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Abstract

We present the first cryptographically sound Dolev-Yadessgcurity proof of a comprehensive elec-
tronic payment system. The payment system is a slightly Ifiegh variant of the3KP payment system
and comprises a variety of different security requiremeatging from basic ones like the impossibility
of unauthorized payments to more sophisticated propdittieslisputability. We show that the payment
system is secure against arbitrary active attacks, inetudibitrary concurrent protocol runs and arbitrary
manipulation of bitstrings within polynomial time if theqiocol is implemented using provably secure
cryptographic primitives. Although we achieve securitydancryptographic definitions, our proof does
not have to deal with probabilistic aspects of cryptogragig is hence within the scope of current proof
tools. The reason is that we exploit a recently proposed\Rgé®-style cryptographic library with a prov-
ably secure cryptographic implementation. Together witimposition and preservation theorems of the
underlying model, this allows us to perform the actual pefédrt in a deterministic setting corresponding
to a slightly extended Dolev-Yao model.

1 Introduction

Itis hardly necessary today to justify or stress the impuanteof electronic commerce, which has been rapidly
gaining momentum since the early nineties, and is equalbealing to online merchants, consumers, and
payment providers. The core of electronic commerce is actreldc payment system that is supposed to
fulfill the individual requirements of the participatingrias. These range from standard requirements like
the impossibility of unauthorized payments, to more sdjtsted ones like granting individuals the ability to
succeed in disputes in cases where they have been betragreiding a payment system that lives up to these
requirements has been a challenging task, and many payysteitrss that were claimed to be provably secure
have fallen prey to subsequent attacks in the past [52, Biday it is commonly agreed that cryptographic
protocols in general and payment systems in particular faeentain a rigorous proof of security in order
to be acceptable.

One way to conduct such a proof is the cryptographic approdishsecurity definitions are based on
complexity theory, e.g., [31, 29, 14]. The security of a ¢ogwaphic protocol is proved by reduction, i.e.,
by showing that breaking the protocol implies breaking oh#lhe underlying cryptographic primitives with
respect to its cryptographic definition and thus finally a patational assumption such as the hardness of
integer factoring. This approach captures a very compstemdversary model and allows mathematically
rigorous proofs. However, because of probabilism and cdatiomal restrictions, these proofs have had to
be done by hand so far, which often yields proofs with fauttgaps. Moreover, such proofs rapidly become
too complex for larger protocols, which was one of the maasoms why even comparatively small payment
systems have proved considerably error-prone in the past.

The alternative is the formal-methods approach, which icemed with the automation of proofs using
model checkers and theorem provers. As these tools cuyrreanthot deal with cryptographic details such as



error probabilities and computational restrictions, exgtons of cryptography are usédThey are almost
always based on the so-called Dolev-Yao model [27], whignegents cryptography as term algebras. The
use of term algebras simplifies proofs of larger protocotsmerably and has led to a large body of literature
on analyzing protocol security using various techniqueddonal verification, e.g., [46, 42, 37, 17, 50, 1].

Employing the Dolev-Yao abstraction—or abstractions ofwilar flavor—to the analysis of a payment
system using tool support or paper-based reasoning hasgtowe an extremely valuable approach; a far
from exhaustive list of work along those lines includes [B®,15, 38, 43, 10, 11]. Although these approaches
are suitable for reasoning about the security of largeessgdtems, their drawback is that they exist only in
the Dolev-Yao model and there is no theorem that carriesethesults over to the cryptographic approach
with its much more comprehensive adversary.

We close this gap by providing the first security proof of amant system that is both within the scope
of formal proof tools and is sound with respect to the rigsralgfinitions and the comprehensive adver-
sary model of cryptography. The payment system is a sligithplified variant of the3KP payment sys-
tem [13, 12] and comprises a variety of different securityuieements ranging from basic ones like the
impossibility of unauthorized payments and weak atomitdtynore sophisticated properties like disputabil-
ity. More precisely, we show that the payment system is seagainst arbitrary active attacks, including
arbitrary concurrent protocol runs and arbitrary manipakaof bitstrings within polynomial time. The un-
derlying model ensures strong composability so that oumaag system can be used as a submodule within
larger protocols without degrading its proved securitypgrties. The underlying assumption is that the
Dolev-Yao-style abstraction of digital signatures is ierpkented using a chosen-message secure digital sig-
nature scheme with small additions like signature tagg@lgosen-message security was introduced in [32],
and efficient signature systems that are secure in this ssiseinder reasonable assumptions [32, 26, 28].

Our proof relies on a recent general result that a so-calleal icryptographic library, which implements a
slightly extended Dolev-Yao model, can be securely redltaea specific cryptographic implementation [8].
A composition theorem for the underlying security notiorplies that protocol proofs can be made using
the ideal library, and security then carries over autoraliyico the cryptographic realization. However,
because of the extension to the Dolev-Yao model, no prion&bmethods proof carries over directly. Besides
its value for the analysis of electronic payment systems,pifoof shows that, in spite of the extensions
and differences in presentation with respect to prior D&ao models, a proof can be made over the new
library that seems easily accessible to current automatsaf fools. In particular, the proof contains neither
probabilism nor computational restrictions.

Related Work. The design of electronic payment systems has a long hisdating back to the eighties
and early nineties [21, 22, 25, 23, 24, 49]. Based on thesksyarsubstantial body of commercial attempts
at electronic payment systems emerged. aK¥e family [13, 12] constituted one of the most important of
those attempts. It is the direct predecessor of today'sajiey SET standard, and offered a variety of strong
security guarantees while still relying on relatively simpinderlying mechanisms. We refer to [4] for an
exhaustive overview of the other attempts.

Work on justifying Dolev-Yao-style models under cryptagingc definitions prior to [8] was restricted to
passive adversaries and symmetric encryption [3, 2, 39%hcQ@uently with [8], an extension to asymmetric
encryption—but still under passive attacks only—was preskin [34]. The underlying Master’s thesis [33]
considers asymmetric encryption under active attacksjdes so in the random oracle model, which is itself
an idealization of cryptography and is not justifiable [20]Jhe recent work of [45] gives a slightly more
efficient implementation of asymmetric encryption than(f8} additional tagging and randomization) at the
cost of a much less general library and a weaker securitpmoiihe outlook in [45] would essentially yield

!Efforts exist to formulate syntactic calculi for dealingtivprobabilism and polynomial-time considerations, inticatar [47,
48, 35]. However, this approach cannot yet handle protosittsany degree of automation.



[8] again. Based on the ideal Dolev-Yao-style library, trelvknown Needham-Schroeder-Lowe and Otway-
Rees protocols have been analyzed in a cryptographicaligdsway [7, 5]. In contrast to the proof in this
paper, these proofs did not have to reason about digitahiges and related aspects like non-repudiation,
and the protocols are rather small examples compared to prebensive payment system.

The security notion used for the relation between the ided¢®Yao-style library and its cryptographic
implementation, reactive simulatability, and its comgiosi properties were introduced in [53] and extended
to asynchronous systems in [54, 19]. It extends the secuoitipns of multiparty (one-step) function evalu-
ation [55, 29, 30, 44, 9, 18] and the observational equivaef [40]. There are multiple possible layers of
sound abstraction from cryptography in the sense of reasiwulatability besides Dolev-Yao-style crypto-
graphic libraries. They reach from low-level idealizagahat still have real cryptographic in- and outputs to
high-level abstractions like secure channels. The spexsfiects of a Dolev-Yao-style abstraction are simple
operator-tree abstractions from nested cryptographingethe restriction of adversary capabilities to alge-
braic operations on such terms, and the assumption thas tehmse equality cannot be derived explicitly are
always unequal.

2 Description of the Payment Protocol

Let u be a client,v a merchant, andc the acquirer. We assume that v, andac initially agreed on a
descriptiond of the good and its price. A successful termination of the protocol will then ensurattthe
parties used the same description and the same price asoitediinputs to the protocol, i.e., no party can
cheat by tampering with these inputs. To simplify notatioa hat signatures include the signed message.
We further assume that every participating partynitially holds a secret signature keys,, and that the
corresponding public key has already been distributedeatidally to the other parties.

Figure 1 summarizes the main, so-caltgadimisticpart of the protocol in the usual protocol notation. The
part between the dotted lines contains the descriptionectttiual protocol, consisting of five steps executed
among clientz, merchanty, and acquireac. The parts above and below the dotted lines represent thaé loc
inputs and outputs of the protocol, respectively. Theyaespond to interface events that enable interaction
with the users of the payment system or with higher-levebmms. The protocol belongs to the class of
pay-now protocolsvhich have in common that inpugsy, receive, andallow from the client, the merchant,
and the acquirer, respectively, and the outpiig, received, andtransfer to the client, the merchant, and the
acquirer, respectively, occur in one single transactioesies its optimistic part, the protocol further offers
a separatelisputepart, which allows each party to contact a trusted thirdyptartresolve disputes. We will
elaborate on both parts of the protocol in the following.

