
RZ 3580 (# 99590) 02/07/2005
Computer Science 81 pages

Research Report

Efficient and Safe Networked Storage Protocols

Marc Kramis

IBM Research GmbH
Zurich Research Laboratory
8803 Rüschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its dis-
tribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies (e.g., payment of royalties). Some reports are available at
http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research
 Almaden • Austin • Beijing • Delhi • Haifa • T.J. Watson • Tokyo • Zurich

Master Thesis WS 2004/05

Efficient and Safe
Networked Storage Protocols

Marc Kramis

Abstract

After more than two decades evolving a variety of client/server-based dis-
tributed file systems (DFS), the recently emerging storage area networks (SAN)
allow the former file-server to be split into a storage and a metadata component.
Metadata servers perform file access coordination and metadata management,
whereas storage devices directly serve the clients’ read and write requests. The
clear separation of duties, the straight data path, and the virtualization of
storage result in better scalability, performance, and maintainability. Whereas
the first generation of SAN-based DFS focused primarily on performance, the
second generation aims at spreading its service to the organizations’ desktops,
where server-room trust-levels can no longer be presumed.
We identified a set of security threats that arise when SAN File System pro-
tocols for client to metadata server communication are opened to the insecure
desktops. This work discusses and analyzes design modifications for client
authentication, protocol encryption, and distributed lock recovery, which we
partly implemented on a Linux-based SAN.FS environment. In addition, we
cover quota management as well as lock scheduling, and introduce virtual ma-
chines as a valuable tool to support research within distributed storage systems.

Acknowledgements

I am grateful to Marcel Waldvogel who supervised this thesis first at IBM Research,
then as professor from the University of Konstanz. He provided plenty of valuable
input and was a much valued contact person.

Furthermore, I would like to say thank you to Patrick Droz, Roman Pletka,
Robert Haas, Christian Cachin, and Charlotte Bolliger who supported me in the
course of this thesis with their ideas, helpful suggestions and simply their time.

Finally, I am deeply grateful to my parents who supported me throughout my
studies with patience and appreciation.

This thesis was carried out at

IBM IBM Research GmbH, Zurich Research Laboratory

Contents

1 Overview 1
1.1 Introduction . 1
1.2 Task Description . 1
1.3 Chapter Overview . 2

2 Distributed File Systems 5
2.1 Overview . 5
2.2 The Ideal Distributed File System 6
2.3 NFS — Network File System . 6
2.4 AFS — Andrew File System . 8
2.5 Coda . 9
2.6 Echo . 10
2.7 Subversion . 11
2.8 Lustre . 12
2.9 Conclusion . 13

3 SAN.FS Protocol 17
3.1 Overview . 17
3.2 SAN.FS Components . 17
3.3 SAN.FS Protocols . 18
3.4 Key Design Features of SAN.FS . 19
3.5 Diving into SAN.FS . 19

3.5.1 Global Name Space . 19
3.5.2 Lease Handling . 20
3.5.3 Session Locks . 20
3.5.4 Range Locks . 21
3.5.5 Data Locks . 22
3.5.6 Managing File Access . 22
3.5.7 Failure Handling . 22

4 Security Issues 25
4.1 Overview . 25
4.2 Security Considerations . 25

4.2.1 Whom to Trust . 25
4.2.2 What to Expect . 26

4.3 Natural Failure Conditions . 28
4.3.1 Client Perspective . 28
4.3.2 Metadata Server Perspective 29
4.3.3 Issues From Natural Failure Conditions 30

4.4 Malicious Operation . 31
4.4.1 Denial of Service (DoS) . 31
4.4.2 Read or Write Data . 32
4.4.3 Issues from Malicious Operation 33

4.5 Conclusion . 34

i

ii Contents

5 Design Modifications 35
5.1 Overview . 35
5.2 Authentication and Encryption . 35

5.2.1 Mechanism Design . 36
5.2.2 Implementation . 37
5.2.3 Evaluation . 37
5.2.4 Open Issues . 42

5.3 Secure Distributed Lock Recovery 42
5.3.1 Mechanism Design . 43
5.3.2 Protocol Design . 46
5.3.3 Evaluation . 52
5.3.4 Open Issues . 53

5.4 Quota Management . 53
5.4.1 Mechanism Design . 54
5.4.2 Implementation . 54
5.4.3 Evaluation . 54
5.4.4 Open Issues . 54

5.5 Data Lock Scheduling . 55
5.5.1 Mechanism Design . 55
5.5.2 Implementation . 56
5.5.3 Evaluation . 57
5.5.4 Open Issues . 57

6 Virtual Machines 59
6.1 Work With Distributed Storage Systems 59
6.2 A Convenient Tool . 59

7 Conclusions 61
7.1 Achievements . 61
7.2 Future Work . 62

A Task Description 63
A.1 Introduction . 63
A.2 Protocol Issues . 64
A.3 Task Description . 64
A.4 General Comments . 65
A.5 Administrativa . 65

