

P
H

Y
 (S

A
P

)  
st

at
e 

m
ac

hi
ne

 



  7 of 62 

physical layer. These functions are implemented in the FPGA on the logic module as 
illustrated in Figure 2.3.  

 
To facilitate the understanding of the subsequent sections, a high-level overview on 

the functions implemented in the PHY TX and RX chain is given. Some technically 
important details are skipped on purpose. 

   
When the MAC executed on the ARM controller requests the transmission of a PHY 

Service Data Unit (PSDU) with a given data rate and length, the payload and physical 
layer control information are clocked via the AHB system bus into the TX FIFO buffer 
and control registers (see Figure 2.3). After all control fields have been written, the 
physical layer FSM activates, configures, and triggers the OFDM TX chain. The data 
provided by the MAC is clocked from the TX FIFO into the TX chain. The packet 
composer maps the PSDU into a PHY Protocol Data Unit (PPDU), which also comprises 
the PHY Convergence Protocol (PLCP) header with the DATARATE and PSDU 
LENGTH field. The data field of the PPDU is scrambled, encoded, punctured, and 
interleaved (see Figure 3.1). The data symbols are then mapped on complex symbols 
according to the modulation scheme chosen before they are modulated on subcarrriers. 
Some carriers are skipped for subsequently inserting pilot signals. The modulation can be 
implemented efficiently by performing a 64-point Inverse Fast Fourier Transform (IFFT). 
The number of samples at the output of the IFFT is further increased to 80 by inserting a 
guard interval (cyclic extension). The samples are then parallel-to-serial converted and a 
PLCP preamble is put in front for receiver training.  Filtering can then be applied to shape 
the waveform. Next, the preamble and samples are D/A-converted, I/Q-modulated, up-
converted to the 5-GHz frequency band, amplified and finally transmitted over the air. 
Details on the implementation of the functional units of the TX chain are given in Section 
4.2.         

 
When a radio signal is received at the antenna, it is amplified with an LNA, down-

converted to an intermediate frequency band, I/Q-demodulated, and A/D-converted. The 
analog signal is over-sampled by a factor of two. Filtering and down-sampling to the 
baseband are performed before the digital samples are fed to the inner receiver that 
exploits known features of the PLCP preamble for detecting signal reception, adjusting 
the gain of the received signal, compensating frequency offsets, and removing the guard 
interval. After serial-to-parallel conversion, the 64 subcarriers of the OFDM signal are 
demodulated by using a Fast Fourier Transform (FFT). Channel estimation and 
equalization are then performed to remove some adverse effects of the radio channel.  To 
apply soft-decision Viterbi decoding for estimating the transmitted data sequence, the 
input samples to the Viterbi decoder are pre-processed in the Log-Likelihood Ratio 
(LLR) computation, de-interleaving, and de-puncturing unit. After de-scrambling the 
decoded data, the packet decomposer reconstructs the likely transmitted PSDU, stores it 
into the RX FIFO, and sends an interrupt to the ARM controller (see Figure 2.3). The 
interrupt triggers the execution of an interrupt service routine that immediately passes the 
received packet and additional control data via the system bus to the MAC protocol. 
Details on the implementation of the functional units of the RX chain are given in Section 
4.3.           
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3.2 Physical Layer Service Primitives 
 
The physical layer provides a set of services to the MAC layer, which are abstractly 

described by means of PHY service primitives in the IEEE 802.11 specification [1, 3]. 
Most of these services are implemented in the prototype in accordance with the standard 
and are provided to the MAC at the PHY service access point (SAP). This Section 
documents the implementation differences compared with the IEEE specification.   

 
PHY_TXSTART.req( E_TX_VECTOR, TIMEPOINT ) 

 
The primitive PHY_TXSTART.req is a request by the MAC to the PHY to start a packet 
transmission. The parameter list E_TX_VECTOR is an extended version of the 
TX_VECTOR as defined in [1] and includes all information necessary for a packet 
transmission. The parameters are defined in Table 3.1. A packet transmission is started at 
the point in time indicated by the parameter TIMEPOINT (see Table 3.2). 

 
Table 3.1: E_TX_VECTOR parameters 

Parameter Type Explanation 
LENGTH INTEGER PSDU length (including 

CRC): 0-4095 (12 bits) 
DATARATE CHAR Data rate:  

6,9,12,18,24,36,48,54 Mbit/s 
(see encoding rule in [1])  

SERVICE BITSTRING Service field (16 bits ) 
TXPWR_LEVEL INTEGER Transmit power level: 

1-8 (4 bits) 
PSDU_HEADER CHARSTRING PSDU header 
PSDU_PAYLOAD_POINTER CHARSTRING_PTR Pointer to PSDU payload 
PSDU_PAYLOAD_LENGTH INTEGER PSDU payload length 

 

Table 3.2: TIMEPOINT parameter 

Parameter Type Explanation 
TIMEPOINT UINT32 Point in time (time-stamp): 

0-2^31-1 (32 bit) 
TIMEPOINT=0; immediate execution 

 

Implementation notes: The parameters LENGTH, DATARATE, SERVICE, and 
TXPWR_LEVEL are written to dedicated control registers in the FPGA, whereas the 
strings PSDU_HEADER and PSDU_PAYLOAD are consecutively written into the 
TX_FIFO that has been flushed in advance. The parameter TIMEPOINT has to be 
written to a dedicated control register in the FPGA after all other parameters have been 
written. 
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PHY_TXSTART.conf( TIMEPOINT ) 
 
The primitive PHY_TXSTART.conf confirms the reception of a primitive 
PHY_TXSTART.req. The parameter TIMEPOINT is a time-stamp. 
 
Implementation notes: The primitive is implemented with the interrupt EXP1 and the 
interrupt service routine (ISR) intExp1SvcRou.  

 
PHY_TXEND.req( TIMEPOINT ) 
 
The primitive PHY_TXEND.req can be used by the MAC to prematurely terminate a 
packet transmission. The parameter TIMEPOINT is optional and is set by default to 0, 
indicating immediate execution. All pending PHY_TXSTART.req�s are disabled if a 
PHY_TXEND.req is issued.  
 
Implementation notes: The function is not supported in the prototype. 
 
PHY_TXEND.conf( TIMEPOINT ) 
 
The primitive PHY_TXEND.conf confirms the reception of a primitive 
PHY_TXEND.req.  The parameter TIMEPOINT is a time-stamp.  
 
Implementation notes: The function is not supported in the prototype. 
 
PHY_TXEND.ind( TIMEPOINT ) 
 
The primitive PHY_TXEND.ind indicates the end of a successful PHY packet 
transmission. The parameter TIMEPOINT is a time-stamp. This primitive is not 
standardized.  
 
Implementation notes: The primitive is implemented with the interrupt EXP3 and the ISR 
intExp3SvcRou.  
 
PHY_CCARESET.req( TIMEPOINT ) 
 
The primitive PHY_CCARESET.req requests the PHY to reset the clear channel 
assessment (CCA) finite-state machine. The parameter TIMEPOINT is optional and set 
by default to 0, indicating immediate execution. 
 
PHY_CCA.ind( STATUS, TIMEPOINT ) 
 
The primitive PHY_CCA.ind indicates an activity change on the wireless medium to the 
MAC. The STATUS parameter is derived from the received signal strength indicator 
(RSSI). Details are shown in Table 3.3. The parameter TIMEPOINT is a time-stamp. 
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Table 3.3: STATUS parameter 

Parameter Type Explanation 
STATUS CHAR Status = 1: Indicates that the state of the medium 

changed to BUSY (RSSI >= threshold). 
Status = 0: Indicates that the state of the medium 
changed to IDLE (RSSI <= threshold). 

 

Implementation notes: The primitive is implemented with the interrupt EXP0 and the ISR 
intExp0SvcRou. The ISR reads the STATUS parameter from a dedicated control register 
implemented on the FPGA. 
 
PHY_RXSTART.ind( E_RXSTART_VECTOR, TIMEPOINT ) 

 
The primitive PHY_RXSTART.ind indicates successful reception of the PLCP header to 
the MAC. The parameter list E_RXSTART_VECTOR is an extended version of the 
RX_VECTOR as defined in [1] and includes all necessary information for packet 
reception. The parameters are defined in Table 3.4. The parameter TIME_POINT is a 
time-stamp. 

 
Table 3.4: E_RXSTART_VECTOR parameters 

Parameter Type Explanation 
LENGTH INTEGER PSDU length (including CRC): 

0-4095 (12 bits) 
RSSI INTEGER RSSI value  
DATARATE INTEGER Data rate: 

6,9,12,18,24,36,48,54 Mbit/s 
(see encoding rule in [1]) 

SERVICE BITSTRING Service field: (16 bits) 
 
Implementation notes: The primitive is implemented with the interrupt EXP1 and the ISR 
intExp1SvcRou. The ISR reads all parameters from dedicated control registers 
implemented on the FPGA. 
 
PHY_RXEND.ind( E_RXEND_VECTOR, TIMEPOINT ) 
 
The primitive PHY_RXEND.ind indicates end of a PSDU reception. The parameter 
E_RXEND_VECTOR associated with this primitive includes the parameters listed in 
Table 3.5. The parameter TIMEPOINT is a time-stamp. 
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Table 3.5: E_RXEND_VECTOR parameters 

Parameter Type Explanation 
NoError (=0): Complete PSDU 
successfully received 
CarrierLost (=1): A change of 
the RSSI caused the CCA 
status to return to IDLE before 
complete PSDU reception  
UnsupportedRate (=2): Rate 
indicated in SIGNAL field is 
not supported 

RXERROR CHAR 

FormatViolation (=3): PLCP 
header can be received, but 
parity check of the PLCP 
header is invalid 
NoError (=0): CRC check 
successful 

CRCERROR CHAR 

Error (=1): CRC check failed 
PSDU_HEADER CHARSTRING PSDU header 
PSDU_PAYLOAD_PTR CHARSTRING_PTR Pointer to PSDU payload 
PSDU_PAYLOAD_LENGTH INTEGER PSDU payload length 
 
Implementation notes: The primitive is implemented with the interrupt EXP2 and the ISR 
intExp2SvcRou. The routine requires a successful generation of the corresponding 
PHY_RXSTART.ind message in advance.  The RXERROR and CRCERROR parameters 
are read from dedicated control registers on the FPGA. The PSDU header and payload 
strings are generated by iteratively reading the RX_FIFO, and subsequently dividing the 
string into header and payload according to the known lengths of header and payload. 
The RX_FIFO is flushed by the ISR after its contents has been read.     
 

3.3 Physical Layer Procedures 
 
The behavior of the physical layer is controlled by the PHY top-level FSM depicted in 

Figure 3.2. After switching the mobile station on or upon receiving a PHY_RESET.req 
from the MAC, the physical layer is initialized and switched to the receive mode 
indicated by the state s_PHYrx. A PHY_TXSTART.req issued by the MAC causes a 
transition of the FSM to the state s_PHYtx. The transmit mode is terminated if the 
physical layer signal sig_txend (end of transmission) occurs or a PHY_TXEND.req is 
issued to stop transmission prematurely. In both cases, the FSM returns to the state 
s_PHYrx to be prepared for receiving new packets over the radio channel.   

 
The PHY top-level FSM can be further specified by the clear channel assessment 

(CCA), transmit (TX), and receive (RX) state machines. These FSMs define all details of 
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the PHY CCA, PHY TX, and PHY RX procedures; in the sequel, we will describe them 
verbally. 

 

 
Figure 3.2:  Physical layer top-level finite-state machine 

 
The PHY CCA procedure is executed while the receiver is turned on. Based on 

received signal strength measurements performed by the radio frontend, the procedure is 
used to determine whether the status of the radio channel is IDLE or BUSY.  The CCA 
FSM comprises two main states s_CCAidle and s_CCAbusy, indicating the last 
monitored state of the radio channel. If the FSM toggles to a new state, the status of the 
channel is reported with a PHY_CCA.ind to the MAC. The current channel status can 
also be obtained by issuing a PHY_CCARESET.req. 