Optimistic Part. The merchant starts the protocol upon receiving a local inftceive, d, p, v), which
indicates agreement to receive the mopdan exchange for the good from u. The merchant computes a
signaturesig,, := sign,, (invoice, d, p,u,v) and sendsinvoice, sig, ) to clientu.

Upon receiving a messag@voice, sig, ), the clientu tests ifsig,, is a valid signature with respect tés
public key of correctly formed data. if has not received a local commafghy, d, p, v), which authorizes
this payment, he stores the received data v and waits for this local command. If it has already occurred
or when it occursy. computessig,, := sign g, (payment, d, p, u,v) and sendgpayment, sig,, ) to v.

Upon receiving a messaggayment, sig,, ), the merchant tests ifsig,, is a valid signature with respect
to u's public key of the correct data. if has sent an invoice with the same paramefefsu, v to clientu
before, he savesyg,, for later use in disputes and sen@dsth_request, sig,,, sig,) to the acquireac.

Upon receiving(auth_request, sig,,, sig,), the acquirerac tests if both signatures are valid signatures
with respect to the respective public keys and if the data u,v contained in both signatures are iden-
tical. If ac has not yet received a local commaguiow, d, p, u,v) indicating consent to the payment, he
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Figure 1: Optimistic Part of the Protocol

stores the received data until this local command occursit Has already occurred or when it occurs,
ac computessig,. := signy, (auth_response,d,p,u,v), sends(auth_response, sig,.) to v, and outputs
(transfer, d, p,u, v) locally.

Upon receiving(auth_response, sig,.), the merchant checks the validity of the signature with respect
to ac’s public key and ifv has earlier sent an authentication request to the acquirtaiaingd, p, u, andv.
He then sendéconfirm, sig,.) to clientu and outputgreceived, d, p, v) locally.

Upon receiving confirm, sig,.), the client checks the validity of the signature with reggeac’s public
key and ifu has earlier sent a payment with matching data. He then aupaitl, d, p, v) locally.

Disputes. Disputes enable a party to prove that specific outputs hamere. Note that the trusted third
party is not involved in the optimistic part of the protocal described above, but it will only be invoked if
two parties disagree whether the payment took place or not.

The structure of the dispute protocol is very simple, heneewmit a picture along the lines of Figure 1.
A party w (either a client:, a merchant, or the acquireac) can start a dispute by inputting a local command
(dispute, d, p,v) (or (dispute,d, p,u,v) if w = ac). As a prerequisite to initiate a dispute, must have
received the signatures of the corresponding parties ilophienistic part of the protocol execution. In this
casew computessig™ := sign, (dispute, sig,, sig,,) where{z, 2’} = {u,v,ac} \ {w} and sendsig* to
the trusted third party. Upon receiving a messaigé from w, the trusted third party checks if the signature is
valid for w’s public key, if it is of the correct form, and if both contaith signatures are valid signatures for the
respective public keys and of the correct and matching datthis case it outputédispute, true, d, p, u, v),
and(dispute, false, d, p, u, v) otherwise.

3 The Payment Protocol Using the Dolev-Yao-style Cryptognahic Library

Almost all formal proof techniques for protocols first neegrmulation of the protocol into a more detailed
version than the five steps above. These details includessagetests on received messages, the types
and generation rules for values likeand sig,,, and a surrounding framework specifying the number of
participants, the possibilities of multiple protocol ruasd the adversary capabilities. The same is true when
using the Dolev-Yao-style cryptographic library from [8k., it plays a similar role in our proof as “the CSP
Dolev-Yao model” or “the inductive-approach Dolev-Yao netfidn other proofs. Our protocol formulation



in this framework is given in Section 321 We there explain this formulation in detail exemplarily the
clients, and then explain general aspects of the surrogridimework as far as needed in our proofs.

3.1 Detailed Protocol Descriptions

We write “:=" for deterministic assignment, arids an error element available as an addition to the domains
and ranges of all functions and algorithms. The frameworkuiomata-based, i.e., protocols are executed
by interacting machines, and event-based, i.e., macheses on received inputs. We assume a/set=
{1,...,n} of users that is partitioned into a skteient of clients a segMmerchant of merchantsanacquirer

ac, and atrusted third partyttp. By MPS we denote the payment protocol machine for a usédret ¥ denote

a finite alphabet and I1&l* denote the set of strings over it.

3.1.1 Clients

Letu € Mt denote a client. The main data structureMff> is a databasé[> for storing the initial
information related to the payments, their current stadgsyell as additional information gained during the
protocol execution. Generally, a databd3ds a set of functions, called entries, each over a finite domai
called attributes. For an entry € D, the value at an attributett is written x.att. For a predicatepred
involving attributes,D[pred] means the subset of entries whose attributes fyifitl. If D[pred] contains
only one element, we use the same notation for this elemeiding an entryr to D is abbreviated) : < .
Further, we write the list operation &s= (1, ..., z;), and the arguments are unambiguously retrievable as
1[i), with I[i] = | if 4 > 5. In our case, each entryin DF> can have the arguments

(ind, desc, price, merch, sig,, Sigac, status).

where the arguments have the following types and meaning:

e z.9nd € ZN'DS, called index, consecutively numbers all entrie@iffls. The sefZ N'DS is isomorphic
to N and is used to distinguish index arguments from others. Athexiis used as a primary key attribute
of the database, i.e., we wrifeP> 4] for the selectionD[>[ind = i]. We further use the convention that
look-ups inDF> always return the element with the smallest index whosébates fuffill the queried
predicate.

z.desc € ¥* is the description of the good to be purchased.
e z.price € N denotes the price of the good.

x.merch € MMeehant s the jdentifier of the merchant that should receive the gaym

e 1.5ig,,,x.519,. € HN'DS denote handles to the merchant’s and the acquirer’s signatspectively.
They will be stores during the execution of the protocol a@abronly for disputes. The SB#NDS is
yet another set isomorphic t. We always use a superscriptrd” for handles.

x.status € {invoice, pay, processed } denotes the status of the transaction. Heveice means that the
client has received the invoice of the merchaniy that the client gave consent to the payment, and
processed that both events happened and that the payment has hencpdrémmed.

Initially, DPS is empty.MPS furthermore a variableur_ind,, € ZN'DS initialized with 0 counting the size
of DPS, and used as index for new entriesify>.

2For some frameworks there are compilers to generate thésitedeprotocol descriptions, e.g., [41]. This should begiole for
this framework in a similar way.



Algorithm 1 Client: Evaluation of Users Inputs for Payment Conseril[f?

Input: (pay, d,p,v) atPS_in,? with d € ¥*, p € N, andv € Aqmerchant,
1: i := DFS[desc = d A price = p A merch = v].ind.
2. if i # | A DFS[i].status = invoice then
3. DPS[i].status := processed.

payment"™ < store(payment).

dmd — store(d).

pnd  store(p).

uhnd — store(u).

v store(v).
1hnd  list(paymen
10:  sMd — sign(skshnd, jhnd),
11: mMd  list(paymen
12:  send_i(v, m"nd).

13: else ifi = | then

14:  DPS <= (cur_ind,++,d,p,v, |, |, pay).
15: end if

© o NGO A

thnd’ dhnd’phnd hnd hnd).

thnd’ Shnd)_

The first type of input thab”> can receive is a messageay, d, p, v) from its user denoting that consent
for a payment with descriptiog, pricep, and merchant is given. User inputs are distinguished from network
inputs by arriving at a so-called pd?6_in,, 7. The “?” for input ports follows the CSP-convention, aritb®
stands for payment system because the user interface ianie fer all payment system of the considered
kind. The reaction on this input is described in Algorithm M7 first checks if a corresponding invoice
with the same parameters has already been received beidhes tase, the machiné”> declares this entry
to be processed and builds up a term corresponding to thegraymessage of the protocol using the ideal
cryptographic library. The commarudore inserts arbitrary application data into the cryptograghicary.
The commandist forms a list angsign creates an abstract digital signature entry. The final comarsend _i
means thak?> attempts to send the resulting termvtover an insecure channel. If no prior invoice message
with suitable parameters occurréd!> only creates a new database entry that will be processed thigen
invoice message is received. The superséfibon most parameters denotes that these are handles, ia., loc
names that this machine has for the corresponding terms.i§ hn important aspect of [8] because it allows
the same protocol description to be implemented once wilk\Bwgao-style idealized cryptography and once
with real cryptography. More precisely, the four commandssaw so far and their input and output domains
belong to the interface (in the same sense as, e.g., a Javiad®) of the underlying cryptographic library.
This interface is implemented by both the idealized anddaéwersion. In the first case, the handles are local
names of Dolev-Yao-style terms, in the second case of rgptagraphic bitstrings. We say more about these
two implementations below. The effect ednd_i in the ideal implementation is that the adversary obtains
a handle to the Dolev-Yao-style term and can decide what twitloit (such as forwarding it tav"S or
performing Dolev-Yao-style algebraic operations on then)e the effect in the real implementation is that
the adversary obtains the real bitstring and can perforitranp bit manipulations on it.

