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Abstract

We present the first cryptographically sound Dolev-Yao-style security proof of a comprehensive elec-
tronic payment system. The payment system is a slightly simplified variant of the3KP payment system
and comprises a variety of different security requirementsranging from basic ones like the impossibility
of unauthorized payments to more sophisticated propertieslike disputability. We show that the payment
system is secure against arbitrary active attacks, including arbitrary concurrent protocol runs and arbitrary
manipulation of bitstrings within polynomial time if the protocol is implemented using provably secure
cryptographic primitives. Although we achieve security under cryptographic definitions, our proof does
not have to deal with probabilistic aspects of cryptographyand is hence within the scope of current proof
tools. The reason is that we exploit a recently proposed Dolev-Yao-style cryptographic library with a prov-
ably secure cryptographic implementation. Together with composition and preservation theorems of the
underlying model, this allows us to perform the actual proofeffort in a deterministic setting corresponding
to a slightly extended Dolev-Yao model.

1 Introduction
It is hardly necessary today to justify or stress the importance of electronic commerce, which has been rapidly
gaining momentum since the early nineties, and is equally appealing to online merchants, consumers, and
payment providers. The core of electronic commerce is an electronic payment system that is supposed to
fulfill the individual requirements of the participating parties. These range from standard requirements like
the impossibility of unauthorized payments, to more sophisticated ones like granting individuals the ability to
succeed in disputes in cases where they have been betrayed. Devising a payment system that lives up to these
requirements has been a challenging task, and many payment systems that were claimed to be provably secure
have fallen prey to subsequent attacks in the past [52, 51]. Today, it is commonly agreed that cryptographic
protocols in general and payment systems in particular haveto contain a rigorous proof of security in order
to be acceptable.

One way to conduct such a proof is the cryptographic approach. Its security definitions are based on
complexity theory, e.g., [31, 29, 14]. The security of a cryptographic protocol is proved by reduction, i.e.,
by showing that breaking the protocol implies breaking one of the underlying cryptographic primitives with
respect to its cryptographic definition and thus finally a computational assumption such as the hardness of
integer factoring. This approach captures a very comprehensive adversary model and allows mathematically
rigorous proofs. However, because of probabilism and computational restrictions, these proofs have had to
be done by hand so far, which often yields proofs with faults or gaps. Moreover, such proofs rapidly become
too complex for larger protocols, which was one of the main reasons why even comparatively small payment
systems have proved considerably error-prone in the past.

The alternative is the formal-methods approach, which is concerned with the automation of proofs using
model checkers and theorem provers. As these tools currently cannot deal with cryptographic details such as
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error probabilities and computational restrictions, abstractions of cryptography are used.1 They are almost
always based on the so-called Dolev-Yao model [27], which represents cryptography as term algebras. The
use of term algebras simplifies proofs of larger protocols considerably and has led to a large body of literature
on analyzing protocol security using various techniques for formal verification, e.g., [46, 42, 37, 17, 50, 1].

Employing the Dolev-Yao abstraction—or abstractions of a similar flavor—to the analysis of a payment
system using tool support or paper-based reasoning has proved to be an extremely valuable approach; a far
from exhaustive list of work along those lines includes [36,16, 15, 38, 43, 10, 11]. Although these approaches
are suitable for reasoning about the security of large-scale systems, their drawback is that they exist only in
the Dolev-Yao model and there is no theorem that carries these results over to the cryptographic approach
with its much more comprehensive adversary.

We close this gap by providing the first security proof of a payment system that is both within the scope
of formal proof tools and is sound with respect to the rigorous definitions and the comprehensive adver-
sary model of cryptography. The payment system is a slightlysimplified variant of the3KP payment sys-
tem [13, 12] and comprises a variety of different security requirements ranging from basic ones like the
impossibility of unauthorized payments and weak atomicityto more sophisticated properties like disputabil-
ity. More precisely, we show that the payment system is secure against arbitrary active attacks, including
arbitrary concurrent protocol runs and arbitrary manipulation of bitstrings within polynomial time. The un-
derlying model ensures strong composability so that our payment system can be used as a submodule within
larger protocols without degrading its proved security properties. The underlying assumption is that the
Dolev-Yao-style abstraction of digital signatures is implemented using a chosen-message secure digital sig-
nature scheme with small additions like signature tagging.Chosen-message security was introduced in [32],
and efficient signature systems that are secure in this senseexist under reasonable assumptions [32, 26, 28].

Our proof relies on a recent general result that a so-called ideal cryptographic library, which implements a
slightly extended Dolev-Yao model, can be securely realized by a specific cryptographic implementation [8].
A composition theorem for the underlying security notion implies that protocol proofs can be made using
the ideal library, and security then carries over automatically to the cryptographic realization. However,
because of the extension to the Dolev-Yao model, no prior formal-methods proof carries over directly. Besides
its value for the analysis of electronic payment systems, the proof shows that, in spite of the extensions
and differences in presentation with respect to prior Dolev-Yao models, a proof can be made over the new
library that seems easily accessible to current automated proof tools. In particular, the proof contains neither
probabilism nor computational restrictions.

Related Work. The design of electronic payment systems has a long history,dating back to the eighties
and early nineties [21, 22, 25, 23, 24, 49]. Based on these works, a substantial body of commercial attempts
at electronic payment systems emerged. TheiKP family [13, 12] constituted one of the most important of
those attempts. It is the direct predecessor of today’s prevailing SET standard, and offered a variety of strong
security guarantees while still relying on relatively simple underlying mechanisms. We refer to [4] for an
exhaustive overview of the other attempts.

Work on justifying Dolev-Yao-style models under cryptographic definitions prior to [8] was restricted to
passive adversaries and symmetric encryption [3, 2, 39]. Concurrently with [8], an extension to asymmetric
encryption—but still under passive attacks only—was presented in [34]. The underlying Master’s thesis [33]
considers asymmetric encryption under active attacks, butdoes so in the random oracle model, which is itself
an idealization of cryptography and is not justifiable [20].The recent work of [45] gives a slightly more
efficient implementation of asymmetric encryption than [8](no additional tagging and randomization) at the
cost of a much less general library and a weaker security notion. The outlook in [45] would essentially yield

1Efforts exist to formulate syntactic calculi for dealing with probabilism and polynomial-time considerations, in particular [47,
48, 35]. However, this approach cannot yet handle protocolswith any degree of automation.
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[8] again. Based on the ideal Dolev-Yao-style library, the well-known Needham-Schroeder-Lowe and Otway-
Rees protocols have been analyzed in a cryptographically sound way [7, 5]. In contrast to the proof in this
paper, these proofs did not have to reason about digital signatures and related aspects like non-repudiation,
and the protocols are rather small examples compared to a comprehensive payment system.

The security notion used for the relation between the ideal Dolev-Yao-style library and its cryptographic
implementation, reactive simulatability, and its composition properties were introduced in [53] and extended
to asynchronous systems in [54, 19]. It extends the securitynotions of multiparty (one-step) function evalu-
ation [55, 29, 30, 44, 9, 18] and the observational equivalence of [40]. There are multiple possible layers of
sound abstraction from cryptography in the sense of reactive simulatability besides Dolev-Yao-style crypto-
graphic libraries. They reach from low-level idealizations that still have real cryptographic in- and outputs to
high-level abstractions like secure channels. The specificaspects of a Dolev-Yao-style abstraction are simple
operator-tree abstractions from nested cryptographic terms, the restriction of adversary capabilities to alge-
braic operations on such terms, and the assumption that terms whose equality cannot be derived explicitly are
always unequal.

2 Description of the Payment Protocol
Let u be a client,v a merchant, andac the acquirer. We assume thatu, v, andac initially agreed on a
descriptiond of the good and its pricep. A successful termination of the protocol will then ensure that the
parties used the same description and the same price as theirlocal inputs to the protocol, i.e., no party can
cheat by tampering with these inputs. To simplify notation we let signatures include the signed message.
We further assume that every participating partyw initially holds a secret signature keysksw and that the
corresponding public key has already been distributed authentically to the other parties.

Figure 1 summarizes the main, so-calledoptimisticpart of the protocol in the usual protocol notation. The
part between the dotted lines contains the description of the actual protocol, consisting of five steps executed
among clientu, merchantv, and acquirerac. The parts above and below the dotted lines represent the local
inputs and outputs of the protocol, respectively. They correspond to interface events that enable interaction
with the users of the payment system or with higher-level programs. The protocol belongs to the class of
pay-now protocolswhich have in common that inputspay, receive, andallow from the client, the merchant,
and the acquirer, respectively, and the outputspaid, received, andtransfer to the client, the merchant, and the
acquirer, respectively, occur in one single transaction. Besides its optimistic part, the protocol further offers
a separatedisputepart, which allows each party to contact a trusted third party to resolve disputes. We will
elaborate on both parts of the protocol in the following.

Optimistic Part. The merchantv starts the protocol upon receiving a local input(receive, d, p, u), which
indicates agreement to receive the moneyp in exchange for the goodd from u. The merchant computes a
signaturesigv := signsksv

(invoice, d, p, u, v) and sends(invoice, sigv) to clientu.
Upon receiving a message(invoice, sigv), the clientu tests ifsigv is a valid signature with respect tov’s

public key of correctly formed data. Ifu has not received a local command(pay, d, p, v), which authorizes
this payment, he stores the received datad, p, v and waits for this local command. If it has already occurred
or when it occurs,u computessigu := signsksu

(payment, d, p, u, v) and sends(payment, sigu) to v.
Upon receiving a message(payment, sigu), the merchantv tests ifsigu is a valid signature with respect

to u’s public key of the correct data. Ifv has sent an invoice with the same parametersd, p, u, v to clientu
before, he savessigu for later use in disputes and sends(auth request, sigu, sigv) to the acquirerac.

