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Abstract

Classifiers that refrain from classification in certain cases can signifi-
cantly reduce the misclassification cost. However, the parameters for such
abstaining classifiers are often set in a rather ad-hoc manner. We propose
a method to optimally build a specific type of abstaining binary classifiers
using ROC analysis. These classifiers are built based on optimization cri-
teria in the following three models: cost-based, bounded-abstention and
bounded-improvement. We demonstrate the usage and applications of
these models to effectively reduce misclassification cost in real classifi-
cation systems. The method has been validated with a ROC building
algorithm and cross-validation on 15 UCI KDD datasets.

Keywords: machine learning, abstaining classifiers, ROC analysis,
cautious classifiers

1 Introduction

In recent years, there has been much work on ROC analysis [Faw03, FW03,
PF98]. An advantage of ROC analysis in machine learning is that it offers a
flexible and robust framework for evaluating classifier performance with varying
class distributions or misclassification costs [Faw03].

Abstaining classifiers are classifiers that can refrain from classification in
certain cases and are analogous to a human expert, who in certain cases can
say “I don’t know”. In many domains (e.g., medical diagnosis) such experts are
preferred to those who always make a decision and are sometimes are wrong.

Machine learning has frequently used abstaining classifiers [Cho70, FHO04,
PMAS94, Tor00] and also as parts of other techniques [FFHO04, GL00, LC94].
Similarly to the human expert analogy, the motivation is that such a classifier,
when it makes a decision, will perform better than a normal classifier. However,
as these classifiers are not directly comparable, the comparison is often limited
to coverage–accuracy graphs [FHO04, PMAS94].

In our paper, we apply ROC analysis to build an abstaining classifier that
minimizes the misclassification cost. Our method is based solely on ROC curves

∗Research Report RZ3571, IBM Zurich Research Laboratory, 2005. This paper is an ex-
tended version of [Pie05].
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and is independent of the classifiers used. We look at a particular type of ab-
staining binary classifiers—metaclassifiers constructed from two classifiers de-
scribed by a single ROC curve—and show how to select such classifiers optimally.

The contribution of the paper is twofold: We define an abstaining binary clas-
sifier built as a metaclassifier and propose three models of practical relevance:
the cost-based model (an extension of [Tor00]), the bounded-abstention model,
and the bounded-improvement model. These models define the optimization
criteria and allow us to compare binary and abstaining classifiers. Second, we
show how to practically build an optimal abstaining classifier in each of these
models using ROC analysis.

The paper is organized as follows: Section 2 presents the notation and in-
troduces the ROCCH method. In Section 3 we introduce the concept of ROC-
optimal abstaining classifiers in three models. In Section 4 we discuss their
construction. Section 5 discusses the evaluation methodology and presents the
experimental results. In Section 6 we present related work. Finally, Section 7
contains the conclusions and future work.

2 Background and Notation

A binary classifier C is a function that assigns a binary class label to an instance,
usually testing an instance with respect to a particular property. We will denote
the class labels of a binary classifier as “+” and “−”.

A ranker R (also known as scoring classifier) is a special type of binary
classifier that assigns ranks to instances. The value of the rank denotes the
likelihood that the instance is “+” and can be used to sort instances from the
most likely to the least likely positive. A ranker R can be converted to a binary
classifier Cτ as follows: ∀i : Cτ (i) = + ⇐⇒ R(i) > τ . Variable τ in Cτ denotes
parameter (in this case a threshold) that was used to construct the classifier.

Abstaining binary classifiers A (or abstaining classifiers for short) are clas-
sifiers that in certain situations abstain from classification. We denote this as
assigning a third class “?”. Such non-classified instances can be classified us-
ing another (possibly more reliable, but more expensive) classifier or a human
domain expert. This classification exceeds the scope of this paper.

The performance of a binary classifier is described by means of a 2 × 2-
dimensional confusion matrix C. Rows in C represent actual class labels, and
columns represent class labels predicted by the classifier. Element Ci,j repre-
sents the number of instances of class i classified as class j by the system. For
a binary classifier the elements are called true positives (TP ), false negatives
(FN), false positives (FP ), and true negatives (TN) as shown in Table 1a. The
sum of TP and FN is equal to the number of positive instances (P ). Similarly
the number of negative instances (N) equals FP + TN .