 
The PHY TX procedure is illustrated in Figure 3.3. After the MAC has received a 

clear-channel indication PHY_CCA.ind(IDLE), it can invoke the transmit procedure at 
any time by issuing a PHY_TXSTART.req(E_TX_VECTOR, TIMEPOINT). Upon 
receiving this primitive, the physical layer is switched in the time interval RX/TX from 
the receive to the transmit mode, and is configured according to the E_TX_VECTOR 
elements TXPWR_LEVEL and DATARATE. After switching, a PHY_TXSTART.conf 
message is sent to the MAC, confirming the readiness of the TX chain. 

 
At the time indicated by the parameter TIMEPOINT, the PHY starts transmitting the 

PLCP preamble. Simultaneously, the MAC is informed with a PHY_CCA.ind message 
about the change of the channel-medium status to BUSY. The generation of the PLCP 
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header has to be started just in time to ensure that it can be seamlessly appended to the 
preamble. The PLCP header contains the fields DATARATE (R), RESERVED (R), 
LENGTH (L), parity (P), tail (T), and SERVICE (S), with the parity and tail bits being 
generated in the PHY. All other parameters are elements of the E_TX_VECTOR. The 
PLCP header is followed by the PHY service data unit (PSDU), comprising a PSDU 
header and payload. It is extended with six tail bits, which are all set to zero. The 
extended PSDU as well as the service field are scrambled and encoded in accordance 
with the requested parameter DATARATE. To fit the number of coded bits into an 
integer number of OFDM symbols, some PAD bits may be appended to the encoded 
service data unit (C-PDSU). 

Header PSDU Tail

Preamble R PadC-PSDUSR L P T

MAC

PHY

RF/
Air

PH
Y_

TX
ST

AR
T.

re
q

  (
E

_T
X_

VE
C

TO
R

, T
IM

EP
O

IN
T)

PH
Y_

TX
ST

AR
T.

co
nf

  (
TI

M
E

PO
IN

T)

PH
Y_

C
C

A.
in

d
  (

ST
AT

U
S=

Bu
sy

, T
IM

E
PO

IN
T)

Scrambling/
Encoding

PH
Y_

TX
EN

D
.re

q
  (

TI
M

EP
O

IN
T)

PH
Y_

TX
EN

D
.c

on
f

  (
TI

M
E

PO
IN

T)

PH
Y_

TX
EN

D
.in

d
  (

TI
M

EP
O

IN
T)

PH
Y_

C
C

A.
in

d
  (

ST
AT

U
S

=I
dl

e,
 T

IM
EP

O
IN

T)

Preamble Signal Data

RX/TX DO

Figure 3.3: Physical layer transmit procedure 

 
The mapping of the PHY information fields to OFDM symbols is shown in the lower 

part of Figure 3.3 and in more detail in Figure 3.4. The preamble consists of two 8-µs-
long frames. In the first frame, a training symbol of duration 0.8 µs is repeatedly 
transmitted 10 times, while the second frame of the preamble consists of a 1.6-µs-long 
guard interval (GI2) followed by two 3.2-µs-long training symbols. Both frames are 
mainly used for signal detection, VGA gain adjustment, and for acquiring an initial, 
coarse estimate of the frequency offset value at the receiver. After the preamble, the 4-µs-
long SIGNAL symbol and DATA symbols are transmitted. The SIGNAL symbol carries 
the PLCP header without SERVICE field. It is transmitted with the most robust 
combination of modulation and coding (6 Mbit/s). The 4-µs-long DATA symbols carry 
the SERVICE field and the C-PSDU with PAD bits. The SIGNAL and each DATA 
symbol also comprise a short guard interval (GI) of 0.8 µs in which a cyclic extension of 
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the symbol is transmitted to eliminate intersymbol and intercarrier interference caused by 
multi-path propagation.  

 
 

signal detection,
VGA adjustment

coarse frequency
offset estimation,
timing estimate

channel estimation,
fine frequency
offset estimation,
symbol timing

 t1 t2  t3 t4 t5 t6   t7  t8  t9 t10      GI2         T1              T2            GI  SIGNAL    GI   Data1        GI   Data 2 

rate
length

8 us                                       8 us                                  4 us                   4 us                   4 us

time

 
Figure 3.4: Training and data symbols of physical layer 

The successful transmission of the packet causes a transition to the state s_PHYrx in 
the PHY top-level FSM, which is indicated with a PHY_TXEND.ind. After a time 
interval D0, a PHY_CCA.ind(IDLE) message reports to the MAC that the PHY is ready 
to accept a new PHY_TXSTART.req. The MAC can always prematurely terminate the 
TX procedure by sending a PHY_TXEND.req(TIMEPOINT).   
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 Figure 3.5:  Physical layer receive procedure 

 
The PHY receive procedure is shown in Figure 3.5. When the PHY top-level FSM is 

in the state s_PHYrx, the receive procedure is invoked upon detecting the reception of a 
portion of the PLCP preamble followed by the PLCP header. In the case of receiving the 
preamble, the radio frontend first reports a significant RSSI value change to the CCA 
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FSM. As a consequence, a PHY_CCA.ind(BUSY) message indicates the channel-status 
change to the MAC. In parallel, the received training symbols of the preamble are 
compared with their known values and differences are compensated by adjusting the gain 
of the received signal and correcting frequency offsets accordingly. After setting these 
control parameters, the physical layer starts searching for end-of-preamble, indicating the 
start of the PLCP header. The SIGNAL symbol is then decoded to determine the length 
of the data stream to be received as well as the selected modulation type and coding 
scheme. Once the SIGNAL symbol is decoded without errors, the proper demodulation 
and decoding scheme is enabled to receive the OFDM data symbols carrying the encoded 
PSDU header and payload. The first symbol also carries the SERVICE field. If all PLCP 
header fields have been successfully received, a PHY_RXSTART.ind 
(E_RXSTART_VECTOR, TIMEPOINT) is issued to the MAC. The parameters 
associated with this primitive include the length of the PSDU, the RSSI, the data rate, and 
the service field. By decoding all OFDM data symbols, the PSDU is reconstructed. After 
removing the tail bits, the PSDU header and payload are transferred with a 
PHY_RXEND.ind (E_RXEND_VECTOR, TIMEPOINT) message to the MAC. This 
primitive is also used to report abnormal termination of the receive procedure to the 
MAC.  After the reception of the last OFDM symbol, the status of the radio channel will 
usually transit to IDLE. Owing to decoding delay in the physical layer, this change will 
be indicated to the MAC with a PHY_CCA.ind(IDLE) primitive before the 
PHY_REXEND.ind is issued. 
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4 Digital Baseband Implementation 
 

The digital baseband of each 802.11a-conform mobile station of the ZRL high-speed 
wireless LAN testbed has been implemented on a XILINX FPGA. In each prototype 
implementation, all digital signal-processing functions required to transmit and receive 
802.11a OFDM packets over the radio interface have been implemented. To fit all 
functions into the FPGA and to satisfy stringent timing requirements, each functional unit 
has been designed with respect to low gate-count and low latency. Moreover, an efficient 
inter-block communication mechanism has been applied.       

 
This section will first introduce the communication mechanism applied between 

neighbor functional units in the PHY transmit and receive chain. Afterwards, details on 
the design and implementation of the various hardware modules will be given.  Finally, 
latency issues will be discussed.         

4.1 Inter-Block Decentralized Communication 
 

To keep the control overhead for the large number of signal-processing units in the TX 
and RX path small, a decentralized control architecture has been chosen. Every signal-
processing unit shall be able to work as autonomously as possible and exchange data bits 
from/to the preceding/subsequent functional units whenever possible. A simple 
handshake protocol was designed to coordinate the one-way data communication from a 
first unit, called the �producer,� to a second unit, the �consumer�. 
 

Whenever the producer unit has a valid data on its data output line (DATA), the 
request line (REQ) is driven high to indicate a data transfer request. The acknowledge 
(ACK) line is driven high by the consumer unit as soon as data can be accepted. The data 
transfer is executed on the rising clock edge whenever REQ and ACK are high. This 
handshake protocol allows zero latency, synchronous data communication at clock speed. 
In the following, we highlight two templates from which most of the signal-processing 
units were derived.  

 
The first template is suitable for units that process data serially (or with low latency) 

and is depicted in Figure 4.1. In normal operation mode, this unit produces a latency of 
one clock cycle due to the input register (Ri). If the subsequent unit is unable to accept 
data (ACK_IN low), the unit FSM changes the multiplexer positions to add a temporary 
register (Ro) storing the current output data. The FSM will drive ACK_OUT low in the 
next clock cycle and stop the data processing. When ACK_IN reaches high again, register 
Ro is emptied and �removed�, and the unit continues processing data at the next rising 
clock edge.  (Examples based on template 1: scrambler, convolutional encoder, etc.) 
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 Figure 4.1: Generic signal-processing unit for serial processing (�template 1�) 

 
Template 2, shown in Figure 4.2, is appropriate for units working on blocks of data. It 

implements two data buffers, one connected to the input and the other one to the output. 
New data can be accepted at the input, processed by fin(.) and stored in the input buffer, 
while at the same time data from the output buffer can be post-processed by fout(.) and fed 
to the output. Two state machines, one for the input and one for the output, control the 
communication to the preceding and subsequent units and coordinate the buffer switching 
with two multiplexers M1 and M2. The buffers are switched simultaneously if the input 
buffer is full and the output buffer empty. The unit�s latency depends on the time needed 
to fill/empty the buffers. (Examples based on template 2: Interleaver, FFT, etc.) 
 
 

 
Figure 4.2: Generic signal-processing unit for block processing (�template 2�) 
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4.2 TX Chain Functionality 

4.2.1 Overview 
 
The following paragraphs describe the functional units of the transmitter chain, their 

basic behavior and implementation details. A block diagram of the TX chain is shown in 
Figure 4.3. Note that always two data bits are clocked into the TX chain in parallel from 
the TX FIFO and two data bits are clocked from the RX chain into the RX FIFO. All 
functional units are implemented accordingly to exploit this parallelism, which decreases 
the required clock rate of the TX/RX chain by a factor of two. The clock data rate was 
chosen to be 40 MHz. 

 
Figure 4.3: TX chain block diagram 

4.2.2 CRC Generation 
 

Each MAC frame consists of three basic components [3], as depicted in Figure 4.4: 
• MAC header, containing frame control, duration, address and sequence control 

information; 
• frame body of variable length, containing frame-type-specific information, and 
• Frame Check Sequence (FCS), containing an IEEE 32-bit cyclic redundancy code 

(CRC). 
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Figure 4.4: MAC frame format 

The MAC frame is composed in the MAC layer. However, because of the numerical 
complexity of the CRC generation, this FCS is generated in the physical layer hardware. 
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�0�s in the FCS field. These �0�s are replaced by the actual FCS after it has been 
generated in the CRC generation unit. The 32-bit FCS field is calculated over all MAC 
header fields and the frame body field. The generator polynomial is 

1xxxxxxxxxxxxxxG(x) 245781011121622232632 ++++++++++++++= . 

The CRC update computation is done in parallel for every incoming byte. The 
incoming data (2 bits per clock cycle) are stored in a byte memory until the next byte is 
available for the CRC update. Note that the input bytes have to be reflected (MSB!LSB) 
before the CRC update. When the entire frame, with exception of the last 32 bits (�0�s), 
has been passed through the CRC update unit, the resulting CRC is used to overwrite the 
last 32 bits of the MAC frame to generate the correct FCS. Before, the 32-bit CRC bytes 
have to be reflected back. The output order of the FCS from left to right is given by    

 
CRC Bits                      [24 ... 31  16 ... 23  8 ... 15  0 ...7]  
                           ↓ 
MAC frame [0 � end-32 |                    FCS                        ]. 
 

