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1 Introduction

Model transformation is the process of changing a given source model to produce
a target model, according to a pre-defined set of rules. Usually transformations
modify model structure, notation or level of abstraction, while preserving the
underlying semantics. Certain transformations create a completely new target
model, while others only update the source model.

The most commonly known transformation examples include generation of
code from software design models and code refactoring. Code generation and
refactoring features are offered by many software development tools, and estab-
lished techniques for implementing such transformations are available to tool de-
velopers. In recent years however, all software engineering activities have started
to become more model-oriented and a great need for transformation between var-
ious modelling notations has emerged. The driving force behind these software
engineering trends is the Model Driven Architecture (MDA) [mda02], which is
based on the idea of automated transformation between Platform Independent
Models (PIM) and Platform Specific Models (PSM). As a result of the increased
demand for more diverse model transformations in the industry, there arises a
need for languages, methods and tools that can assist in development of such
transformations.

Several efforts have already been made to address the problem of
model transformation development. Existing work in this area includes the
Query/Views/Transformation (QVT) specification [Obj04] by the Object Man-
agement Group (OMG) and the Graph Rewriting and Transformation (GReAT)
language by Agrawal et al [AKL03,Agr04].

This report is based on our case study of developing a significant model
transformation for the IBM WebSphere Business Integration Modeler. Our main
objective during the case study was to identify the requirements for a generic
model transformation language and explore the alternative ways in which these
can be satisfied.
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The transformation that we explored during the case study was part of the
cycle-removal procedure for process models that conform to the Business Oper-
ations Metamodel (BOM) [FS04]. The source and target models for this trans-
formation were in the same notation, and each rule in the transformation was
an update of the source model.

Our initial requirements for the transformation language were usability and
expressiveness. With this in mind, we decided to adopt a visual, metamodel-
based approach to describing transformation rules. Exploring ideas from the
existing work in the area, at the end of the case study we formulated a generic
transformation language that incorporates some elements from the work of Mil-
icev [Mil02b,Mil02a] and Agrawal et al [AKL03,Agr04]. In the remainder of this
report, we present this transformation language using examples from the case
study. Note that the language is targeted at expressing update transformations
at the moment, but in the future we intend to generalise its application to trans-
formations that create completely new target models.

The next section gives an overview of our transformation language by intro-
ducing its most essential concepts and their relation to each other. This is fol-
lowed by a detailed description of the language. Further, we provide an overview
of our experience with the case study as validation of the presented transfor-
mation language. Several suggestions for future work are given at the end to
conclude the report.

2 Language Overview

A transformation language needs to provide a means for rule expression, as
well as allow one to describe the order in which rules should be applied to a
source model. We adopt a multi-tiered approach for separation of such different
concerns of a transformation language. An overview of the language in terms
of its tiers is given in Figure 1. The four shaded blocks stacked on top of each
other represent the tiers that our transformation language comprises. The main
concepts related to each tier are shown as dashed blocks in the diagram.

The highest level of our language is concerned with transformation
units [Kus00] [KHE03], where the control flow or the order in which transfor-
mation rules are applied to a model is determined. It is often the case that at a
specific point in time, the same transformation rule can be applied at different lo-
cations within a source model. One of the control flow issues is choosing between
such alternative locations. Another related control flow issue is establishing when
a particular transformation process should terminate.

The tier below the control flow deals with individual transformation rules.
In this context, a “rule” is a precise description of the desired transformation in
terms of source and target model elements. Each transformation rule consists of
a left hand side (LHS) and a right hand side (RHS). The LHS and RHS of a rule
describe the model under consideration before and after the transformation rule
is applied. The steps or operations required to perform the actual transformation
are not stated, which gives our approach to rule expression a declarative nature.
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Transformation unit

Transformation rules

Patterns
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LHS
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Forall patterns

Fig. 1. Transformation Language Overview

Essentially, the LHS defines the pre-conditions for a transformation rule and the
RHS defines its post-conditions. Implementation of transformations captured in
this manner requires an algorithm for updating a given source model to produce
a target model that satisfies the post-conditions expressed in the rule’s RHS.