B Mid Thesis Report 67
B.1 Where We Are . 67
B.2 Next Steps . 67

C Summary 69

D Zusammenfassung 71

List of Figures

1.1 Client/Server Versus SAN-Based DFS 2

3.1 Components of SAN.FS . 18
3.2 Global Name Space of SAN.FS . 21

5.1 IPsec Authentication . 36
5.2 IPsec Latency . 38
5.3 IPsec Throughput, Slow Scenario . 39
5.4 IPsec Throughput, Fast Scenario . 40
5.5 IPsec SAN.FS Performance Evaluation 41
5.6 Distributed Lock Recovery . 43
5.7 Secure Distributed Lock Recovery 44
5.8 Secure Distributed Lock Recovery: Fileset Secret 45
5.9 Data Lock Scheduling Variants . 56

6.1 Virtual Machines . 60

List of Tables

2.1 Comparison of Seven Distributed File Systems 16

5.1 IPsec Throughput Results . 39
5.2 PostMark Benchmark for SAN.FS 40
5.3 Format to Generate SHA-1 Based HMAC 45
5.4 Overview of Adapted Messages . 52

iii

iv List of Tables

1 Overview

1.1 Introduction

The ever growing demand for storage capacity, unified and ubiquitous data ac-
cess, as well as the requirement to administrate the storage conveniently if not au-
tonomously, ask for the continuous development of distributed file systems (DFS1).

After more than two decades evolving a variety of client/server-based DFS, the
recently emerging storage area networks (SAN) allow to split the former file-server
into a storage and a metadata component (see Figure 1.1 on Page 2). Metadata
servers perform file access coordination and metadata management, while storage
devices directly serve the clients’ read and write requests. The clear separation
of duties, the straight data path, and the virtualization of storage result in better
scalability, performance, and maintainability.

The first generation of SAN-based DFS brought up a sophisticated protocol, which
relies on the absolute cooperation of all involved parties. Trust as a vital prerequisite
however is highly questionable if clients outside server rooms under administrator
control access the DFS over insecure networks.

The upcoming second generation of SAN-based DFS aims at spreading its service to
the organizations’ insecure desktops. Current research tries to achieve the necessary
security following a two-pronged approach: First, the data path between clients
and storage devices is secured. Second, the file access coordination and metadata
services are hardened against malicious attacks. This work concentrates on the
latter effort.

1.2 Task Description

The existing SAN.FS protocol has to be analyzed with the premise of potentially
malicious clients. The focus lies on the client to metadata-server protocol, which
supports the coordination of distributed file system access. Found issues have to be
documented and suggestions to their elimination given. The impact of the suggested
improvements on performance as well as other security issues should be covered.

In addition to the theoretical study and observation, a prototype implementation

1Please note that the acronym DFS used throughout this report does not have anything to do
with the Microsoft Distributed File Service.

1

2 Chapter 1. Overview

File-Server
File-Server

File-Server

Client
Client

Client
Client

Client
Client

Client

Metadata-Server
Metadata-Server

Conventional Client/Server DFS

SAN-based DFS

Metadata, File Access Coordination

Data

SAN

Client
Client

Figure 1.1: The figure shows the evolution from conventional client/server-based DFS to
SAN-based DFS.

based on the IBM SAN.FS is expected.

The complete task description is covered in Appendix A on Page 63.

1.3 Chapter Overview

This section summarizes the contents of each chapter.

Chapter 2, Distributed File Systems An explorative non-exhaustive journey in-
cluding six different DFS to get an insight in commonly used techniques and
critical areas.

Chapter 3, SAN.FS Protocol Give an introduction to the IBM SAN.FS protocol
specification. This chapter provides the foundation to analyze the protocol
with respect to security and performance.

Chapter 4, Security Issues Introduce several aspects of security and try to find
issues from natural failure conditions as well as malicious operation.

Chapter 5, Design Modifications Suggest design modifications to a selection of the
found issues and discuss the impact of the required changes related to security
and performance.

Chapter 6, Virtual Machines Introduce virtual machines as a valuable tool for the
research within distributed storage systems.

1.3. Chapter Overview 3

Chapter 7, Conclusions A final conclusion summarizes the results and motivates
future work in this area.

4 Chapter 1. Overview

2 Distributed File Systems

2.1 Overview

Over the last twenty years, there has been a lot of research activity around dis-
tributed file systems (DFS). This chapter tries to give a non-exhaustive explorative
overview over different DFS to get an insight in commonly used techniques and
critical areas. Among others, two well established distributed file systems being
around in production environments for decades will be briefly discussed. The first
one is the Network File System (NFS, [S+03]) from Sun Microsystems, the second
the Andrew File System (AFS, [Zay91]) originally developed at Carnegie Mellon
University. Then a research prototype extending AFS known as Coda [SKK+90]
will be looked at, followed by a DFS called Echo from Digital Systems Research
Center [MBH93]. A closely related distributed computing system will also be cov-
ered with Subversion [CSFP04], a version control system being the successor of the
widely used Concurrent Versions System (CVS, [C+04]). From the family of cluster
file systems, Lustre [Bra03] will be briefly looked at. Finally, a conclusion will close
this chapter.

There are many other DFS around, closely related or derived from one of the dis-
cussed systems. Many of them are at the level of research prototypes, trying to
improve certain aspects as well as introduce and test new ideas. Many are com-
mercially available but often not publicly documented. But the main concepts still
remain the same and cannot contribute substantially to this overview. Neverthe-
less, there are some examples: Prominent descendants of NFS are Not Quite NFS
(NQNFS, [Mac94]), introducing the concept of leases, and Spritely NFS developed
at Berkeley [SM89] adding open and close calls to NFS. Other DFS try to over-
come the limitations of centralized servers such as xFS with its roots at Berkeley
[ADN+96] or Frangipani from Digital Systems Research Center [TML97] or are
tailored to work with cluster environments like the General Parallel File System
(GPFS, [SH02]) from IBM. Last but not least, there are some heavily used DFS
such as Server Message Block (SMB, [Mic04]) currently maintained by Microsoft
who does not provide a complete public protocol specification or the recent Common
Internet File System (CIFS, [SNI02]).