4.2.3 Packet Composition 
 

The packet composer unit forms the PPDU frame without the PLCP preamble symbols 
as depicted in Figure 4.5. The PLCP preamble generation is described in Subsection 
4.2.11.  
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Figure 4.5: PPDU frame format without preamble 

 

All required information for the fields RATE, RESERVED, LENGTH, SERVICE and 
PSDU is delivered by the MAC layer. The transmit order for all fields is LSB first.  

Table 4.1: Coding of RATE field 

Rate (Mbit/s) Bits R1-R4 
6 1101 
9 1111 
12 0101 
18 0111 
24 1001 
36 1011 
48 0001 
54 0011 
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The packet composer state machine composes the PPDU in the following steps: 
• The data rates have to be coded according to Table 4.1. 
• One RESERVED bit is appended.  
• The PSDU length is encoded as the number of bytes in the LENGTH field.  
• A parity bit is appended at bit position 17, which is generated as even parity bit 

(number of 1�s including the parity bit is even), 

16.bit....1bit0bitparity ⊕⊕⊕=  

• Six SIGNAL tail bits are appended at bit positions 18-23, which are set to �0�. 
• A two-byte SERVICE field is inserted at the beginning of the DATA field. It 

consists of seven �0�s, which are used for the scrambler initialization. 
Additionally, nine bits are reserved for future use and are set to �0� in the current 
implementation.  

• Next, the PSDU (MAC frame) as shown in Figure 4.4 is appended.  
• At the end of the PSDU, six �0�s are appended, which are required to return the 

convolutional encoder to the �zero state�. These tail bits have to be set back to 
�0�s after scrambling. Therefore, the packet composer generates an output signal 
that indicates the tail bits, which are than set back to �0� within the scrambler unit. 

• Finally, in order to guarantee a data length, which is a multiple of the number of 
coded bits per OFDM symbol, an appropriate number of pad bits have to be 
added. The computation of this number is described in [1, Section 17.3.5.3]. 

Two input and output data are read and written in parallel in every clock cycle.   
 

4.2.4 Scrambling 
 

The scrambler unit scrambles the entire DATA field, including the SERVICE, PSDU, 
TAIL and PAD bits. This function will prevent long runs of identical bits in the data 
stream. Furthermore, in the case of necessary retransmissions, the selection of changed 
scrambler initialization values results in different data patterns, which will increase the 
probability of a successful frame retransmission.  
 

The generator polynomial is given by 

1xxS(x) 47 ++= . 

The resulting standard scrambler implementation is shown in Figure 4.6. 

 
Figure 4.6: Data scrambler, serial implementation 
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All register values a0 to a6 are shifted to the left by one once per clock cycle, and the 

register a0 is updated with the value 630 aaa ⊕= . We can rewrite the update operation for 
two consecutive cycles as 

1)(cycleaa2)(cyclea

1)(cycleaa2)(cyclea

520

631

⊕=

⊕=
. 

To exploit the parallelism of the input data bits (2 input bits per clock cycle), a parallel 
implementation of the scrambler is introduced. In the parallel implementation, the two 
functions described above are executed in one clock cycle, and the register values are 
then shifted by two. Therefore, the shift register of length 7 can be subdivided into an 
�even� and an �odd� shift register of length 4 and 3, respectively. A block diagram of the 
parallel implementation is shown in Figure 4.7. 

 
Figure 4.7: Data scrambler, parallel implementation  

 
The scrambling operation of consecutive data bits bi(0), bi(1), which are fed into the 
scrambler unit in parallel, is done by the operation 

(1)baa)1(b

(0)baa(0)b

i52o

i63o

⊕⊕=

⊕⊕=
. 

The additional signal p_scram_en from the packet composer is used to indicate the tail 
bits. These tail bits are set back to �0�, if p_scram_en = �0�. 
 

4.2.5 Convolutional Encoding 
 

The entire DATA field has to be encoded using a convolutional code of rate R = ½. 
Additionally, several puncturing schemes are applied to generate different code rates (R = 
½, ⅔, ¾). These puncturing schemes enable variable data rates, which are traded with the 
error protection capabilities. 
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The convolutional encoder uses the generator polynomials g0 = 1338 and g1 = 1718 
resulting in an encoder structure as depicted in Figure 4.8. The next input data i0 into the 
encoder is assumed to reside in the input register r0. 
 

 
Figure 4.8: Convolutional encoder with constraint length 7, serial implementation 

 

To guarantee processing parallelism in the encoding unit, several modifications are 
necessary. First, the shift register chain is subdivided into an even and an odd part with 
the following mappings: 

.or,or,or::odd
,er,er,er:even

,eri:input

352311

362412
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The equations for the output data can then be written as  

.ooeeerrrrr)(iout
,ooeeerrrrr)(iout

21310632100B

32310653200A

⊕⊕⊕⊕=⊕⊕⊕⊕=
⊕⊕⊕⊕=⊕⊕⊕⊕=

 

The input data i1 following i0 appears at the input of the shift register with a delay of one 
cycle. Therefore, input data i1 is assumed to reside in an additional input register r�1 and 
can be mapped as  

.ori:input 011 a−=  

In the parallel implementation, the two consecutive bits i0 and i1 are concurrently shifted 
into the encoder in one clock cycle, which implies a shift of all register values by two. 
This in turn means that the �even� input data i0 resides in the even register chain, whereas 
the �odd� data i1 resides in the odd register chain. The output equations for input i1 will 
take the form 

.eeooorrrrr)(iout
,eeooorrrrr)(iout

10310521011B

21310542111A

⊕⊕⊕⊕=⊕⊕⊕⊕=
⊕⊕⊕⊕=⊕⊕⊕⊕=

−

−  

The resulting parallel implementation of the convolutional encoder is shown in Figure 
4.9. 
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Figure 4.9: Convolutional encoder with constraint length 7, parallel implementation 

4.2.6 Puncturing 
The puncturing unit takes the encoded data stream from the convolutional encoder and 

applies different puncturing schemes depending on the target data rate. Higher data rates 
are achieved by puncturing out certain encoded bits. The puncturing schemes are 
described in detail in [1, Figure 115]. The four output data bits from the encoder as 
depicted in Figure 4.9 are fed into the puncturing unit concurrently. Depending on the 
puncturing scheme, up to four successive 4-bit-inputs are written into successive memory 
cells. The memory size is chosen such that the number of output bits after puncturing is a 
multiple of four, because always four bits have to be fed to the output in parallel. The 
memory requirements are shown in Table 4.2. 

Table 4.2: Input/output relationship and memory requirements in the puncturing unit 

Rate Input bits Punctured bits Memory size Output bits Delay cycles 
½ 1 × 4 = 4 1 × 0 = 0 1 × 4 = 4 1 × 4 = 4 1 
⅔ 4 × 4 = 16 4 × 1 = 4 4 × 3 = 12 3 × 4 = 12 4 
¾ 3 × 4 = 12 2 × 1 + 1 × 2 = 4 2 × 3 + 1 × 2 = 8 2 × 4 = 8 3 
 
Implementation details are depicted in Figure 4.10. An input process writes 4 input 

data bits per clock cycle into memory bank 0, until this memory is filled according to 
Table 4.2. The subsequent input data are written into a second memory bank 1. At the 
same time, an output process writes the data from memory bank 0 to the output. The 
delay introduced by the data buffering is also shown in Table 4.2.  

 
Note: The first OFDM symbol (= SIGNAL field) is always transmitted with 6 Mbit/s, 

which corresponds to BPSK with coding rate ½. Therefore, the first 48 encoded bits are 
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always treated correspondingly; the RATE information fed into the puncturing unit is not 
used for the SIGNAL field bits. 
 

 
Figure 4.10: Puncturing unit, parallel implementation 

 

4.2.7 Interleaving 
 
The block interleaving unit implements a two-step permutation [1, Section 17.3.5.6] of 

the coded data bits within one OFDM symbol. The first permutation reads in the data bits 
row by row and writes them out column by column, and therefore prevents burst errors in 
the packet transmission by mapping adjacent coded bits onto nonadjacent subcarriers. 
The second permutation ensures that adjacent coded bits are mapped alternately onto less 
and more significant bits of the constellation, thereby long runs of low-reliability bits are 
avoided. 
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Figure 4.11: Interleaving unit, parallel implementation 

 

A block diagram of the interleaving unit implementation is shown in Figure 4.11. Four 
input bits are processed per clock cycle and stored in the first permutation unit�s (P1) 
memory, which consists of 16×24 cells of one bit. Memory address generators for input 
and output accomplish the first permutation task. Targeted for a resource-efficient FPGA 
implementation, the permutation memory is physically organized as 24 columns of 16×1 
SRAMs. This structure allows simultaneous read/write operations in multiple columns, 
but only one cell per column can be accessed at a time. A memory map keeping the 
address generation for input and output addressing simple and still permitting an output 
of 1 bit (BPSK), 2 bits (QPSK), 4 bits (16QAM) or 6 bits (64QAM) in parallel is 
depicted in Table 4.3. The number in the cells refers to the n-th bit of the input sequence. 
 

The second permutation (P2), used for modes 16QAM and 64QAM only, is conducted 
by a state machine and corresponding multiplexers before the data is communicated to 
the subsequent functional unit, i.e. to the modulation mapping.  
 
 
 
 
 
 
 
 
 



  26 of 62 

Table 4.3: Interleaver memory map 
 0           1 2   3     
 16           17 18   19     
 32           33 34   35     
 4           5 6   7     
 20           21 22   23     
 36           37 38   39     
 8           9 10   11     
 24           25 26   27     
 40           41 42   43     
 12           13 14   15     
 28           29 30   31     

M = 2 
BPSK  44           45 46   47     

            
 0 16         1 17 2 18   3 19   
 32 48         33 49 34 50   35 51   
 64 80         65 81 66 82   67 83   
 4 20         5 21 6 22   7 23   
 36 52         37 53 38 54   39 55   
 68 84         69 85 70 86   71 87   
 8 24         9 25 10 26   11 27   
 40 56         41 57 42 58   43 59   
 72 88         73 89 74 90   75 91   
 12 28         13 29 14 30   15 31   
 44 60         45 61 46 62   47 63   

M = 4 
QPSK  76 92         77 93 78 94   79 95   

            
 0 16 32 48     1 17 33 49 2 18 34 50   3 19 35 51
 64 80 96 112     65 81 97 113 66 82 98 114   67 83 99 115
 128 144 160 176     129 145 161 177 130 146 162 178   131 147 163 179
 4 20 36 52     5 21 37 53 6 22 38 54   7 23 39 55
 68 84 100 116     69 85 101 117 70 86 102 118   71 87 103 119
 132 148 164 180     133 149 165 181 134 150 166 182   135 151 167 183
 8 24 40 56     9 25 41 57 10 26 42 58   11 27 43 59
 72 88 104 120     73 89 105 121 74 90 106 122   75 91 107 123
 136 152 168 184     137 153 169 185 138 154 170 186   139 155 171 187
 12 28 44 60     13 29 45 61 14 30 46 62   15 31 47 63
 76 92 108 124     77 93 109 125 78 94 110 126   79 95 111 127

M = 16 
16QAM  140 156 172 188     141 157 173 189 142 158 174 190   143 159 175 191

            
 0 16 32 48 64 80 1 17 33 49 65 81 2 18 34 50 66 82 3 19 35 51 67 83
 96 112 128 144 160 176 97 113 129 145 161 177 98 114 130 146 162 178 99 115 131 147 163 179
 192 208 224 240 256 272 193 209 225 241 257 273 194 210 226 242 258 274 195 211 227 243 259 275
 4 20 36 52 68 84 5 21 37 53 69 85 6 22 38 54 70 86 7 23 39 55 71 87
 100 116 132 148 164 180 101 117 133 149 165 181 102 118 134 150 166 182 103 119 135 151 167 183
 196 212 228 244 260 276 197 213 229 245 261 277 198 214 230 246 262 278 199 215 231 247 263 279
 8 24 40 56 72 88 9 25 41 57 73 89 10 26 42 58 74 90 11 27 43 59 75 91
 104 120 136 152 168 184 105 121 137 153 169 185 106 122 138 154 170 186 107 123 139 155 171 187
 200 216 232 248 264 280 201 217 233 249 265 281 202 218 234 250 266 282 203 219 235 251 267 283
 12 28 44 60 76 92 13 29 45 61 77 93 14 30 46 62 78 94 15 31 47 63 79 95
 108 124 140 156 172 188 109 125 141 157 173 189 110 126 142 158 174 190 111 127 143 159 175 191

M = 64 
64QAM  204 220 236 252 268 284 205 221 237 253 269 285 206 222 238 254 270 286 207 223 239 255 271 287
 

4.2.8 Modulation Mapping 
 
The modulation mapping unit integrates the following functions: 

• Generation of modulation symbols using 1, 2, 4 or 6 encoded input bits, 
depending on the modulation alphabet (BPSK, QPSK, 16QAM, 64QAM). 