Asymmetrical classification problems can be modelled by a cost matrix Co

with identical meanings of rows and columns as in the confusion matrix. El-
ement Coi,j represents the cost of assigning a class j to an instance of class
i. Most often the cost of correct classification is zero, i.e., Coi,i = 0. In such
cases, the matrix has only two non-zero values for binary classifiers (Table 1b):
c21 (cost of misclassifying a negative instance as a positive) and c12 (cost of
misclassifying a positive instance as a negative). In fact, such a cost matrix has
only one degree of freedom, the cost ratio CR = c21

c12
.
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Classifiers in a cost-sensitive setup can be characterized by the cost rc—
a cost-weighted sum of misclassifications divided by the number of classified
instances:

rc =
FN · c12 + FP · c21

TP + FN + FP + TN
. (1)

2.1 ROC Analysis

Very briefly, a ROC plane has axes ranging from 0 to 1 and labeled false positive
rate (fp = FP

FP+TN
= FP

N
) and true positive rate (tp = TP

TP+FN
= TP

P
). Evaluating

a binary classifier Cτ on a dataset produces exactly one point (fpτ , tpτ ) on the
ROC plane. Many classifiers (e.g., Bayesian classifiers) or methods for building
classifiers have parameters τ that can be varied to produce different points on
the ROC plane. In particular, a single ranker can be used to efficiently generate
a set of points on the ROC plane [Faw03].

Table 1: Confusion and cost matrices for binary classification. The columns (C)
represent classes assigned by the classifier; the rows (A) represent actual classes.

(a) Confusion matrix C
P

P
P

PPA
C

+ −

+ TP FN P
− FP TN N

(b) Cost matrix Co

H
H

H
HH

A
C

+ −

+ 0 c12

− c21 0

Given a set of points on a ROC plane, the ROC Convex Hull (ROCCH)
method [PF98] constructs a piecewise-linear convex down curve (called ROCCH )
fR : fp 7→ tp, having the following properties: (i) fR(0) = 0, (ii) fR(1) = 1, and
(iii) the slope of fR is monotonically non-increasing. We denote the slope of a
point on the ROCCH as f ′

R
†.

With the goal of finding the classifier that minimizes the misclassification
cost rc, we proceed as follows:

rc =
FP · c21 + FN · c12

N + P
=

FP · c21 + P
(
1 − fR

(
FP
N

))
c12

N + P
. (2)

To find the minimum of rc, we calculate the first derivative of the function d rc
d FP

and set it equal to 0. This yields a known equation of iso-performance lines

f ′
R(fp∗) = CR

N

P
, (3)

which shows the optimal slope of the curve given a certain cost ratio (CR), N

negative, and P positive instances. Similarly to Provost and Fawcett [PF98],
we assume that for any real m > 0 there exists at least one point (fp∗, tp∗) on
the ROCCH having f ′

R(fp∗) = m.
Note that the solution of this equation can be used to find a classifier that

minimizes the misclassification cost for the instances used to create the ROCCH.
We call such a classifier ROC-optimal. Note that it may not be optimal on

†For this paper we assume that the slope at vertices of a convex hull takes all values
between the slopes of adjacent line segments.
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other instances. However, if the testing instances used to build the ROCCH
and the other instances are representative, such a ROC-optimal classifier will
also perform well on other testing sets.

3 ROC-Optimal Abstaining Classifier

Our method builds an ROC-optimal abstaining classifier as a metaclassifier
using a ROC curve and the binary classifiers used to construct it. A ROC-
optimal classifier is defined as described in Sect. 2.1. The method constructs an
abstaining metaclassifier Aα,β using two binary classifiers Cα and Cβ as follows:

Aα,β(x) =







+ Cα(x) = + ∧ Cβ(x) = +

? Cα(x) = − ∧ Cβ(x) = +

− Cβ(x) = − ∧ Cα(x) = −

. (4)

Each classifier has a corresponding confusion matrix, (TPα, FNα, FPα, TNα) and
(TPβ , FNβ , FPβ , TNβ), which will be used in the next sections. Classifiers Cα

and Cβ belong to a family of classifiers Cτ , described by a single ROC curve with
FPα ≤ FPβ .

Our method is independent of the machine-learning technique used. How-
ever, we require that for any two points (fpα, tpα), (fpβ , tpβ) on the ROC curve,
with fpα ≤ fpβ , corresponding to Cα and Cβ , the following conditions hold:

∀i : (Cα(i) = + =⇒ Cβ(i) = +) ∧

(Cβ(i) = − =⇒ Cα(i) = −) .
(5)

Conditions (5) are the ones used in [FW03]. These are met in particular if the
ROC curve and Cα and Cβ are built from a single ranker R (e.g., a Bayesian
classifier) with two threshold values α and β (α ≥ β). The advantage is that for
such a classifier, a simple and efficient algorithm exists for constructing a ROC
curve [Faw03]. For arbitrary classifiers (e.g., rule learners), (5) is generally
violated. However, we observed that the fraction of instances with Cα(i) =
+ ∧ Cβ(i) = − is typically small, and that applying our method is such cases
still yields good results. As this is an interesting class of applications, we plan
to elaborate on it as a future work item.