Note that since SAN.FS needs further investigation, a separate chapter is fully
devoted to IBM’s latest DFS [IBM03].

5

6 Chapter 2. Distributed File Systems

2.2 The Ideal Distributed File System

DFS allow to share data across multiple nodes in a network. [CDK01] gives an
overview of the requirements such systems should meet (adapted):

Transparency with respect to access, location, mobility, performance and scalabil-
ity.

Concurrent File Updates should not interfere with each other.

File Replication (or caching) for better scalability and fault tolerance.

Hardware and Operating System Heterogeneity to be highly interoperable and
adapt to real-world scenarios.

Fault Tolerance to overcome transient communication or node failures.

Consistency to provide one-copy update semantics. 1

Security for access control and integrity.

Efficiency for performance even under heavy load or with low bandwidth.

Unfortunately, any DFS has to overcome certain problems arising from its very
nature of being distributed. E.g., nodes and their interconnecting networks cannot
be trusted under all circumstances and they can become disconnected virtually
at any time or moved to different places. Bandwidth and latency are often not
guaranteed and can vary widely. Together with the idealistic requirements, this
results in an inherent complexity of the protocols involved and also of implementing
such a system. To alleviate this, many different systems have been developed, each
tailored for specific use cases and environments.

All these different systems however share the distinction between data and meta-
data. The raw content of a file corresponds to the data, whereas all additional
information such as the location the file is stored at (directory) or the type of the
file and all assigned attributes belong to the metadata. The data itself is organized
as a set of blocks.

2.3 NFS — Network File System

Having been launched in the late 1980’s, today, Sun Microsystems’s Network File
System is a widely used DFS in academic and industrial environments where read
access to files is far more frequent than write access and write access is well dis-
tributed and not concentrated on hot spots. 2 A high speed intranet is assumed
to play the physical network layer. Early versions suffered from poor write perfor-
mance as all blocks had to be written to disk synchronously. This restriction was
loosened first with the help of additional hardware (battery-backed-up RAM), later
with protocol modifications.
1File content seen by all processes reading or writing to it are as if there would be only a single

copy of it.
2Specific files being frequently accessed for either reading or writing.

2.3. NFS — Network File System 7

NFS [CDK01, S+03] is based on the following main concepts:

Client/Server The server is stateless. Note that some server implementations might
keep state information to improve performance.

Remote Procedure Call (RPC) RPCs handle the client to server communication.

The stateless nature of the servers requires clients to identify themselves on each
request (“Secure RPC”). Stateless operation on the other hand simplifies failure
recovery and implementation. The following optimizations are found in NFS:

Server-Side Caching The server can either operate its cache in synchronous mode
using write-through caching (the only option available in NFS 2) or in write-
gathering mode where writes are bundled and written whenever convenient,
or latest as a result of a client commit request.

Client-Side Caching To provide faster data access and reduce the load on the server
and network each client maintains a cache. Consistency is ensured by polling
the server on a regular basis for stale information in cached data or metadata.
Writes from the client are either propagated to the server synchronously on
each write or asynchronously whenever a file is closed or a sync operation is
performed (write-behind). Note that both relaxations deviate from the strict
UNIX one-copy file update semantics.

Piggy Packing To reduce network traffic, information about file attributes is sent
to the client piggy packed on each file or directory operation request.

Read-Ahead and Write-Behind try to leverage the fact that most clients read or
write consecutive data sequentially. The sequence is thus parallelized using
several concurrent reader or writer threads.

Even though — or better to say because of the comparative simplicity and efficiency
of NFS there are some issues to be discussed:

Locking is not natively supported and has to be achieved with separate protocols
in NFS versions 2 and 3.

Global Name Space is not supported. It is not possible to have multiple servers
to serve one common name space.

Hot Spots Files being frequently accessed quickly bring the servers to their perfor-
mance limits because of the number of RPCs performed by clients to maintain
their caches. Processing capacity turned out to be the limiting factor.

Consistency is not guaranteed under all circumstances because one-copy semantics
is only approximated. Files shared via NFS should not be used for communi-
cation or close coordination between processes

POSIX Compliance There are several issues with POSIX semantics, e.g., the last
close problem. 3

3Delete an unlinked file after the last close.

8 Chapter 2. Distributed File Systems

Temporary Files also require interaction with the server. This could be optimized
since temporary files are heavily used and mostly exist only for a short time
on behalf of local applications [ODH+85].

Replication NFS only supports the replication of files in read-only mode. While this
improves the availability of frequently accessed files such as system libraries
that are not updated by clients, it does not help with files that actually are
updated by the clients.

Special attention is paid to the NFS Lock Manager Protocol. This is a summary of
the description found in [Cal00]. Some interesting notes about this locking protocol:

Loss of Server State It must be assured that clients can safely reestablish locks
after server failures. The mechanism implemented uses a grace period and
works as follows: after a failure, the server restarts and enters a grace period
to allow clients to reclaim locks they hold before the crash. No new locks can
be acquired during this time. Another name for this mechanism is distributed
lock recovery.