• Generation of pilot symbols with BPSK modulation using a pseudo binary 
sequence. 

• Introduction of zero subcarriers into OFDM symbol. 
• Generation of physical subcarrier mapping addresses for IFFT input buffer 

addressing (note: this address generation is now also performed within the IFFT 
wrapper function to save address lines in the case of FPGA split). 
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Table 4.4: Encoding table for modulation mapping of input bits b0�b5 into I/Q outputs   
BPSK   QPSK   16QAM     64QAM         

b0 0 1 b0 0 1 b0|b1 00 01 11 10 b0|b1|b2 000 001 011 010 110 111 101 100
I-out -1 +1 I-out -1 +1 I-out -3 -1 +1 +3 I-out -7 -5 -3 -1 +1 +3 +5 +7 

   b1 0 1 b2|b3 00 01 11 10 b3|b4|b5 000 001 011 010 110 111 101 100
Q-out 0 0 Q-out -1 +1 Q-out -3 -1 +1 +3 Q-out -7 -5 -3 -1 +1 +3 +5 +7 

 
The interleaver unit uses a 6-bit interface to provide the interleaved data bits to the 

modulation mapping unit. However, only 1, 2, 4, or 6 bits are valid and used for the 
mapping depending on the modulation scheme chosen. The modulation mapping is done 
according to Table 4.4 [1, Tables 82-85]. Additionally, data scaling is performed using a 
modulation-dependent normalization factor KMOD and an integer multiplier of 30,000 to 
guarantee the highest possible precision in the subsequent IFFT unit. The KMOD and 
scaling factors as well as the resulting I/Q-output values are summarized in Table 4.5. 
The maximum output amplitude level is 32403, fitting to the 16-bit precision of the IFFT 
unit. 

Table 4.5: Scaling factors and amplitude levels of the modulation mapping unit 

 KMOD scale = KMOD * 30000 scale * I/Q-out 
BPSK 1 30000 ± 30000 
QPSK 1/ª2 21213 ± 21213 

16QAM 1/ª10 9487 ± 9487, ± 28461 
64QAM 1/ª42 4629 ±4629, ±13887, ±23145, ±32403 

                                                                      
To form one OFDM-symbol, 48 modulated data symbols have to be generated. Next, 

4 pilot symbols are appended. The pilot symbols, which correspond to the set of logical 
subcarriers [�21; �7; +7; +21], are defined by the mapping  

P�21; �7; +7; +21 = ±1 * 30000 * [1; 1; 1; �1].  

The sign bit is determined once for every OFDM symbol by using the output of a PN-
code generator with polynomial 1xxS(x) 47 ++= . This generator is initialized with �all 
ones��; 1�s are replaced with �1 and 0�s with 1. The generator is the same as in the 
scrambler unit. However, a serial implementation is used for the pilot generation. Finally, 
12 zero subcarriers filled with 0�s are appended, as the outer subcarriers (�32��27, 
27�31) and the 0�s (DC) subcarrier are not used for data transmission. 
 

4.2.9 FFT/IFFT 
 

The FFT/IFFT unit is shared between the TX and RX chains. A wrapper unit 
guarantees the correct FFT operation mode by controlling a �forward-inverse flag�. The 
flag is set to �0� for IFFT and to �1� for FFT operation. 
 

The FFT/IFFT unit implementation uses the XILINX 64-point complex FFT/IFFT 
core [5]. A single-memory-space configuration was chosen, which uses a common 
memory as input and working buffer. This basic configuration is shown in Figure 4.12. 
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The FFT core is used in scale mode, which performs a scaling by 2 on the first processing 
pass. Therefore, the result is scaled up by 2 to compensate for this factor.  

 
The processing time of the FFT core including the result-write operation takes 209 

cycles (= 5.2 !s @ 40 MHz). The maximum allowable processing delay for real-time 
operation per FFT unit is 4 !s. Therefore, two FFT units are instantiated in parallel to 
guarantee real-time operation. This concept is depicted in Figure 4.13.  

 
Figure 4.12: Single-memory-space FFT configuration 

 

 
Figure 4.13: Double-FFT core configuration 

 
A three-stage sequence of operations is used to perform the transform [5]: 

• Data-load phase, 
• compute phase, and 
• data-output phase. 
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Data-load phase: During the data-load phase, 64 input data are alternately written 
into the input memories RAM0/1. This operation is initiated by asserting an input data 
write strobe signal MWR to the FFT core. When 64 new input data have been loaded into 
RAM0/1, the compute phase has to be initiated by asserting a START signal to the 
FFT0/1 core. Both operations are controlled by the FFT/IFFT input state machine, which 
is shown in Figure 4.14. If RAM0/1 is available and FFT0/1 is idle, a transition from the 
Wait1/0 to Load0/1 state is performed and the associated write strobe MWR is assigned. 
Then, 64 input data are written into RAM0/1 in state Load0/1. Note: For the IFFT, the 
input addresses generated by the FFT core are not used. Instead, the logical-to-physical 
address mapping, which is required after the modulation-mapping stage, is performed 
during the data-load phase. The address generation for the input memories RAM0/1 is 
done by a mapping-address lookup from a ROM table. The ROM table contains the 
following address order, which corresponds to the output order of the modulation-
mapping unit: 
[38,39,40,41,42,44,45,46,47,48,49,50,51,52,53,54,55,56,58,59,60,61,62,63,1,2,3,4,5,6,8,
9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,43,57,7,21,0,27,28,29,30,31,32,33,34,
35,36,37]. 

 
Compute phase: During the transition from Load0/1 to Wait0/1 or Load1/0, the 

FFT/IFFT input state machine asserts the START signal to the FFT0/1 core to initiate the 
compute phase. After this transition, the state machine waits for the next FFT1/0 core 
(+RAM1/0) to become available for input data. 

   

 
Figure 4.14: FFT/IFFT input FSM, controls data-load phase and compute-phase start  
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The FFT core generates a DONE signal at the end of the compute phase. This signal 
controls the FFT/IFFT output state machine, which is shown in Figure 4.15. When the 
FFT0/1 DONE signal is asserted, the output FSM switches from the Wait0/1 to the 
Output0/1 state. In this state, the next 64 output data are written into a memory of the 
next functional unit. If the next unit is not ready to take data, the output process is stalled. 
Also, if the subsequent FFT computation is finished before the current output data are 
completely written, the subsequent FFT process is stalled (chip enable = �0�). The 
RAM0/1 resources are released, when all 64 output data have been written into the next 
unit. This in turn enables the FFT/IFFT input FSM to initiate the next load process. Note: 
The output data are provided in bit-reversed order. Therefore, the data have to be 
rearranged into their natural order during the write operation into the subsequent blocks.  
In the receive chain, this unit (channel estimator) uses an internal address generator to 
perform this reordering. This allows the removal of these address lines from the interface, 
which is done to facilitate the split of the design onto two FPGA boards. 

 
Figure 4.15: FFT/IFFT output state machine, controls data-output phase and release 

of RAM resources 

  

4.2.10 Cyclic Extension 
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physical subcarriers 48�63 as cyclic extension. This extension forms the guard interval. 
The resulting symbol of length 80 forms one OFDM symbol.  
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The cyclic extension unit applies a dual-ported RAM. The input data are written into 
the address locations defined by the IFFT output address generator. Subcarrier data 
48�64 are written concurrently into their corresponding address locations. Therefore, the 
80 memory locations are filled within 64 cycles. The resulting OFDM symbol is written 
to the frame-formatting unit. To guarantee continuous transmission, a swinging-buffer 
concept is applied. While input data are written into RAM0, the OFDM symbol in RAM1 
is output, and vice versa.  

 

4.2.11 Frame Formatting 
 

The frame-formatting unit is responsible for the concatenation of the PREAMBLE and 
DATA symbols. After resetting the TX chain, this unit immediately starts to output the 
short preamble. This is done by outputting 10 repetitions of the precomputed and stored 
short preamble symbol. Next, 2½ repetitions of the precomputed long preamble symbol 
are appended. The output of both preambles takes 16 !s. Within this 16-!s timeframe, the 
TX chain has to finish the generation of the first data symbol. The data symbols are 
consecutively appended to the preambles to form the transmit frame (PPDU). The frame-
formatting unit determines the timing behavior of the entire transmit chain. The output of 
this unit needs to be continuous with a rate of 20 MHz. The input and therefore the TX 
chain might be stalled during preamble operation and because the TX chain works on a 
40-MHz clock. 
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4.3 RX Chain Functionality 

4.3.1 Overview 
 

The following paragraphs describe the functional units of the RX chain, their basic 
behavior and implementation details. A block diagram of the RX chain is shown in 
Figure 4.16. Note that in every clock cycle the RX chain writes 2 decoded data bits in 
parallel into the RX FIFO. 

 

 
Figure 4.16: RX chain block diagram 

4.3.2 Inner Receiver 
 

The inner receiver unit is the first computational unit in the receive chain working on 
data received over the transmission channel after filtering and down-sampling to 20 MHz. 
The main tasks of the inner receiver are 

• signal detection and timing synchronization using correlation and matched 
filtering methods, 

 
Filter/ 
Down- 

Sampling 

 
Inner 

Receiver 
 

 
Frequency
Correction

 
FFT 

 
Cyclic 

Extension

 
Channel 

Estimation

 
Equalizer 

 
SF 

FIFO 

 
LLR 

 
De- 

Interleaver

 
De- 

Puncturer 

from  
ADC 

 
Viterbi 

Decoder 

 
De- 

Scrambler 

 
Packet 

De-
composer 

 
CRC 

Check 

Extract 
Pilots + 

Frequency
Tracking 

 
IQ 

Plot 
 

Length 
Rate 

Reserved
Detect 
Service 

CRC_ok 

PSDU  
to MAC 



  33 of 62 

• frequency offset estimation and initiation of analog and digital frequency offset 
compensation, and 

• power estimation and closed-loop automatic gain control by adjusting a variable 
gain amplifier in the analog frontend. 

 
The main functional blocks of the inner receiver unit are shown in Figure 4.17. These 

blocks work concurrently on the input data. They are controlled by the inner receiver 
FSM, which is discussed in detail in [6, 7]. Some control information has to be 
interchanged between the inner receiver FSM and the computational unit. Most 
importantly, the signal PERIOD is used to distinguish between the short and long 
preamble phases. This signal is set to �0� until the short preamble (with periodicity of 16 
samples) has been detected. Once the end of the short preamble is found, the signal 
PERIOD is set to �1� to indicate the reception of the long preamble (with periodicity of 
64 samples) to the computational units.  

 
Figure 4.17: Inner receiver computational unit 

 

In the following paragraphs, the blocks of the computational unit and their behavior 
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215

0k

*
k15knn coeffdata_iny ∑

=
−− •= . 