Upon receiving(auth request, sigu, sigv), the acquirerac tests if both signatures are valid signatures
with respect to the respective public keys and if the datad, p, u, v contained in both signatures are iden-
tical. If ac has not yet received a local command(allow, d, p, u, v) indicating consent to the payment, he
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Figure 1: Optimistic Part of the Protocol

stores the received data until this local command occurs. Ifit has already occurred or when it occurs,
ac computessigac := signsksac

(auth response, d, p, u, v), sends(auth response, sigac) to v, and outputs
(transfer, d, p, u, v) locally.

Upon receiving(auth response, sigac), the merchantv checks the validity of the signature with respect
to ac’s public key and ifv has earlier sent an authentication request to the acquirer containingd, p, u, andv.
He then sends(confirm, sigac) to clientu and outputs(received, d, p, u) locally.

Upon receiving(confirm, sigac), the client checks the validity of the signature with respect to ac’s public
key and ifu has earlier sent a payment with matching data. He then outputs (paid, d, p, v) locally.

Disputes. Disputes enable a party to prove that specific outputs have occurred. Note that the trusted third
party is not involved in the optimistic part of the protocol as described above, but it will only be invoked if
two parties disagree whether the payment took place or not.

The structure of the dispute protocol is very simple, hence we omit a picture along the lines of Figure 1.
A partyw (either a clientu, a merchantv, or the acquirerac) can start a dispute by inputting a local command
(dispute, d, p, v) (or (dispute, d, p, u, v) if w = ac). As a prerequisite to initiate a dispute,w must have
received the signatures of the corresponding parties in theoptimistic part of the protocol execution. In this
case,w computessig∗ := signsksw

(dispute, sigx, sigx′) where{x, x′} = {u, v, ac} \ {w} and sendssig∗ to
the trusted third party. Upon receiving a messagesig∗ from w, the trusted third party checks if the signature is
valid for w’s public key, if it is of the correct form, and if both contained signatures are valid signatures for the
respective public keys and of the correct and matching data.In this case it outputs(dispute, true, d, p, u, v),
and(dispute, false, d, p, u, v) otherwise.

3 The Payment Protocol Using the Dolev-Yao-style Cryptographic Library
Almost all formal proof techniques for protocols first need areformulation of the protocol into a more detailed
version than the five steps above. These details include necessary tests on received messages, the types
and generation rules for values likeu and sigu, and a surrounding framework specifying the number of
participants, the possibilities of multiple protocol runs, and the adversary capabilities. The same is true when
using the Dolev-Yao-style cryptographic library from [8],i.e., it plays a similar role in our proof as “the CSP
Dolev-Yao model” or “the inductive-approach Dolev-Yao model” in other proofs. Our protocol formulation
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in this framework is given in Section 3.1.2 We there explain this formulation in detail exemplarily forthe
clients, and then explain general aspects of the surrounding framework as far as needed in our proofs.

3.1 Detailed Protocol Descriptions
We write “:=” for deterministic assignment, and↓ is an error element available as an addition to the domains
and ranges of all functions and algorithms. The framework isautomata-based, i.e., protocols are executed
by interacting machines, and event-based, i.e., machines react on received inputs. We assume a setM :=
{1, . . . , n} of users that is partitioned into a setMclient of clients, a setMmerchant of merchants, anacquirer
ac, and atrusted third partyttp. By MPS

u we denote the payment protocol machine for a useru. Let Σ denote
a finite alphabet and letΣ∗ denote the set of strings over it.

3.1.1 Clients

Let u ∈ Mclient denote a client. The main data structure ofMPS
u is a databaseDPS

u for storing the initial
information related to the payments, their current status,as well as additional information gained during the
protocol execution. Generally, a databaseD is a set of functions, called entries, each over a finite domain
called attributes. For an entryx ∈ D, the value at an attributeatt is written x.att . For a predicatepred
involving attributes,D[pred ] means the subset of entries whose attributes fulfillpred . If D[pred ] contains
only one element, we use the same notation for this element. Adding an entryx to D is abbreviatedD :⇐ x.
Further, we write the list operation asl := (x1, . . . , xj), and the arguments are unambiguously retrievable as
l[i], with l[i] = ↓ if i > j. In our case, each entryx in DPS

u can have the arguments

(ind , desc, price ,merch, sigm, sigac, status).

where the arguments have the following types and meaning:

• x.ind ∈ INDS, called index, consecutively numbers all entries inDPS
u . The setINDS is isomorphic

toN and is used to distinguish index arguments from others. The index is used as a primary key attribute
of the database, i.e., we writeDPS

u [i] for the selectionDPS
u [ind = i]. We further use the convention that

look-ups inDPS
u always return the element with the smallest index whose attributes fulfill the queried

predicate.

• x.desc ∈ Σ∗ is the description of the good to be purchased.

• x.price ∈ N denotes the price of the good.

• x.merch ∈Mmerchant is the identifier of the merchant that should receive the payment.

• x.sigm, x.sigac ∈ HNDS denote handles to the merchant’s and the acquirer’s signature, respectively.
They will be stores during the execution of the protocol and read only for disputes. The setHNDS is
yet another set isomorphic toN. We always use a superscript “hnd” for handles.

• x.status ∈ {invoice, pay, processed} denotes the status of the transaction. Hereinvoice means that the
client has received the invoice of the merchant,pay that the client gave consent to the payment, and
processed that both events happened and that the payment has hence beenperformed.

Initially, DPS
u is empty.MPS

u furthermore a variablecur indu ∈ INDS initialized with 0 counting the size
of DPS

u , and used as index for new entries inDPS
u .

2For some frameworks there are compilers to generate these detailed protocol descriptions, e.g., [41]. This should be possible for
this framework in a similar way.
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Algorithm 1 Client: Evaluation of Users Inputs for Payment Consent inMPS
u

Input: (pay, d, p, v) atPS inu? with d ∈ Σ∗, p ∈ N, andv ∈Mmerchant,
1: i := DPS

u [desc = d ∧ price = p ∧merch = v].ind .
2: if i 6= ↓ ∧ DPS

u [i].status = invoice then
3: DPS

u [i].status := processed.
4: paymenthnd ← store(payment).
5: dhnd ← store(d).
6: phnd ← store(p).
7: uhnd ← store(u).
8: vhnd ← store(v).
9: lhnd ← list(paymenthnd, dhnd, phnd, uhnd, vhnd).

10: shnd ← sign(skshnd
u , lhnd).

11: mhnd ← list(paymenthnd, shnd).
12: send i(v,mhnd).
13: else ifi = ↓ then
14: DPS

u :⇐ (cur indu++, d, p, v, ↓, ↓, pay).
15: end if

The first type of input thatMPS
u can receive is a message(pay, d, p, v) from its user denoting that consent

for a payment with descriptiond, pricep, and merchantv is given. User inputs are distinguished from network
inputs by arriving at a so-called portPS inu?. The “?” for input ports follows the CSP-convention, and “PS”
stands for payment system because the user interface is the same for all payment system of the considered
kind. The reaction on this input is described in Algorithm 1.MPS

u first checks if a corresponding invoice
with the same parameters has already been received before. In this case, the machineMPS

u declares this entry
to be processed and builds up a term corresponding to the payment message of the protocol using the ideal
cryptographic library. The commandstore inserts arbitrary application data into the cryptographiclibrary.
The commandlist forms a list andsign creates an abstract digital signature entry. The final command send i

means thatMPS
u attempts to send the resulting term tov over an insecure channel. If no prior invoice message

with suitable parameters occurred,MPS
u only creates a new database entry that will be processed whenthe

invoice message is received. The superscripthnd on most parameters denotes that these are handles, i.e., local
names that this machine has for the corresponding terms. This is an important aspect of [8] because it allows
the same protocol description to be implemented once with Dolev-Yao-style idealized cryptography and once
with real cryptography. More precisely, the four commands we saw so far and their input and output domains
belong to the interface (in the same sense as, e.g., a Java interface) of the underlying cryptographic library.
This interface is implemented by both the idealized and the real version. In the first case, the handles are local
names of Dolev-Yao-style terms, in the second case of real cryptographic bitstrings. We say more about these
two implementations below. The effect ofsend i in the ideal implementation is that the adversary obtains
a handle to the Dolev-Yao-style term and can decide what to dowith it (such as forwarding it toMPS

v or
performing Dolev-Yao-style algebraic operations on the term); the effect in the real implementation is that
the adversary obtains the real bitstring and can perform arbitrary bit manipulations on it.

The behavior ofMPS
u upon receiving an input from the cryptographic library (corresponding to a message

that arrives over the network) is defined similarly in Algorithm 2. The input arrives at portoutu? and is of the
form (v, u, i, lhnd) wherev is the supposed sender,i denotes that the channel is insecure, andlhnd is a handle
to a list. The portoutu? is connected to the cryptographic library, whose two implementations represent the
obtained Dolev-Yao-style term or real bitstring, respectively, to the protocol in a unified way by a handle.
In this algorithm,MPS

u first determines if the message corresponds to an invoice message or a confirmation
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Algorithm 2 Client: Evaluation of Inputs from the Cryptographic Library in MPS
u

Input: (v, u, i, lhnd) atoutu? with v ∈Mmerchant.
1: lhnd

j ← list proj(lhnd, j) for j = 1, 2.
2: l1 ← retrieve(lhnd

1 ).
3: if l1 = invoice then
4: mhnd

2 ← msg of sig(lhnd
2 ).