Given a particular cost matrix and class distribution N
P

, the optimal bi-
nary classifier can easily be chosen as a one that minimizes the misclassifica-
tion cost (1). However, no such notion exists for abstaining classifiers, as the
tradeoff between non-classified instances and the cost is undefined. Therefore,
we propose and investigate three different criteria and models of optimization:
the cost-based, the bounded-abstention and the bounded-improvement model,
which we discuss in the following sections. We formulate our goals as:

Given – A ROC curve generated using classifiers Cτ , such that (5) holds.
– A Cost matrix Co.
– Evaluation model E .

Find A classifier Aα,β such that Aα,β is optimal in model E .
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Table 2: Cost matrix Co for an abstaining classifier. Columns and rows are the same
as in Table 1. The third column denotes the abstention class.

P
P

P
PPA

C
+ − ?

+ 0 c12 c13

− c21 0 c23

3.1 Cost-Based Model

In this model, we compare the misclassification cost, rc, incurred by a binary
and an abstaining classifier. We use an extended 2 × 3 cost matrix, with the
the third column representing the cost associated with classifying an instance
as “?”. Note that this cost can be different for instances belonging to different
classes, which extends the cost matrix introduced in [Tor00].

Given – ROC curve generated using classifiers such that (5) holds
– 2 × 3 cost matrix Co

Find Classifier Aα,β such that the r̃c on the testing set is minimal

Having defined the cost matrix, we use a similar approach as in Sect. 2.1
for finding the optimal classifier. Note that the classifications made by Cα and
Cβ are not independent. Equation (5) implies that false positives for Cα imply
false positives for Cβ . The similar holds for false negatives, and we can thus
formulate (7). The misclassification cost r̃c is defined using a 2× 3 cost matrix
using (6), with the denominator equal to the total number of instances N + P .

r̃c =

∑k
i=1

∑l
j=1 (Ci,j · Coi,j)

∑k
i=1

∑l
j=1 Ci,j

. (6)

r̃c =
1

N + P

(
(FPβ − FPα) c23
︸ ︷︷ ︸

Cα, Cβ disagree, –

+(FNα − FNβ) c13
︸ ︷︷ ︸

Cα, Cβ disagree, +

+ FPα · c21
︸ ︷︷ ︸

FP for both

+ FNβ · c12
︸ ︷︷ ︸

FN for both

)

= FNα · c13 + FPα · (c21 − c23) + FNβ · (c12 − c13) + FPβ · c23

= P

(

1 − fR

(
FPα

N

))

c13 + FPα (c21 − c23)

+ P

(

1 − fR

(
FPβ

N

))

(c12 − c13) + FPβ · c23
(7)

We rewrite (7) as a function of only two variables: FPα and FPβ , so that to find
the local minimum we calculate partial derivatives for these variables. After
calculations, setting the derivatives to zero, making sure that the function has a
local extremum, and replacing FPα and FPβ with the corresponding rates fpα

and fpβ , we obtain the final result:

f ′
R(fp∗β) =

c23

c12 − c13

N

P

f ′
R(fp∗α) =

c21 − c23

c13

N

P
,

(8)

which, similarly to (3), allows us to find fp∗
α and fp∗β , and corresponding clas-

sifiers Cα and Cβ .
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This derivation is valid only for metaclassifiers (4) with (5), which implies
fp∗α ≤ fp∗β and fR(fp∗α) ≤ fR(fp∗β). As a ROCCH is increasing and convex,
its first derivative is non-negative and non-increasing, and we obtain f ′

R(fp∗α) ≥
f ′

R(fp∗β) ≥ 0. Using the 2 × 3 cost matrix these conditions can be rewritten as:

(c21 ≥ c23) ∧ (c12 > c13) ∧ (c21c12 ≥ c21c13 + c23c12) . (9)

If condition (9) is not met, our derivation is not valid; however the solution
is trivial in this case.

Theorem 1. If (9) is not met, the classifier minimizing the misclassification
cost is a trivial binary classifier—a single classifier described by (3).

Proof. We omit the complete proof for space reasons and only briefly outline it.
First, we have to show that for a ROC-optimal abstaining classifier f ′

R(fp∗α) ≥
f ′

R(fp∗) ≥ f ′
R(fp∗β) ≥ 0, where fp∗ describes the ROC-optimal binary classifier.