Declarative description of models is achieved by using patterns, which are
handled by the second-lowest tier in Figure 1. In this context, a “pattern” is
defined as a set of modelling elements connected to each other with valid associ-
ations from the underlying metamodel. If an occurrence of a pattern is found in
a model, then it is said that the model contains a match for that pattern. Three
types of pattern constructs are shown in Figure 1: simple patterns, antipatterns
and forall patterns. Simple patterns can be used to check that certain elements
and relations occur within a model. On the other hand, antipatterns check that a
model “does not” contain certain elements and relations. Finally, forall patterns
allow one to determine whether a constraint holds on a collection of elements of
the same type found in a model.

Each pattern is represented graphically as an extended object diagram, using
the UML-related constructs shown in the lowest tier in Figure 1. Objects in pat-
tern diagrams instantiate classes from the underlying metamodel. Annotations
in the Object Constraint Language (OCL) are used in places for navigation and
expression of constraints. Tagged values assist in the creation of forall patterns,
where additional information about the collection to which a pattern applies
needs to be specified. On the RHS, we stereotype objects to indicate which el-
ements are modified, added to or removed from the model as a result of the
transformation.

In this report, we describe the transformation language in the following man-
ner. We first explain how to construct the LHS of a transformation rule by going
through all the necessary concepts from the three lower tiers of the language.
The RHS of a rule uses the same building blocks as the LHS, with a few exten-
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sions. We introduce these additional language features required for expressing
the RHS next. Here we also discuss how information is exchanged between the
two sides of a transformation rule. The control flow tier of the language is left
for last in our description, as it requires an understanding of the structure of
individual rules.

3 Left Hand Side

The LHS of a transformation rule in our language can be composed of three types
of patterns: simple patterns, antipatterns and forall patterns. All these patterns
are represented by object diagrams, where each object corresponds to a distinct
instance of a class from the underlying metamodel. A subset of the source model
matches a pattern if there is a one-to-one mapping between their respective
elements and relations. Model elements are mapped using the metamodel classes
that they instantiate, as well as their attribute values if any are specified in a
pattern. The diagram in Figure 2 illustrates the pattern concept.

The object diagram in Figure 2 (a) shows a pattern that consists of a Struc-
turedActivityNode named X, containing one Action and one ControlFlow. It can
be seen in this diagram that objects are labelled with metamodel class names
only, omitting actual object names. Association ends are labelled with role names
defined in the metamodel. This information is required during matching when
more than one association exist between two metamodel classes. Furthermore,
role names provide a means of navigation from one object to another by following
an association.

Figure 2 (b) shows a source model that contains a match for the pattern
in (a), which is shown in bold. The one-to-one mapping between the elements
and relations in the pattern and the source model can be clearly seen in this
example. It is important to point out that attribute values are used for matching
only if these are specified for objects in the pattern diagram. For instance, the
StructuredActivityNode object in the pattern shown in Figure 2 (a) can only be
matched against a StructuredActivityNode object in the source model, provided
that the name attribute of the object in the source model is also assigned to
X. On the other hand, the Action object in the same pattern does not specify
any attribute values and can be matched against any Action instance in the
source model. In fact, the shown source model contains another match for the
given pattern where Action a2 replaces a1 in the match depicted in bold in the
diagram.

3.1 Simple Patterns

The most basic pattern in our transformation language is called a simple pattern,
which can be used to check whether certain elements and relations exists in the
source model. The simple pattern in Figure 2 (a) can be used to check that
a particular transformation rule only applies if the source model includes at
least one StructuredActivityNode containing at least one Action and at least one
ControlFlow.
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: StructuredActivityNode

name = “X”

: Action

: ControlFlow
edgeContents

inStructuredActivityNode

inStructuredActivityNode

nodeContents

s : StructuredActivityNode

name = “X”

inStructuredActivityNode

nodeContents a1 : Action

name = “Y”

o : OutputControlPin

i : InputControlPin

e : ControlFlow

action

outputControlPin

inputControlPin

outgoing

incoming

source

target

a2 : Action

action

edgeContents

inStructuredActivityNode

inStructuredActivityNode

nodeContents

(a)

(b)

P1

Fig. 2. (a) A Pattern (b) A Match found in a Source Model

3.2 Antipatterns

For certain transformation rules, it is also necessary to check that a particular
pattern does not appear in the source model. For instance, we can check that
the source model does not have a StructuredActivityNode containing two dis-
tinct Action elements with the pattern shown in Figure 3. Such a pattern that
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must not match the source model is called an antipattern in our transformation
language.