5: b← verify(lhnd
2 , pkshnd

u,v ,mhnd
2 )

6: xhnd
j ← list proj(mhnd

2 , j) for j = 1, . . . , 5.
7: xj ← retrieve(xhnd

j ) for j = 1, . . . , 5.
8: i := DPS

u [desc = x2 ∧ price = x3 ∧merch = x5].ind.
9: if x1 = invoice ∧ x4 = u ∧ x5 = v ∧ b = true ∧DPS

u [i].status = pay then
10: DPS

u [i].sigm := lhnd
2 .

11: DPS
u [i].status := processed.

12: paymenthnd ← store(payment).
13: mhnd

1 ← list(paymenthnd, xhnd
2 , xhnd

3 , xhnd
4 , xhnd

5 ).
14: shnd

1 ← sign(skshnd
u ,mhnd

1 ).
15: mhnd ← list(paymenthnd, shnd

1 ).
16: send i(v,mhnd).
17: else ifx1 = invoice ∧ x4 = u ∧ x5 = v ∧ b = true ∧ i = ↓ then
18: DPS

u :⇐ (cur indu++, x2, x3, x5, l
hnd
2 , ↓, invoice).

19: end if
20: else ifl1 = confirm then
21: mhnd

2 ← msg of sig(lhnd
2 ).

22: b← verify(lhnd
2 , pkshnd

u,ac,m
hnd
2 )

23: xhnd
j ← list proj(mhnd

2 , j) for j = 1, . . . , 5.
24: xj ← retrieve(xhnd

j ) for j = 1, . . . , 5.
25: i := DPS

u [desc = x2 ∧ price = x3 ∧merch = x5 ∧ sigac = ↓ ∧ status = processed].ind.
26: if x1 = auth response ∧ x4 = u ∧ x5 = v ∧ b = true ∧ i 6= ↓ then
27: DPS

u [i].sigac := lhnd
2 .

28: Output(paid, x2, x3, x5) atPS outu !.
29: end if
30: end if

Algorithm 3 Client: Evaluation of User Inputs for Disputes inMPS
u

Input: (dispute, d, p, v) atPS inu? with d ∈ Σ∗, p ∈ N, andv ∈Mmerchant.
1: if i := DPS

u [desc = d ∧ price = p ∧merch = v ∧ sigm 6= ↓ ∧ sigac 6= ↓].ind 6= ↓ then
2: disputehnd ← store(dispute).
3: lhnd ← list(disputehnd,DPS

u [i].sigm,DPS
u [i].sigac).

4: shnd ← sign(skshnd
u , lhnd).

5: mhnd ← list(shnd).
6: send i(ttp,mhnd).
7: end if

7



message, i.e., if the message could correspond to the first orthe fifth message in the protocol description.
In the first case,MPS

u first determines if the contained signature is a valid signature of the merchant for the
correct data, and aborts at failure. If the user already gaveconsent to the payment, i.e., if a suitable entry
with statuspay already exists in the database,MPS

u stores the merchant’s signature, updates the status of this
payment toprocessed, constructs a message according to the protocol description, and sends it to the intended
recipient. If payment consent has not been given yet,MPS

u only creates a new database entry that contains
the payment information of the invoice message. The evaluation of a confirmation message works similarly:
MPS

u checks the validity of the acquirer’s signature and if a suitable entry already exists in the database, and
in that case signals to its user at portPS outu ! the successful completion of the payment.

Finally, MPS
u can receive a dispute message(dispute, d, p, v) from its user atPS inu?. The behaviour

of MPS
u on this input is defined in Algorithm 3. It first checks if an entry with corresponding parameters

already exists in the database. If furthermore the corresponding signatures of the respective merchant and the
acquirer have already been received for this entry,MPS

u builds up a term according to the protocol description
and sends it to the trusted third party.

Every algorithms should immediately abort the handling of the current input if a cryptographic command
does not yield the desired result, e.g., if a database look-up fails. For readability we omitted this in the
algorithmic descriptions; instead we impose the followingconvention on these and the following algorithms.

Convention 1 If MPS
u for u ∈ M receives↓ as the answer of the cryptographic library to a command, then

MPS
u aborts the execution of the current algorithm, except for the command typeslist proj or send i.

3.1.2 Merchants

Let u ∈ Mmerchant denote a merchant. Similar to the protocol machines of the clients, the machineMPS
u

maintains an initially empty databaseDPS
u as its main data structure, together with a variablecur indu ∈

INDS for counting the size of the database and creating new indices. The entries ofDPS
u have the form

(ind , desc, price , client , sigc, sigac).

Forx ∈ DPS
u :

• x.ind , x.desc, x.price , andx.sigac are defined as in the database of the client machines.

• x.client ∈Mclient denotes the client of this transaction.

• x.sigc ∈ HNDS denotes the handle of the client’s signature, which will be collected during the
protocol execution.

The machineMPS
u accepts inputs for sending an invoice to a client and for initiating a dispute from its user

at portPS inu?, and inputs from the cryptographic library at portinu?. After explaining the behavior of the
protocol machines of the clients, the behavior ofMPS

u should be essentially clear from the protocol description
of Section 2. We postpone the algorithmic description to theAppendix.

3.1.3 Acquirer

The machineMPS
ac of the acquirer maintains a variablecur indac ∈ INDS initialized with0 and an initially

empty databaseDPS
ac , where each entryx ∈ DPS

ac can have arguments

(ind , desc, price , client ,merch, sigc, sigm, status)

with the following types and meanings:
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• x.ind , x.desc, x.price , x.client , x.merch , x.sigc, andx.sigm are defined as in the databases of the
client and merchant machines.

• x.status ∈ {allow, auth request, processed} denotes the status of the transaction, cf. the state of the
client machines. Hereallow means that the acquirer has given consent to the payment,auth request

that the merchant requested authentication of the payment,andprocessed that both events happened.

The machineMPS
ac accepts inputs for processing a payment from userac at portPS inac?, and inputs from the

cryptographic library at portinac?. The algorithmic description ofMPS
ac is postponed to the Appendix.

3.1.4 Trusted Third Party

The machineMPS
ttp of the trusted third party only accepts input from the cryptographic library at portinttp?.

Upon receiving such an input, it first checks the validity of the signature and if the message in indeed a well-
formed dispute message. It then identifies the parties that are involved in the payment and determine whether
the dispute should be allowed or denied by checking the validity of the contained signatures and if they have
been issued on matching parameters. The algorithmic description can be found in the Appendix.

3.2 Further Initial State
We have assumed in the algorithms that each protocol machineMPS

u already has a handleskshnd
u to its

own secret signature key and handlespkshnd
u,v to the public keys of every participantv. The cryptographic

library can also represent key generation and distributionby normal commands. Further, we assume that each
machineMPS

u contains the bitstringu denoting its identity.

3.3 Overall Framework and Adversarial Model
The framework that determines how machines such as our payment system machines and the machines of the
idealized or real cryptographic library execute is taken from [54]. The basis is an asynchronous probabilistic
execution model with distributed scheduling. We already used implicitly above that for term construction and
parsing commands to the cryptographic library, a so-calledlocal scheduling is defined, i.e., a result is returned
immediately. The idealized or real network sending via thislibrary, however, is scheduled by the adversary.

When protocol machines such asMPS
u for certain usersu ∈ {1, . . . , n} are defined, there is no guarantee

that all these machines are correct. A trust model determines for what subsetsH of {1, . . . , n} we want to
guarantee anything; in our case this is for all subsets whichcomprise at least the trusted third party. Incorrect
machines disappear and are replaced by the adversary. Each set of potential correct machines together with
its user interface is called a structure, and the set of thesestructures is called the system. When considering
the security of a structure, an arbitrary probabilistic machineH is connected to the user interface to represent
all users, and an arbitrary machineA is connected to the remaining free ports (typically the network) and to
H to represent the adversary, see Figure 2. In polynomial-time security proofs,H andA are polynomial-time.

This setting implies that any number of concurrent protocolruns with both honest participants and the
adversary are considered becauseH andA can arbitrarily interleave local inputs of the payment protocol with
the delivery of network messages.

For a setH of honest participants, the user interface of the ideal and real cryptographic library is the port
setS cry

H
:= {inu?, outu ! | u ∈ H}. This is where the payment protocol machines input their cryptographic

commands and obtain results and received messages. In the ideal case this interface is served by just one
machineTH

cry
H

calledtrusted hostwhich essentially administrates Dolev-Yao-style terms under the handles.
In the real case, the same interface is served by a setM̂

cry
H

:= {Mcry
u,H | u ∈ H} of real cryptographic

machines. The corresponding systems are calledSyscry,id := {({TH
cry
H
},S cry

H
) | H ⊆ {1, . . . , n}} and

Syscry,real := {(M̂ cry
H

,S
cry
H

) | H ⊆ {1, . . . , n}}.

9
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Figure 2: Overview of the Payment System (here for the caseH = {u, ttp}).