This transposed structure is well suited for hardware implementation, as the parallel 
addition of 16 intermediate filter results can be omitted ([6], see Figure 6.3). However, 
this block still is computational very expensive because in theory it requires 16 complex 
multipliers (= 64 real multipliers) and 2 adders/subtractors in parallel (the implementation 
requires fewer multipliers owing to �0�-coefficients etc.). Finally, the squared magnitude 
of the matched filter response is output, which requires 2 additional multipliers and one 
adder. The squared magnitude is used to prevent an additional square-root operation.  

 
Matched Filter2 (MF2): To minimize the complexity of this matched filter with 

length 64, only the sign bits of the input data and of the reference sequence are compared, 
and the 64 results are summed. The complex sign-bit multipliers can be replaced by a 
look-up table with 4 inputs (signs of real and imaginary parts of data and coefficients) 
and 2 outputs (real and imaginary parts of the sign-bit multiplications). Finally, the 
squared magnitude of the matched filter response is output, which requires 2 multipliers 
and one adder. Again, the squared magnitude is used to avoid a square-root operation. 

  
Tapped delay line: The input data have to be stored in a tapped delay line to perform 

cross-correlation operations and to save some history of the input data until the correct 
timing synchronization has been determined. This tapped delay line is organized as a 
chain of distributed memory blocks with block length of 16. This assures a very efficient 
implementation [6] compared with register chains. The tapped delay line storing the input 
data comprises three taps, which correspond to delays of 16, 64 and 128 data samples. 
The first two taps are used for the correlation operations with periodicity 16 and 64, 
respectively. The third tap is required to store the long preamble, which is twice as long 
as a normal OFDM symbol. Finally, after timing synchronization, the first and second 
halves of the long preamble are output in parallel via �LP_out� and �data_out� as 
indicated in Figure 4.17. The two parts of the long preamble are further processed and 
averaged in the frequency-correction unit. 

 
Metric16/64 numerator: To find periodic structures in the received signal, the 

numerator of the periodicity metric [7] is computed as cross-correlation between the input 
data and a delayed (by 16/64 samples) version of this signal, 

∑
=

−−− •=
63/15

0k

*
k64/16nknn data_indata_in64/16Pd . 

An iterative implementation is possible using the update formula 

.data_indata_indata_indata_in64/16Pd64/16Pd *
64)/*(162n64/16n

*
64/16nn1nn −−−− •−•+=  

The implementation of this operation is depicted in Figure 4.18. Here, the correlator only 
performs the complex multiplication *

64/16nn data_indata_in −• . 
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In the iterative implementation, care has to be taken to prevent a bias in the register. This 
is achieved by correctly resetting it before correlation calculation. Note that for 
periodicity 64 the numerator is divided by 4 to compensate for the 4-fold summation 
length. 
 

 
Figure 4.18: Iterative implementation of cross-correlation computation 

 

Cordic: The outputs of the Metric16/64 numerator blocks are fed into a cordic 
processor to estimate the magnitude and phase of the complex metric values. Note that 
the magnitude is scaled by a factor 1.6468 as a result of the cordic implementation. This 
scaling factor needs to be compensated for in the calculation of the threshold values, 
which are required for periodicity detection. The cordic is implemented as on-line 
processor [6] with 12 processing stages. After 6 processing stages, one pipeline stage is 
introduced to meet the target processing speed of 20 MHz (sample input speed). 

 
Metric denominator: The denominator computation is conceptually identical to the 

numerator computation as shown in Figure 4.18, but here an auto-correlation with 
elements *

nn data_indata_in •  is computed. Both denominators (16/64) are determined in 
parallel using a tapped delay line with taps at correlation delays of 16 and 64.  
 

Metric16/64 window detect: The periodicities of the short and long preambles result 
in correlation values, which remain on a certain plateau level as long as the input signals 
maintain the periodicity. This behavior is used to detect the short- and long-preamble 
reception by tracing the plateau phases [7]. A running sum is used to find the plateaus, 
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Frequency offset: The frequency-offset estimation is performed by averaging the 
estimated phase values �phase_Pd� over 16 consecutive phase values, as shown in Figure 
4.19. Additionally, the averaged phases are divided by the periodicity 16/64 to estimate 
the phase offset ∆p. The related frequency offset is  
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In addition to the phase offset ∆p the unnormalized ∆p_x64 is output, which serves as a 
more precise estimation for the frequency-correction unit. 
 

 
Figure 4.19: Frequency-offset estimation unit 

 
Coarse (analog) frequency update: The frequency-offset estimate resulting from the 

short preamble is used to program a direct digital synthesizer (DDS), which in turn 
adjusts the mixer frequency for the IF down-conversion. The output frequency of the 
DDS is determined by the formula 

32
in

out 2
CLK∆phasef •

=  

with ∆phase as 32-bit tuning word to be fed into the DDS, CLKin = 120 MHz as DDS 
reference clock, and fout as DDS output frequency in MHz. Hence, the DDS tuning word 
is generated by 

32323232out 2
MHz120π2
MHz20p2

3
12

MHz120
fMHz402

MHz120
f∆phase •

•
•∆

+•=•
∆+

=•= . 

The first term 1/3 × 232 = 1,431,655,765 = 01010101010101010101010101010101b of 
∆phase is used as standard update value for the DDS (e.g. after reset). The second term, 
which is the frequency-correction term, is updated after successful frequency estimation 
within the short preamble period. The value π is presented by the integer value 32767 at 
the output of the frequency offset estimator, which results in a frequency-scaling factor of  

10430
π

32767scalef =



= . 

Hence, the second term of ∆phase can be simplified to 

10923p2
3
1p2

12010430π2
20pset∆phase_off 1532 •∆=∆=•
••

•∆
= . 

 
AGC gain mapper: The basic functionality of the gain control loop is described in [6, 

7]. The AGC block takes the estimated signal energy computed in the metric denominator 
unit (see Figure 4.17) as input and calculates a power error value. This error value is used 
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to update the gain of the variable gain amplifier (VGA) and to adjust the received power 
accordingly. As the VGA characteristic is exponential, the iterative gain update can be 
described by 

.∆ggg dB
n

dB
n

dB
1n +=+  

The AGC gain mapper, which outputs dB
1ng +  after every iteration, needs to find dB

n∆g  as a 
function of the estimated signal energy nE , 
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[ ].dB
E
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The logarithm is not computed explicitly. Instead, the input energy nE is compared with 
certain thresholds to find a quantized measure for the deviation from the target energy 

tarE . The thresholds are precomputed according to 

10
)thr(E

tarthr

dB
err

10EE ⋅= . 

The predefined thresholds and the associated nonlinear mapping into gain-correction 
values are shown in Table 4.6. If the energy error is less than ±0.25 dB relative to the 
target value, no gain correction is performed ( 0∆gdB

n = ). In the case of a positive energy 
error between +0.25 and +1 dB, the gain correction term will be �0.015625 dB to slightly 
decrease the VGA gain. Higher energy-error values result in a nonlinear (over-
proportional) increase of the gain-correction terms. Note: The target energy term in the 
implementation is tarE  = 2789.5. 

Table 4.6: Predefined threshold energies and nonlinear mapping into dB
n∆g  

)thr(EdB
err  ±0.25dB ±1dB ± 2.5dB ±4.5dB ±6.5dB 

dB
n∆g  "0.015625dB "0.03125dB "0.1dB "0.25dB "0.4dB 

 

4.3.3 Digital Frequency-Offset Correction 
 

Fine frequency-offset correction  
 
The inner receiver unit computes the fine phase-offset estimate ∆p from the long 

preamble. The frequency-offset correction unit de-rotates the complex input data by the 
estimated phase 

n))∆ppj(exp(data_innT))∆ffπ(2jexp(data_indata_out residresid +∆−⋅=+∆−⋅=  

with n as time index and "presid as residual phase offset. This rotation operation is done 
by a cordic algorithm. To prevent overflow and to avoid the compensation of the cordic 
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scaling factor (1.6468), the input data are divided by 2. The necessary scaling is then 
done implicitly in the equalizer. The cordic is fed with the time-variant phase 

πmodn)(delta_p⋅ . 
 

To remove the frequency offset from the entire Long Preamble (LP) (from which the 
offset is estimated), the first LP symbol is stored in the inner receiver and then fed into 
the frequency-correction unit in parallel with the second LP. After parallel frequency 
compensation, both LP parts are averaged and passed to the FFT unit, as shown in Figure 
4.20. Note that the cyclic extension of the LP has already been removed in the inner 
receiver to prevent additional latency.  

 
Figure 4.20: Frequency correction and average for long preamble 

 

Frequency-tracking loop 
 
To compensate the residual frequency error after the fine frequency correction, an 

additional frequency-tracking loop has been implemented. This loop is driven by the pilot 
subcarriers. The four pilots P�21; �7; +7; +21 are separated at the output of the FFT. The long 
preamble pilots PLP:�21; -7; +7; +21 = [1; �1; 1; 1] are used for pilot-channel estimation as 
described in Section 4.3.5 and saved as reference values. The pilots within the data 
symbols are then used to estimate the residual frequency offset and phase noise:  

• First, the polarity introduced to the pilot subcarriers (see Section 4.3.5) has to be 
removed using a LFSR.  

• Next, the pilot at logical address 21 is inverted to fit the PA pilot reference.   
• The pilot-correlation terms )exp(rrPP

LPdataLPdata PPPP
*
LPdata ϕϕ −⋅=  are determined for 

all 4 pilot subcarriers. 
• The phase angle residϕ∆ is estimated from the mean of the correlation terms, 

which can be viewed as a weighted sum of the phase angles per pilot subcarrier. A 
cordic rotation is used for the angle computation. 

• The frequency correction is done in the time domain within the digital frequency 
correction unit in order to minimize inter-carrier interference. For small frequency 
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deviations (compared with the subcarrier spacing), the transformation into the 
time-domain correction phase is ∆presid ≈ γ$2/64, with γ as loop gain (set to ¼ in 
the current implementation).  

4.3.4 Cyclic Extension Removal 
 

The cyclic extension removal unit takes the input data frame from the inner receiver at 
a sample rate of 20 MHz. It than periodically removes 16 samples forming the guard 
interval and forwards the 64 samples belonging to one OFDM symbol into the FFT input 
buffer (see Section 4.2.9). The input FSM toggles between two states �cyclic extension 
removal� and �read data from input�. Note: The first OFDM symbol received by this unit 
is the average of the two halves of the long preamble. For this preamble symbol, the 
cyclic extension will already be removed in the inner receiver unit for complexity 
reasons. Therefore, the input FSM is initialized to start in the �read data from input� state. 

 
Figure 4.21: Timing issues in cyclic extension unit 

 

To guarantee real-time operation, the input data have to be written into a FIFO. The 
timing requirements are shown in Figure 4.21. The FFT computation following the cyclic 
extension removal stage takes 5.2 !s (210 cycles @ 40 MHz). The next input samples for 
this FFT unit arrive after 4.8 !s (2 × 16 cycles cyclic extension (CE) + 1 × 64 cycles data 
@ 20 MHz). Therefore, the next input data have to be buffered.  As the RX chain runs at 
40 MHz, the latency introduced can be removed again later by using a FIFO. As soon as 
the FFT is completed, data are clocked into the FFT input buffer at 40 MHz from the 
FIFO. In parallel, input data are written from the inner receiver into the FIFO at 20 MHz. 
Hence, the overlap introduced can be compensated for during the data-load phase. 

 
The output FSM starts writing data to the output ports if the FIFO is not empty. The 

output data are written into the FFT memory in natural order, using the internal address 
generator of the FFT core (see Section 4.2.9). 