Second, we have to show that if (9) is not met, partial derivatives ∂r̃c
∂fpα

and
∂r̃c

∂fpβ
are positive for fp∗α < fp∗ and fp∗β > fp∗. Therefore we conclude that

the ROC-optimal classifier is a binary classifier in this case.

Equation (9) allows us to determine whether for a given 2 × 3 cost matrix
Co exists a trivial abstaining classifier minimizing rc, but gives little guidance
to setting parameters in this matrix. For this we consider two interesting cases:
(i) a symmetric case c13 = c23, and (ii) a proportional case c23

c13
= c21

c12
.

The first case has some misclassification cost CR with identical costs of
classifying instances as “?”. This case typically occurs when, for example, the
cost incurred by the human expert to investigate such instances is irrespective
of their true class. In this case, (9) simplifies to the harmonic mean of two
misclassification costs: c13 = c23 ≤ c21c12

c21+c12
. The second case gives us the

condition c13 ≤ c12

2 (equivalent to c23 ≤ c21

2 ). This case occurs if the cost
of classifying an event as the third class is proportional to the misclassification
cost. Finally, when CR = 1, both cases become one, symmetric case, where c13 =
c23 ≤ c12

2 = c21

2 . These simplified equations allow a meaningful adjustment of
parameters c13 and c23 for abstaining classifiers.

To summarize, the ROC-optimal abstaining classifier in a cost-based model
can be found using (8) if (9) (or the special cases discussed below) holds on a
given cost matrix. In the opposite case, our derivation is not valid; however the
ROC-optimal classifier is a trivial binary classifier (Cα = Cβ).

To illustrate this with an example, Figure 1 shows a sample ROC curve
(left picture) and the relative misclassification cost as a function of fpα and fpβ

(right picture). The optimal classifiers are marked with dashed lines.

3.2 Bounded Models

In the simulations using a cost-based model (see Sect. 5.3.1) we noticed that
the cost matrix and in particular cost values c13 and c23 have a large impact
on the number of instances classified as“?”. Therefore we think that, while the
cost-based model can be used in domains where the 2×3 cost matrix is explicitly
given, it may be difficult to apply in other domains, where parameters c13, c23

would have to be estimated.
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Figure 1: The optimal classifier for a sample ROC curve in a cost-based model (Co =
[[0, 2, 0.2], [1, 0, 0.2]]).

To address this shortcoming we propose a model that uses a standard 2× 2
cost matrix. In such a setup, we calculate the misclassification cost per instance
actually classified. The motivation is to calculate the cost only for instances the
classifier attempts to classify.

Using a standard cost equation, (1), with the denominator TP +FP +FN +
TN = (1 − k)(N + P ), where k is the fraction of non-classified instances, we
obtain:

rc =
1

(1 − k)(N + P )
(FPα · c21 + FNβ · c12)

k =
1

N + P
((FPβ − FPα) + (FNα − FNβ)) ,

(10)

which determine the relationship between the fraction of classified instances k

and the misclassification cost rc as a function of Cα and Cβ . By putting boundary
constraints on k and rc and trying to optimize rc and k, respectively, we create
two interesting evaluation models, which we discuss below.

3.2.1 Bounded-Abstention Model

By limiting k to some threshold value kmax (k ≤ kmax) we obtain a model
in which the classifier can abstain for at most a fraction k of instances. In
this case the optimization criterion is that the classifier should have the lowest
misclassification cost rc.

Given – ROC curve generated using classifiers such that (5) holds
– 2 × 2 cost matrix Co

– Fraction kmax

Find Classifier Aα,β such that the misclassification cost rc on the testing
set is minimal and the classifiers abstains for not more than a
fraction of kmax instances.

This has several real-life applications, e.g., in situations where non-classified

7



instances will be handled by a classifier with limited processing speed (e.g., a
human expert). In such cases, assuming a constant flow of instances with speed
c and a constant manual processing speed m, m < c, we obtain kmax = m

c
.

We rewrite Equations (10) as functions of two variables fpα and fpβ and
introduce two auxiliary functions rc(fpα, fpβ), expressing the relative misclassi-
fication cost, and k(fpα, fpβ), denoting the number of non-classified instances.
The minimization goal can be expressed as follows: Among all pairs (fp∗

α, fp∗β)
that satisfy k(fp∗α, fp∗β) ≤ kmax(N+P ), find the ones that minimize rc(fp∗α, fp∗β).

rc(fpα, fpβ) =
N · fpα · c21 + P (1 − fR(fpβ)) · c12

N + P − k(fpα, fpβ)

k(fpα, fpβ) = P (fR(fpβ) − fR(fpα))

+ N(fpβ − fpα)

(11)

Unfortunately, unlike (8), the Equations (11) for a bounded-abstention model
have no algebraic solution in the general case. Therefore we minimize it using
numerical methods.