The user interface of the payment protocol machines isSPS
H

:= {PS inu?,PS outu ! | u ∈ H \ {ttp}} ∪
{PS outttp!}, cf. Figure 2. The ideal and real payment systems serving this interface differ only in the
cryptographic library. WithM̂ PS

H
:= {MPS

u | u ∈ H}, they areSysPS,id := {(M̂ PS
H
∪{TH

cry
H
},SPS

H
) | {ttp} ⊆

H ⊆ {1, . . . , n}} andSysPS,real := {(M̂ PS
H
∪ M̂

cry
H

,SPS
H

) | {ttp} ⊆ H ⊆ {1, . . . , n}}.

3.4 On Polynomial Runtime
In order to be valid users of the real cryptographic library,the machinesMPS

u have to be polynomial-time.
We therefore define that each machineMPS

u maintains explicit polynomial bounds on the accepted message
lengths and the number of inputs accepted at each port. As this is done exactly as in the cryptographic library,
we omit the rigorous write-up.

4 The Security Properties
The arguably most important security property of a payment systems is that no money can be transfered
without the client’s consent. This can be captured as anintegrity propertyin the underlying model which
are formally sets of traces at the user interfaces of a system, i.e., here at the port setsSPS

H
. Intuitively, an

integrity propertyReq contains the “good” traces at these ports. A trace is a sequence of sets of events.
We write an eventp?m or p!m, meaning that messagem occurs at in- or output portp. The t-th step of
a tracer is written rt; we speak of the step at timet. To capture the aforementioned security property
we would require that each output(transfer, d, p, u, v) at a portPS outac? for an honest clientu, an hon-
est acquirerac, and an arbitrary (potentially malicious) merchantv is preceded by an input(pay, d, p, v) at
PS inu?. This statement can be significantly strengthened for our payment system by requiring that when-
ever an arbitrary honest party successfully terminates theprotocol execution, the inputs of all honest parties
have previously been received. This strengthened variant is calledweak atomicity. To simplify notation, let
SuccessHonestTerm(d, p, u, v, ac, r, t) denote the predicate indicating whether an honest partyu, v, orac has
successfully terminated the payment protocol ford andp in tracer at timet, i.e., the predicate is defined as
the disjunction of(u ∈ H ∧ PS outu !(paid, d, p, v) ∈ rt), (v ∈ H ∧ PS outv !(received, d, p, u) ∈ rt), and
(ac ∈ H ∧ PS outac!(transfer, d, p, u, v) ∈ rt).

Definition 4.1 (Weak Atomicity) A tracer is contained inReqweak atom if and only if for alld ∈ Σ∗, p ∈ N,

10



u ∈Mclient, v ∈Mmerchant, andt2 ∈ N:

SuccessHonestTerm(d, p, u, v, ac, r, t2)⇒ ∃t1, t
′
1, t

′′
1 < t2 :

(

(u ∈ H ⇒ PS inu?(pay, d, p, v) ∈ rt1) ∧ (v ∈ H ⇒ PS inv?(receive, d, p, u) ∈ rt′
1
)

∧ (ac ∈ H ⇒ PS inac?(allow, d, p, u, v) ∈ rt′′
1
)
)

.

3

The main complementary feature of the payment system is its full disputability, i.e., every participant is able
to prove that a completed payment has taken place. One can identify two main properties for disputes to
be meaningful. First, a party following the protocol wants to be sure that if she initiates a dispute after
successfully completing the protocol, the result of the trusted third party has to betrue independent of the
behavior of other parties. Since the underlying reactive setting grants the adversary full control over the
network and in particular to suppress arbitrary messages, we cannot prove statements that “something good”
occurs in the future, e.g., that a dispute will be won. We instead formulate the property in a way that allows
for backward reasoning. We only formalize the dispute properties for clients; the analogue for merchants and
the acquirer can be obtained by simple textual replacement.

Definition 4.2 (Correct Disputing (Client Part)) A tracer is contained inReqcorr disp client if and only if for
all d ∈ Σ∗, p ∈ N, u ∈ Hclient, v ∈Mmerchant, andt3 ∈ N:

PS outttp!(dispute, paid, false, d, p, u, v) ∈ rt3

⇒ ∃t2 < t3 : (PS inu?(dispute, d, p, v) ∈ rt2 ∧ ∀t1 < t2 : PS outu !(paid, d, p, v) 6∈ rt1).

3

Secondly, an honest party wants to be sure that she cannot be blamed for having participated in a payment
which she was not involved in, i.e., a dispute for this payment may only be successful if she previously made
the corresponding input.

Definition 4.3 (No Framing (Client Part)) A tracer is contained inReqno frame client if and only if for all
d ∈ Σ∗, p ∈ N, u ∈ Hclient, v ∈Mmerchant, t2 ∈ N, andx ∈ {received, transfer}:

PS outttp?(dispute, x, true, d, p, u, v) ∈ rt2 ⇒ ∃t1 < t2 : PS inu?(pay, d, p, v) ∈ rt1 .

3

Let Reqcorr disp denote the conjunction ofReqcorr disp client and the corresponding properties for merchants
and the acquirer; similarly, letReqno frame denote the conjunction ofReqno frame client and its counterparts for
merchants and the acquirer.

The notion of a systemSys fulfilling an integrity propertyReq essentially comes in two flavors [6].
Perfect fulfillment, Sys |=perf Req , means that the integrity property holds for all traces arising in runs of
Sys (a well-defined notion from the underlying model [54]).Computational fulfillment, Sys |=poly Req ,
means that the property only holds for polynomially boundedusers and adversaries, and that a negligible
error probability is permitted. Perfect fulfillment implies computational fulfillment. The following theorem
summarizes what we prove for these requirements:

Theorem 4.1 (Security of the Payment System)Let ReqPS := Reqweak atom ∩ Reqcorr disp ∩ Reqno frame.

For the payment system from Section 3.3 we haveSysPS,id |=perf ReqPS andSysPS,real |=poly ReqPS. 2
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Note that we did not consider properties concerning the confidentiality of the data involved in the payment.
This is similar to theiKP payment system, which does not provide confidentiality itself but instead assumes
external mechanisms like underlying secure channels for this task. We can model these mechanisms in
our underlying framework as well by inserting secure channel machines between the links of the protocol
machines and the cryptographic library, and the corresponding confidentiality properties can then be easily
shown. The long version of this paper contains this modelingand the corresponding proofs in detail.

5 Proof of the Cryptographic Realization from the Idealization
As discussed in the introduction, the idea of our approach isto prove Theorem 4.1 for the payment protocol
using the ideal Dolev-Yao-style library. Then the result for the real system follows automatically.

The notion that a systemSys1 securely implements another systemSys2 in called reactive simulatability
(recall the introduction), and is writtenSys1 ≥

poly
sec Sys2 (in the computational case). The main result of [8]

is therefore
Syscry,real ≥poly

sec Syscry,id. (1)

SinceSysPS,real andSysPS,id are compositions of the same protocol withSyscry,real andSyscry,id, respectively,
the composition theorem of [54] and (1) imply

SysPS,real ≥poly
sec SysPS,id. (2)

Showing the theorem’s preconditions is easy since the machinesMPS
u are polynomial-time (see Section 3.4).

Finally, the integrity preservation theorem from [6] and (2) imply for every integrity propertyReq that

(SysPS,id |=poly Req) ⇒ (SysPS,real |=poly Req). (3)

Hence if we proveSysPS,id |=perf ReqPS, we immediately obtainSysPS,real |=poly ReqPS from (3).

6 Proof in the Ideal Setting
This section sketches the proof of the ideal part of Theorem 4.1: We prove that the payment protocol imple-
mented with the ideal, Dolev-Yao-style cryptographic library perfectly fulfills the propertyReqPS. The main
challenge in this proof was to find suitable invariants on thestate of the ideal payment system.

We start this section with a rigorous definition of the possible states of the ideal cryptographic library as
needed for formulating the invariants. We then define the invariants and briefly explain how to exploit them
to prove the overall integrity property of the payment system. Proving the integrity property in fact turns out
to be easy once the invariants have been established; we postpone this proof and the proof of the invariants to
Appendix B, preceded by a detailed description of the state transitions of the ideal cryptographic library as
needed in these proofs in Appendix A.

6.1 Overview and States of the Ideal Cryptographic Library
The ideal cryptographic library administrates Dolev-Yao-style terms and allows each user to operate on them
via handles, i.e., via local names specific to this user. The handles also contain the information that knowledge
sets give in other Dolev-Yao formalizations: The set of terms that a participantu knows, includingu = a for
the adversary, is the set of terms with a handle foru. As we saw in the payment algorithms, the library offers
its user (and the adversary) the typical operations on termsto which they have handles, e.g., signing with a
secret key and signature verification with a public key. The terms are typed; for instance, signature verification
only succeeds on signatures and projection only on lists. Assecure encryption schemes are necessarily
probabilistic and so are most signature schemes, and as the library allows the generation of polynomially
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many nonces and key pairs, multiple instances of terms of almost every structure can occur, e.g., multiple
signatures of the same messagem with the same keysks . There are multiple ways to deal with this in prior
Dolev-Yao models, e.g., counting (for nonces) and multisets. The version in [8] corresponds to counting:
The terms are globally numbered by an index. Each term is represented by its type (i.e., root node) and its
first-level arguments, which can be indices of earlier terms. This enables easy distinction of, e.g., which of
many nonces is signed in a larger term. These global indices are never visible at the user interface. The
indices and the handles for each participant are generated by one counter each.