: StructuredActivityNode

: Action

: Action
nodeContents

inStructuredActivityNode

inStructuredActivityNode

nodeContents

AP1

Fig. 3. An Antipattern

The model given in Figure 2 (b) contains a match for the above antipattern,
and hence the antipattern is not satisfied by this model. Note that the syntax
for simple patterns and antipatterns is identical, but their interpretation as part
of the LHS of a transformation rule is different.

Certain universal constraints on the source model can be captured using an-
tipatterns. For example, suppose that we wanted to ensure that every Action in
the source model leads to at most one other Action via ControlFlow. Naturally,
this constraint does not hold in any model that contains an Action leading to
two or more other Actions. The antipattern in Figure 4 represents the counterex-
ample for this universal constraint and it is sufficient for determining whether
the constraint holds.

3.3 Composition of Patterns and Object Sharing

In general, the LHS of a transformation rule is too complex to be expressed
by a single simple pattern or antipattern - a composition of these is required.
Our transformation language allows for composition of patterns with disjunction
(OR) and conjunction (AND). In order to distinguish between simple patterns and
antipatterns in pattern composition, antipatterns are negated (NOT). Each pat-
tern is given a name that is unique within the scope of the given transformation.
The name of the simple pattern in Figure 2 (a) is P1 and the antipattern in Fig-
ure 3 is AP1. Two definitions of the LHS for a transformation rule are possible
using these patterns: P1 OR NOT AP1 and P1 AND NOT AP1. The source model
in Figure 2 (b) satisfies the former, but not the latter of these two definitions.

In the above example, P1 and AP1 are independent from each other. In other
words, we can match each one against the source model individually and then
combine the results of the matching with either disjunction or conjunction. How-
ever, it is often desirable to have multiple patterns refer to the same object in the
source model. Such object sharing between patterns is supported through com-
mon object names in pattern diagrams. Both P1 and AP1 include an instance
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: Action

: OutputControlPin

: InputControlPin

: ControlFlow

action

outputControlPin

inputControlPin

outgoing

incoming

source

target

: Action

action

: OutputControlPin

: InputControlPin

: ControlFlow

outputControlPin

inputControlPin

outgoing

incoming

source

target

: Action

action

action

AP2

Fig. 4. An Antipattern as a Counterexample for a Universal Constraint

of the StructuredActivityNode class. By assigning the same class instance name
to both of these objects, we can indicate that the patterns refer to the same
element in the source model. Unnamed objects in a pattern are called free, while
those that are assigned names for object sharing between patterns, are called
bound.

Consider the simple patterns shown in Figure 5. SP1 and SP2 contain only
free objects, and SP1 AND SP2 is satisfied in the source model in Figure 2 (b).
On the other hand, SP3 and SP4 share an object of type Action labelled a in
the diagrams. The introduction of bound objects changes the meaning of the
conjunction of the two patterns, and SP3 AND SP4 is no longer satisfied in the
same source model in Figure 2 (b).

Composition of patterns and object sharing are concerns of the transforma-
tion rules tier in our language. In fact, the LHS of any transformation rule is
a composition of simple patterns, antipatterns and forall patterns, which are
described next.

3.4 Forall Patterns

Composition of simple patterns and antipatterns is still not expressive enough
for capturing certain universal constraints. For instance, a counterexample an-
tipattern cannot be used for checking that all Actions in a model are contained in
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: InputControlPin

inputControlPin

: Action

action

: Action

: OutputControlPin

action

outputControlPin

: InputControlPin

inputControlPin

a : Action

action

a : Action

: OutputControlPin

action

outputControlPin

SP1 SP2

SP3 SP4

Fig. 5. Free and Bound Objects in Patterns

some StructuredActivityNode. We use forall patterns that are based on Milicev’s
ForEach packages [Mil02b], to show that a particular pattern or composition
of patterns must apply to multiple objects of the same type within the source
model. The forall pattern for the above-mentioned constraint is shown in Fig-
ure 6.