The behavior oMF> upon receiving an input from the cryptographic library (esponding to a message
that arrives over the network) is defined similarly in Algbrm 2. The input arrives at postit,, 7 and is of the
form (v,u,i,1"4) wherev is the supposed sendédenotes that the channel is insecure, Bflis a handle
to a list. The porbut,? is connected to the cryptographic library, whose two impatations represent the
obtained Dolev-Yao-style term or real bitstring, respasi, to the protocol in a unified way by a handle.
In this algorithm,MP* first determines if the message corresponds to an invoiceagesor a confirmation



Algorithm 2 Client: Evaluation of Inputs from the Cryptographic Libyan MF>

Input: (v, u,i, ") atout,? with v € Aqmerchant,
1: 19" — list_proj(I™, j) for j = 1,2.
2. 1y « retrieve(I"9).
3: if [{ = invoice then

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

© o N o 9 A

mbnd «— msg_of sig(I5n9).
b« verify (154, pk‘szt'g, mbnd)
x?”d « list_proj(m4™, j) forj =1,...,5.
xj — retrieve(zi") for j = 1,...,5.
i := DFPS[desc = xo A price = x3 A merch = xs).ind.
if 21 = invoice A 24 = u A x5 = v A b = true A DF>[i].status = pay then
DP3[i).sig,, = 15,
DPS[i].status := processed.
payment"™™ « store(payment).
mfnd  list(paymentnd, ghnd phnd gphnd phnd),
shnd  sign(sksnd mhnd),
mhnd  list(paymenthd, shnd),
send_i(v, m""d).
else ifxry = invoice Axzy =uAxz5=vAb=true Ni =] then
DPS = (cur_ind,++, x9, 3, x5, 15nd |, invoice).
end if

20: else ifl; = confirm then

21:  mb" «— msg_of sig(I5n).

222 b« verify(lgnd,pkszt’fc, mind)

23: x?”d « list_proj(m4™d j) forj = 1,...,5.

24:  xj — retrieve(ac;-‘”d) forj=1,...,5.

25. i:= DPS[desc = xo A price = x3 A merch = x5 A sig,. = | A status = processed].ind.
26: if 1 = auth_response Axy =u A x5 =vAb=true Ai = | then

27 DP3[i].sig,. == 15,

28: Output(paid, z2, z3, x5) atPS_out,,!.

29: endif

30: end if

Algorithm 3 Client: Evaluation of User Inputs for Disputesiff’>

Input: (dispute, d, p,v) atPS_in,? with d € ¥*, p € N, andv € Mmerchant,

1
2
3:
4:
5
6
7.

end if

if i := DPS[desc = d A price = p A merch = v A sig,, # | A sig,. # |].ind # | then

dispute™ — store(dispute).

Ind — list(dispute™d, DPS[i].sig,,,, DPS[i].sig,.).
shnd  sign(skshnd [hnd),
mhnd — list(shnd),
send_i(ttp, m""d).




message, i.e., if the message could correspond to the fiteedifth message in the protocol description.
In the first caseMP> first determines if the contained signature is a valid sigreabf the merchant for the
correct data, and aborts at failure. If the user already gamsent to the payment, i.e., if a suitable entry
with statuspay already exists in the databadéb> stores the merchant’s signature, updates the status of this
payment tgprocessed, constructs a message according to the protocol deserj@ati@l sends it to the intended
recipient. If payment consent has not been given yE} only creates a new database entry that contains
the payment information of the invoice message. The evaluaf a confirmation message works similarly:
MPS checks the validity of the acquirer’s signature and if azhli entry already exists in the database, and
in that case signals to its user at pB& out,! the successful completion of the payment.

Finally, MPS can receive a dispute messag@kspute, d, p,v) from its user aiPS_in,?. The behaviour
of MPS on this input is defined in Algorithm 3. It first checks if an Bntvith corresponding parameters
already exists in the database. If furthermore the corredipg signatures of the respective merchant and the
acquirer have already been received for this ety builds up a term according to the protocol description
and sends it to the trusted third party.

Every algorithms should immediately abort the handlinghef¢urrent input if a cryptographic command
does not yield the desired result, e.qg., if a database Ipofails. For readability we omitted this in the
algorithmic descriptions; instead we impose the followdogvention on these and the following algorithms.

Convention 1 If MPS for u € M receives| as the answer of the cryptographic library to a command, then
MPS aborts the execution of the current algorithm, except fersbmmand typést_proj or send_i.

3.1.2 Merchants

Let u € Mmehant denote a merchant. Similar to the protocol machines of tieats, the maching”>
maintains an initially empty databad#l’> as its main data structure, together with a variahle_ind, <
TN'DS for counting the size of the database and creating new isditiee entries oD”> have the form

(ind, desc, price, client, sig., sig,c)-
Forz € DPS:
e x.ind,x.desc,z.price, andzx.sig,. are defined as in the database of the client machines.
o x.client € M denotes the client of this transaction.

e z.sig. € HNDS denotes the handle of the client’s signature, which will béected during the
protocol execution.

The machineViP> accepts inputs for sending an invoice to a client and foraitity a dispute from its user
at portPS_in, 7, and inputs from the cryptographic library at port?. After explaining the behavior of the
protocol machines of the clients, the behavioMd}® should be essentially clear from the protocol description
of Section 2. We postpone the algorithmic description taAppendix.

3.1.3 Acquirer

The machinévf?> of the acquirer maintains a variabter_ind,. € ZN'DS initialized with 0 and an initially
empty databas®FS, where each entry € DFS can have arguments

ac !

(ind, desc, price, client, merch, sig., sig,, status)

with the following types and meanings:



e z.ind,x.desc,x.price,x.client, x.merch, x.sig., and x.sig,, are defined as in the databases of the
client and merchant machines.

e z.status € {allow, auth_request, processed} denotes the status of the transaction, cf. the state of the
client machines. Herellow means that the acquirer has given consent to the paymaiht,request
that the merchant requested authentication of the paymedprocessed that both events happened.

The machineM®> accepts inputs for processing a payment from aset portPS_in,.?, and inputs from the
cryptographic library at poiih,.?. The algorithmic description d¥1®> is postponed to the Appendix.

3.1.4 Trusted Third Party

The machind\/lftf, of the trusted third party only accepts input from the crgoéphic library at portng,?.
Upon receiving such an input, it first checks the validitylod signature and if the message in indeed a well-
formed dispute message. It then identifies the parties tedbheolved in the payment and determine whether
the dispute should be allowed or denied by checking the italid the contained signatures and if they have
been issued on matching parameters. The algorithmic géiscrican be found in the Appendix.

3.2 Further Initial State

We have assumed in the algorithms that each protocol mad¥fffealready has a handlgksh™ to its
own secret signature key and handﬂsz'jg to the public keys of every participamt The cryptographic

library can also represent key generation and distributipnormal commands. Further, we assume that each
machineMP> contains the bitstring denoting its identity.

3.3 Overall Framework and Adversarial Model

The framework that determines how machines such as our paysystem machines and the machines of the
idealized or real cryptographic library execute is takemfi{54]. The basis is an asynchronous probabilistic
execution model with distributed scheduling. We alreadydumplicitly above that for term construction and
parsing commands to the cryptographic library, a so-cédieal scheduling is defined, i.e., aresult is returned
immediately. The idealized or real network sending via libisary, however, is scheduled by the adversary.

When protocol machines such s> for certain users, € {1,...,n} are defined, there is no guarantee
that all these machines are correct. A trust model detesrfimrewhat subset#{ of {1,...,n} we want to
guarantee anything; in our case this is for all subsets wtoohprise at least the trusted third party. Incorrect
machines disappear and are replaced by the adversary. 8ashpotential correct machines together with
its user interface is called a structure, and the set of tegetures is called the system. When considering
the security of a structure, an arbitrary probabilistic liae H is connected to the user interface to represent
all users, and an arbitrary machiAds connected to the remaining free ports (typically the oekvand to
H to represent the adversary, see Figure 2. In polynomia-seturity proofsH andA are polynomial-time.