A novel aspect of this cryptographic library compared with prior Dolev-Yao models is that terms have an
abstract length parameter, indicating the length of the corresponding real message. It is derived from a tuple
L of length functions that denote how the length of a term depends on the length of its subterms. This is
necessary because real encryption cannot entirely hide thelength of cleartexts. Moreover,L contains bounds
on the accepted message lengths and the number of accepted inputs at each port. All these bounds can be
arbitrary, except that they be polynomially bounded in a security parameterk. Formally, the numbern of
participants and the tupleL are parameters of the systemSyscry,id, but we omitted them for readability.

Similarly, n and a tupleL′ should be parameters of our ideal payment systemSysPS,id, see Section 3.4.
As the machinesMPS

u of this system only make bounded-length inputs to the cryptographic library givenn
andL′, the bounds inL can easily be chosen large enough so that all these inputs arelegal. Further, as we
only prove an integrity properties, it is not a problem in theproof that the number of accepted inputs might
be exceeded. This is why we can omit the details of the length functions.

As described above, the terms in the ideal cryptographic library, i.e., in the trusted hostTH
cry
H

for every
setH of honest participants, are represented by their top level,and knowledge of them by potential handles
for the different participants. The data structure chosen for this in [8] is a databaseD in which each entryx
in D can have the arguments

(ind , type , arg , hndu1
, . . . , hndum

, hnd a, len),

whereH = {u1, . . . , um} and the arguments have the following types and meaning:

• x.ind is the global index of an entry.

• x.type ∈ typeset identifies thetypeof x. The typesnonce, list, data (for payload data),sks andpks

(for secret and public signature keys), andsig (for signatures) occur in the following.

• x.arg = (a1, a2, . . . , aj) is a possibly empty list of arguments. Arguments of typeINDS are indices
of other entries (subterms); we sometimes distinguish themby a superscript “ind”.

• x.hndu ∈ HNDS ∪{↓} for u ∈ H∪{a} are handles, wherex.hndu = ↓means thatu does not know
this entry.

• x.len ∈ N0 denotes the length of the entry.

The machineTH
cry
H

has a countersize ∈ INDS for the current size ofD and counterscurhndu (current
handle) for the handles, all initialized with0.

The assumption that keys have already been generated and distributed means that for eachu ∈ M two
entries of the following form are added toD, where{u1, . . . , um} := H:

(sksu, type := sks, arg := (0), hndu := skshnd
u , len := 0);

(pksu, type := pks, arg := (), hndu1
:= pkshnd

u1,u, . . . , hndum
:= pkshnd

um,u,

hnda := pkshnd
a,u , len := pks len∗(k)).
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Heresksu andpksu are consecutive natural numbers,pks len∗ is the length function for public keys, and the
argument of the secret key entry stores the number of messages that have already been signed with this key.
Treating secret keys as being of length0 is a technicality in [8] and will not matter in the sequel.

6.2 Invariants
This section contains invariants of the systemSysPS,id, which are used in the proof of the ideal part of
Theorem 4.1. The first invariant,no modification, states that attributes of database entries of honest usersare
never changed after they have been initialized. This is truefor all attributes except forstatus , which may
additionally change toprocessed. We letrt : DPS

u denote the contents of databaseDPS
u at timet in tracer.

Invariant 1 (No Modification) For allu ∈ H, i ∈ INDS, t1 ∈ N, all tracesr arising in runs ofSysPS,id,
ands := t1 : DPS

u [i].status :

rt1 : DPS
u [i].x 6= ↓ ∧ x 6= status ⇒ ∀t2 > t1 : (rt2 : DPS

u [i].x = rt1 : DPS
u [i].x)

∧ s ∈ {pay, invoice, allow, auth request} ⇒ ∀t2 > t1 : (rt2 : DPS
u [i].status ∈ {s, processed}).

The next invariant,unique payment entries, establishes that entries in the databases of honest parties are
uniquely determined by the price, the description, the client, and the merchant. We state this and the following
invariants exemplarily for honest clients.

Invariant 2 (Unique Payment Entries (Client Part)) For allu ∈ H, i1, i2 ∈ INDS, t ∈ N, and all tracesr
arising in runs ofSysPS,id:

rt : DPS
u [i1].price = rt : DPS

u [i2].price 6= ↓ ∧ rt : DPS
u [i1].desc = DPS

u [i2].desc 6= ↓ ∧

rt : DPS
u [i1].merch = DPS

u [i2].merch 6= ↓ ⇒ (i1 = i2).

The next invariant,correct signing, characterizes which lists will be signed by an honest party. It states that
all signed lists in the databaseD of the ideal cryptographic library that start with apayment element are of
the form (payment, d, p, u, v), and that a local command(pay, d, p, v) must have been received before the
entry was created. We use explanatory comments in the definition of the invariant to increase readability.

Invariant 3 (Correct Signing (Client Part)) For allu ∈ Mclient ∩ H, i ∈ INDS, t2 ∈ N, and all tracesr
arising in runs ofSysPS,id:

rt2 : D[i].type = sig ∧ rt2 : D[i].arg [1] = pksu ∧ x1 = payment # If a payment message is

⇒ # signed withu’s key, then
(

x4 = u ∧ ∀j = 1, . . . , 5: (rt2 : D[yj].type = data) ∧ # the message is of the correct format

∃t1 < t2 : (PS inu?(pay, x2, x3, x5) ∈ rt1)
)

, # and a matching input has occurred.

wherel := rt2 : D[i].arg [2] denotes the index of the signed list,yj := rt2 : D[l].arg [j] the indices of the list
elements, andxj := rt2 : D[yj].arg [1] the actual data forj = 1, . . . , 5.

In the proof of the overall integrity property, we will latershow that certain outputs of honest users may
only occur after signatures of specific messages created with specific keys have been received, e.g., that
the machine of an honest acquirer only outputs anallow message if it formerly received a signature that is
valid with respect to the respective client’s public key. Thencorrect signingwill allow us to deduce that the
message is of the correct format and that a previous input by the client must have occurred.
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The last invariant,correct storing, captures that an honest user has stored the signatures of both remaining
parties if it successfully terminates the protocol. We again show the invariant exemplarily for honest clients;
it states that if the machine of a clientu outputs(paid, d, p, v) then it correctly stored the signatures of both
remaining parties, i.e.,sigm is a signature of a list(invoice, d, p, u, v) signed byv andsigac is a signature of
a list (auth response, d, p, u, v) signed byac.

Invariant 4 (Correct Storing (Client Part)) For allu ∈Mclient ∩H, d ∈ Σ∗, p ∈ N, v ∈ Mmerchant, t ∈ N,
and all tracesr arising in runs ofSysPS,id:

PS outu !(paid, d, p, v) ∈ rt ⇒ # If u terminates the protocol, then
(

rt : D[hndu = sm].type = sig ∧ rt : D[pkm].hndu = pkshnd
u,v ∧ # the signatures of the merchant and

rt : D[hndu = sac].type = sig ∧ rt : D[pk ac].hndu = pkshnd
u,ac ∧ # of the acquirer have been stored,

xm
1 = invoice ∧ xm

2 = d ∧ xm
3 = p ∧ xm

5 = v ∧ # and they range

xac
1 = auth response ∧ xac

2 = d ∧ xac
3 = p ∧ xac

5 = v
)

, # over the correct data.

where forw ∈ {m, ac}, we letsw := rt : DPS
u [desc = d ∧ price = p ∧ merch = v].sigw denote the

handle tow’s signature,pkw := rt : D[hndu = sw].arg [1] the index of the public key used,lw := rt :
D[hndu = sw].arg [2] the index of the signed list,yw

j := rt : D[lw].arg [j] the indices of the list elements, and
xw

j := rt : D[yw
j ].arg [1] the actual data forj = 1, . . . , 5.

This invariant is key for proving the disputability properties of the protocol since it implies that dispute
messages sent by honest users are always of a specific format and the contained signatures are valid with
respect to specific public keys. Based on this, we can easily infer the output of the trusted third party.

7 Conclusion and Outlook
We have proven an electronic payment system to be secure in the real cryptographic setting. The payment
system is a slightly simplified variant of the3KP payment system and comprises a variety of different se-
curity requirements ranging from the impossibility of unauthorized payments and weak atomicity to more
sophisticated properties like disputability. The proof was done by exploiting a Dolev-Yao-style deterministic
idealization of cryptography which has a provably secure real cryptographic implementation. Composition
and integrity preservation theorems from the underlying model imply that the protocol proof with the ideal-
ized cryptography carries over to the real protocol implementation. This was the first example of a such a
proof for protocols involving digital signatures. In spiteof certain differences to usual Dolev-Yao variants,
in particular a representation of terms or real cryptographic objects to the protocol layer by handles (local
names) and length functions in the idealization, the proof seems to be of a type readily accessible to auto-
matic proof tools. We therefore hope that our hand-made proof helps to pave the way towards automated,
cryptographically sound proofs of electronic payment systems and many other security protocols.
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A Command Evaluation by the Ideal Cryptographic Library
This section contains the definition of the cryptographic commands used for modeling the investigated pay-
ment protocol, and the local adversary commands that model the extended capabilities of the adversary as far
as needed to prove the invariants. Recall that we deal with top levels of Dolev-Yao-style terms, and that com-
mands typically create a new term with its index, type, arguments, handles, and length functions, or parse an
existing term. We present the full definitions of the commands, but the reader can ignore the length functions,
which have namesx len. By x := y++ for integer variablesx, y we meany := y + 1;x := y. The length of
a messagem is denoted aslen(m).

