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Abstract

It has recently been recognized that column-weight-4 array codes give rise to a class of binary high-
rate low-density parity-check (LDPC) codesC(q, j = 4) with excellent performance on the AWGN
channel. It is shown that the minimum Hamming distance of all these codesC(q, j = 4) of length
N=q2 is 10, provided thatq is a prime greater or equal to11. Furthermore, the corresponding
codeword multiplicity is lower bounded by(q − 1)q2.

Index terms: Low-density parity-check (LDPC) codes, iterative decoding, union bound approxima-
tion.



1 Introduction

Array-code-based LDPC codes, which where introduced by Fan [1], are attractive mainly for two
reasons. First, for moderate code lengths and high rates, array codes perform as well as the best
comparable randomly constructed regular LDPC codes given in the on-line repository at the Univer-
ity of Cambrigde [2]. Second, array codesC(q, j) are determined by sparse parity check matrices
H, which are characterized by two parametersq andj, whereq is an odd prime andj is the column
weight ofH [1],[3]. This simple deterministic construction of array codes holds the promise that
basic code parameters such as minimum distance and codeword multiplicities can be determined.
Indeed, forj = 3, the minimum distance and the corresponding multiplicity have been determined
and forj = 4, 5, 6, upper bounds on the minimum distance are known [4]. Furthermore, for the case
j = 4, it was shown thatdmin ≥ 10 [5]. In this paper, we determine the minimum distance for the
class of allj = 4 array codes.

2 Array Codes

Let q be an odd prime and letζ = x mod(1 − xq) be a generating element of the ringR =
GF (2)[x]/(1 − xq). For any positive integerj, j ≤ q, the array codeCR(q, j) of lengthq over
R is defined by the followingj × q Reed-Solomon-type parity check matrix overR

Hζ =




1 1 1 . . . 1
1 ζ ζ2 . . . ζq−1

1 ζ2 ζ4 . . . ζ2(q−1)

...
...

...
...

1 ζj−1 ζ2(j−1) . . . ζ(j−1)(q−1)




. (1)

In a similar way as in the field case, it follows that

g(z) = (z − 1)(z − ζ) . . . (z − ζj−1) (2)

is a codeword (written in polynomial notation) of the cyclic codeCR(q, j) ⊂ R[z]/(1 − zq). De-
spite the fact thatR is a ring and not a field, the polynomialg(z) shares most of the proper-
ties of a generator polynomial. Any multiple ofg(z) is a codeword and theq − j cyclic shifts
g(z), zg(z), . . . , zq−j−1g(z) determine a subcodeC(g)

R (q, j) of rank q − j over R. In particular,
dim C

(g)
R (q, j) = q(q − j) over GF(2).

The remaining codewords, which are not in the subcodeC
(g)
R (q, j), can be characterized as follows.

The ring elementm = 1 + ζ + ζ2 + . . . + ζq−1 generates the ideal{0,m} ⊂ R and, moreover, it has
the property thatr ·m = 0, if in r = r0 + r1ζ + . . . + rq−1ζ

q−1 an even number of the coefficients
ri equal1, andr ·m = m, otherwise. Thus, the polynomial

p(z) = m · (1 + z) (3)

is in the null space of the parity check matrixHζ . TheR-subcode generated byp(z) and itsq − 2

cyclic shifts will be denotedC(p)
R (q, j), i.e,C(p)

R (q, j) = <m · (1 + z)> in R[z]/(1 − zq). One has
dim C

(p)
R (q, j) = q − 1 over GF(2) and it can be shown that

C
(g)
R (q, j) ∩ C

(p)
R (q, j) = <m · g(z)>,
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which is in accordance with the structure of the generator matrixG in [4]. In particular,dim <m ·
g(z)> = q− j over GF(2). Using the fact [4] thatdim CR(q, j) = q(q− j) + j− 1 and a dimension
argument, one concludes thatC

(g)
R (q, j) + C

(p)
R (q, j) = CR(q, j), i.e., the cyclic codeCR(q, j) over

R is generated by the two generator polynomialsg(z) andp(z).
FromCR(q, j), one can derive a binary array codeC(q, j) using the regular matrix representation of
the ringR (see Chap. 7.3 in [6]), which is determined by theq × q-matrix

P = ρ(ζ) =




0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
.. .

...
...