Loss of Client State In case of a client failure, the server keeps the locks until the
client explicitly reclaims them. To do so, it announces itself to the server after
a restart with an increased client state number. Locks with a lower number
are then released. Note that this can lead to wasted server resources and stale
locks when the client is permanently down or removed.

No Caching for Locked Files to prevent data corruption or even deadlocks due to
incompatibilities of the locks with the granularity of the paging system (blocks
belonging to different locks could be placed on the same memory page).

Lock Types Locks are advisory4 and can either be exclusive for write access or
shared for multiple concurrent readers.

Deadlock Prevention Deadlocks are detected by checking dependency graphs of
lock requests for cycles.

2.4 AFS — Andrew File System

AFS was originally designed to support the computing needs of Carnegie Mellon
University with its 10,000 people which could not be met by existing DFS such as
the NFS. To take it even further, AFS should no longer be constrained to local area
networks (LAN) but also be of practical use in wide area networks (WAN) where
latency is considerable and bandwidth scarce. AFS is based on the experiences
made with NFS.

The design goals are discussed in detail in [Zay91] and the most important differ-
ences compared to NFS are found in the area of scalability and name space. AFS
should scale better than NFS by an order of magnitude. Especially the clients
per server rate should be substantially increased. AFS also provides a single name

4Non-cooperative clients can still read and write the data ignoring the locks. In contrast to
advisory locks, mandatory locks enforce their semantics under any circumstance.

2.5. Coda 9

space to all users, which greatly simplifies collaboration and allows for full location
transparency. To meet the ambitious goals, client-side caching was redesigned to
support persistent whole-file caching together with whole-file serving.

To reduce client to server communication for caching purposes, open-to-close session
semantics with callbacks have been introduced. Instead of the clients polling the
server regularly even when nothing has changed, the server now directly notifies the
clients if a file was updated. The downside is that servers now have to remember
the clients to cache files persistently. If no callbacks are registered with the client
for a defined period, the client checks whether the server is still alive to prevent
losing synchronization caused by network partitions.

The callback mechanism allows local processes on one client to operate with one-
copy update semantics. For distributed clients, the contract is, that only the update
from the last close will be permanent and the other updates are lost.

2.5 Coda

Coda is a research prototype from the Carnegie Mellon University [SKK+90]. Being
inspired by AFS from where it inherits many aspects (e.g., the global name space), it
tries to overcome some of AFS’s annoyances resulting from its large installation base
with an increased probability of network and node failures. Coda should smoothly
adjust to these numerous small failures and be more resilient. Two complementary
mechanisms are provided to achieve this:

Server Replication for continuous read and write access even in case of a server
failure.

Disconnected Operation to adapt for mobile computing and client or network fail-
ures.

From a production point of view, it has to be said that some aspects of Coda like
reconciliation of conflicts or the replication algorithm seem to need more precise
definitions and research.

Coda offers an approximation to the AFS consistency model. In case of no failure,
processes sharing a file at a single node see exact UNIX semantics. Processes at
different nodes see modifications at the granularity of the file open and close opera-
tions. In case of a failure, Coda prefers availability, which could lead to conflicting
updates and therefore corrupted data over consistency. Coda assumes that this
would rarely happen and require immediate detection and reparation. The Coda
papers however remain quite obscure about the exact process of repairing such a
conflict.

As with AFS, Coda uses the notion of a volume as the unit of replication. The
replication strategy itself follows a read-one, write all available pattern which is a
very good choice if reads occur more often than writes in the sense of scalability
and communication overhead as recent research states [JPPMAK03]. The client
initializes any action on behalf of replication. On writes, the client concurrently

10 Chapter 2. Distributed File Systems

sends data to all available servers which leads to an overhead increasing with the
amount of servers involved. On reads, the client compares the versions of all avail-
able servers. If one server is out of date, the clients kicks off a synchronization phase
which is completed between the servers without any further client interaction. The
client then fetches the data from the preferred server. This kind of lazy replication
allows for offline servers and tries to minimize network utilization. It would be
interesting to investigate how reliable this is and how big the probability is that a
client gets stale data because the only server with the latest updates currently is
down.

Disconnected operation is a trade-off between fully synchronized operation (client to
server) and complete autonomy of the clients. Whenever a client (un)intentionally
is disconnected from all servers, it fully relies on cached data which can be modified
in any way. Reconnected again, the updates are propagated to the servers. During
disconnected operation, the access to an uncached file will cause an unresolvable
error. To prevent this, hoarding is used to prefetch files in connected operation on a
simple empirical analysis of the user’s behavior. As already stated, conflicts might
arise on reconnection that must be resolved in some way.

2.6 Echo

The Echo DFS from the former Digital Systems Research Center [MBH93] has four
major design goals:

Replication Servers and disks are replicated for availability.

Caching Clients extensively cache data and metadata for performance.

Global Naming Echo supports a globally scalable, hierarchical name space.

Distributed Security Clients are not trusted and authenticate themselves on behalf
of the users logged in to them.