Each inputc at a portinu? with u ∈ H ∪ {a} should be a list(cmd , x1, . . . , xj) with cmd from a fixed
list of commands and certain parameter domains. We usually write it y ← cmd(x1, . . . , xj) with a variable
y designating the result thatTH

cry
H

returns atoutu !. The algorithmihnd := ind2hndu(i) (with side effect)
denotes thatTH

cry
H

determines a handleihnd for useru to an entryD[i]: If ihnd := D[i].hndu 6= ↓, it returns
that, else it sets and returnsihnd := D[i].hnd u := curhndu++. On non-handles, it is the identity function.
The functionind2hnd∗u appliesind2hndu to each element of a list.

In the following definitions, we assume that a cryptographiccommand is input at portinu? with u ∈
H ∪ {a}. First, we describe the commands for storing and retrievingdata via handles.

• Storing: mhnd ← store(m), for m ∈ {0, 1}max len(k).

If i := D[type = data ∧ arg = (m)].ind 6= ↓ then returnmhnd := ind2hndu(i). Otherwise if
data len∗(len(m)) > max len(k) return↓. Else setmhnd := curhndu++ and

D :⇐ (ind := size++, type := data, arg := (m), hnd u := mhnd, len := data len∗(len(m))).

• Retrieval:m← retrieve(mhnd).

m := D[hndu = mhnd ∧ type = data].arg [1].

Next we describe list creation and projection. Lists cannotinclude secret keys of the public-key systems
(entries of typeske, sks) because no information about those must be given away.

• Generate a list:lhnd ← list(xhnd
1 , . . . , xhnd

j ), for 0 ≤ j ≤ max len(k).

Let xi := D[hndu = xhnd
i ].ind for i = 1, . . . , j. If any D[xi].type ∈ {sks, ske}, set lhnd := ↓.If

l := D[type = list ∧ arg = (x1, . . . , xj)].ind 6= ↓, then returnlhnd := ind2hndu(l). Otherwise,
set length := list len∗(D[x1].len , . . . ,D[xj ].len) and return↓ if length > max len(k). Else set
lhnd := curhndu++ and

D :⇐ (ind := size++, type := list, arg := (x1, . . . , xj), hndu := lhnd, len := length).
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• i-th projection:xhnd ← list proj(lhnd, i), for 1 ≤ i ≤ max len(k).

If D[hndu = lhnd ∧ type = list].arg = (x1, . . . , xj) with j ≥ i, thenxhnd := ind2hndu(xi), otherwise
xhnd := ↓.

Further, we used commands to sign a list, to verify a signature, and to retrieve the message from a signature.

• Signature generation:shnd ← sign(skhnd, lhnd).

Let sk := D[hndu = skhnd ∧ type = sks].ind and l := D[hndu = lhnd ∧ type = list].ind . If
either of these is↓ or if length := sig len∗(k,D[l].len) > max len(k), return↓. Also return↓ if
D[sk ].arg [1] ≥ max skc(k) andu 6= a. Otherwise, setshnd := curhndu++, pk := sk + 1 (recall that
key pairs get successive indices),c := D[sk ].arg [1]++, and

D :⇐ (ind := size++, type := sig, arg := (pk , l, c), hnd u := shnd, len := length).3

• Signature verification:v ← verify(shnd, pkhnd, lhnd).

Let s := D[hndu = shnd ∧ type = sig].ind . If s = ↓ then return↓. Otherwise, let(pk , l, c) :=
D[s].arg . If D[pk ].hndu 6= pkhnd or D[l].hndu 6= lhnd, thenv := false, elsev := true.

• Message retrieval:lhnd ← msg of sig(shnd).

Let l := D[hndu = shnd ∧ type = sig].arg [2] and returnlhnd := ind2hndu(l).

From the set of local adversary commands, which capture additional commands for the adversary at portina?,
we only describe the commandsadv parse andadv transform sig. The first command allows the adversary
to retrieve all information that we do not explicitly require to be hidden. This command returns the type
and usually all the abstract arguments of a value (with indices replaced by handles), except in the case of
ciphertexts. The second command allows the adversary to transform an existing signature that he knows into
another one for the same message (which is not excluded by thedefinition of secure signature schemes).

• Parameter retrieval:(type , arg)← adv parse(mhnd).

Let m := D[hnda = mhnd].ind and type := D[m].type . In most cases, setarg :=
ind2hnd∗a(D[m].arg). (Recall that this only transforms arguments inINDS.) The only exception
is for type = enc, which does not matter in the following.

• Signature transformation:thnd ← adv transform sig(shnd).

Lets := D[hnd a = shnd∧type = sig].ind . If s = ↓ then return↓. Otherwise let(pk , l, c) := D[s].arg .
Setthnd := curhnda++ and

D :⇐ (ind := size++, type := sig, arg := (pk , l, false), hnd a := thnd, len := D[s].len).

We finally describe the commands for sending messages on insecure channels. In the second one, the adver-
sary sends listl to v, pretending to beu.

• send i(v, lhnd), for v ∈ {1, . . . , n} at portinu? for u ∈ H.

Let l ind := D[hndu = lhnd ∧ type = list].ind . If l ind 6= ↓, output(u, v, i, ind2hnda(l
ind)) atouta!.

• adv send i(u, v, lhnd), for u ∈ {1, . . . , n} andv ∈ H at portina?.

Let l ind := D[hnda = lhnd ∧ type = list].ind . If l ind 6= ↓, output(u, v, i, ind2hndv(l
ind)) atoutv !.

3This type also exists withc = false due to the commandadv transform sig.
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B Postponed Proofs
B.1 Proof of the Invariants
The statementsno modificationandunique payment entriescan easily be verified by inspection of the algo-
rithms.

Proof. (Correct Signing (Client Part)) We refer to Stepi of Algorithm j as Stepj.i. Let u ∈Mclient ∩H, i ∈
INDS, t2 ∈ N, andr a trace arising in runs ofSysPS,id. Let l := rt2 : D[i].arg [2], yj := rt2 : D[l].arg [j],
andxj := rt2 : D[yj].arg [1] for j = 1, . . . , 5. The proof is performed by induction overt2. Assume that the
entryD[i] is generated at timet2 in tracer and assume further that the invariant holds at all times prior than
t2. The only commands of the ideal cryptographic library that generate an entryD[i] with D[i].type = sig

aresign(skhnd,mhnd) andadv transform sig(shnd).
We first consider the commandadv transform sig(shnd), which can only be input at portina?. Let s :=

rt2 : D[hnda = shnd ∧ type = sig].ind . If D[i] is generated in this transition, the definition of the command
implies s 6= ↓, D[s].arg [1] = D[i].arg [1], andD[s].arg [2] = l. Hence we can use our induction hypothesis
with D[s] instead ofD[i] which immediately finishes the proof of this case, sinceD[s] andD[i] have identical
first and second arguments.

Now consider a commandsign(skhnd,mhnd) input byw atw’s local port. (This can be eitherPS inw? if
w ∈ H or ina? if w = a.) Let sk := rt2 : D[hndw = skhnd ∧ type = sks].ind andm := rt2 : D[hndw =
mhnd ∧ type = list].ind . If D[i] is generated in this transition, the definition of thesign command implies
sk 6= ↓ andD[i].arg [1, 2] = (pk ,m) wherepk = sk + 1 (recall that secret and public keys get successive
indices). This yieldssk = D[i].arg [1] − 1 = pksu − 1 = sksu. Furthermore,sk 6= ↓ implies skhnd 6= ↓.
Since we initially haveD[sksu].hndw 6= ↓ only if z = u, cf. Section 6.1, and since entries of typesks cannot
be sent to other parties by definition, we conclude thatw = u. Hence the clientu must have input thesign
command at portPS inu?. Inspection of Algorithm 1, 2, and 3 shows thatsign commands foru exist in Steps
1.10, 2.14, and 3.4.

If D[i] is generated in Step 1.10, then Steps 1.4-1.9, the definitionof the commandstore, and Convention 1
imply x4 = u andD[yj].type = data for j = 1, . . . , 5. Furthermore, Algorithm 1 is started by an input
(pay, d, p, v) atPS inu? at some timet1, and Steps 1.4-1.9 implyd = x2, p = x3, andv = x5.

If D[i] is generated in Step 2.14, then Steps 2.7, 2.12, and 2.13, thedefinition of the commandsstore
andretrieve, and Convention 1 implyD[yj].type = data for j = 1, . . . , 5. The look-up in Step 2.8 and the
condition in Step 2.9 further yieldx4 = u, x5 = v, andind := DPS

u [desc = x2 ∧ price = x3 ∧ merch =
x5 ∧ status = pay].ind 6= ↓. By no modification, the entryDPS

u [ind ] must have been created in Step
1.14. Algorithm 1 is started by an input(pay, d, p, v) at PS inu? at some timet1, with DPS

u [ind ].desc = d,
DPS

u [ind ].price = p, andDPS
u [ind ].merch = x5. This yieldsd = x2, p = x3, andv = x5.

If D[i] is generated in Step 3.4, Steps 3.2 and 3.3 immediately yieldx1 = dispute, hence nothing needs
to be proved.