This setting implies that any number of concurrent protocols with both honest participants and the
adversary are considered becaHsendA can arbitrarily interleave local inputs of the payment pool with
the delivery of network messages.

For a setH of honest participants, the user interface of the ideal aatiaryptographic library is the port
setSy” := {in,?, out,! | u € H}. This is where the payment protocol machines input theiptographic
commands and obtain results and received messages. Inetllecabe this interface is served by just one
machineTH;:{ry calledtrusted hoswhich essentially administrates Dolev-Yao-style termdarrthe handles.

In the real case, the same interface is served by dl/[gfét = {M;% | w € H} of real cryptographic
machines. The corresponding systems are cafled™ ' = {({TH'}, S5Y) | H € {1,...,n}} and
Sysevreal .= (M7, S57) | H C {1,...,n}}.
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Figure 2: Overview of the Payment System (here for the ¢ase {u, ttp}).

The user interface of the payment protocol machinefs:= {PS_in,?, PS_out,! | u € H \ {ttp}} U
{PS_outy!}, cf. Figure 2. The ideal and real payment systems servirgyitierface differ only in the
cryptographic library. WithVZ];3 := {MPS | u € H}, they areSys"Sid .= {(MFSU{TH}, SE3) | {ttp} C
H C{1,...,n}} andSysPSreal .= {(MFS U MY, SE) | {ttp} C H C {1,...,n}}.

3.4 On Polynomial Runtime

In order to be valid users of the real cryptographic libraing machinesv?> have to be polynomial-time.
We therefore define that each machME> maintains explicit polynomial bounds on the accepted ngessa
lengths and the number of inputs accepted at each port. astone exactly as in the cryptographic library,
we omit the rigorous write-up.

4 The Security Properties

The arguably most important security property of a paymgstesns is that no money can be transfered
without the client's consent. This can be captured amtagrity propertyin the underlying model which
are formally sets of traces at the user interfaces of a systemhere at the port se1$35. Intuitively, an
integrity property Reg contains the “good” traces at these ports. A trace is a seguehsets of events.
We write an evenp?m or p!m, meaning that message occurs at in- or output pogi. The ¢t-th step of

a tracer is written r;; we speak of the step at time To capture the aforementioned security property
we would require that each outp(transfer, d, p, u,v) at a portPS_out,.? for an honest client;, an hon-
est acquirenc, and an arbitrary (potentially malicious) mercharis preceded by an inpypay, d, p,v) at
PS_in,?7. This statement can be significantly strengthened for oymgat system by requiring that when-
ever an arbitrary honest party successfully terminateptbmmcol execution, the inputs of all honest parties
have previously been received. This strengthened vasagdliedweak atomicity To simplify notation, let
SuccessHonestTerm(d, p, u, v, ac, r, t) denote the predicate indicating whether an honest partyor ac has
successfully terminated the payment protocold@ndp in tracer at timet, i.e., the predicate is defined as
the disjunction of(u € H A PS_out,!(paid,d,p,v) € ), (v € H A PS_out,!(received, d, p,u) € r¢), and

(ac € H A PS_out,!(transfer, d, p, u,v) € 1¢).

Definition 4.1 (Weak Atomicity) A tracer is contained inReg"e2*-2*™ if and only if for alld € ¥*, p € N,
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= Mclient’ v E Mmerchant’ andt2 e N:

SuccessHonestTerm(d, p, u, v, ac,r, ty) = Jtq,t),t] < ta:

((u € H = PS.in,?(pay,d,p,v) € ry,) A (v € H = PS_in,?(receive,d, p,u) € r,yl)
A (ac € H = PS_inyc?(allow, d, p, u, v) € thlf)>.
O

The main complementary feature of the payment system islitdisputability, i.e., every participant is able
to prove that a completed payment has taken place. One catifydsvo main properties for disputes to
be meaningful. First, a party following the protocol warshie sure that if she initiates a dispute after
successfully completing the protocol, the result of theted third party has to beue independent of the
behavior of other parties. Since the underlying reactitérgegrants the adversary full control over the
network and in particular to suppress arbitrary messagegsannot prove statements that “something good”
occurs in the future, e.g., that a dispute will be won. Wedadtformulate the property in a way that allows
for backward reasoning. We only formalize the dispute priogefor clients; the analogue for merchants and
the acquirer can be obtained by simple textual replacement.

Definition 4.2 (Correct Disputing (Client Part)) A tracer is contained inReg™-disP-client it and only if for
all d € ¥*,p € N,u € Helient y ¢ pmmerchant ‘andt; € N:

PS_outy! (dispute, paid, false, d, p, u, v) € 1,
= ity < t3: (PS.in,?(dispute,d,p,v) € ry, AVt1 < ty: PS_out,!(paid,d, p,v) & r,).

&

Secondly, an honest party wants to be sure that she canndaredfor having participated in a payment
which she was not involved in, i.e., a dispute for this paytmeay only be successful if she previously made
the corresponding input.

Definition 4.3 (No Framing (Client Part)) A tracer is contained inReq"°-fame-client it and only if for all
d € X% peN,ue Hdent ¢ e mmerehant 4 ¢ N, andz € {received, transfer}:

PS_outy,?(dispute, z, true, d, p, u, v) € ry, = 3t1 < ta: PS_in,?(pay,d, p,v) € ry,.
&

Let Reg<®"diP denote the conjunction aRegco-4isP-client and the corresponding properties for merchants
and the acquirer; similarly, leReq"°-f™¢ denote the conjunction dteq">-fame-client and its counterparts for
merchants and the acquirer.

The notion of a systendys fulfilling an integrity property Req essentially comes in two flavors [6].
Perfect fulfillment Sys =P Req, means that the integrity property holds for all tracesimgisn runs of
Sys (a well-defined notion from the underlying model [54Eomputational fulfillmentSys =P°Y Req,
means that the property only holds for polynomially boundsdrs and adversaries, and that a negligible
error probability is permitted. Perfect fulfilment impli€omputational fulfilment. The following theorem
summarizes what we prove for these requirements:

Theorem 4.1 (Security of the Payment System) et Req™® := Req"®-2*°™ N Req®™-4P 1 Regno-frame,
For the payment system from Section 3.3 we &> |=Perf ReqPS and SysPSreal |=poly RegPS, O
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Note that we did not consider properties concerning the denfiality of the data involved in the payment.
This is similar to theKP payment system, which does not provide confidentialg@glitout instead assumes
external mechanisms like underlying secure channels fertédsk. We can model these mechanisms in
our underlying framework as well by inserting secure chanm&chines between the links of the protocol
machines and the cryptographic library, and the correspgnebnfidentiality properties can then be easily
shown. The long version of this paper contains this modedimgd)the corresponding proofs in detail.

5 Proof of the Cryptographic Realization from the Idealization

As discussed in the introduction, the idea of our approatt ove Theorem 4.1 for the payment protocol
using the ideal Dolev-Yao-style library. Then the resutttfte real system follows automatically.

The notion that a systerlys,; securely implements another systéfys, in called reactive simulatability
(recall the introduction), and is writtefys, >Poly Syss (in the computational case). The main result of [8]
is therefore

Syscry,real Zgggy Syscry,id' (1)

SinceSys"> e andSys”>4 are compositions of the same protocol wits<"-"2 and Sys<¥- 14, respectively,
the composition theorem of [54] and (1) imply

SySPS,real Zgggy SySPS’id. (2)

Showing the theorem’s preconditions is easy since the masM?> are polynomial-time (see Section 3.4).
Finally, the integrity preservation theorem from [6] andl ifBply for every integrity propertyReq that

(SySPS,id ):poly Req) - (SySPS,real ):poly Req). (3)

Hence if we proveSys™>d =Perf RegPS | we immediately obtaiysSrea! =PolY ReqPS from (3).

6 Proof in the Ideal Setting

This section sketches the proof of the ideal part of TheoreimWe prove that the payment protocol imple-
mented with the ideal, Dolev-Yao-style cryptographicdityr perfectly fulfills the propertyzeq™>. The main
challenge in this proof was to find suitable invariants ondtate of the ideal payment system.

We start this section with a rigorous definition of the polesgiates of the ideal cryptographic library as
needed for formulating the invariants. We then define thariants and briefly explain how to exploit them
to prove the overall integrity property of the payment syst®roving the integrity property in fact turns out
to be easy once the invariants have been established; wmpedthis proof and the proof of the invariants to
Appendix B, preceded by a detailed description of the statgsitions of the ideal cryptographic library as
needed in these proofs in Appendix A.