0 0 . . . 1 0




. (4)

For instance, for the special casej = 4, the corresponding binary parity-check matrix forC(q, j = 4)
is given by the binary4q × q2 matrix

H = ρ(Hζ) =




1 1 1 . . . 1
1 P P 2 . . . P q−1

1 P 2 P 4 . . . P 2(q−1)

1 P 3 P 3·2 . . . P 3(q−1)


 , (5)

where by abuse of notation1 denotes theq × q identity matrix.
To pass from binary codewords inC(q, j) to corresponding codewords inCR(q, j) overR, we will
use the vector space isomorphism

ϕ : GF(2)q → R

[a0, a1, . . . , aq−1] 7→ ∑q−1
`=0 a`ζ

`.
(6)

Rewriting the binary vectorx = [x0, x1, . . . , xq2−1] asϕ(x) = [ξ0, ξ1, . . . , ξq−1], whereξi = ϕ([xi·q, . . . ,
x(i+1)q−1]), one obtains a one-to-one correspondence of binary codewords and codewords overR,
namely

xHT = 0 ⇐⇒ ϕ(x)HT
ζ = 0. (7)

In terms of polynomial representation of codewords, the image of a binary codewordx = [x0, x1, . . . , xq2−1]

under the isomorphismϕ is given by
∑q−1

i=0 ci(ζ)zi, whereci(ζ) = xi·q+xi·q+1ζ+. . .+x(i+1)q−1ζ
q−1.

3 Minimum Distance of the Array CodesC(q, j = 4)

The following proposition summarizes relevant results from [4] and [5].

Proposition 1 The binary array codeC(q, j) has lengthq2 and dimensionq2 − j(q − 1) − 1 with
a minimum distance ofdmin(q, j) ≥ j + 1. Furthermore, allj = 3 array codes have a minimum

distance ofdmin(q, 3) = 6 and the corresponding multiplicity isµmin = q

(
q
3

)
. For j = 4 array

codes,dmin(5, 4) = 8, dmin(7, 4) = 8 and forq ≥ 11, the minimum distance is bounded by

10 ≤ dmin(q, 4) ≤ 12.
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Theorem 1 For q ≥ 11, q prime, the binaryj = 4 array codeC(q, 4) has a minimum distance of
10.

Proof: In view of Prop. 1 it is sufficient to show that there is a codeword of weight 10. Letg(z) be
defined by (2) and let

u(z) = ζ8 + (ζ5 + ζ7 + ζ8)z + (ζ4 + ζ5 + ζ6 + ζ7 + ζ8)z2

+(ζ3 + ζ4 + ζ6 + ζ7)z3 + (ζ2 + ζ3 + ζ5)z4 + (ζ + ζ2 + ζ3)z5 + 1z6.

By replacingζ by P in the following codeword ofCR(q, 4), one obtainsq binary weight-10 code-
words ofC(q, 4)

w(z) = u(z)g(z) = ζ14 + ζ12z + ζ8z2 + (ζ6 + ζ14)z3

+(ζ8 + ζ12)z5 + ζ6z8 + 1z9 + 1z10. (8)

To find a lower bound on the multiplicity of weight-10 codewords, we will let a group of weight-
preserving automorphisms operate on the codeword given by (8). The group of weight-preserving
automorphisms of the binary codeC(q, j) will be characterized byR-automorphismsθ : CR(q, j) →
CR(q, j) of the form

θ(

q−1∑
i=0

ci(ζ)zi) = z`ζm

q−1∑
i=0

ci(ζ
a)za·i, (9)

where`,m ∈ {0, 1, . . . , q− 1} anda ∈ {1, . . . , q− 1}. To check that the mappingsθ leaveCR(q, j)
invariant and induce a permutation on the codewords of the binary codeC(q, j) (we will call such
mappingsbinary-weight-preserving), it is useful to note that each mappingθ is composed of three
different types ofR-automorphisms ofRq, which are given by

(i) cyclic shifting: c(z) 7→ z`c(z),

(ii) scaling:c(z) 7→ ζmc(z),

(iii) applying the power map induced by the two simultaneous mapsz 7→ za andζ 7→ ζa.

It is clear that these mappings are binary-weight-preserving and, moreover, sinceCR(q, j) is cyclic
overR, cyclic shifting and scaling are clearly automorphisms. To verify that the power map (iii) is
an automorphism it is sufficient to check that the two generator polynomialsg(z) andp(z) defined
by (2) and (3) are mapped into codewords, i.e.,θ(g(z)) = (za − 1)(za − ζa) . . . (za − (ζa)j−1) is
divisible byg(z) and, similarly,θ(p(z)) is divisible byp(z). Forg(z), this follows from the fact that
in the quotient

θ(g(z))

g(z)
=

za − 1

z − 1

za − ζa

z − ζ
. . .

za − (ζa)j−1

z − ζj−1

each factor on the right is a polynomial because

za − (ζa)`

z − ζ`
= za−1 + za−2ζ` + za−3ζ2` + . . . + ζ(a−1)`.