Echo tries to achieve full UNIX single-copy semantics. In contrast to NFS or other
DFS, many UNIX file system details such as maintaining unlinked files as long
as the file is still open with any process or guarantees to have enough storage
capacity when flushing the cache are cared about. Shared read and exclusive write
locks are applied on top of leases to prevent inconsistent caches even when network
partitions occur. Caching is transparent as long as no network failures occur. Being
disconnected from the network, the client blocks for at most two minutes to wait
for automatic recovery and afterwards forwards the error to the applications. As a
consequence of its highly synchronous design, Echo only works smoothly if network
outages are rare.

Whenever one or more processes issue read or write operations, these must be
scheduled to keep data structures consistent even when some write operation fails
or data is lost during a crash. A similar technique for local file systems called soft
updates is covered in [GMSP00].

Write-behind caching allows to bundle several write operations in a cache and com-
mit them regularly or on request to the servers. This improves write performance

2.7. Subversion 11

significantly. The drawback of this approach is the difficulty of notifying applica-
tions or users about lost writes that are not made persistent due to client crashes or
lease expiry in coincidence with server failures. Echo could not find an appropriate
way to handle these situations. Operation ordering can only ameliorate but not
eliminate this. Note that local UNIX file systems also suffer from this in case of
crashes.

A lease protects cache consistency during network failures because it only depends
on relative times on the server and the client assuming matching clock speeds. But
the lease must be protected in case of a server failure. One option would be to ask
clients after a server crash to reclaim their leases as done in Spritely NFS [SM89];
it is similar to distributed lock recovery. This performs well if no failures occur
because the leases must not be made persistent during normal operation. But it is
time consuming and risky after a crash. Malicious clients could make false claims.
Echo chose to persist the leases and replicate them on the server side to provide
faster and more reliable recovery.

2.7 Subversion

Subversion is a special kind of DFS used to manage files and directories over time
with an emphasis on data and metadata versioning. It also distinguishes itself from
others in that it does not completely hide its existence and operation from the
user who has to issue proprietary commands to use it. Its preliminary use is for
concurrent software development in LAN or WAN environments.

As a successor of the widely used Concurrent Versions System (CVS, [C+04]), it
adds several valuable improvements [CSFP04]:

Directory Versioning Not only files but also directory information is fully ver-
sioned.

True Version History also for copy, move, or delete commands.

Atomic Commits Either commit everything or nothing (important for network out-
ages or node failures).

Versioned Metadata All attributes and the file location are also versioned.

Consistent Data Handling for text and binary data.

Efficient Branching and Tagging using a lazy-copy approach described below.

Hackability which means maintainability and easy integration.

Subversion is designed to be a client/server system where several clients concurrently
access one or more central repositories where the versioned data and metadata is
stored. Replication of the server-side repositories is not yet implemented.

The basic paradigm for distributed collaboration found in Subversion is the copy-
modify-merge solution.5 This is an optimistic approach where concurrent write
5Copy-modify-merge conceptually is a subset of operation shipping as described in [Lee00].

12 Chapter 2. Distributed File Systems

access to data is not prevented but resolved in case of a conflict. The choice for this
solution was taken with the development process in mind. Two developers rarely
work on exactly the same part of a source file, so it is perfectly reasonable to urge
them to talk together and merge their work in such a case. Experience showed that
this mechanism is satisfactory.

Copy-modify-merge has two important implications. First, it allows the client for
asynchronous and therefore intermittently-connected operation on the shared data.
This simplifies and accelerates the process for all involved parties at the cost of
more intensive human interaction. Second, it offloads the server from maintaining
each client’s state and from coordination efforts among the concurrently running
clients.

Several optimizations exist to increase performance by eliminating or reducing I/O
operations:

Pristine Copy To avoid connecting to the server for every minor operation, the
client keeps an untouched copy of the currently used files.

Lazy Copy Whenever a copy operation occurs on the server, the new files are cre-
ated as hard links until the files change. This will trigger the actual copy
operation and is the reason why branching and tagging are efficient operations
in Subversion. Copy-on-write (COW) is another name for this technique.

Differential Copy Whenever data has to be moved from client to server or vice
versa, only the differences are transmitted to reduce network bandwidth usage.

2.8 Lustre

The Lustre Linux Cluster file system from Cluster Filesystems, Inc. [Bra03] has
its roots in Coda but also integrates features like leases or strict UNIX semantics
from many other DFS that have already been described. Its strong requirement for
availability and scalability led to a new architecture breaking up with the traditional
client/server paradigm. While clients still play their traditional role as service
requesters, the server infrastructure has been split into two parts, each requiring
separate protocols for communication with the clients or among each other:

Metadata Servers (MDS) MDS handle client requests regarding metadata infor-
mation such as directory information. MDS can be replicated for availability.
Any communication from client to MDS is transactional and journaled.

Object Storage Targets (OST) File I/O from disks to clients, striping, and secu-
rity enforcement is handled by the OST. An OST performs the block allocation
for data objects6 which is an important part of the Lustre architecture.

The advantage of this separation is the ability to replicate and scale out each part
as required without touching other system components. There is no centralized
place anymore that can become a bottleneck of the whole system. Lustre claims
6Lustre uses the notion of an object for a file which in turn can be seen as a set of blocks.

2.9. Conclusion 13

to be able to serve 10,000 clients with the maximum bandwidth supported by the
underlying storage system and network by using a large set of OSTs. It would
be interesting to know the clients per MDS or clients per OST ratio to provide
reasonable performance.