Proof. (Correct Storing (Client Part)) We use the notation of the theorem. Let furtheriw := rt : D[hndu =
sw ].ind for w ∈ {m, ac}. Assume thatPS outu !(paid, d, p, v) ∈ rt. This output may only occur in Step
2.28. In the following, we use the notation of Algorithm 2, hence we have(x2, x3, x5) = (d, p, v). Step 2.25
and 2.26 together withunique payment entriesimply i = im = iac. We first show the statements about the
signature of the acquirer.

Because ofi = iac Step 2.27 impliessac = lhnd
2 . Thuspk ac = rt : D[hndu = lhnd

2 ].arg [1] and
lac = rt : D[hndu = lhnd

2 ].arg [2]. Now Step 2.22 and 2.26 the definition of the commandverify immediately
imply rt : D[hndu = sac].type = rt : D[hndu = lhnd

2 ].type = sig andrt : D[pk ′].hndu = pkshnd
u,ac, where

pk ′ = rt : D[hndu = lhnd
2 ].arg [1] = rt : D[hndu = sac].arg [1] = pk ac. Hencert : D[pk ac].hndu =

pkshnd
u,ac. Moreover, we obtainxac

j = xj by Step 2.23, 2.24, and the definition oflist proj andretrieve, hence
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Algorithm 4 Merchant: Evaluation of User Inputs for Receiving inMPS
u

Input: (receive, d, p, v) atPS inu? with d ∈ Σ∗, p ∈ N, andv ∈Mclient.
1: if DPS

u [desc = d ∧ price = p ∧ client = v] = ↓ then
2: DPS

u :⇐ (cur indu++, d, p, v, ↓, ↓).
3: invoicehnd ← store(invoice).
4: dhnd ← store(d).
5: phnd ← store(p).
6: uhnd ← store(u).
7: vhnd ← store(v).
8: lhnd ← list(invoicehnd, dhnd, phnd, vhnd, uhnd).
9: shnd ← sign(lhnd).

10: mhnd ← list(invoicehnd, shnd).
11: send i(v,mhnd).
12: end if

xac
2 = d, xac

3 = p, andxac
5 = v. Step 2.26 additionally yieldsxac

1 = auth response, which finishes this part.
To show the statements about the signature of the merchant, we exploit that Step 2.25 impliesrt :

D[i].status = processed. The status ofD[i] may only have been set toprocessed in Step 2.11 and 1.3.
In the first case, 2.10 yieldssm = lhnd

2 . The statement for this case is then proved analogously to the state-
ment about the acquirer’s signature with Steps 2.22-2.27 replaced by Steps 2.5-2.10. In the second case,
Step 1.2 implies thatD[i].status = invoice somewhen before timet, hence this entry must have been cre-
ated in Step 2.18. Again the proof works identically as for the acquirer, with Steps 2.22-2.25 replaced by
Steps 2.5-2.8, and Step 2.26 replaced by Step 2.17.

B.2 Proof of the Overall Integrity Property

Proposition B.1 For the payment system from Section 3.3 and the weak atomicity propertyReqweak atom, we
haveSysPS,id |=perf Reqweak atom.

Proof. We only give the proof for the client part of weak atomicity, i.e., we prove the statement
SuccessHonestTerm(d, p, u, v, ac, r, t2) ∧ u ∈ H ⇒ ∃t1 < t2 : PS inu?(pay, d, p, v) ∈ rt1 . The other
parts can be proved similarly. Letd ∈ Σ∗, p ∈ N, u ∈ Mclient ∩ H, v ∈ Mmerchant, t2 ∈ N, r a trace
arising in runs ofSysPS,id, and i := rt2 : DPS

u [desc = d ∧ price = p ∧ merch = v].ind. Recall that
SuccessHonestTerm(d, p, u, v, ac, r, t2) is defined as the disjunction of(u ∈ H ∧ PS outu !(paid, d, p, v) ∈
rt2), (v ∈ H ∧ PS outv !(received, d, p, u) ∈ rt2), and(ac ∈ H ∧ PS outac!(transfer, d, p, u, v) ∈ rt2). We
will prove these three cases separately.

AssumePS outu !(paid, d, p, v) ∈ rt2 . This output may only occur in Step 2.28. Step 2.25 and 2.26
together withunique payment entriesand no modificationimplies rt2 : DPS

u [i].status = processed, and
the status ofDPS

u [i] may only have been set toprocessed in Step 1.3 or 2.11. In the first case, Step 1.1
immediately implies that there the algorithm was activatedon input (pay, d, p, v) at portPS inu? at some
time t1 < t2. In the second case, Step 2.9 ensuresrt′

1
: DPS

u [i].status = pay for somet′1 < t2, hence this
entry was created in Step 1.14. Again the algorithm was activated on inputs(pay, d, p, v) at portPS inu? at
some timet1 < t′1 < t2.

AssumePS outv !(received, d, p, u) ∈ rt2 andv ∈ H. This output may only occur in Step 6.28. Let
j := rt2 : DPS

v [desc = d ∧ price = p ∧ client = u].ind . Step 6.23 and 6.24 together withunique payment
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Algorithm 5 Acquirer: Evaluation of User Inputs for Allow inMPS
ac

Input: (allow, d, p, u, v) atPS inac? with d ∈ CHARSET , p ∈ N, u ∈Mclient, andv ∈Mmerchant.
1: i := DPS

ac [desc = d ∧ price = p ∧ client = u ∧merch = v].ind.
2: if i 6= ↓ ∧ DPS

ac [i].status = auth request then
3: DPS

ac [i].status := processed.
4: auth responsehnd ← store(auth response).
5: dhnd ← store(d).
6: phnd ← store(p).
7: uhnd ← store(u).
8: vhnd ← store(v).
9: lhnd ← list(auth responsehnd, dhnd, phnd, uhnd, vhnd).

10: shnd ← sign(skshnd
ac , lhnd).

11: mhnd ← list(auth responsehnd, shnd).
12: send i(v,mhnd).
13: else ifi = ↓ then
14: DPS

ac :⇐ (cur indac++, d, p, u, v, ↓, ↓, allow).
15: end if

entriesandno modificationimply rt2 : DPS
v [j].sigc 6= ↓. The only step wherev assigns a value different

from ↓ to attributesigc is in Step 6.10. Letlhnd
2 = rt2 : DPS

v [j].sigc and leti := rt2 : D[hndv = lhnd
2 ].ind .

Let l := rt2 : D[i].arg [2], yj := rt2 : D[l].arg [j], andxj := rt2 : D[yj].arg [1] for j = 1, . . . , 5. Then
Steps 6.4-6.9, the definition of the commandsverify, list proj, and retrieve imply rt2 : D[i].type = sig,
rt2 : D[i].arg [1] = pksu, x1 = payment, x2 = d, x3 = p, andx5 = v. Hence the entryD[i] fulfills the
requirements of thecorrect signing, thus there existst1 < t2 such thatPS inu?(pay, d, p, v) ∈ rt1 .

AssumePS outac!(transfer, d, p, u, v) ∈ trt2 andac ∈ H. This output may only occur in Step 8.23. This
case can be proven exactly as the previous one with the corresponding Steps of Algorithm 8.

Proposition B.2 For the payment system from Section 3.3 and the correct disputing propertyReqcorr disp, we
haveSysPS,id |=perf Reqcorr disp.

Proof. Let d ∈ Σ∗, p ∈ N, u ∈ Mclient ∩ H, v ∈ Mmerchant, t3 ∈ N, andr a trace arising in runs
of SysPS,id. Again, we only show the client part of the statement, i.e., assumePS outttp!(dispute, paid,

false, d, p, u, v) ∈ rt3 . The output must have occured in Step 10.20.
The algorithm is invoked only on input(w, ttp, i, lhnd). Let i := D[hndttp = lhnd].arg [1], l1 :=

D[i].arg [2], (pk, s1, s2) := D[l1].arg [1, 2, 3], yj := D[s1].arg [j], andxj := D[yj].arg [1] for j = 1, . . . , 5.
Step 10.17 impliesw = x4 = u.

Now Step 10.1-8 and the definition of the commandsverify, list proj, andmsg of sig imply D[i].type =
sig andpk = pksu. It can then be shown along the lines of the proof ofcorrect signingthatMPS

u must have
input a commandsign(dispute,D[s1].hndu,D[s2].hndu) such thatx1 = payment, x2 = d, x3 = p, x4 =
u, andx5 = v. The only syntactically matchingsign command is in Step 3.4, and is executed only on
input (dispute, d, p, v) at PS inu? at some timet2 < t3. We remain to show the nonexistence of an output
(paid, d, p, v) at PS outu ! for all times t1 < t2. We prove this by contradiction. Assume that there exists
t1 ∈ N such thatPS outu !(paid, d, p, v) ∈ rt1 . Then bycorrect storingboth signaturessigm andsigac have
been stored and the condition in Step 10.17 can easily shown to be true, i.e., the output of Step 10.20 will
never occur. (This last step can be made more formal but requires re-stating the whole formalism of the
invariant and seems to complicate understanding here.)
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Proposition B.3 For the payment system from Section 3.3 and the no framing propertyReqno frame, we have
SysPS,id |=perf Reqno frame.

Proof. Let x ∈ {received, transfer}, d ∈ Σ∗, p ∈ N, u ∈ Hclient, v ∈ Mmerchant, t2 ∈ N, andr be a trace
arising in runs ofSysPS,id. Again we prove only the client part of the statement, i.e., we prove the statement
PS outttp!(dispute, d, p, u, v) ∈ rt2 ⇒ ∃t1 < t2 : PS inu?(pay, d, p, v) ∈ rt1 .