 

4.3.5 Channel Estimation 
 

The channel-estimation unit, which follows the FFT processor, performs the following 
tasks: 

• Sort bit-reversed input data from the FFT output into natural order using an 
internal address generator (addr_in), 

• perform physical-to-logical mapping of the frequency domain data using a second 
internal address generator (addr_out),  
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• estimate and store channel coefficients for every subcarrier (channel estimator), 
and 

• feed frequency domain data and associated channel coefficients ci in parallel into 
equalizer. 

 
A block diagram of the channel estimator is shown in Figure 4.22. 
 

 
Figure 4.22: Channel-estimation unit 

 
The removal of the bit-reversed order of the FFT output data is done by the �addr_in� 

generator during the data-input process. The address generator is implemented in the 
estimation unit to remove the address lines from the interface. The input address 
generator periodically generates 64 addresses [0 16 32 48 4 20 36 52 8 24 40 56 12 28 44 
60 1 17 33 49 ... 15 31 47 63]. 

 
A diagram of the input FSM is depicted in Figure 4.23. At the beginning of the RX 

operation, the first 64 input data (long preamble) are sampled into RAM0. The input FSM 
then waits for the subsequent input data blocks to be written alternatingly into RAM1/0. 
Once a buffer is filled, the signal ram_req1/0 = �1� indicates the availability of the data 
for the output process. The switch ram_mux is driven by the input FSM and controls the 
address multiplexers and input/output behavior as indicated in Figure 4.22. 

 
The channel-estimation task is performed in parallel with the input operation of the 

long preamble. A least-squares estimator [8] is implemented to calculate the complex 
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Because the long-preamble reference data can only take on the values �1 or +1, the 
channel estimation is done by the following routine, which can be very easily 
implemented in hardware: 
 
   // channel estimator 
   for all elements of long PA 

  if lp_reference_datai == -1 
then ci = -1 * lp_datai  
else ci =        lp_datai   

  end if 
end for  
 

The estimated channel coefficients are written into the memory RAM_ci during the long-
preamble phase. 
 

 
Figure 4.23: Channel-estimation input FSM, controls data-input phase and allocation 

of RAM resources 
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Figure 4.24: Channel-estimation output FSM, controls data-output phase and release 

of RAM resources 

 
The output FSM controls the data-output phase as shown in Figure 4.24. If the input 

FSM indicates the availability of an input buffer RAM0/1 by assigning a logical �1� to 
ram_req0/1, the output FSM starts to write the 48 data subcarrier samples and the 
associated channel coefficients to the output. During the output process, the output 
address generator is responsible for the physical-to-logical address remapping. Following 
the output operation, the signal ram_ack0/1 is set to �1� to indicate that the associated 
memory is available for the next input data. 
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ci out  c(0�47) c(0�47) c(0�47) � c(0�47) 

Figure 4.25: Input-output timing and data contents 

 

The input-output timing behavior and the data contents are shown in Figure 4.25. Note 
that the first output-data block contains the channel coefficients. The equalizer unit will 
then be used to calculate the required quantities |ci|2 from the first channel-estimator 
output-data block by using the complex multiplier implemented there (first symbol: ci * 
ci

*, payload symbols: datai * ci
*). 
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cnt_out=47 /  
ram_ack1 = �1� 

 cnt_out=47 & 
ram_req1=�1� / 
ram_ack0 = �1�,  

(LPflag_out=�false�) 

 cnt_out=47 & 
ram_req0=�1� / 
ram_ack1 = �1�, 

 / ram_ack0 = �0�,  
   ram_ack1 = �0�,  
 LPflag_out=�true� 
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4.3.6 Equalization 
 

A complex single-tap equalizer is used to compensate for the channel distortion. Every 
subcarrier signal is equalized (in amplitude and phase) by the associated channel 
coefficient ci.. The equalized modulation- symbol estimates are usually generated by 

2
i

*
ii

i

i
i |c|

cdata
c

datadata_sym •
== . 

However, the division by |ci|2 is not performed to reduce the RX chain complexity. 
Instead, this operation has been moved into the log-likelihood computation unit (see 
Section 4.3.8), resulting in a simplified equalizer comprising only one complex multipli-
cation per incoming data sample, 

.cdata_symcdatadata_eq 2
ii

*
iii •=•=  

As was shown in Figure 4.25, the first 48 input data from the channel estimator contain 
the channel coefficients. The complex multiplier is used in this mode to calculate the 
weighting factors |ci|2. These coefficients are stored in a memory and are subsequently 
output periodically in parallel with the associated equalized data values.  
 

To reduce the complexity of the multipliers, the input data are first divided by 8 
(reduction from 16 to 13 bit). Next, the input data and channel coefficients are limited to 
the range ±255, resulting in a data width of 9 bits. This limitation is possible without 
performance degradation, as the FFT operation results in a downscaling factor of 64 
(amplitude downscaling by 8). The limitation still enables the compensation of rather 
large channel fluctuations in the range of |ci|max = 5|ci|perfect, where |ci|perfect stands for the 
theoretical channel coefficients with ideal power control and frequency flat channel 
characteristics.  

 
The scaled and limited data and channel coefficients are multiplied using four 9×9 bit 

multipliers because the complex multiplication *
iii cdatadata_eq •=  can be decomposed 

as 

)imag(c)real(data)real(c)imag(data)eqimag(data_

)imag(c)imag(data)real(c)real(data)eqreal(data_

iiiii

iiiii

•−•=

•+•=
. 

The results are scaled down by 4 to be presentable with 16-bit precision (15 bits for |ci|2, 
no sign bit).  
 

4.3.7 SIGNAL FIELD FIFO for Processing Delay 
 

The units following the equalizer stage need to know the data rate and length 
parameters of the data packet currently received. This information is encoded in the 
SIGNAL FIELD (see Figure 4.5). All further receiver processing starting with the log-
likelihood computation needs to wait for the decoded SIGNAL-field information. 
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Therefore, a FIFO is introduced to buffer the equalized data and squared channel 
coefficients |ci|2.  

 
The FIFO forwards the first 48 samples containing the SIGNAL field into the 

remaining RX chain. Afterwards, the output is disabled until the SIGNAL-field decoding 
has been completed. The latency is on the order of 150 cycles, where the main latency of 
137 cycles is introduced by the VITERBI decoder (VD).  

 
After deferring the data output for the predefined latency period, the data output 

process to the log-likelihood unit is re-enabled. As the FIFO and the processing units are 
able to work with 40 MHz, the latency can be reduced during the payload-decoding 
process. 

 

4.3.8 Log-likelihood Ratio (LLR) Computation 
 

To enable soft-decision Viterbi decoding instead of a hard-decision de-mapping, a 
suitable LLR computation unit is required. In [9], a LLR computation has been presented, 
which allows the usage of a simple soft-input VD that need to be aware of several bit 
types with different importance.  

 
The equalized samples at the input of the LLR computation unit correspond to 

weighted estimates of the transmitted modulation symbols, 

.cdata_symdata_eq 2
iii •=  

Each complex input symbol corresponds to 1, 2, 4, or 6 transmitted bits, depending on the 
modulation mapping (see Table 4.4). The real and imaginary parts of the received 
symbols can be treated independently as 2-, 4-, or 8-PAM signals. Hence, each PAM 
symbol corresponds to 1, 2, or 3 bits. Note that for BPSK the imaginary part is not used. 
The modulation mapping (Gray encoding) between the bits and the PAM symbols and 
their corresponding amplitudes is visualized for 64QAM in Figure 4.26. We observe that 
the bits b0/b3 are always �1� for positive and �0� for negative symbol amplitude values. 
Hence, these bits determine the sign of the symbols and have the highest significance. 
The bits b1/b4 = �1� correspond to the PAM symbols with small magnitude (±1, ±3) and 
b1/b4 = �0� to symbols with large magnitude (±5, ±7). Hence, the bits b1/b4 are also 
called �first-magnitude bits� with medium significance. Finally, the bits b2/b5 distinguish 
the small-magnitude values and the large-magnitude values and represent the least 
significant bits.  
 

The knowledge about the bit significance can be exploited in the LLR computation. As 
indicated by the blue line in Figure 4.26, the LLR corresponding to the sign bits b0/b3 
can have larger likelihood ratio values than the LLRs for the less significant bits. This 
supports the fact that the correct sign of a received symbol can be detected with a higher 
reliability than the associated magnitude. The �first-magnitude� bits b1/b4 can have 
higher likelihood ratio values than the �second-magnitude� bits b2/b5, as indicated by the 
green and red lines.  
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Figure 4.26: Modulation mapping for Gray-encoded 64QAM and LLR plot showing 

the significance of the bit positions  

 

In [9], the following LLR have been derived: 
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Note that idata_symx ≡  and 2
iw,

2
i /σ1c ≡ . Furthermore, the notation d)(q,Λ  describes a 

LLR, where q is the number of bits associated to a symbol (q = 1: 2-PAM, q = 2: 4-PAM, 
q = 3: 8-PAM) and d is the bit number (d = 0: b0-�sign bit�, d = 1: b1, d = 2: b2). It can 
be observed that for large values of x the slopes of the LLRs increase. However, the 
number of soft bits for the representation of the LLRs needs to be limited to 5. This in 
turn limits the dynamic range of the LLRs. Moreover, the LLR computation presented 
above requires many comparisons and is numerically rather complex. 
 
To simplify the LLR computation, the following simplifications have been made: 

• The piecewise linear LLR computation has been further linearized to prevent 
heavy usage of comparators. 

• The multiplication with 2
ic  has been omitted for the data symbols because the 

normalization with this factors is skipped in the equalizer stage. Instead, the 
thresholds have to be adapted. This can be done without multipliers, as will be 
shown later. 

• The quantization is done very efficiently without a bank of comparators using the 
number representation. 

 
The LLR computation formulas have been simplified to 
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with 2
ii cxdata_eqy •=≡ . The threshold comparisons have been reduced to a 

minimum. Furthermore, the input data y appears only directly or as absolute value: all 
multiplications have been removed. The values 2

i
2

i
2

i c6,c4,c2  can be calculated by 

simple shift operations and one addition .c4c2c6 2
i

2
i

2
i +=  Note that the scaling with 

the factor KMOD as defined in Table 4.5 is compensated for by moving this factor into 

the LLR computation as 2
i

~
2

i cKMOD(rate)c •= , resulting in one real multiplication. 

Table 4.7: Soft input mapping for Viterbi decoder and associated quantization levels 
for LLRs saturated to [�1024, 1023] 

Viterbi input meaning Quantization values (2�s compl.) quantization range
11111 strongest 1 01111xxxxxx 960�1023 
11110 second strongest 1 01110xxxxxx 896�959 

... � � � 
10000 weakest 1 00000xxxxxx 0�63 
01111 weakest 0 11111xxxxxx �64��1 

... � � � 
00001 second strongest 0 10001xxxxxx �960��897 
00000 strongest 0 10000xxxxxx �1024��961 

 
The resulting LLR values $ need to be adapted to the input-mapping scheme of the 

Viterbi decoder unit. This task requires a mapping of 16-bit LLRs onto 5-bit Viterbi soft 
inputs, which are described in Table 4.7. First, the LLRs are saturated to [�1024, +1023] 
or, equivalently, to [10000000000, 01111111111] in 2�s complement representation. This 
range has to be quantized to 25 = 32 levels, resulting in 2048/32 = 64 = 26 values per 
quantization level. Hence, the lowest 6 bits are not relevant for the quantization process. 
Therefore, the lowest quantization level corresponds to 10000xxxxxx (�1024 to �961) 
and the highest quantization level to 01111xxxxxx (960 to 1023). The quantization levels 
are also shown in Table 4.7. A comparison of the first and third columns reveals a very 
simple mapping scheme: To create the soft inputs it is sufficient to invert the sign bit of 
the saturated LLR value and then take the resulting 5 most significant bits as Viterbi input 
bits. This mapping procedure prevents heavy usage of comparators, which would be 
required for other quantization mappings. Depending on the modulation mapping, 1 
(BPSK), 2 (QPSK), 4 (16QAM), or 6 (64QAM) soft bits are output in parallel for each 
complex input symbol. 
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4.3.9 De-Interleaving 
 

The de-interleving unit inverses the operation carried out in the transmitter chain. Its 
structure is very similar to that of the interleaver described in Section 4.2.7. The major 
differences are the following: 

• Instead of bits, LLR values, each consisting of 4 bits, are processed. 
• Input: 1 to 6 LLR values are processed in parallel at the input. Permutation 2 is 

reversed on the fly at the input and the LLRs are stored in memory (see 
interleaver for memory map). 