We implemented these routines in R [R D04]. To illustrate this with an
example, Figure 2 shows a sample ROC curve (left picture) and the relative
misclassification cost as a function of fpα and fpβ (right picture). Colors of the
surface represent the fraction of non-classified instances and are bounded by
the boundary case k(fpα, fpβ) = 0.2. The optimal classifiers are marked with
dashed lines.
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Figure 2: The optimal classifier for a sample ROC curve in a bounded model
(k(fpα, fpβ) ≤ 0.2).

3.2.2 Bounded-Improvement Model

The second bounded model is when we limit rc to a threshold value rcmax

(rc ≤ rcmax) and require that the classifier abstain for the smallest number of
instances.

Similarly to the previous model, optimizing this model requires the use of
numerical methods. Using the definitions of k(fpα, fpβ) and rc(fpα, fpβ) in (11),
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Given – ROC curve generated using classifiers such that (5) holds
– 2 × 2 cost matrix Co

– Cost rcmax

Find Classifier Aα,β such that the misclassification cost rc is not greater
than rcmax and the classifier abstains for the smallest number of
instances on the testing set.

we express the minimization goal as follows: Among all pairs (fp∗
α, fp∗β) such

that rc(fp∗α, fp∗β) ≤ rcmax, find the ones that minimize k(fp∗α, fp∗β).
This model has several real-life applications, e.g., in a medical domain, where

given a certain test and its characteristics (ROC curve) the goal is to reduce
the misclassification cost to a user-defined value rcmax allowing for the smallest
number of abstentions.

For the evaluation of this model the following remark is in place. As different
datasets yield different ROC curves and misclassification costs, we could not
use a constant value of rcmax for all datasets. Instead we used a fraction cost
improvement f and calculated rc′ as follows: rcmax = (1−f) rc, where rc is the
misclassification cost of the ROC-optimal binary classifier found using (3).

As an example, Figure 3 shows a sample ROC curve (left picture) and the
fraction of skipped instances as a function of fpα and fpβ (right picture). Colors
of the surface represent the relative cost improvement over the optimal binary
classifier and are bounded by the boundary case f = 0.2, i.e., rc(fpα, fpβ) =
0.8 · rc. The optimal classifiers are marked with dashed lines.
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Figure 3: The optimal classifier for a sample ROC curve in an bounded-improvement
model (rc(fpα, fpβ) ≤ 0.8 · rc).

4 Constructing Abstaining Classifiers

In this section we discuss how to construct an optimal abstaining classifier in
the three models. Based on [PF98, Tor00], in the cost-based model, the ROC-
optimal classifier is always located on the vertices of the ROCCH. This is intu-
itive as classifiers corresponding to two adjacent vertices of the ROCCH have
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the same slopes and the same misclassification costs as classifiers corresponding
to the line segment joining these vertices. However, this is not always the case
in the two bounded models we introduced in Sections 3.2.1 and 3.2.2.

Theorem 2. In the (i) bounded-abstention and (ii) bounded-improvement mod-
els, the optimal classifier is not always located on the vertices of the ROCCH.

Proof. (by counterexample)
(i) Assume the optimal classifier Aα,β has its classifiers Cα and Cβ located on the
vertices of the particular convex hull (0, 0), (0.5, 1), (1, 1) with c12 = c21 = 1,
N = P and kmax < 0.25. In this case Cα must be equal to Cβ (otherwise
k ≥ 0.25). Therefore, fpα = fpβ = 0.5 and from (11) rc(fpα, fpβ) = 0.25.

Assume a classifier ˜Aα,β has f̃pα = 0.5− δ and f̃pβ = 0.5, with a small pos-

itive δ so that k(f̃pα, f̃pβ) < 0.25). In this case (11) simplifies to rc(f̃pα, f̃pβ) =

0.25 − 2δ
4−6δ

< 0.25. This contradicts the assumption that Aα,β is an optimal
classifier in a bounded-abstention model and completes the proof.

(ii) A similar proof can be shown for a bounded-improvement model. We
omit it for space reasons.