6.1 Overview and States of the Ideal Cryptographic Library

The ideal cryptographic library administrates Dolev-¥agle terms and allows each user to operate on them
via handles, i.e., via local names specific to this user. Hmelkes also contain the information that knowledge
sets give in other Dolev-Yao formalizations: The set of t®thmat a participant knows, includingu = a for

the adversary, is the set of terms with a handleufoAs we saw in the payment algorithms, the library offers
its user (and the adversary) the typical operations on téomgich they have handles, e.g., signing with a
secret key and signature verification with a public key. Eumms are typed; for instance, signature verification
only succeeds on signatures and projection only on lists.seksire encryption schemes are necessarily
probabilistic and so are most signature schemes, and aghtheylallows the generation of polynomially
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many nonces and key pairs, multiple instances of terms obstivery structure can occur, e.g., multiple
signatures of the same messagevith the same keyks. There are multiple ways to deal with this in prior
Dolev-Yao models, e.g., counting (for nonces) and mukisdthe version in [8] corresponds to counting:
The terms are globally numbered by an index. Each term iesepted by its type (i.e., root node) and its
first-level arguments, which can be indices of earlier teriftsis enables easy distinction of, e.g., which of
many nonces is signed in a larger term. These global indicesi@ver visible at the user interface. The
indices and the handles for each participant are genergtedébcounter each.

A novel aspect of this cryptographic library compared wittopDolev-Yao models is that terms have an
abstract length parameter, indicating the length of theespionding real message. It is derived from a tuple
L of length functions that denote how the length of a term ddpean the length of its subterms. This is
necessary because real encryption cannot entirely hidernhéh of cleartexts. Moreovel; contains bounds
on the accepted message lengths and the number of acceptrsl & each port. All these bounds can be
arbitrary, except that they be polynomially bounded in ausgc parameterk. Formally, the numben of
participants and the tuple are parameters of the systefps™ "4, but we omitted them for readability.

Similarly, » and a tupleL’ should be parameters of our ideal payment sysfes?> ¢, see Section 3.4.
As the machine$/"> of this system only make bounded-length inputs to the cyaiahic library givem
and L', the bounds in_ can easily be chosen large enough so that all these inputsgale Further, as we
only prove an integrity properties, it is not a problem in greof that the number of accepted inputs might
be exceeded. This is why we can omit the details of the lengibtions.

As described above, the terms in the ideal cryptographiaibi.e., in the trusted ho§TH§:{y for every
set’H of honest participants, are represented by their top lewel, knowledge of them by potential handles
for the different participants. The data structure choserttis in [8] is a databas® in which each entry:
in D can have the arguments

(ind, type, arg, hndy, , . .., hnd,,, , hnd,, len),
whereH = {uy,...,u,} and the arguments have the following types and meaning:
e 2.ind is the global index of an entry.

e z.type € typeset identifies thetypeof z. The typesonce, list, data (for payload data)sks and pks
(for secret and public signature keys), aigl(for signatures) occur in the following.

e x.arg = (a1, as,...,a;) is a possibly empty list of arguments. Arguments of typ€DS are indices
of other entries (subterms); we sometimes distinguish thyia superscriptihd”.

e z.hnd, € HN'DSU{]} foru € HU{a} are handles, where hnd, = | means that. does not know
this entry.

e z.len € Ny denotes the length of the entry.

The machineTH3Y has a countesize € ZN'DS for the current size oD and counters:urhnd, (current
handle) for the handles, all initialized with

The assumption that keys have already been generated andutiisl means that for eaehe M two
entries of the following form are added 1o, where{w, ..., u,} = H:

(sksy, type := sks,arg := (0), hnd, = sk‘sznd, len :=0);
(pksy,type := pks,arg := (), hndy, = pks;io, -, hndy,, == pk:smiu,
hnd, = pkst™, len := pks_len*(k)).

a,u>
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Heresks, andpks, are consecutive natural numbepks_len* is the length function for public keys, and the
argument of the secret key entry stores the number of mes#agiehave already been signed with this key.
Treating secret keys as being of len@tls a technicality in [8] and will not matter in the sequel.

6.2 Invariants

This section contains invariants of the systés">9, which are used in the proof of the ideal part of
Theorem 4.1. The first invariampo modification states that attributes of database entries of honest aigers
never changed after they have been initialized. This is fiouall attributes except fostatus, which may
additionally change tprocessed. We letr; : DS denote the contents of databd3g® at timet in tracer-.
Invariant 1 (No Modification) For allu € H, i € ZN'DS, t; € N, all tracesr arising in runs ofSys™>d,
ands := t, : DP[i].status:

T, - DPOilx # | A x # status = Yty > t1: (ry, : DPS[il.x = 14y © DE[i).)
A s € {pay, invoice, allow, auth_request} = Vit > t;: (ry, : DF°[i].status € {s, processed}).

u

The next invariantunique payment entrieestablishes that entries in the databases of honestgarte
uniquely determined by the price, the description, thentliend the merchant. We state this and the following
invariants exemplarily for honest clients.

Invariant 2 (Unique Payment Entries (Client Part)) For all € H, i1, € ZN'DS, t € N, and all traces
arising in runs ofSys">id:

re : DPS[iy].price = 1 : DP®[ig].price # | A vy : DPS[i].desc = DES[io).desc # | A

re : DPS[iy].merch = DPS[ig).merch # | = (iy = ia).

u

The next invariantcorrect signing characterizes which lists will be signed by an honest pdistates that
all signed lists in the databade of the ideal cryptographic library that start withpayment element are of
the form (payment, d, p, u,v), and that a local comman(gay, d, p, v) must have been received before the
entry was created. We use explanatory comments in the defimit the invariant to increase readability.

Invariant 3 (Correct Signing (Client Part)) For al. € M NH, i € ZN'DS, ¢, € N, and all tracesr
arising in runs ofSys">id:

ry, : Dli].type = sig A1y, : D[i].arg[l] = pks,, A x1 = payment # If a payment message is

= # signed withu’s key, then
<x4 =uAVji=1,...,5: (ry, : D]y;].type = data) A # the message is of the correct format
Jty < to: (PS_ing?(pay, z2,x3,25) € rtl)), # and a matching input has occurred.

wherel := ry, : Dli].arg[2] denotes the index of the signed ligf,:= r, : D]l].arg[;] the indices of the list
elements, and; := r, : D[y;].arg[1] the actual data forj = 1,...,5.

In the proof of the overall integrity property, we will latshow that certain outputs of honest users may
only occur after signatures of specific messages creatdd spitcific keys have been received, e.g., that
the machine of an honest acquirer only outputaldsw message if it formerly received a signature that is
valid with respect to the respective client’s public key.efleorrect signingwill allow us to deduce that the
message is of the correct format and that a previous inputdgltent must have occurred.
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The last invariantcorrect storing captures that an honest user has stored the signaturethaébmaining
parties if it successfully terminates the protocol. We agdiow the invariant exemplarily for honest clients;
it states that if the machine of a clieatoutputs(paid, d, p, v) then it correctly stored the signatures of both
remaining parties, i.esig,, is a signature of a listinvoice, d, p, u, v) signed byv andsig,. is a signature of
a list (auth_response, d, p, u, v) signed byac.

Invariant 4 (Correct Storing (Client Part)) For all, € M N H,d € £*, p € N, v € MMerehant 4 ¢ N,
and all tracesr arising in runs ofSys">d:

PS_out,!(paid, d, p,v) € r, = # If u terminates the protocol, then

(rt : D[hnd,, = s™].type = sig A ry : D[pk™].hnd, = pks'™d A # the signatures of the merchant and

u,v

7 : D[hnd, = s°].type = sig A r; : D[pk®“].hnd, = pkst"d A # of the acquirer have been stored,

u,ac

' =invoice Azy =dAx3 =pAzs =vA # and they range

x]¢ = auth_response A 25° = d A 25 = p AN 2f° = v), # over the correct data.

where forw € {m,ac}, we lets®” := 7, : D[desc = d A price = p A merch = v].sig,, denote the
handle tow’s signature,pk” := ry : D[hnd, = s"].arg[1] the index of the public key uself; := r; :
D[hnd,, = s*].arg[2] the index of the signed lisg,” := r, : D[I"].arg (] the indices of the list elements, and

zf =1y : D[y}].arg[1] the actual data foj = 1,...,5.

This invariant is key for proving the disputability prodes of the protocol since it implies that dispute
messages sent by honest users are always of a specific fanch#hea contained signatures are valid with
respect to specific public keys. Based on this, we can eaddy the output of the trusted third party.