• Output: 4 LLR values are produced in parallel at the output.  
 

4.3.10 De-Puncturing 
 

 
Figure 4.27: De-puncturing unit, parallel implementation, output erasure bit 

E:�xxxx� in parallel with associated soft bits  
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A certain number of encoded bits have been removed from the data stream during the 
puncturing process in the transmitter (see Section 4.2.6). The de-puncturing unit has to 
re-introduce these erased bits into the data stream before Viterbi decoding to regenerate 
the coding rate ½. The implementation of the de-puncturing process is shown in Figure 
4.27. However, the erasure bits are unknown to the receiver. Therefore, a neutral soft bit 
has to be inserted. As no neutral soft bit is defined in the mapping table (Table 4.7), the 
inserted bits are labeled by additional erasure bits, which are output in parallel with the 
associated soft bits. The generation of the erasure bits is depicted in Figure 4.27 as 
E:�xxxx�, where E:�1000� corresponds to the insertion of a soft bit at output out3. The 
inserted soft bits are marked as hatched rectangles and filled with the value �00000�. 
 

Four soft bits are fed into the Viterbi decoder concurrently with the four associated 
erasure bits. Note: The first OFDM symbol (= SIGNAL field) is always transmitted with 
6 Mbps, which corresponds to BPSK with coding rate ½. Therefore, the first 48 encoded 
bits are always treated correspondingly; the RATE information fed into the de-puncturing 
unit is not used for the SIGNAL field bits.  

 

4.3.11  Viterbi Decoding 
 

The Viterbi decoder unit is implemented as a core [10] with a fixed set of parameters:  
• Code with constraint length 7, rate ½ and generators (133)8 and (171) 8; 
• soft input bits; 
• decision depth equal to 64; 
• radix-4 architecture with 64 ACS processors; 
• de-puncturing unit interface present; 
• BER estimation unit not present. 

 
 VITERBI_DEC CORE

Branch
Metric
Unit

Survivor
Metric
Unit

Add
Compare

Select
Unit

D_VAL_O 
DATA_O[1:0] OBUF

OBUF

DATA1_I [9:0] IBUF 

D_VAL_I IBUF 

N_CLK IBUF 

EDATA1_I [1:0] IBUF 

CLK IBUF 

DATA2_I [9:0] IBUF 
EDATA2_I [1:0] IBUF 

N_RST IBUF 

 
Figure 4.28: Viterbi decoder core block diagram  

 
A general block diagram of the core is shown in Figure 4.28. The four input soft bits 

are provided as two pairs at the inputs DATA1_I and DATA2_I. Equivalently, the four 
input erasure bits are provided as two pairs at the inputs EDATA1_I and EDATA2_I. 
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Note that the generator polynomials in the TILAB core are (171 133)8, whereas 802.11a 
uses (133 171)8 so that the de-punctured data and the erasure bits have to be swapped at 
the VITERBI decoder input to fit to the associated generator polynomial. The output 
consists of 2 decoded bits in parallel at port DATA_O. 

 
The Viterbi core is controlled by an FSM as depicted in Figure 4.29. After reset, the 

first 48 data values (24 encoded soft bits) are clocked into the Viterbi core. Next, a 
number of dummy bits have to be clocked into the core, before the decoded data are 
available at the decoder output. This is done by repeating the last data values and by 
labeling these data as erasure bits. The latency consists of a decoding delay Ddecod = 128 
clock cycles and an additional processing delay Dproc = 9 clock cycles. After this 
latency, the SIGNAL field has been completely decoded. Hence, the transmission 
parameters data rate (Prate) and length (Plength) are available for the RX chain. The 
Viterbi core has to be reset, before the SERVICE and DATA fields can be decoded. This 
is done by assigning VITnreset = �0� to the port N_RST. Next, the SERVICE field and 
the DATA field of length Plength*8bit are clocked into the core. These values have been 
stored in the SIGNAL field FIFO until the data rate and packet-length decoding process 
has been completed (see Section 4.3.7). Finally, to clock out the decoded bits, 128 
dummy values are clocked into the core by labeling these values as erasure bits. 

 

 
Figure 4.29: Viterbi decoder control FSM 

 

4.3.12 Descrambling 
 

The entire DATA field including SERVICE, PSDU, TAIL and PAD bits, has been 
scrambled in the transmitter (see Section 4.2.4); the SIGNAL field remains unscrambled. 
In the RX chain, the same scrambler as described in  Figure 4.7 for the TX chain can be 
used.  
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Random values are used to initialize the scrambler registers. However, the 

initialization values are not known in the RX chain. Therefore, these values have to be 
determined on the fly in the descrambler unit. This initialization can be done as follows: 

• Register value a0 as depicted in Figure 4.6 is updated in every clock cycle with 
630 aaa ⊕= . 

• The first 7 bits of the SERVICE field are 0�s. Hence, for the first seven clock 
cycles the scrambled data output can be written as 063 a0aadata_out =⊕⊕= . 
The first seven scrambled bits are identical to the register values for any 
initialization. 

• In the receiver, a correct initialization of the descrambler requires that the 
registers contain the same bit sequence as described above at the end of the 
SERVICE field. Hence, the initialization of the descrambler can easily be done by 
clocking the seven bits containing the (scrambled) SERVICE field into the 
descrambler registers as shown in Figure 4.30.  

• The descrambled output can be determined as data_inydata_out ⊕= . The output 
for the SERVICE field is determined by 0data_indata_in =⊕ . 

• The parallel implementation can be derived directly from Figure 4.7 by introdu-
cing the SERVICE field switch, resulting in Figure 4.31. Note that in the parallel 
implementation one transition state has to be introduced. While the last (7�s) 
SERVICE field bit bi(0) is clocked into register a1, the switch for the first 
RESERVED field bit bi(1) already has to be switched into the normal 
descrambling mode. 

 
Note also that the first 24 bits of the SIGNAL field are directly forwarded to the output 
by skipping the descrambler. 
 

 
Figure 4.30: Data descrambler, serial implementation 
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Figure 4.31: Data descrambler, parallel implementation 

4.3.13 Packet Decomposition 
 

After descrambling, the packet-decomposition unit separates the received PPDU frame 
according to its structure, which was shown in Figure 4.5. The FSM of this unit is 
depicted in Figure 4.32. In the first part, the fields RATE, RESERVED, LENGTH are 
stored in registers. These values are fed back into the RX chain using the ports Prate, 
Preserved, and Plength. A parity check is executed over these fields, and the result is 
output to port Pparity. After the determination of the parity bit, an additional signal 
DETECT0 is raised to inform the PHY-RX state machine.  

 

 
Figure 4.32: Packet-decomposer FSM 
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Next, after the removal of the SIGNAL tail bits, the SERVICE field is saved into 
registers. The end of the SERVICE field or, equivalently, the start of the PSDU is 
indicated by the signal DETECT1. Finally, the PSDU is output. The end of the PSDU is 
indicated by the signal DETECT2. The signals DETECT0�DETECT2 are forwarded to 
the MAC layer to indicate the actual status of physical data reception. 

 

4.3.14 CRC Check 
 

The packet decomposer outputs the entire PSDU or MAC frame. Before the frame is 
passed to the MAC layer, the CRC check is done in the PHY hardware to save computa-
tional power in the MAC layer. The CRC value is generated exactly in the same way as 
in the transmitter (see Section 4.2.2). The input bits are stored in a memory until the next 
byte is formed. Next, the CRC update is performed (the input bytes have to be reflected 
MSB!LSB). After the reception of the entire PSDU including the FCS field, the 
resulting CRC value has to be compared bitwise with the so-called magic number 
0xc704dd7b, which describes the expected remainder polynomial, 

 

bddchex
bin 1011

3

7
0111

456

1101

81011

1101

121415

4
0100

18

0
0000

7
0111

242526

1100

3013 .1xxxxxxxxxxxxxxxxxC(x) +++++++++++++++++=

 
If the bitwise comparison result is zero, the correctness of the CRC check is indicated 

to the MAC by a signal P_CRC_OK = �1�. 
 

Note that the CRC check unit performs a word alignment at its output. If the PSDU 
length is not a multiple of 32 bits, the unit appends the necessary number of 0�s at the end 
of the frame. This operation is required because the subsequent FIFO (interface to MAC) 
works on a word basis rather than byte-wise. 

 

4.4 PHY Latency Considerations 
 

In the following subsection, some fundamental latency considerations for the physical 
layer implementation are discussed, which are essential to meet the allowable PHY 
characteristics as defined in the 802.11a standard [1, Table 93]. The critical times that 
have to be met by the PHY layer are the SIFS (short inter-frame spacing) time and the 
CCA (clear channel assessment) time. Here, we only concentrate on the SIFS time. The 
SIFS is the time from the end of the last symbol of the preceding frame to the beginning 
of the first symbol of the preamble of the subsequent frame as seen at the air interface. 
This is shown in Figure 4.33, where a data reception has to be acknowledged after SIFS. 
The SIFS includes the following delays: 

oundTime.RxTxTurnaringDelayMACProcessyRxPLCPDelaRxRFDelaySIFS +++=  
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Figure 4.33: DCF timing details 

 

In the following, the delay (RxPLCPDelay) introduced by the receive chain units is 
described in detail.  
 
There is only a few clock cycles� worth of latency introduced by the RX-filter/decimator. 
In the inner receiver, the incoming data have to be stored in a tapped delay line until the 
timing synchronization is done. The introduced latency can be removed by using a FIFO 
concept, where the output data towards the FFT are written at twice the input rate (40 
MHz). The FFT compute time is T1_FFT = 3.65 µs, the output buffering takes another 
T2_FFT = 1.6 µs (64 cycles @ 40 MHz). These times are currently fixed because a 
predefined Xilinx FFT core form is used. To be able to calculate an FFT every 4 µs, two 
FFTs are instantiated and used alternatingly (see Section 4.2.9) in the current implemen-
tation. The resulting FFT latency is TFFT = 5.25 µs. The de-interleaver has to read 48 data 
@ 40 MHz from the input before being able to output data, which introduces a latency of 
T1_IL = 1.2 µs. The data output will take T2_IL = 0.3 ... 1.8 µs (BPSK: 48 data / 4 parallel 
streams @ 40 MHz ...; 64QAM: 288 data / 4 parallel streams @ 40 MHz). All units 
between the de-interleaver and the Viterbi decoder process 4 data streams in parallel to 
decrease the latency and to feed the radix-4 Viterbi core. The resulting de-interleaver 
latency is TIL ≤ 3µs. The de-puncturing unit expands data by a maximum factor of 3/2 for 
rate 3/4. Hence, the maximum latency introduced by the de-puncturing unit is TPUNCT = 
0.9 µs. The Viterbi decoder uses a radix-4 architecture with a decision delay of 64 cycles. 
The core introduces a delay of 2 × 64 + 8 cycles, resulting in TVIT = 3.4 µs. The CRC 
check is done on the fly and does not introduce additional latency. The overall worst case 
delay of the baseband implementation is currently 

TFFT + TIL + TPUNCT + TVIT = 5.25 µs + 3 µs + 0.9 µs + 3.4 µs = 12.6 µs. 