To conclude, vertices on the ROCCH can be used to find a ROC-optimal
classifier only in the cost-based model. In the remaining two models, the ROC-
optimal classifier uses arbitrary points on the ROCCH. Such classifiers, cor-
responding to points lying on the line segment can be constructed using a
weighted random selection of votes of classifiers corresponding to two adjacent
vertices [Faw03]. However, our prototype uses another method, which was more
stable and produced less variance than the random selection.

A ROCCH can be considered a function f : τ 7→ (fp, tp), where τ ∈ T is a set
of discrete parameters, varying which one constructs classifiers Cτ corresponding
to different points on the ROCCH. In our algorithm we compute an inverse
function f−1 : (fp, tp) 7→ τ and interpolate it using splines with a function ˆf−1,
defined for a continuous range of values τ . Given an arbitrary point (fp∗, tp∗)

on the curve, we use the function ˆf−1 yielding τ∗ to construct a classifier Cτ∗

5 Experiments

To analyze the performance of our method we tested it on 15 well-known
datasets from the UCI KDD [HB99] database: breast-cancer, breast-w,
colic, credit-a, credit-g, diabetes, heart-statlog, hepatitis, ionosphere,
kr-vs-kp, labor, mushroom, sick, sonar, and vote.

We tested our method in all three models described above. In the model
1, the input data is a 2 × 3 cost matrix in the symmetric case (c13 = c23). In
the model 2, we use a 2 × 2 cost matrix and k (a fraction of instances that
the system does not classify). In the model 3, the input data is also a 2 × 2
cost matrix and a fraction f , i.e., a relative cost improvement over the optimal
binary classifier (defined as

rcbinary−rctri−state

rcbinary
).

5.1 Testing Methodology

The experiment for each dataset was a two-fold cross-validation repeated five
times with different seed values for the pseudo-random generator (we used 5 ×
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2 cv, as it has a low-level Type-I error for significance testing [Die98]). We
averaged the results for these runs and calculated 95% confidence intervals,
shown as error bars on each plot. In the cross-validation, we used a training
set to build an abstaining classifier, which was subsequently evaluated on the
testing set.

The process of building an abstaining classifier is shown in Fig. 4. We used
another two-fold cross-validation (n = 2) to construct a ROC curve. The cross-
validation was executed five times (m = 5), and the resulting ROC curves were
averaged (threshold averaging [Faw03]) to generate a smooth curve. While the
method is applicable for any machine learning algorithm that satisfies (5), we
used a simple Naive Bayes classifier as a base classifier, converting it to a ranker

by calculating the prediction ratio P (x,+)
P (x,−) .

Given the ROC curve and the input parameters (cost matrix and a value
k), the program numerically finds values α and β describing Cα and Cβ and
the ROC-optimal classifier (in each model). These values were used to set the
thresholds in a Naive Bayes classifier built using the entire training set to create
Aα,β .

n-fold
cross-validation

Testing Set
Classify

(1) 2x3 cost matrix or
(2) 2x2 cost matrix and fraction k

Training Set
Build Classifier

Collect
 Statistics

repeat m-times and average

(for each fold)

Build ROC

Find Thresholds*

Build Classifier

Build Abstaining
Classifier A

Binary Classifier

Thresholds

ROC

training examples

Classifier

* - algorithm described in the paper

a,b

Figure 4: Building an abstaining classifier Aα,β .

Such an experiment was run for every dataset and every combination of
input parameters, CR, c13 (respectively k or f), thus producing multiple plots
(one for each dataset), multiple series (one for each cost ratio), and multiple
points (one for each value of c13, k or f).

We used three values of the cost ratio (CR): 0.5, 1 and 2, and four different
values of c13 (first model), k: 0.1, 0.2, 0.3 and 0.5 (second model), and f : 0.1,
0.2, 0.3 and 0.5 (third model), yielding 180 experiment runs (15×3×4) for each
model. We will briefly justify this choice of parameters. For the first model, we
selected values of c13 that are evenly spaced between 0 and the maximum value
for a particular cost ratio (cf. (9)). For the remaining two models, while the
results will definitely be application-dependent, we believe values of k (f) lower
than 0.1 bring too small an advantage to justify abstaining classifiers, whereas
values larger than 0.5 may not be practical for real classification systems. For
the CRs we tested the performance of our system for cost ratios close to 1.
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Figure 5: Cost-based model: Relative cost improvement and fraction of non-classified
instances for a representative dataset (◦ : CR = 0.5, � : CR = 1, ♦ : CR = 2).