2.9 Conclusion

Each of the discussed DFS adds some valuable concepts and shows different charac-
teristics that are summarized in this section. The following aspects are compared,
mostly chosen from the ideal DFS requirements in Section 2.2:

Architecture Three different types of architectures exist:

• Serverless (S). The DFS tries to eliminate the bottleneck of centralized
servers in a peer-to-peer fashion or at least reduce the reliance on cen-
tralized servers substantially compared to other variants of DFS. None
of the discussed systems uses this approach but it is mentioned for com-
pleteness.

• Client/Server (C/S). The DFS consists of one or more centralized servers
and any number of clients. Servers provide data and metadata and man-
age concurrent access to it.

• Client/Data Server/Metadata Server (C/DS/MDS). The DFS consists
of one or more centralized metadata servers and any number of data
servers and clients.

(A)synchronous Operation Synchronous operation requires immediate availabil-
ity of all involved partners such as servers, clients, and network links. Syn-
chronous protocols will only perform well if all components of the system
are highly available and provide low latency. These requirements are quite
restrictive and not feasible for many real-world applications. Especially the
latency of disk I/O operations are prohibitive for fully-synchronous protocols.
Asynchronous operation tries to overcome this limitation by allowing for inter-
mittent disconnection and high-latency components. Caches and queues are
the concepts coming along with asynchronous protocols. Asynchronous proto-
cols on the other hand cannot provide or only approximate semantics requiring
synchronous operation. Any DFS therefore has to weigh the requirements and
find an appropriate trade-off between synchronous and asynchronous opera-
tion.

Replication Three possible ways exist how replication appears in DFS:

• None. Neither data nor metadata nor state is replicated.

• Read. Files being replicated among several servers can only be modified
on the master server.

• Read/Write. Files being replicated among several servers can be accessed
and updated. Metadata and state information is also distributed over
several servers for better availability.

Approximation of UNIX Single-Copy Semantics There are four possible modes
where C is the set of all active clients and Clockholder is the subset of all
active clients actually holding a compatible lock on some file f :

14 Chapter 2. Distributed File Systems

• Strict. At any time t it is guaranteed that at most one client ck ∈ C
is allowed to update a file f or a portion of it. Note that this is a
highly synchronous operation since ck has to wait for all other clients
ci ∈ (Clockholder \ ck) holding locks on f to agree and therefore release
any read or write locks on f .

• Asynchronous Callback. At any time t it is highly probable that at
most one client ck ∈ C is allowed to update a file f or a portion of it.
This loosens strict semantics introducing asynchronous notification of
all other clients ci ∈ (Clockholder \ ck) to agree without waiting for their
acknowledgments. This implies that only the last client cn ∈ (Clockholder)
closing f will see its data persisted. Note that processes on client ck

operate with strict semantics as long as {ck} = Clockholder.

• Optimistic. At time t1 it is probable that at most one client ck ∈ C
is updating a file f or a portion of it. If a conflicting update is found
at time t2 > t1 (any client ci ∈ (C \ ck) updated f or a portion of it
concurrently) a reconciliation must be initiated.

• None. At time t, any number i of clients c1...i ∈ C can concurrently read
and write a file f or a portion of it.

Lock State Recovery The global lock state7 recovery after a server crash can be
handled differently:

• None. The global lock state is not recovered or the protocol does not
support/need locks.

• Centralized. The server makes the lock state persistent. This speeds up
recovery time and assures secure lock recovery. The drawback is a loss
of performance due to synchronous lock persistency writes on the server
during normal operation.

• Distributed. The server keeps the lock state only in volatile memory to
speed up normal operation. After a server failure, the server must recover
the global lock state with the distributed lock state information from all
clients. A grace period assures no new locks are handed out during this
lock state recovery. This is both time consuming and subject to potential
malicious operation.

Security Two levels of security are supported by the presented DFS besides autho-
rization which is provided by all discussed DFS:

• Authentication. The DFS offers authentication facilities to assure that
only verified users and/or clients get access to the file system. Often,
this is achieved together with third party protocols such as Kerberos
[CDK01].

• Encryption. Besides authentication, the DFS also encrypts data in flight
(communication channels) or at rest (storage disks).

Protocol Layer The ideal DFS provides access transparency to make distributed
access indistinguishable from local access. This can only be achieved with
operating system plugins and is therefore intrinsically bound to operating-
system specific access APIs or file system protocols. These are sometimes not
sufficient or convenient for a specific DFS. So, application-specific protocols
are introduced that require proprietary commands visible to the clients or
users.

7The global lock state records which client holds which locks.

2.9. Conclusion 15

Networking Environment The design of a DFS binds it to a specific networking
environment. Synchronous DFS are better suited for LANs whereas asyn-
chronous DFS still perform well in a WAN.

Scalability A major goal of many DFS is to be scalable. It is interesting to com-
pare the scalability with the other design decisions such as synchronous vs.
asynchronous operation. Since there are no common performance figures and
setups to compare (i.e., clients per server ratio with a given quality of service)
only rough approximations are presented.

Resilience Another major requirement is the resilience of the file system from a
client perspective. Resilience is mainly influenced by the availability of the
servers (load factor, uptime) and the availability of the network. Replicating
the servers can ameliorate both.