7 Conclusion and Outlook

We have proven an electronic payment system to be secure ire#th cryptographic setting. The payment
system is a slightly simplified variant of ttBKP payment system and comprises a variety of different se-
curity requirements ranging from the impossibility of uttaarized payments and weak atomicity to more
sophisticated properties like disputability. The prookvdmne by exploiting a Dolev-Yao-style deterministic
idealization of cryptography which has a provably secust ceyptographic implementation. Composition
and integrity preservation theorems from the underlyinglehdmply that the protocol proof with the ideal-
ized cryptography carries over to the real protocol impletagon. This was the first example of a such a
proof for protocols involving digital signatures. In spité certain differences to usual Dolev-Yao variants,
in particular a representation of terms or real cryptogi@plbjects to the protocol layer by handles (local
names) and length functions in the idealization, the preeiss to be of a type readily accessible to auto-
matic proof tools. We therefore hope that our hand-madefgrelps to pave the way towards automated,
cryptographically sound proofs of electronic paymenteys and many other security protocols.
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A Command Evaluation by the Ideal Cryptographic Library

This section contains the definition of the cryptographimomands used for modeling the investigated pay-
ment protocol, and the local adversary commands that mbdehttended capabilities of the adversary as far
as needed to prove the invariants. Recall that we deal witkeieels of Dolev-Yao-style terms, and that com-
mands typically create a new term with its index, type, argnts, handles, and length functions, or parse an
existing term. We present the full definitions of the comnsaiuit the reader can ignore the length functions,
which have names_len. By x := y++ for integer variables:, y we meary := y + 1;x := y. The length of
a messagen is denoted agn(m).

Each inputc at a portin,,? with w € H U {a} should be a lis{cmd, z1, ..., z;) with ¢md from a fixed
list of commands and certain parameter domains. We usuaitg wy «— cmd(x1,...,z;) with a variable
y designating the result thatH;}’ returns atbout,!. The algorithmi" := ind2hnd,, (i) (with side effect)
denotes thaTH3Y determines a handié™ for useru to an entryD[i]: If i""! := D[i].hnd,, # |, it returns
that, else it sets and returif§d .= Dli].hnd,, := curhnd,++. On non-handles, it is the identity function.
The functionind2hnd;, appliesind2hnd, to each element of a list.

In the following definitions, we assume that a cryptograptoenmand is input at poiit,,? with u €
H U {a}. First, we describe the commands for storing and retriedatg via handles.

e Storing: m""d « store(m), form ¢ {0, 1}ma><—'en(k)_
If i := D[type = data A arg = (m)].ind # | then returmm™™? := ind2hnd, (7). Otherwise if
data_len*(len(m)) > max_len(k) return|. Else setn"™ := curhnd,++ and

D < (ind := size++, type := data, arg := (m), hnd,, := mhd. len = data_len*(len(m))).
e Retrieval:m « retrieve(mn).
m := D[hnd, = m" A type = data].arg[1].

Next we describe list creation and projection. Lists carinolude secret keys of the public-key systems
(entries of typeske, sks) because no information about those must be given away.
e Generate a listi"™? — list(z§", ... 2"), for 0 < j < max_len(k).

Let v; := D[hnd, = x™].ind fori = 1,...,j. If any D[z;].type € {sks,ske}, seti" = |.If
| := D[type = list A arg = (z1,...,x;)].ind # |, then return"™ := ind2hnd,(I). Otherwise,
setlength := list_len*(D[z1].len, ..., Dxz;].len) and return| if length > max_len(k). Else set
[hnd .= curhnd,++ and

D & (ind := sizet++, type := list, arg := (x1,...,x;), hnd, = hrd en = length).
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e i-th projection: "¢ « list_proj(I",4), for 1 < i < max_en(k).
If D[hnd,, = 1" A type = list].arg = (21, ..., x;) with j > 4, thenz"9 := ind2hnd,,(z;), otherwise
hnd
"= |.

Further, we used commands to sign a list, to verify a sigeatamd to retrieve the message from a signature.

e Signature generations"™ «— sign(sk"nd, jhnd),

Let sk := D[hnd, = sk A type = sks].ind andl := D[hnd, = 1" A type = list].ind. If
either of these ig or if length := sig_len*(k, D[l].len) > max_len(k), return|. Also return| if
DIsk].arg[1] > max_skc(k) andu # a. Otherwise, set"" := curhnd,++, pk := sk + 1 (recall that
key pairs get successive indices)= D|sk|.arg[1]++, and

D <= (ind = size++, type := sig, arg := (pk, 1, ¢), hnd, = s™9, len := length).®

e Signature verificationy « verify(sh"d, pkhnd [hnd),
Lets := D[hnd, = s" A type = sigl.ind. If s = | then return|. Otherwise, let(pk,l,c) =
DIs].arg. If D[pk].hnd,, # pk™< or D[l].hnd,, # "9, thenv := false, elsev := true.
o Message retrievali™? «— msg_of sig(s"").
Let! := D[hnd, = s"4 A type = sig].arg[2] and return" := ind2hnd,,(1).
From the set of local adversary commands, which capturdiaddi commands for the adversary at pegt’,
we only describe the commandsdv_parse andadv_transform_sig. The first command allows the adversary
to retrieve all information that we do not explicitly reqaito be hidden. This command returns the type
and usually all the abstract arguments of a value (with eslieplaced by handles), except in the case of

ciphertexts. The second command allows the adversaryrisftnan an existing signature that he knows into
another one for the same message (which is not excluded lefhmétion of secure signature schemes).

e Parameter retrieval:(type, arg) < adv_parse(m""?).
Let m := D[hnd, = mMd).ind and type := D[m].type. In most cases, setrg :=
ind2hnd%(D[m].arg). (Recall that this only transforms argumentsZiV'DS.) The only exception
is for type = enc, which does not matter in the following.

e Signature transformationt" « adv_transform_sig(s"").
Lets := D[hnd, = s"IAtype = sig].ind. If s = | then return|. Otherwise letpk, I, ¢) := D|[s].aryg.
Setth™ .= curhnd,++ and

D < (ind := size++, type = sig, arg := (pk, [, false), hnd, := t™9, len := D][s].len).

We finally describe the commands for sending messages oruigsehannels. In the second one, the adver-
sary sends listto v, pretending to be.

e send_i(v, ("), forv € {1,...,n} at portin,? for u € H.

Let " := D[hnd,, = I A type = list].ind. If ™ #£ |, output(u, v, i,ind2hnd, (I"4)) atout,!.
e adv_send_i(u,v, "), foru € {1,...,n} andv € H at portin,?.

Let [ := D[hnd, = 1" A type = list].ind. If ™ #£ |, output(u, v, i,ind2hnd, (")) atout,!.

3This type also exists with = false due to the commanaldv_transform_sig.
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B Postponed Proofs

B.1 Proof of the Invariants

The statementso maodificationandunique payment entriesan easily be verified by inspection of the algo-
rithms.

Proof. (Correct Signing (Client Part)) We refer to Stepf Algorithm j as Stepj.i. Letu € Mt nH, 4 ¢
INDS, t; € N, andr a trace arising in runs oys™>9. Letl := r,, : D[i].arg[2], y; := i, : D[l].arg[j],
andx; :=ry, : D[y;].arg[1] for j = 1,...,5. The proof is performed by induction ovér. Assume that the
entry D[i] is generated at tim& in tracer and assume further that the invariant holds at all times pinin
t2. The only commands of the ideal cryptographic library thenerate an entry[:] with D[i].type = sig
aresign(sk™d mhrd) andadv_transform_sig(s"").

We first consider the commarnadyv_transform_sig(s""¢), which can only be input at poi,?. Lets :=
e, : D[hnd, = s"™4 A type = sig].ind. If D[i] is generated in this transition, the definition of the comdhan
impliess # |, Dls|.arg[1] = DJi].arg[1], andD|s].arg[2] = [. Hence we can use our induction hypothesis
with D[s] instead ofD[i] which immediately finishes the proof of this case, sifige] andD[i] have identical
first and second arguments.

Now consider a commarwgn (sk"™, mh"d) input by w atw’s local port. (This can be eithétS_in,,? if
w e Horin,?if w=a.) Letsk := ry, : D[hnd,, = sk™4 A type = sks|.ind andm := r, : D[hnd,, =
mhnd A type = list].ind. If D[i] is generated in this transition, the definition of #ign command implies
sk # | and D[i].arg[1,2] = (pk, m) wherepk = sk + 1 (recall that secret and public keys get successive
indices). This yieldssk = Dl[i].arg[l] — 1 = pks, — 1 = sks,. Furthermoresk # | implies sk"d £ |.
Since we initially haveD(sks,|.hnd,, # | only if z = u, cf. Section 6.1, and since entries of tyjke cannot
be sent to other parties by definition, we conclude that ». Hence the client. must have input theign
command at po®S_in,, 7. Inspection of Algorithm 1, 2, and 3 shows tk&in commands fok exist in Steps
1.10, 2.14, and 3.4.