We used Bayesian classifier from Weka toolkit [WF00] as a machine-learning
method and R [R D04] to perform numerical calculations. For the numerical
optimization for bounded models we used the Nelder-Mead optimization algo-
rithm [NM65].

5.2 Results—Cost-Based Model

Out of 180 simulations (15 datasets, four values of c13, and three cost values)
152 are significantly better (lower rc) than the corresponding optimal binary
classifier (one-sided paired t-test with a significance level of 0.95). The optimal
binary classifier was the same Bayesian classifier with a single threshold set
using (3).

The results for a representative dataset are shown in Fig. 5. The complete
results for all datasets are shown in Figs. 8 and 9 in Appendix A. The X-axes
correspond to the cost value in a symmetric case c13 = c23 (left and center
panel), and the Y-axes show the relative cost improvement (left panel) and the
fraction of non-classified instances (center panel). The right panel displays the
relationship between the fraction of skipped instances and the overall cost im-
provement. Horizontal error bars show 95% confidence intervals for the fraction
of non-classified instances, only indirectly determined by c13.

We clearly observe that lower misclassification costs c13 = c23 result in a
higher number of instances being classified as “?” and higher relative cost im-
provement. Moreover, an almost linear relationship exists between the fraction
of non-classified instances and the relative cost improvement (right panel).

5.3 Results—Bounded Models

5.3.1 Bounded-Abstention Model

Out of 180 simulations (15 datasets, four values of fractions of non-classified
instances and three cost values) 179 have significantly lower rc than the cor-
responding optimal binary classifier (one-sided paired t-test with a significance
level of 0.95). The optimal binary classifier is a Bayesian classifier with a single
threshold.

We also observed that in most cases the resulting classifier classified the
desired fraction of instances as the third class; the mean of the relative difference

12



of k (∆k
k

) for all runs is 0.078 (σ = 0.19). This is particularly important as it is
only indirectly determined by the two thresholds the algorithm calculates.

The results for a representative dataset are shown in Fig. 6. The complete
results for all datasets are shown in Figs. 10 and 11 in Appendix A. The X-
axes correspond to the actual fraction of non-classified instances and the Y-axes
show the relative cost improvement (left panel) and the misclassification cost
(right panel). The left panel shows the relative cost improvement as a function
of the fraction of instances handled by operator k. In general, the higher the
values of k, the higher the cost improvement; for 8 datasets, namely: breast-w,
credit-a, credit-g, diabetes, heart-statlog, ionosphere, kr-vs-kp and
sonar, we can observe an almost linear dependence between these variables.
The right panel shows the same data with the absolute values of rc. The dashed
arrows show the difference between an optimal binary classifier and an abstain-
ing one.
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Figure 6: Bounded-abstention model: Relative cost improvement and the absolute
cost for one representative dataset (◦ : CR = 0.5, � : CR = 1, ♦ : CR = 2).

5.3.2 Bounded-Improvement Model

This model is in fact the inverse of the previous model, and thus we expected
very similar results. The results for a representative dataset are shown in Fig. 7.
The complete results for all datasets are shown in Figs. 12 and 13 in Appendix A.

The X-axes correspond to relative cost improvement (left panel) and the
misclassification cost (right panel). The Y-axes show the actual fraction of
non-classified instances.

The left panel shows the fraction of instances handled by the operator as
a function of the actual misclassification cost. It is interesting to compare the
actual relative cost improvement f and the assumed one (0.1, 0.2, 0.3, 0.5), as
the former is only indirectly determined through two thresholds determined by
the performance on the training set. The mean of the relative difference of f

(∆f
f

) for all runs is 0.31 (σ = 1.18). The positive value of the mean shows that
the system has, on average, a lower misclassification cost than required. Note
that this value is higher than the corresponding difference in the previous model.
We conclude that this model is more sensitive to parameter changes than the
previous one. The right panel shows the same data with the X-axis viewed as

13



absolute values of costs. In addition the horizontal arrows (dashed) indicate the
absolute values for the optimal binary classifier and the desired cost at the head
of an arrow.

0.1 0.3 0.5

0.
05

0.
20

0.
35

ionosphere.arff

relative cost improvement (f)

fr
ac

tio
n 

sk
ip

pe
d 

(k
)

0.06 0.10 0.14

0.
05

0.
20

0.
35

ionosphere.arff

misclassification cost (rc)
fr

ac
tio

n 
sk

ip
pe

d 
(k

)

Figure 7: Bounded-improvement model: Fraction of non-classified instances for a
representative dataset (◦ : CR = 0.5, � : CR = 1, ♦ : CR = 2).