In the course of this chapter, six different DFS have been presented and certain
aspects have been investigated. The final comparison in Table 2.1 on Page 16
shows that use cases and design decisions greatly influence scalability and resilience
of these systems. There is a strong intention to support strict UNIX single-copy
semantics. Only recent developments have brought along enough sophisticated tech-
niques such as leases or distributed lock recovery to achieve this without sacrificing
scalability requirements. Today, there is a lot of research activity in DFS due to
the introduction of peer to peer (P2P) networking, storage area networks (SAN),
and demand for security.

16 Chapter 2. Distributed File Systems

Table 2.1: The DFS are compared regarding to the described aspects. Note that both
columns Synchronous and Asynchronous are only approximations since most synchronous
systems have asynchronous parts for performance reasons. Coda in connected mode uses
callbacks and switches to optimistic semantics in disconnected mode. With NFS, only the
additional locking protocol applies lock state recovery in a distributed fashion; the original
NFS does not support locks. Also note that DFS designed for WANs work perfectly in a
LAN environment. Subversion relies on external authentication and encryption facilities.
Scalability is approximated and relative to NFS [CDK01], [BHJ+93], [SS96]. SAN.FS
discussed in detail in Chapter 3 differs regarding replication. Data might be replicated on
a lower level using RAID. Metadata servers are clustered which is a form of replication.

NFS AFS Coda Echo Subversion Lustre SAN.FS
Architecture
S
C/S • • • • •
C/DS/MDS • •
Operation
Synchronous • • • • •
Asynchronous • • •
Replication
None • •
Read • •
Read/Write • • •
UNIX semantics
Strict • • •
Callback • •
Optimistic • •
None •
Lock recovery
None • • •
Centralized • •
Distributed • • •
Security
Authentication • • • •
Encryption •
Protocol layer
Filesystem • • • • • •
Application •
Environment
LAN • • • •
WAN • • •
Scalability ++ ++ + +++ +++ +++
Resilience – – + + – ++ ++

3 SAN.FS Protocol

3.1 Overview

The IBM TotalStorageTM SAN File System (SAN.FS) Protocol Set is described in
this chapter to obtain a good understanding of the concepts and techniques used.
Some parts of this chapter are taken almost verbatim from the SAN File System
Draft Protocol Specification [IBM03].

3.2 SAN.FS Components

SAN.FS is a DFS separating management from storage facilities for better scala-
bility, performance and maintainability. It is a highly optimized system designed
for LAN, actually SAN, environments providing many of the features discussed
in Chapter 2 and supporting many common use cases very efficiently. The main
components as seen in Figure 3.1 on Page 18 are:

Clients (C) Clients running on heterogeneous nodes provide SAN.FS services such
as reading or writing data on the file system kernel driver level to the appli-
cations.

Metadata Servers (MDS) Several metadata servers are combined into a cluster for
availability and performance reasons. The cluster uses a shared storage model
for its state information. In the current version, only one cluster is allowed in
a SAN.FS setup to provide the global namespace. Metadata servers manage
the clients reading or writing data or metadata concurrently but do not store
any data besides state information. Metadata servers are often simply called
servers.

Storage Devices (SD) The SAN consists of numerous logical units (LU) such as
single disks or RAID volumes. Data and metadata are stored in separate parts
of the SAN for security reasons. The current protocol version supports SCSI
block devices.

Note that there are also admin consoles giving administrators access to metadata
server cluster nodes.

The interconnecting networks are conceptually separate but can easily be merged
in practice, e.g., using iSCSI [SMS+04] over an Ethernet-based LAN:

17

18 Chapter 3. SAN.FS Protocol

Client Metadata
Server

SAN

Metadata Server Cluster

Metadata
ServerMetadata

ServerMetadata
Server

Admin
Console

Client
Client

Client
Client

Client

Clients

 SAN File System Protocol

 Data-Access Protocol

 Group-Service Protocol

 Administration Protocol

IP Network
Fibre Channel or iSCSI

Figure 3.1: Components of the SAN.FS and the required protocols. If the SAN is IP-
based, the two networks may be merged. Note that the clients do not interact with each
other and that the metadata servers use separate disks on the SAN.

Management Network An IP-based LAN connects the clients with the metadata
servers which is mainly used for management, concurrency control, or meta-
data exchange purposes. The admin consoles are also attached to this network.

Storage Area Network (SAN) A SAN connecting clients, metadata servers and
storage devices.

In the current protocol version, all components and networks are fully trusted.

3.3 SAN.FS Protocols

Several protocols cover the communication needs of the SAN.FS components:

SAN File System Protocol The core protocol of SAN.FS specifies client to meta-
data server communication. It is layered on top of an IP network using either
TCP or UDP.

Data-Access Protocol Clients directly access the block-storage devices using stan-
dardized protocols like iSCSI or SCSI over fibre channel.

Group-Service Protocol Several metadata servers leave and join the cluster dynam-
ically, e.g., because of a failure. To provide a homogeneous view to the other
components, a cluster group service protocol is used. Note that the SAN File
System Protocol does not hide the existence of each single metadata server
cluster node. As already stated, the cluster uses a shared storage.

3.4. Key Design Features of SAN.FS 19

Administration Protocol The administration consoles communicate with the nodes
in the metadata server cluster for configuration and administration purposes.