If D[i]is generated in Step 1.10, then Steps 1.4-1.9, the defimititve commandtore, and Convention 1
imply 4 = w and Dly;].type = data for j = 1,...,5. Furthermore, Algorithm 1 is started by an input
(pay, d,p,v) atPS_in,? at some time;, and Steps 1.4-1.9 imply = x5, p = z3, andv = x5.

If D[i] is generated in Step 2.14, then Steps 2.7, 2.12, and 2.18lefétion of the commandstore
andretrieve, and Convention 1 imph|y;].type = data for j = 1,...,5. The look-up in Step 2.8 and the
condition in Step 2.9 further yield, = u, z5 = v, andind := DES[desc = 29 A price = x3 A merch =
x5 A status = pay|.ind # |. By no modification the entry DP>[ind] must have been created in Step
1.14. Algorithm 1 is started by an inpQpay, d, p, v) at PS_in,,? at some time, with DF>[ind].desc = d,
DPS[ind].price = p, andDP>[ind].merch = 5. This yieldsd = zo, p = 23, andv = x5.

If D[i] is generated in Step 3.4, Steps 3.2 and 3.3 immediately yield dispute, hence nothing needs
to be proved. [

Proof. (Correct Storing (Client Part)) We use the notation of theotem. Let furthet® := r, : D[hnd, =
s¥].ind for w € {m,ac}. Assume thaPS_out,!(paid,d,p,v) € r,. This output may only occur in Step
2.28. In the following, we use the notation of Algorithm 2nke we havézxs, 3, z5) = (d,p,v). Step 2.25
and 2.26 together withnique payment entrigmply i = i™ = €. We first show the statements about the
signature of the acquirer.

Because ofi = i Step 2.27 impliess* = ", Thus pk® = r; : D[hnd, = §"].arg[1] and
12¢ = r; : D[hnd, = 15"].arg[2]. Now Step 2.22 and 2.26 the definition of the commadfy immediately
imply r; : D[hnd,, = s*].type = ¢ : D[hnd, = I5"].type = sig andr, : D[pk'].hnd,, = pksrl?:c, where
pk' = ry : Dlhnd, = I5".arg[1] = r; : D[hnd, = s°].arg[1] = pk3:. Hencer; : D[pk®*].hnd, =
pks;s.. Moreover, we obtain2® = z; by Step 2.23, 2.24, and the definitionlat_proj andretrieve, hence

u,ac*
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Algorithm 4 Merchant: Evaluation of User Inputs for Receivinghity>

Input: (receive, d, p,v) atPS_in,? with d € ¥*, p € N, andv € Mclient,
1: if DPS[desc = d A price = p A client = v] = | then
2. DPS.< (curzindy++,d, p,v, |, ).

invoice"™ « store(invoice).

dmd « store(d).
(

hnd

p""¢ «— store(p).
u" — store(u).
v store(v).
1hnd « list(invoice
ghnd Sign(lhnd).
10.  md « list(invoice
11:  send_i(v, mhnd).

12: end if

hnd7 dhnd’phnd hnd hnd).

hnd’ Shnd).

x5° = d, 25° = p, andx® = v. Step 2.26 additionally yieldsi® = auth_response, which finishes this part.

To show the statements about the signature of the merchangxploit that Step 2.25 implies; :
Dli].status = processed. The status ofD[i] may only have been set {@ocessed in Step 2.11 and 1.3.
In the first case, 2.10 yieldg" = 15", The statement for this case is then proved analogouslyetsttte-
ment about the acquirer’'s signature with Steps 2.22-2.glaced by Steps 2.5-2.10. In the second case,
Step 1.2 implies thaD[:].status = invoice somewhen before timg hence this entry must have been cre-
ated in Step 2.18. Again the proof works identically as fa #tquirer, with Steps 2.22-2.25 replaced by
Steps 2.5-2.8, and Step 2.26 replaced by Step 2.17.

]

B.2 Proof of the Overall Integrity Property

Proposition B.1 For the payment system from Section 3.3 and the weak atgrpioperty Req*“e2 =™ we
haveSySPSJd ):Perf Reqweak_atom.

Proof. We only give the proof for the client part of weak atomicitye.j we prove the statement
SuccessHonestTerm(d, p, u,v,ac,r,te) A u € H = Jt; < to: PS_in,?(pay,d,p,v) € 7. The other
parts can be proved similarly. Lete ¥*, p € N, u € Mt 0K, v € Mmerchant ) ¢ N, r a trace
arising in runs ofSys™>, andi := ry, : DPS[desc = d A price = p A merch = vl].ind. Recall that
SuccessHonestTerm(d, p, u, v, ac, r, t2) is defined as the disjunction ¢f € H A PS_out,!(paid, d, p,v) €

r,), (v € H A PS_out,!(received, d,p,u) € ry,), and(ac € H A PS_out,c!(transfer, d, p, u,v) € r,). We
will prove these three cases separately.

AssumePS _out,!(paid, d, p,v) € 1. This output may only occur in Step 2.28. Step 2.25 and 2.26
together withunique payment entriesnd no modificationimplies r;, : DFS[i].status = processed, and
the status ofDP3[i] may only have been set focessed in Step 1.3 or 2.11. In the first case, Step 1.1
immediately implies that there the algorithm was activadednput (pay, d, p,v) at portPS_in,? at some
time¢; < t,. In the second case, Step 2.9 ensufes DPSi].status = pay for somet| < t,, hence this
entry was created in Step 1.14. Again the algorlthm was atetilyon inputgpay, d, p, v) at portPS_in, 7 at
some timet; < ) < to.

AssumePS _out,!(received, d, p,u) € r, andv € H. This output may only occur in Step 6.28. Let
§:=r74, : DPS[desc = d A price = p A client = u].ind. Step 6.23 and 6.24 together withique payment
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Algorithm 5 Acquirer: Evaluation of User Inputs for Allow iWP3

Input: (allow, d, p, u,v) atPS_in,.? with d € CHARSET, p € N, u € Mient andy € Aqmerchant,
1: i := DFS[desc = d A price = p A client = u A merch = v].ind.
2. if i # | A DES[i].status = auth_request then

DPS[i].status := processed.

auth_response™? « store(auth_response).

dmd — store(d).

pnd  store(p).

uhnd — store(u).

v store(v).

Ihnd  list(auth_response
10:  sMd — sign(skshnd, jhnd),

11:  m"" — list(auth_responsed, shnd),

12:  send_i(v, m"nd).

13: else ifi = | then

14:  DES = (cur_indac++,d, p,u, v, |, |, allow).
15: end if

hnd shnd _hnd , hnd ,hnd
’dn n’un n).

y P >, U

entriesand no modificationimply 7y, : DFS[j].sig. # |. The only step where assigns a value different
from | to attributesig. is in Step 6.10. Lety" = r;, : DFS[j].sig. and leti := ry, : D[hnd, = I5"9].ind.
Let! := ry, : D[i].arg[2], y; := 14, : D[l].arg[j], andx; := ry, : Dly;].arg[1] for j = 1,...,5. Then
Steps 6.4-6.9, the definition of the commanadsify, list_proj, andretrieve imply r, : DIi].type = sig,
re, @ Dli].arg[l] = pks,, ©1 = payment, zo = d, 3 = p, andzs = v. Hence the entrnyD[¢] fulfills the
requirements of theorrect signing thus there exists; < ¢, such thaPS_in,?(pay, d,p,v) € ry,.

AssumePS out,c!(transfer, d, p, u,v) € try, andac € H. This output may only occur in Step 8.23. This
case can be proven exactly as the previous one with the pondig Steps of Algorithm 8. [

Proposition B.2 For the payment system from Section 3.3 and the correct tifigpproperty Req®"-4=P, we
haVGSySPS,id ):perf Reqcorr_disp.

Proof. Letd € ¥*, p € N, u € Mt 0, v € Mmmerchant 1o ¢ N, andr a trace arising in runs
of SysP>14. Again, we only show the client part of the statement, i.esuaePS out,!(dispute, paid,
false, d, p,u,v) € ry,. The output must have occured in Step 10.20.

The algorithm is invoked only on inputw, ttp,i,I"™). Leti := D[hndy, = ["].arg[l], i} =
Dli].arg[2], (pk, s1,s2) := D[li].arg[1,2,3], y; := D[s1].arg[j], andz; := Dly;].arg[1] for j =1,...,
Step 10.17 implies = x4 = u.