: StructuredActivityNode

a : Action

inStructuredActivityNode

nodeContents

<<forall>> 

{
ForAll = a,
OfType = Action,
InCollection = Action.allInstances,
Patterns = SP5

}

SP5

Fig. 6. A Forall Pattern
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As can be seen in the diagram in Figure 6, a package with a forall stereotype
is used to show the scope of a forall pattern. The tagged values in curly brackets
indicate the collection to which the patterns contained in the package must apply.
In this example, the simple pattern SP1 must apply for all elements a, of type
Action, that are contained in the collection of all instances of the Action class in
the model. More generally, the value of the ForAll tag is the name of the bound
object that refers to individual elements in the collection under consideration.
This bound object must appear in at least one of the patterns contained in the
forall pattern. The tagged value OfType simply indicates the type of the elements
in the collection. Navigation to the collection is done using OCL expressions in
the value of the InCollection tag. The allInstances operation is predefined in
OCL and can be used on a class to navigate to all objects in a model that
instantiate that class. The Patterns tagged value states the patterns contained
inside the forall pattern. It can be assigned to a single pattern or a composition
of patterns. The diagrams for the contained patterns can be drawn inside the
forall pattern package as in this example, or elsewhere.

A more complex example of using forall patterns with object sharing is pre-
sented in Figure 7. Suppose that the LHS of a particular transformation rule
is composed of a conjunction of the simple pattern SP6, antipattern AP3 and
the forall pattern given in the diagram. SP6 AND NOT AP3 checks that there ex-
ists an OutputPinSet in the model that contains OutputControlPins but not
OutputObjectPins. The forall pattern navigates to a collection of Actions that
can be reached by the OutputControlPins inside the OutputPinSet found in SP6
AND NOT AP3. SP7 states that each Action inside this collection must be inside
some StructuredActivityNode. This StructuredActivityNode must not lead to a
FlowFinalNode via ControlFlow, as captured in AP4.

The example in Figure 7 once again illustrates the concept of object sharing.
Patterns SP6 and AP3 share an object of type OuptutPinSet that is labelled p
in the pattern diagrams. In fact, this particular object is also used in the forall
pattern for collection navigation and hence all three patterns are connected
through object p.

The OCL navigation expression assigned to the InCollection tag of the forall
pattern in Figure 7 has the following interpretation. All the ConnectableNodes
that can be reached from the OutputPinSet p via ControlFlow are gathered with
the expression p.outputControlPin.outgoing.target. The ConnectableNodes
class is abstract, having subclasses ControlNode and Pin where ControlNodes
comprise InitialNode and FinalNode (see the BOM specification [FS04] for more
details). The expression select (x |
x.oclIsTypeOf(InputControlPin)) chooses only those objects from the col-
lection of ConnectableNodes that are instances of the InputControlPin class.
Finally, navigation to all the Actions associated with the InputControlPins is
done with .action.

The simple pattern SP2 contains an Action object named a that refers to
the individual elements in the collection underlying the forall pattern. In turn,
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s : StructuredActivityNode

a : Action

inStructuredActivityNode

nodeContents

<<forall>> 

{
ForAll = a,
OfType = Action,
InCollection = ( p.outputControlPin.outgoing.target -> 

select (x | x.oclIsTypeOf(InputControlPin) ).action,
Patterns = SP7 AND NOT AP4

}

SP7

: OutputControlPin

s : StructuredActivityNode

AP4

p : OutputPinSet

AP3

: OutputObjectPin

outputObjectPin

: FlowFinalNode

: ControlFlow

target

incoming

outgoing

source

outputControlPin

action

p : OutputPinSet

SP6

: OutputControlPin

outputControlPin

Fig. 7. A Forall Pattern and Object Sharing

SP2 and the antipattern AP2 are connected through the bound object s of type
StructuredActivityNode.

Usually a number of alternative ways of constructing patterns to express the
same constraint is available to the user. In our previous example in Figure 7,
the forall pattern can be substituted by the one shown in Figure 8. This forall
pattern uses a simpler OCL expression for the navigation. However, there are now
three patterns instead of two contained in the forall pattern. The composition
NOT AP5 OR (SP8 AND NOT AP6) applied to all OutputControlPins of p, states
that either each OutputControlPin does not lead to an InputControlPin, or it
leads to an Action inside some StructuredActivityNode that is not connected to
a FlowFinalNode via ControlFlow.