Forp(z), the proof is similar.
LetG denote the group of the(q−1)q2 binary-weight-preserving automorphisms ofCR(q, j) defined
by (9). Note that in [5], a different description of these automorphisms is given in terms of “affine”
permutations, which act doubly transitive onC(q, j).
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Lemma 1 There is no nontrivial element of the groupG that leaves the weight-10 codeword in (8)
fixed.

Proof: Let w(z) be given by (8) and letθ ∈ G. We will show thatθ(w(z)) = w(z) impliesθ = 1,
i.e.,m = 0 = ` anda = 1. There are only six coefficients inw(z) =

∑
w`(ζ)z` that are powers of

ζ, viz., w0(ζ) = ζ14, w1(ζ) = ζ12, w2(ζ) = ζ8, w8(ζ) = ζ6, w9(ζ) = 1, w10(ζ) = 1. In particular,
w9(ζ

a) = 1 andw10(ζ
a) = 1 and, moreover,w9(ζ) andw10(ζ) are the only two of these coefficients

that are equal. Therefore,

z9 + z10 = θ(w9(ζ)z9 + w10(ζ)z10) = ζmz`+9a + ζmz`+10a,

which impliesm = 0 and either

z`+9a = z9 and z`+10a = z10 or

z`+9a = z10 and z`+10a = z9.

One can easily show that in both cases,a = 1 and` = 0.

Corollary 1 The multiplicity of the minimum weight codewords inC(q, 4) is at least|G| = (q−1)q2.

4 Union Bound Approximation

It is interesting to compare the performance of the high-rate array-code-based LDPC codes under
iterative decoding with the theoretical bounds for maximum likelihood decoding. The bounds are
derived from the first term of the weight distribution of the codes. All simulations were carried out
for the additive white Gaussian noise (AWGN) channel using the sum-product decoding algorithm
with the maximum number of iterations limited to50.
For j = 3, we have considered the codeC(47, 3) of lengthN = 472 = 2209, dimensionK = 2070
anddmin(47, 3) = 6 (cf. Prop. 1). Figure 1 shows the performance of this code in terms of block and
bit error rate. For comparison, capacity bounds (for block and bit error) are shown. The dashed line
labelled ‘Union bound’ is an approximation to the union bound determined bydmin(47, 3) andµmin.
This dominant-term union bound provides a rough approximation to the block error rate performance
at high signal-to-noise ratios (SNR). From the shape of the dominant-term union bound, it is apparent
that the code does not have a distinct error floor.
For the same codeword lengthN = 472, we have considered thej = 4 array codeC(47, 4) of
dimensionK = 2024 anddmin(47, 4) = 10. The performance of this code on the AWGN channel is
illustrated in Fig. 2. The dashed line corresponds to a “sub-union-bound”, which is determined by
the minimum distance and the lower boundq2(q − 1) = 101614 on the number of minimum weight
codewords. In contrast to the casej = 3 (Fig. 1), there is a substantial gap between the block-error
rate performance and the sub-union-bound, even at high SNR. One reason for this gap is that the
lower bound given in Corollary 1 might not be tight.

5 Conclusions

The minimum distance of the class of column-weight-4 array codesC(q, 4) has been determined.
In particular, forq ≥ 11 a generic minimum-weight codeword was specified. Furthermore, by
studying the action of an automorphism group on that codeword, a lower bound on the number of
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Figure 1: Union bound approximation of the block error rate for the rate-2070/2209 (j = 3, q = 47)
array code.
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Figure 2: Bit and block error rate performance of the rate-2024/2209 (j = 4, q = 47) array code and
the sub-union-bound.

minimum-weight codewords was obtained. Theorem 1 is also valid for shortenedj = 4 array codes.
Moreover, using a similar proof as for Theorem 1, one concludes that thej = 4 modified array codes
with simple encoding structure as proposed in [7] have a minimum distance of at most10.
The sub-union-bound based on the code parameters given in Theorem 1 and Corollary 1 does not
provide a good match for the performance of the array codeC(47, 4) on the AWGN channel under
iterative decoding. A possible explanation for this gap is that the bound in Corollary 1 is not tight
and/or iterative decoding does not behave like maximum-likelihood decoding. A better understand-
ing of this gap is a topic of further research.
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