Hence, the implementation meets the SIFS timing requirements, leaving about 3 µs for 
the transmit preparation of the ACK frame.  
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However, the latency can still be reduced considerably by implementing the following 
changes: 

• The use of a more appropriate custom FFT:  
o one FFT with twice the number of butterflies reduces T1_FFT by 50% to 

1.825 µs, 
o use of a Decimation-in-Time FFT to eliminate T2_FFT completely because 

the input data reordering can be done on the fly. 
• The shortening of the Viterbi core decoding delay to 32 (instead of 64) is possible 

with marginal performance loss and reduces the latency to TVIT32 = 1.7 µs. 
Introducing these changes would result in a PHY latency of approximately 7.5 ... 8 µs.  
 

Another approach to reduce the latency of the receive chain is to increase the FPGA 
clock speed. However, the current clock speed of 40 MHz was chosen under the 
following constraints: 

• The RF frontend delivers a 40-MHz clock, which is used for the AD/DA-
converters and as symbol clock frequency reference. 

Higher clock frequencies will cause problems for the place-and-route algorithm and 
would require more algorithm pipelining.  
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5 Radio Frontend Implementation Issues 
 

The radio frontend of the mobile station prototype of the ZRL high-speed wireless 
LAN has been developed in a joint project with the Laboratory for Electromagnetic 
Fields and Microwave Electronics of the Swiss Federal Institute of Technology (ETH) 
Zurich [11]. The radio frontend consists of the RF interface board, which is attached via a 
control interface and two data interfaces to the digital baseband implemented in the 
FPGA, and a set of commercially available analog components such as low-noise 
amplifier, power amplifier, synthesizer, filter, etc. The frontend is compatible with the 
802.11a specification. 
 

In this Section, we describe the radio frontend architecture, specify the interface 
between the digital baseband and the frontend, and discuss some filter design issues.  

5.1 Radio Frontend Architecture 
 

 
Figure 5.1: 802.11a radio frontend architecture 

The 802.11a-compliant analog radio frontend design applies a heterodyne radio 
architecture (see Figure 5.1). It can be operated in one out of the eight 20-MHz-wide 
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channels in the lower and middle U-NII frequency band between 5.15 and 5.35 GHz. 
Switching between the channels can be performed within a fraction of 1 µs.  

 
By default, the radio frontend is operated in the receive mode. The analog receive path 

has been designed with the aim to operate with a minimum input signal sensitivity of �90 
dBm, to provide a wide dynamic range of 60 dB, and to keep the phase noise and inter-
modulation distortion at a low value. As shown in Figure 5.1, any incoming signal at the 
antenna is first filtered and passed via the RX-TX antenna switch to the low-noise 
amplifier MGA-86576 [12] that amplifies the signal by 20 dB. Then the amplified RF 
signal is down-converted with a mixer to the intermediate frequency (IF) band at 280 
MHz. The carrier signal necessary depends on the channel selected and is provided by the 
PLL frequency synthesizer.  Next the IF signal is filtered with a SAW filter with a 
bandwidth of 17 MHz. Its output signal is monitored by a power detector (logarithmic 
amplifier AD8310 [13]) to derive the received signal strength indicator (RSSI) value; this 
value is converted with a 6-bit flash A/D converter CA3306 [15] and passed via the RF 
interface board to the baseband-processing unit. The filtered IF signal is then scaled in 
amplitude with several amplifiers and attenuators. Two adjustable FET attenuators adjust 
the amplitude of the signal in the range from �17 dB to 46 dB; the gain value is set 
according to a control voltage that is determined by the baseband-processing unit and 
generated with a 10-bit D/A converter [13]. The filtered and scaled IF signal is fed to the 
I/Q demodulator that down-converts the IF signal to the in-phase and quadrature 
component of the complex baseband signal. This is accomplished by splitting the IF 
signal into two signals with identical phase characteristic. Two identical mixers are then 
used to down-convert the components to the baseband by using a synthesized 280-MHz 
clock signal and a 90º-phase-shifted version of it, respectively. The I and Q components 
of the signal are then fed to the RF interface board for A/D conversion and further 
processing.  

 
At the request of the physical-layer FSM, the radio frontend can be switched into 

transmit mode. The transmit path has been designed with the goal of transmitting a radio 
signal with a power of 200 mW in one of the 20-MHz-wide 5-GHz frequency bands and 
keep the phase-noise, inter-modulation distortion, and spurious signal content at a low 
level. When the frontend is transmitting, the I and Q components of the complex 
baseband signal are up-converted with the I/Q modulator to the IF band at 280 MHz, and 
then in two further up-conversion steps to the target frequency band between 5.15 and 
5.35 GHz. The pre-defined nominal signal power level is adjusted with digitally 
controlled attenuator circuits and the power amplifier MAAM26100-P1 [14].  To convert 
the digital signals �AGC control� and �transmit-power control� to analog signals, low-
cost D/A converters [13] with a latch circuit in front were selected. The radio signal 
generated is then fed via the RX-TX antenna switch and filter to the antenna and 
transmitted over the air.   

 
To satisfy the 802.11a physical layer specification, the frequencies of all carrier 

signals are derived from a single 40-MHz quartz oscillator. The Analog Devices 
ADF4112 RF PLL Frequency Synthesizer and the AD9850 Direct Digital Synthesizer 
(DDS) generate all carrier signals that are required to convert the baseband signal via the 
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IF band of 280 MHz to the target band and vice versa [13]. The PLL and the DDS are 
controlled by the baseband signal-processing unit via the radio frontend interface.  

 
 

5.2 Radio Frontend Interface 
 

 
 

Figure 5.2: 802.11a Radio frontend with interface signals 

 
Figure 5.2 shows the block diagram of the analog radio frontend with all interface 

signals. The interface comprises 38 digital and 4 analog signals, which are used to control 
the radio frontend and exchange data between the digital baseband and the analog radio 
frontend components. The analog and digital radio-interface signals are defined in Tables 
5.1 and 5.2.   
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Table 5.1: Digital radio-frontend interface signals   

Digital in- and outputs38Total signals
Transmit Power value4 inputsSeL_data[3..0]
Transmit Power set1 inputSeL_set
Antennea Switch1 inputAnS
PLL programming3 inputsPROG[2..0]
DDS register data8 inputsDDS_data[7..0]
DDS write clock1 inputDDS_w_clk
DDS frequency update1 inputDDS_fq_ud
RSSI DAC clock1 inputD_CLK
Received Signal Strength Indicator6 outputsRSSI[5..0]
RSSI DAC clock1 inputRSSI_enable
AGC value10 inputsAGC_data[9..0]
Automatic Gain Control value set1 inputAGC_set
RemarksNumber of PinsSignal Name

 

Table 5.2: Analog radio-frontend interface signals   

Transmitter Q signal, impedance = 50 Ohm1.2[Vpp] / 1.5[V]Qein
Transmitter I signal, impedance = 50 Ohm1.2[Vpp] / 1.5[V]Iein
Receiver Q signal, impedance = 50 Ohm2[Vpp] / 2[V]Qaus
Receiver I signal, impedance =50 Ohm2[Vpp] / 2[V]Iaus
RemarksRange / DC OffsetSignal Name

 
 
Figure 5.3 shows the block diagram of the radio interface that connects the analog 5-

GHz radio frontend (RFE) to the digital baseband signal-processing unit implemented in 
the FPGA. The interface consists of several A/D and D/A converters, analog and digital   
low-pass filters, up- and down-sampling devices, and some analog and digital signal-
conditioning circuits. The converters and all required analog components have been 
implemented on the RF interface board, whereas all digital processing functions have 
been integrated into the XILINX FPGA. 

 
The A/D and D/A conversions are performed with the Dual D/A Converter AD9763 

and Dual A/D Converter AD9238 [13] at a rate of 40 MHz. The sampling rate is thus 
twice the Nyquist rate and, therefore, two-times oversampling is applied. The in-phase 
and quadrature components of the digital transmit signal are represented with 10 bits, 
whereas the components of the received signal are quantized with 12 bits. Up-sampling 
of the digital baseband signal from a 20-MHz sampling rate to 40 MHz and down-
sampling of the oversampled receive signal to the Nyquist rate is implemented in the 
FPGA as an additional signal-processing unit in the TX and RX chain, respectively. 

 
The low-pass filters are required to shape the signal spectrum, perform signal 

smoothing, and avoid aliasing effects. Identical filter functions are implemented in the 
corresponding in-phase and quadrature channels of the transmit and receive paths; 
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especially in OFDM-based systems, any imbalance in the two channels would lead to a 
severe performance degradation [16]. In addition, we decided to use the same filters in 
the transmit and receive path to advantageously re-use hardware resources. 

Figure 5.3: Radio interface block diagram  

 
Because oversampling is applied, each filter function can be implemented with partly 

analog and partly digital means. This allows the implementation of the filter function by 
means of a commercially available analog filter with relaxed filter requirements and a 
digital filter that mainly determines the overall characteristic. As the main part of the 
filter is implemented digitally, exact copies of the digital filter can be provided in the 
corresponding in-phase and quadrature channels, thus avoiding the introduction of a 
severe I/Q imbalance.     

 
The analog filter is a seventh-order Chebyshev filter with a ripple of less than 0.1 dB 

and a �3 dB cutoff frequency at 14 MHz. The group delay deviation is less than 15 ns at 
frequencies below 9 MHz.  The digital filter is a programmable 19-tap half-band FIR 
filter with a distributed arithmetic filter architecture. Further characteristics of the filter 
are two-times oversampling, a latency of 8 clock cycles, and the use of a Hanning 
window. 

 
To eliminate DC offsets on the received analog signals, a first-order 50-kHz high-pass 

filter is inserted between the radio frontend and the A/D converters. Moreover, the 
input/output standard of all digital signals is LVTTL (3.3V) compliant. To satisfy the 
requirements of LVTTL levels for all digital signals, some conditioning circuits are 
necessary, as indicated in Figure 5.3 

 

Xilinx FPGARFE
5GHz

Digital Signal
Conditioning
Circuits

40 MHz 40 MHz

RSSI[0..5] RSSI[0..5]

RFE[0..30] RFE[0..30]

Analog Signal
Conditioning
Circuits
(Amplitude,
DC-Level)

DAC

DAC

ADC

ADC

10

10

12

12

40 MHz

40 MHz

40 MHz

40 MHz

Down-
Conv.

Down-
Conv.

Digital Signal
Processing Unit

14 MHz

14 MHz

14 MHz

14 MHz

10 MHz

10 MHz

10 MHz

10 MHz

10 MHz

I

Q

I

Q

Up-
Conv.

Up-
Conv.



  61 of 62 

6 Summary  
 

To evaluate the potential of the broadband WLAN technology for next-generation 
mobile communication systems, a WLAN testbed with three mobile stations has been 
designed and built at the IBM Zurich Research Laboratory. The physical layer of the 
WLAN has been implemented in accordance with the IEEE 802.11a specification. 
Therefore, OFDM has been applied as basic transmission technology, and the radio 
frontend has been developed for operation in the 5-GHz frequency band. 

 
In this document, we have disclosed the architectural design of a mobile station that 

consists of a radio frontend, digital baseband/MAC unit, and additional peripheral test 
and debug equipment. We have briefly described the mapping of these units to hardware 
components that are available on a set of ARM software/hardware development boards. 
Emphasis, however, has been given to the description of the OFDM-based physical layer 
architecture. We have specified the PHY/MAC interface with service primitives and 
described the basic behavior of the physical layer by means of the basic receive and 
transmit procedure.      

 
The major portion of the report has been devoted to the implementation of the digital 

baseband. Hardware implementations of all digital signal-processing algorithms required 
to transmit and receive 802.11a OFDM packets over the air interface have been given. 
Moreover, we have discussed the communication mechanism applied between the 
functional units. The design of all functional units has been tailored so that all units fit 
into a commercially available FPGA and the stringent latency requirements of the 
802.11a standard can be satisfied.    

 
Finally, a 5-GHz radio frontend implementation has been presented that has been 

jointly developed with engineers from the ETH Zurich.   
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