AssumePS outttp?(dispute, x, true, d, p, u, v) ∈ rt2 for x = received (x = transfer). This output occurs
only in Step 10.26 (in Step 10.34). Withlhnd

2 as in Algorithm 10, leti := rt2 : D[hndttp = lhnd
2 ].ind .

Now Step 10.23 and 10.25 (Step 10.31 and 10.33) ensure thatD[i].type = sig, D[i].arg [1] = pksx4
=

D[i].arg [1] = pksu, andx1 = payment. This implies thatD[i] meets the prerequisitescorrect signing, hence
there existst1 < t2 such thatPS inu?(pay, d, p, v) ∈ rt1 .
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Algorithm 6 Merchant: Evaluation of Inputs from the Cryptographic Library inMPS
u

Input: (v, u, i, lhnd) atoutu? with v ∈Mclient ∪ {ac}.
1: lhnd

j ← list proj(lhnd, j) for j = 1, 2.
2: l1 ← retrieve(lhnd

1 ).
3: if l1 = payment ∧ v 6= ac then
4: mhnd

2 ← msg of sig(lhnd
2 ).

5: b← verify(lhnd
2 , pkshnd

u,v ,mhnd
2 )

6: xhnd
j ← list proj(mhnd

2 , j) for j = 1, . . . , 5.
7: xj ← retrieve(xhnd

j ) for j = 1, . . . , 5.
8: i := DPS

u [desc = x2 ∧ price = x3 ∧ client = x4 ∧ sigc = ↓].ind.
9: if x1 = payment ∧ x4 = v ∧ x5 = u ∧ b = true ∧ i 6= ↓ then

10: DPS
u [i].sigc := lhnd

2 .
11: invoicehnd ← store(invoice).
12: mhnd

1 ← list(invoicehnd, xhnd
2 , xhnd

3 , xhnd
4 , xhnd

5 ).
13: shnd

1 ← sign(skshnd
u ,mhnd

1 ).
14: auth requesthnd ← store(auth request).
15: mhnd ← list(auth requesthnd, lhnd

2 , shnd
1 ).

16: send i(ac,mhnd)
17: end if
18: else ifx1 = auth response ∧ v = ac then
19: mhnd

2 ← msg of sig(lhnd
2 ).

20: b← verify(lhnd
2 , pkshnd

u,v ,mhnd
2 )

21: xhnd
j ← list proj(mhnd

2 , j) for j = 1, . . . , 5.
22: xj ← retrieve(xhnd

j ) for j = 1, . . . , 5.
23: i := DPS

u [desc = x2 ∧ price = x3 ∧ client = x4 ∧ sigc 6= ↓].ind.
24: if x5 = u ∧ b = true ∧ i 6= ↓ then
25: DPS

u [i].sigac := lhnd
2 .

26: confirmhnd ← store(confirm).
27: mhnd ← list(confirmhnd, lhnd

2 ).
28: Output(received, x2, x3, x4) atPS outu !.
29: end if
30: end if

Algorithm 7 Merchant: Evaluation of User Inputs for Disputes inMPS
u

Input: (dispute, d, p, v) atPS inu? with d ∈ Σ∗, p ∈ N, andv ∈Mclient.
1: if i := DPS

u [desc = d ∧ price = p ∧ client = v ∧ sigc 6= ↓ ∧ sigac 6= ↓].ind 6= ↓ then
2: disputehnd ← store(dispute).
3: lhnd ← list(disputehnd,DPS

u [i].sigc,D
PS
u [i].sigac).

4: shnd ← sign(skshnd
u , lhnd).

5: mhnd ← list(shnd).
6: send i(ttp,mhnd).
7: end if
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Algorithm 8 Acquirer: Evaluation of Inputs from the Cryptographic Library inMPS
ac

Input: (v, ac, i, lhnd) atoutac? with v ∈Mmerchant.
1: lhnd

j ← list proj(lhnd, j) for j = 1, 2, 3.
2: l1 ← retrieve(lhnd

1 ).
3: if l1 6= auth request then
4: Abort
5: end if
6: mhnd

j ← msg of sig(lhnd
j ) for j = 2, 3.

7: xhnd
j ← list proj(mhnd

2 , j) for j = 1, . . . , 5.
8: xj ← retrieve(xhnd

j ) for j = 1, . . . , 5.
9: yhnd

j ← list proj(mhnd
3 , j) for j = 1, . . . , 5.

10: yj ← retrieve(yhnd
j ) for j = 1, . . . , 5.

11: b2 ← verify(lhnd
2 , pkshnd

ac,x4
,mhnd

2 ).

12: b3 ← verify(lhnd
3 , pkshnd

ac,v,m
hnd
3 ).

13: if x1 = payment ∧ y1 = invoice ∧ b2 = b3 = true ∧ x5 = v ∧ ∀j = 2, . . . , 5: xj = yj then
14: i := DPS

ac [desc = x2 ∧ price = x3 ∧ client = x4 ∧merch = x5].
15: if i 6= ↓ ∧ DPS

ac [i].status = allow then
16: DPS

ac [i].sigc := lhnd
2 .

17: DPS
ac [i].sigm := lhnd

3 .
18: DPS

ac [i].status := processed.
19: auth responsehnd ← store(auth response).
20: mhnd

1 ← list(auth responsehnd, xhnd
2 , xhnd

3 , xhnd
4 , xhnd

5 ).
21: shnd ← sign(skshnd

ac ,mhnd
1 ).

22: mhnd ← list(auth responsehnd, shnd).
23: Output(transfer, x2, x3, x4, x5) atPS outac!.
24: send i(v,mhnd).
25: else ifi = ↓ then
26: DPS

ac :⇐ (cur indac++, x2, x3, x4, x5, l
hnd
1 , lhnd

2 , auth request).
27: end if
28: end if

Algorithm 9 Acquirer: Evaluation of User Inputs for Disputes inMPS
ac

Input: (dispute, d, p, u, v) atPS inac? with d ∈ Σ∗, p ∈ N, u ∈Mclient, andv ∈Mmerch.
1: if i := DPS

ac [desc = d ∧ price = p ∧ client = u ∧merch = v ∧ sigc 6= ↓ ∧ sigm 6= ↓].ind 6= ↓ then
2: disputehnd ← store(dispute).
3: lhnd ← list(disputehnd,DPS

ac [i].sigc,D
PS
ac [i].sigm).

4: shnd ← sign(skshnd
ac , lhnd).

5: mhnd ← list(shnd).
6: send i(ttp,mhnd).
7: end if
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Algorithm 10 TTP: Evaluation of Inputs from the Cryptographic Library inMPS
ttp

Input: (v, ttp, i, lhnd) atoutttp? for v ∈M \ {ttp}.
1: shnd ← list proj(lhnd, 1).
2: l∗

hnd
← msg of sig(shnd)

3: b1 ← verify(shnd, pkshnd
ttp,v, l

∗hnd
).

4: lhnd
j ← list proj(l∗

hnd
, j) for j = 1, 2, 3.

5: l1 ← retrieve(lhnd
1 ).

6: if l1 6= dispute ∨ b1 6= true then
7: Abort
8: end if
9: mhnd

j ← msg of sig(lhnd
j ) for j = 2, 3.

10: xhnd
j ← list proj(mhnd

2 , j) for j = 1, . . . , 5.
11: xj ← retrieve(xhnd

j ) for j = 1, . . . , 5.
12: yhnd

j ← list proj(mhnd
3 , j) for j = 1, . . . , 5.

13: yj ← retrieve(yhnd
j ) for j = 1, . . . , 5.

14: if v ∈Mclient then
15: b2 ← verify(lhnd

2 , pkshnd
ttp,x5

,mhnd
2 ).

16: b3 ← verify(lhnd
3 , pkshnd

ttp,ac,m
hnd
3 ).

17: if x1 = invoice ∧ y1 = auth response ∧ x4 = v ∧ b2 = b3 = true ∧ ∀j = 2, . . . , 5: xj = yj then
18: Output(dispute, paid, true, x2, x3, x4, x5) atPS outttp!.
19: else
20: Output(dispute, paid, false, x2, x3, x4, x5) atPS outttp!.
21: end if
22: else ifv ∈Mmerchant then
23: b2 ← verify(lhnd

2 , pkshnd
ttp,x4

,mhnd
2 ).

24: b3 ← verify(lhnd
3 , pkshnd

ttp,ac,m
hnd
3 ).

25: if x1 = payment ∧ y1 = auth response ∧ x5 = v ∧ b2 = b3 = true ∧ ∀j = 2, . . . , 5: xj = yj then
26: Output(dispute, received, true, x2, x3, x4, x5) atPS outttp!.
27: else
28: Output(dispute, received, false, x2, x3, x4, x5) atPS outttp!.
29: end if
30: else ifv = ac then
31: b2 ← verify(lhnd

2 , pkshnd
ttp,x4

,mhnd
2 ).

32: b3 ← verify(lhnd
3 , pkshnd

ttp,x5
,mhnd

3 ).
33: if x1 = payment ∧ y1 = invoice ∧ b2 = b3 = true ∧ ∀j = 2, . . . , 5: xj = yj then
34: Output(dispute, transfer, true, x2, x3, x4, x5) atPS outttp!.
35: else
36: Output(dispute, transfer, false, x2, x3, x4, x5) atPS outttp!.
37: end if
38: end if
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