Forall patterns can be used to show a variety of constraints on associations
between objects. Figure 9 illustrates several of the different ways in which objects
inside forall patterns can be associated to other objects in the model.
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s : StructuredActivityNode

: Action

inStructuredActivityNode

nodeContents

<<forall>> 

{
ForAll = o,
OfType = OutputControlPin
InCollection = p.outputControlPin,
Patterns = NOT AP5 OR (SP8 AND NOT AP6)

}

SP8

: OutputControlPin

s : StructuredActivityNode

AP6

: FlowFinalNode

: ControlFlow

target

incoming

outgoing

source

outputControlPin

action

o : OutputControlPin

: ControlFlow

incoming

outgoing

: InputControlPin

source

target

action

inputControlPin

o : OutputControlPin

: ControlFlow

incoming

outgoing

: InputControlPin

source

target

AP5

Fig. 8. An Alternative Forall Pattern

In the examples of forall patterns thus far we have only used associations as
shown in Figure 9 (a), where the forall pattern applied to a collection of objects
of type A and object a referred to individual objects within that collection. Then
we interpreted the body of such a forall pattern in a way that every object a
in the collection was to be associated with some object b of type B. There is
however one subtle detail of this interpretation that has not been finalised in
our language. Is there a distinct object b for each object a in the collection or
can the associations between objects a and object b overlap? The multiplicity
of the association between classes A and B on the metamodel level is one factor
that influences the interpretation of such a pattern. If the association between
classes A and B is one-to-one in the metamodel, then the pattern in Figure 9 (a)
requires that there be a distinct object b for each a.

The other patterns depicted in Figure 9 illustrate further difficulties in defin-
ing semantics for forall patterns. For most cases where forall patterns are used,
several interpretations could be defined. Further research and case studies are
required to determine which of the possible interpretations would be the most
appropriate in each case. Moreover, it is not clear whether a semantics for forall
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a : A

<<forall>> 

b : B

a : A

<<forall>> 

b : B

b : B

<<forall>> 

a : A

<<forall>> 

(a) (b)

(c)

b : B

<<forall>> 

a : A

<<forall>> 

c : C

(d)

Fig. 9. Associations in Forall Patterns

patterns can be defined in such a way that every possible usage of these patterns
is taken into account.

3.5 Object Constraint Language

So far we have only used OCL for navigation purposes in forall patterns. Addi-
tionally, it is used in our language to express certain constraints that cannot be
captured using patterns. For instance, consider an object o of type LiteralInte-
ger with an attribute called value of type Integer. Patterns cannot show that
o.value.intValue() must be less than 5. On the other hand, this constraint can
be easily stated in OCL as an invariant: context o inv: value.intValue()
< 5.
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Potentially, any constraint expressed using a composition of patterns can also
be written in OCL. The forall patterns in Figures 7 and 8 in the previous section
are equivalent to the following OCL invariant.

context p inv:
(p.outputControlPin.outgoing.target -> select (x |

x.oclIsTypeOf(InputControlPin)
).action -> forAll (a |

(a.inStructuredActivityNode -> notEmpty()) and
(a.inStructuredActivityNode -> !exists (s |
s.outputControlPin.ougoing.target.oclIsTypeOf(FlowFinalNode)))

While OCL can be used to completely replace patterns on the LHS of a trans-
formation rule, we recommend its use only in cases where patterns are inappli-
cable or inconvenient. In this way, OCL constraints can appear as annotations
to certain pattern diagrams.

The main strength of OCL is its expressive power, which seems to supersede
that of pattern composition. This has already been demonstrated by an earlier
example in used in the first paragraph of this section. Furthermore, certain
complex constraints that can be expressed using patterns require a large number
of pattern diagrams to be drawn. OCL representation for such constraints is
usually more compact.

Despite its expressive power, the textual notation prescribed by OCL is not
intuitive and requires more expert skills from the user. An OCL constraint that
spans several lines is already difficult to comprehend. On the other hand, patterns
allow one to build complex constraints by composing small manageable parts
- simple patterns, antipatterns and forall patterns. This also allows reuse of
patterns in different transformation rules. OCL constraints are not as modular,
although they also allow for reuse.

We have now introduced all the concepts required to express the LHS of
a transformation rule. Next we discuss some alternative ways of supporting the
language features necessary to capture a rule’s LHS, as well as possible extensions
to the language introduced thus far.

3.6 Possible Extensions and Alternatives

Some of the possible extensions and alternative ways of describing the LHS of a
transformation rule are given below.

Null objects. Object diagrams could be extended with null objects to show
that a certain object does not exist. For instance, this would allow one to con-
struct an antipattern shown in Figure 10 that is equivalent to the forall pattern
in Figure 6.