6 Related Work

Classifiers with reject rules were first investigated by Chow [Cho70] and fur-
ther developed by Tortorella [Tor00]. The latter uses ROC analysis in a model
corresponding to our cost-based model in a more restrictive setup (c13 = c23).
Our work extends this model further and shows conditions, under which a non-
trivial abstaining classifier exists. We also propose two bounded models with
other optimization criteria.

Cautious classifiers [FHO04] propose abstaining classifiers with a class bias K

and an abstention window w, which make them similar to our second evaluation
model, where an abstention window is defined. However, although for w = 0
abstention is zero and the classifier abstains for approximately all instances for
w = 1, the relationship between w and the abstention is neither continuous nor
linear [FHO04]. Therefore our model cannot be compared easily with cautious
classifiers. Similarly, cautious classifiers require calibrated probabilities assigned
to instances (otherwise the class bias might be difficult to interpret). In contrast
our model, if used with a scoring classifier, uses only information about the
ordering of instances, not the absolute values of probabilities. This makes our
model more general. On the other hand, cautious classifiers are more general
in the sense that they can be used with a multi-class classification, whereas our
model is based on ROC analysis and is only applicable to two-class classification
problems.

Delegating classifiers [FFHO04] use a cascading model, in which classifiers at
every level classify only a certain percentage of the instances. In this way every
classifier, except for the last one is a cautious classifier. The authors present
their results with an iterative system, using up to n − 1 cautious classifiers.

Pazzani et al [PMAS94] showed how different learning algorithms can be
modified to increase accuracy at the cost of not classifying some of the instances,
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thus creating an abstaining classifier. However, this approach does not select
the optimal classifier, is cost-insensitive and specific to the algorithms used.

Confirmation rule sets [GL00] are another example of classifiers that may
abstain from classification. Confirmation rule sets use a special set of highly
specific classification rules. The results of the classification (and whether the
classifier makes the classification at all) depend on the number of rules that fired.
Similarly to the previous approach, the authors do not maximize the accuracy.
Moreover, confirmation rule sets are specific to the learning algorithm used.

Active learning [LC94] minimizes the number of labeled instances by iter-
atively selecting a few instances to be labeled. This selection process uses an
implicit abstaining classifier, where it selects instances that are lying closest to
the decision boundary, however no cost-based optimization is performed.

7 Conclusions and Future Work

We proposed a method to build the ROC-optimal abstaining classifier using
ROC analysis. Such a classifier minimizes the misclassification cost on instances
used to build the ROC curve. It also has a low misclassification cost on other
datasets from the same population as the one used to build the curve.

We defined the misclassification cost in three models: A cost-based model, a
bounded-abstention and bounded-improvement models, which are relevant for
numerous practical applications. In the first model, we used a 2×3 cost matrix,
showed the conditions under which the abstaining classifier has a non-trivial
minimum cost, and presented a simple analytical solution. In the bounded
model, we showed how to build the abstaining classifier assuming that no more
than a fraction kmax of instances is classified as the third class. Finally, in the
third model, we showed how to build an abstaining classifier having a misclas-
sification cost that is no greater than a user-defined value. In the latter two
models, we redefined the problem as a numerical optimization problem. We
presented an implementation and verified our method in all three models on a
variety of UCI datasets.

As future work, we intend to extend our experiments to include other machine-
learning algorithms. We will also analyze the performance of our method for
algorithms for which (5) does not hold. We plan to investigate the convexity of
ROC curves and how to apply our method efficiently in real-world applications,
also with multi-class classification.
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A Detailed Results

Figures 8 and 9 show the misclassification cost improvements for all datasets and
illustrate the experiments described in Sect. 5.2. Similarly, Figures 10 and 11
show the misclassification cost improvements for all datasets and illustrate the
experiments described in Sect. 5.3.1. Finally, Figures 12 and 13 are the results
of the experiments described in Sect. 5.3.2.
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Figure 8: Cost-based model: Experiment results with abstaining classifiers—relative
cost improvement.
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Figure 9: Cost-based model: Experiment results with abstaining classifiers—fraction
of skipped instances.
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Figure 10: Bounded-abstention model: Experiment results with abstaining
classifiers—relative cost improvement.
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Figure 11: Bounded-abstention model: Experiment results with abstaining
classifiers—absolute cost values.
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Figure 12: Bounded-improvement model: Experiment results with abstaining
classifiers—desired relative cost improvement vs. fraction of non-classified instances.
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Figure 13: Bounded-improvement model: Experiment results with abstaining
classifiers—desired absolute cost improvement vs. fraction of non-classified instances.
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