Now Step 10.1-8 and the definition of the commanesfy, list_proj, andmsg_of _sig imply D|[i].type =
sig andpk = pks,,. It can then be shown along the lines of the prootoirect signingthatMP> must have
input a commandign(dispute, D[s1].hnd,,, D[s2].hnd,,) such thatr; = payment,zo = d,x3 = p,x4 =
u, andzxzs = v. The only syntactically matchingign command is in Step 3.4, and is executed only on
input (dispute, d, p,v) at PS_in,? at some times < ¢3. We remain to show the nonexistence of an output
(paid, d, p,v) at PS_out,,! for all timest; < ¢,. We prove this by contradiction. Assume that there exists
t; € N such thatPS_out,!(paid, d, p,v) € r,. Then bycorrect storingboth signaturesig,,, andsig,. have
been stored and the condition in Step 10.17 can easily showe true, i.e., the output of Step 10.20 will
never occur. (This last step can be made more formal but nexjué-stating the whole formalism of the
invariant and seems to complicate understanding here.) [

o
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Proposition B.3 For the payment system from Section 3.3 and the no framireppReq"°-"2™¢, we have
SySPS’id ):perf Reqno_frame.

Proof. Let 2 € {received, transfer}, d € ©*, p € N, u € Hent, ¢ ¢ pmmerchant 4, ¢ N, andr be a trace
arising in runs ofSys">¢. Again we prove only the client part of the statement, i.e prove the statement
PS_outy,!(dispute, d, p, u,v) € ry, = Jt1 <ty : PS_in,?(pay,d,p,v) € ry,.

AssumePS_outy,?(dispute, z, true, d, p, u, v) € 14, for & = received (x = transfer). This output occurs
only in Step 10.26 (in Step 10.34). With™ as in Algorithm 10, leti := ry, : D[hndy, = 15™].ind.
Now Step 10.23 and 10.25 (Step 10.31 and 10.33) ensureltfigtype = sig, Dli].arg[l] = pks,, =
Dli].arg[1] = pks,,, andz; = payment. This implies thatD[i] meets the prerequisitesrrect signing hence
there exist3; < to such thaPS_in, 7 (pay, d, p,v) € ry,. m
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Algorithm 6 Merchant: Evaluation of Inputs from the Cryptographic laityrin MPS

Input: (v, u,i, ") atout,? with v € Mcent U {ac}.
1: 19" — list_proj(I™, j) for j = 1,2.
2. 1y « retrieve(I"9).
3: if [; = payment A v # ac then

4: mi" — msg_of sig(Ihnd).

5 b« verify(lgnd,pk,szt'g, mbnd)

6: x?”d « list_proj(m4™, j) forj =1,...,5.

7 Xy — retrieve(x?”d) forj=1,...,5.

8. i:= DP[desc = xo A price = x3 A client = x4 A sig. = |].ind.
9. if xy =paymentAxy =vAzs =uAb=true Ai # | then
10: DP3[i].sig,. = 15,

11: invoice™d «— store(invoice).

12: mhnd Iist(invoiceh”d,:cgnd,:cg”d,:cznd,xg”d).

13: shnd  sign(sksnd, mhnd),

14: auth_request™ — store(auth_request).

15: mMd — list(auth_request™d, [hnd | shnd)

16: send_i(ac, m"")

17:  endif

18: else ifx1 = auth_response A v = ac then
19:  mh" « msg_of sig(Ih"d).
20 b« verify(lgnd,pksh”d mbnd)

uU,

21: x?”d « list_proj(m4™d, j) for j = 1,...,5.
22w — retrieve(m?”d) forj=1,...,5.

23:  i:= DFS[desc = xo A price = x3 A client = x4 A sig. # |].ind.
24:  ifxs =uAb=true ANi# | then

25: DP3[i].sig,. == 15,

26: confirm™? — store(confirm).

27 mhnd  list(confirmMd, /5nd),

28: Output(received, xo, 3, z4) atPS_out,!.
29: endif

30: end if

Algorithm 7 Merchant: Evaluation of User Inputs for Disputes\ij>

Input: (dispute, d, p,v) atPS_in,? with d € ¥*,p € N, andv € M¢lient,
1: if i := DPS[desc = d A price = p A client = v A sig. # | A sig,. # |].ind # | then
2. dispute™d — store(dispute).

3. IMd o Jist(dispute™d, DPS[i].sig., DPS[i].sig,.).

4: sd — sign(skshnd, jhnd),

5. mMd  list(s"nd).

6: send_i(ttp, m"d).
7: end if

24



Algorithm 8 Acquirer: Evaluation of Inputs from the Cryptographic Ly in M7>

Input: (v, ac, i, ") atout,.? with v € Agmerchant,

1: 15" — list_proj(i"™, j) for j = 1,2, 3.

2: 1y « retrieve(If"9).

3: if I3 # auth_request then

4:  Abort

5: end if

6: mi" — msg of sig(If"?) for j = 2, 3.

7 x?”d « list_proj(m4d, j) forj = 1,...,5.

8 xj retrieve(:c?”d) forj=1,...,5.

9: y;‘”d « list_proj(mfd, ) for j = 1,...,5.

10: y; retrieve(y?”d) forj=1,...,5.

11: by «— verify(lgnd,pksg'c’ﬂm,mg”d).

12: by «— verify(lgnd,pksg'c’i),mgnd).

13: if 1 = payment A y; = invoice A by = bg =true Aos =v AVj =2,...,5: x; = y; then
14:  i:= DF>[desc = w3 A price = x3 A client = x4 A merch = x5).
15:  if i # | A DPSJi].status = allow then

16: DFPS[i].sig. = 15,

17 DFS[i].sigy = 15,

18: DPS[i].status := processed.

19: auth_response™ «— store(auth_response).

20: mhnd — list(a uth_response™, ahnd phnd yhnd [ghnd),

21 shnd  sign(sksTnd mhnd).,
22: mMd — list(auth_response™, shnd),
23: Output(transfer, xo, x3, x4, x5) at PS_out,c!.
24: send_i(v, m"nd).
25.  elseifi = | then
26: DFS - = (cur_indac++, 2, 3, 24, 25, 11", 157 auth_request).
27:  endif
28: end if

Algorithm 9 Acquirer: Evaluation of User Inputs for DisputesM{>

Input: (dispute, d, p,u,v) atPS_in,.? with d € %, p € N, u € M andy € Mmereh,
if i := DPS[desc = d A price = p A client = uw A merch = v A sig. # | A sig,, # |].ind # | then

. send_i(ttp, mnd).
end if

1

2. dispute™d — store(dispute).

3. 14 Jist(dispute™d, DPS[i].sig., DES[i].sig,,).-
4. 5" sign(sksind, (hnd),

5. mMd  list(s"nd).

6

7
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Algorithm 10 TTP: Evaluation of Inputs from the Cryptographic Libraryl\i’lftls)

Input: (v, ttp, i, ") atouty,? for v € M\ {ttp}.

1: sMd  list_proj(i"™d, 1).
2 " — msg_of _sig(s""4)
3 by — verify(sh”d,pks?t’;j’v,l*hnd).
a: 10— list_proj(I*™, j) for j = 1,2, 3.
5. I « retrieve(If"Y).
6: if [y # dispute V by # true then
7. Abort
8: end if
9: mi" «— msg of sig(If"?) for j = 2, 3.
10: x?”d « list_proj(mhd, j) forj = 1,...,5.
11: ) retrieve(:c?”d) forj=1,...,5.
12: y;‘”d « list_proj(mfd ) for j = 1,...,5.
13: yj retrieve(y?”d) forj=1,...,5.
14: if v € Mt then
15: by «— verify(lgnd,pks?t”p‘{%,mg”d).
16:  bg — verify(lgnd,pks{‘t”p‘fac, mind).
17:  if 1 = invoice A y; = auth_response Ay = v Aby = b3 =true AVj =2,...,5: xz; = y; then
18: Output(dispute, paid, true, x2, x3, 24, z5) atPS_outy,!.
19: else
20: Output(dispute, paid, false, z2, 3, 24, x5) at PS_outy,!.
21:  endif
22: else ifv € Mmerchant then
23; by «— verify(lgnd,pks?t”pd’“, mgnd).
24: b3 — verify(lgnd,pks?tnpcfac, mind).
25 if o1 = payment A y; = auth_response A x5 = v A by = b3 =true AVj =2,...,5: x; = y; then
26: Output(dispute, received, true, xg, x3, 24, x5) at PS_outep!.
27.  else
28: Output(dispute, received, false, z3, 23, 24, x5) at PS_outep!.
29:  endif
30: else ifv = acthen
31 by verify(lgnd,pks?t”p‘fm, mbnd).
320 by «— verify(lgnd,pksi‘t”p‘fxs,mg‘”d).
33: if x1 = payment A y; = invoice A by = b3 =true AVj =2,...,5: z; = y; then
34: Output(dispute, transfer, true, x2, 23, 24, x5) at PS_outy,!.
35.  else
36: Output(dispute, transfer, false, xo, x3, x4, x5) at PS_outyp!.
37 endif
38: end if
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