Input and output ports. Implementation of our language in its present
form would require unification to take place to resolve object sharing between
patterns, as it is done implicitly. Alternatively, input and output ports can be
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null

: Action

inStructuredActivityNode

nodeContents

AP

Fig. 10. A Null Object

defined for each pattern to provide explicit passing of objects between pat-
terns [AKL03,Agr04].

Pattern templates. It has already been mentioned that reuse of patterns
is possible in different transformation rules. Patterns can be made even more
reusable if they are parameterised to create pattern templates. An example of
this concept is illustrated in Figure 11.

: OutputPinSet

PI2

: OutputObjectPin

outputObjectPin

: OutputPinSet

PI1

: OutputControlPin

outputControlPin

: OutputPinSet

PT(TypeA, roleA)

: TypeA

roleA

Fig. 11. A Pattern Template

In the diagram above, PT is a pattern template with two parameters TypeA
and roleA. The patterns PI1 and PI2 are examples of instances of this tem-
plate. The instance PI1 is created as follows: PI1 = PT(OutputControlPin,
outputControlPin).

Multiobjects. In our current approach, we use forall patterns to deal with
collections of objects of the same type. UML multiobjects (see e.g. [KHE03])
could be used for similar purposes. Figure 12 shows some of the association
constraints that can be expressed using multiobjects.

In diagram (a) above, there is a single object a of type A that must be
associated with each object of type B in the collection represented by the
multiobject b. In (b), a represents a collection of objects of type A and each
individual object in that collection must be associated with an object of type
B from collection b. We foresee that the definition of semantics for constraints
expressed using multiobjects would be complicated with the same difficulties
encountered with forall patterns that were described with reference to Figure 9.
The precise relation between forall patterns and multiobjects still needs to be



15

a : A

(a)

b : B

(b)

a : A

b : B

Fig. 12. Multiobjects

explored.

The following section describes the additional features of our language nec-
essary to express the RHS of a transformation rule.

4 Right Hand Side

The RHS of a transformation rule describes the parts of the model affected
by the transformation. The same object diagram notation used to express the
LHS of a rule is used for the RHS, except for several further extensions. UML
stereotypes new and removed are used on objects and associations to indicate
creation and removal of model elements during transformations. Attributes for
new objects can be derived from the object attributes in the source model. An
example of a rudimentary transformation rule consisting of a LHS and a RHS is
given in Figure 13.

The LHS in this example consists of one simple pattern that checks that the
source model contains two Actions connected with ControlFlow. The RHS of the
rule also consists of one simple pattern that shows that the transformation re-
places the ControlFlow between the two Actions by ObjectFlow. Object sharing
between LHS and RHS is done in the same way as between patterns, using in-
stance names of objects. All objects and associations eliminated from the source
model are marked with the removed stereotype, while those that are created are
stereotyped new. Objects without stereotypes correspond to the objects from
the source model that are preserved by the transformation and thus are part of
the target model. Those objects that do not appear in the diagrams of the RHS
are implicitly preserved.

On the RHS of a transformation rule, each removed object must be named
and its name must either match an object with the same name and type on the
LHS, or additional navigation to it must be provided. For example, if the Con-
trolFlow instance named cf did not appear in the pattern on the LHS, one of the
following OCL expressions could be used for the navigation: cf = oc.outgoing
or cf = ic.incoming. Each removed association must either connect two re-
moved objects, a removed and a preserved object, or two preserved objects.
Note that the preserved objects connected to a removed association still need
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a1 : Action

<<removed>>

oc : OutputControlPin

<<removed>>

ic : InputControlPin

action

outputControlPin

inputControlPin

outgoing

incoming

source

target

action

<<new>>

: OutputObjectPin

name = oc.name

<<new>>

: InputObjectPin

name = ic.name

<<removed>>

cf : ControlFlow

action

outputObjectPin

outgoing

incoming

source

target

a2 : Action
action

<<removed>>

<<new>>

<<removed>>

<<removed>>

<<removed>>

<<new>>

<<new>>

<<new>>

<<new>>

: ObjectFlow

name = cf.name

inputObjectPin

a1 : Action

oc : OutputControlPin

ic : InputControlPin

action

outputControlPin

inputControlPin

action

a2 : Action

outgoing

cf : ControlFlow

incoming

target

source

LHS RHS

SP9 UP1

Fig. 13. A Transformation Rule

to appear in the diagram and must be named for the purpose of identifying the
removed association.

Attributes for newly created objects can be derived from attributes of source
model objects. OCL expressions are used for this purpose, as demonstrated in
this example by name = oc.name in the new OutputObjectPin object. In this
case, the name of the removed OutputControlPin is simply copied over to the
new OutputObjectPin.

A transformation may require certain objects to be preserved in the target
model, but with modified attributes. In such a case, a modified object stereotype
should be used in a RHS pattern and new values for modified attributes should
be given. Associations from the source model cannot be modified, these can only
have a removed, new or no stereotype.

Figure 14 illustrates how a source model might be updated according to
the discussed transformation rule. In this instance, the source model precisely
matches the LHS of the transformation rule. Generally however, the LHS is only
a subset of all the elements constituting the source model.
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a1 : Action

oc : OutputControlPin

name = pin_1

ic : InputControlPin

name = pin_2

cf : ControlFlow

action

outputControlPin

inputControlPin

outgoing

incoming

source

target

a2 : Action

action

a1 : Action

oo : OutputObjectPin

name = pin_1

io : InputObjectPin

name = pin_2

of : ObjectFlow

action

outputObjectPin

inputObjectPin

outgoing

incoming

source

target

a2 : Action

action

Source model Target model

Fig. 14. A Transformed Model

Sets of instances of the same type can also be created or removed by a
transformation rule. This is done using forall patterns that were introduced in
Section 3.4. The collection underlying a forall pattern on the RHS of a rule must
refer to a collection in the source model.

Furthermore, conditional creation and removal of objects and associations
can also be expressed on the RHS. Figure 15 depicts an example of conditional
creation of an association used inside a forall pattern.

The RHS pattern shown above states that all those Actions in the source
model that were not inside a StructuredActivityNode are placed into a new Struc-
turedActivityNode in the target model.

Similarly to the LHS of a transformation rule, the RHS comprises a composi-
tion of patterns. However, this composition can only consist of simple and forall
patterns joined with conjunction. Antipatterns and disjunction cannot be used
on the RHS.

4.1 Possible Extensions and Alternatives

Alternatively to the approach described in this section, the RHS could be ex-
pressed in a more imperative manner. The update of the source model could be
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<<new>>

: StructuredActivityNode

a : Action

inStructuredActivityNode

nodeContents

<<forall>> 

{
ForAll = a,
OfType = Action,
InCollection = Action.allInstances,
Patterns = SP10

} SP10

<<new>>
a.inStructuredActivityNode -> isEmpty()

Fig. 15. Conditional Creation

done incrementally rather than captured declaratively. For instance, individual
object diagrams could represent steps in the update and one could then specify
the sequence in which these steps must be executed.

5 A Transformation Rule

We have now explained how to describe the source model on the LHS of a rule
and the target model on the RHS of a rule. Both sides consist of a composition
of patterns and a full transformation rule can be given in the following format:
Rule: LHS → RHS. Here is an example of a transformation rule: RuleA: (SP1
OR SP2 AND NOT AP9) → (UP1 AND UP2).

It is important to note that on the LHS of a transformation rule, patterns can
be composed with conjunction and disjunction. Furthermore, atomic negation
is used to indicate antipatterns on the LHS. However, general negation such as
NOT (SP1 AND SP2) is not supported in pattern composition.

On the RHS of a rule, update patterns can only be composed with conjunc-
tion. Allowing the use of disjunction, would result in a non-deterministic update
of the source model. Pattern composition on the RHS can consist of simple and
forall patterns, but not antipatterns.

6 A Transformation Unit

A transformation unit defines control flow for the entire transformation process
that usually involves application of several transformation rules to the original
source model. Thus far we have not explored what type of control flow mech-
anisms are required in a transformation unit. We expect that choices between
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transformation rules, as well as sequence and iteration of rules need to be sup-
ported by the language at the transformation unit tier.

7 Validation by Case Study

Business process modelling with BOM is supported by the IBM WebSphere
Business Integration Modeler, which also allows one to automatically generate
implementation code for these models in Business Process Execution Language
for Web Services (BPEL4WS). However, there is a mismatch between the se-
mantics of BOM and BPEL4WS with respect to support for cyclic control flow
between process activities. BOM allows unstructured cycles to occur in the mod-
els, while BPEL4WS only supports structured cyclic control flow in the form
of while-loops. The solution to this problem that was investigated in our case
study involves removing unstructured cycles in a BOM model before generat-
ing code from it. At present, the WebSphere Modeler requires one to resolve
unstructured cycles in process models manually as a required step before code
generation. As the manual process for this is naturally time-consuming and error-
prone, automating this procedure would greatly benefit the user. Our group has
designed and implemented a prototype for this transformation, which has now
been handed over to the WebSphere Modeler development team.

The main algorithm underlying the transformation for removing unstruc-
tured cycles was derived from control flow T1-T2 analysis in compiler theory.
While the objective of the original T1-T2 analysis is to determine reducibility
of a given flow graph, the BOM transformation had to preserve the behaviour
captured in the source model.

The design of the transformation consisted of a set of diagrams, informally
showing how different cases should be handled in the implementation. These de-
sign diagrams were mainly used for discussions between the developers and as a
rather informal and incomplete specification of the transformation on which the
implementation was based. Implementation was done in Java using the Eclipse
Modelling Framework (EMF) to manipulate the internal representation of BOM
models required by the transformation. Such an approach to developing a model
transformation proved to be time-consuming. Additionally, the resultant trans-
formation implementation could not be easily changed or reused for another
similar transformation.

The objective of our case study was to capture the details of the cycle-removal
transformation using the pattern-based language described in this report. Us-
ing such a model-based representation of the transformation seems to be more
suitable for analysis than the Java code [Küs04]. Furthermore, the ultimate goal
is to verify the design and then use it to generate the transformation code au-
tomatically. Flexibility and reusability of transformations will also be improved
with such an approach.

During the case study we concentrated on one part of the cycle-removal
transformation, the so-called T2 transformation step. The fundamentals of this
transformation step are depicted in the diagram in Figure 16.
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X
Y

X
Y

Source model Target model

Fig. 16. Transformation Step T2

The left part of the diagram in Figure 16 shows that the transformation
applies to a part of the source model containing two Actions X and Y, provided
that X is the only predecessor of Y. During the transformation both X and Y are
placed into a new StructuredActivityNode, as shown on the right of Figure 16.
Several more complex preconditions for this transformation are not illustrated
in Figure 16. For example, all the Pins of X and Y must be connected to an
ActivityEdge.

Using the Java implementation as reference for the details about the T2
transformation, we created one transformation rule using the presented language.
The LHS of the rule consisted of a composition of 29 different patterns and OCL
constraints. The RHS of the rule required a conjunction of 14 update patterns.
Some simple patterns and antipatterns could be reused within forall patterns
on the LHS. In addition there was much superfluous replication during the rule
construction and it was apparent that further reuse mechanisms need to be
included in the language.

On the whole, the T2 transformation step was successfully expressed us-
ing our language. The main benefit of the approach was that it allowed us to
construct a complex transformation rule from manageable building blocks. The
visual pattern representation made the transformation design more comprehen-
sible, while keeping it precise at the same time. We did however resort to using
OCL for some complex constraints where using patterns did not seem feasible.
As already mentioned, we felt that more reusability mechanisms in the language
would ease the transformation design process even further.

8 Conclusion and Future Work

In this report we presented a layered approach to defining a language for describ-
ing model transformations. In many places however, the syntax and semantics
of the language still need to be finalised.

Our case study of resolving unstructured cycles in BOM models allowed us
to validate the transformation language in its current state. The design process
of the T2 transformation showed that most of the language constructs are ap-
plicable, but at the same time pointed out areas where the language could be
improved. A further case study investigating a transformation across different
representations should also be undertaken to validate the language on transfor-
mations involving more than one metamodel.
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Once the transformation language syntax and semantics are finalised, pos-
sible useful analyses of transformations at the design level need to be consid-
ered. Verifying a transformation on the design level would allow one to improve
the quality of transformations before they are implemented. For instance, even
though the meaning of a single pattern is easy to understand, a composition
of patterns can be difficult to comprehend. Checking pattern compositions and
transformation rules for contradictions is one example of useful analyses that
could be performed at the transformation design level.

Finally, a transformation development environment with features allowing
the design, analysis and code generation of model transformations needs to be
developed to truly demonstrate the value of our proposed approach.
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