3.4 Key Design Features of SAN.FS

SAN.FS provides strict UNIX semantics and is highly synchronous. This is why it
depends on a low-latency, high-bandwidth LAN with rare node or network failures
for smooth operation. To overcome potential limitations of this approach, a special
architecture with several optimizations and techniques has been introduced that
allows the protocol to scale better than most of the previously discussed DFS. In
this section, the key design features of SAN.FS are presented, followed by the next
section outlining some important concepts.

Centralized Client/Server Architecture Clients accessing the global name space
need to communicate with the metadata servers and the storage devices but
need not be aware of each other in a P2P fashion.

Separation of Metadata from Data While file data is stored in the SAN directly
accessible to the clients, metadata is managed by the metadata servers. Meta-
data includes attributes and directory information of the files, symbolic links
as well as a mapping of the file address space to physical blocks of the storage
devices.

Centralized Control of Application Synchronization Client access to file system
objects is controlled and coordinated by the metadata servers. To reduce the
communication overhead, some control can be handed over to the client on
behalf of the local applications.

Centralized Control of Client Caching To provide strict UNIX semantics, cache
synchronization is also centralized on the metadata servers.

Cross-Platform File System Access SAN.FS allows cross-platform access to the
global name space. Currently various UNIX flavors as well as Windows clients
are supported.

3.5 Diving into SAN.FS

The following sections summarize important concepts found in SAN.FS. The fol-
lowing chapters rely on a thorough understanding of these mechanisms and are
described in detail in [IBM03].

3.5.1 Global Name Space

The SAN.FS manages all file system objects within a global name space which is
organized in a tree as follows (see Figure 3.2 on Page 21):

20 Chapter 3. SAN.FS Protocol

Root The root node is labeled “/”.

Cluster Nodes The cluster nodes are children of the root node. The current pro-
tocol version supports exactly one cluster labeled STORAGETANK.

Filesets The filesets are children of the cluster nodes and contain any number of
filesets or file system objects (files, directories, or symbolic links). A fileset is
identical with a workload from the metadata server point of view. A workload
is managed by exactly one metadata server at any time and can be handed
over in case of a metadata server failure. A metadata server can manage
multiple workloads.

File A file is an unstructured ordered set of bytes, containing data that is accessed
by clients. The content of a file is opaque to the file system itself.

Directory A directory represents a node in a file-system name-space hierarchy,
whose children are other file-system objects.

Symbolic Link A symbolic link is a node in the file-system tree at which the name
lookup of on an object is redirected.

Each file-system object is identified by a global unique identifier which is represented
as a four-tuple <clusterID.filesetID.objectID.versionNumber>. The clusterID de-
notes the cluster the object is managed by. The filesetID marks the fileset or work-
load the object belongs to. The objectID is unique and immutable for the given file
system object. The versionNumber belongs to the version of a whole fileset that
can only be increased by the administrator-level operation FlashCopy. FlashCopy
is used to make a consistent snapshot of a fileset for backup purposes. Note that
FlashCopy uses a copy-on-write approach, where data is actually only copied on
the first modification.

3.5.2 Lease Handling

In the SAN.FS, any locks or caches the client holds are protected by a lease. The
client cannot perform any operation without continuously keeping the lease valid
with the server. This happens either explicitly by sending a message to the server
or implicitly while issuing requests to the server.

A lease is a timed contract handed out by the server in which the server promises
to respect the client’s locks for a specific period of time that they both agree on.

The lease allows the client to operate efficiently by reducing the communication
overhead resulting from checking the server repeatedly for the validity of held locks
or cached data.

3.5.3 Session Locks

Session locks protect the application state of a file object regarding open and close
semantics. Because of the centralized control of application synchronization, a ses-
sion lock must protect any operation on a file system object. The type of the

3.5. Diving into SAN.FS 21

Metadata Server A

Fileset / Workload boundaries

/
(global root, <0.0.0.0>)

STORAGETANK

(cluster root, <4402.0.1.0>)

home

(fileset root, <4402.1.2.0>)
tmp

(fileset root, <4402.2.3.0>)
lib

(fileset root, <4402.3.4.0>)

rap ymk ...

...

x11 san ...

...

cpp i686 ...

...

Metadata Server B

Figure 3.2: Global name space of SAN.FS. The dotted lines denote fileset boundaries,
which are identical with the workload boundaries. Workloads are distributed among the
available metadata servers.

session lock specifies, what operation the lock holder and other clients are allowed
to perform. In other words, it tells the SAN.FS, what an application opens the
file for. There are several existing semantics like POSIX or Windows semantics
that are supported by SAN.FS. The client manages exactly one session lock per
file on behalf of all local applications concurrently accessing it. The session lock
must be as strong as the strongest lock required by an application. Session locks
are semi preemptable to actually protect the application state of a file object. This
implies two things: First, a client can refuse a metadata server request for a ses-
sion lock on behalf of another client. Second, starvation might occur if the client
keeps the lock for an undefined amount of time. The metadata server however
can force a lock revocation for administration operations such as FlashCopy. This
locking mechanism greatly reduces client to server communication and metadata
server state-management overhead but nevertheless allows to maintain strict UNIX
semantics.

3.5.4 Range Locks

On top of a session lock, a client application can acquire a range lock for any number
of bytes — even behind the current end of file. This allows coordinating multiple
(distributed) applications accessing specific parts of a single file concurrently. In
contrast to session locks, the metadata server manages range locks at the granularity
of applications. To reduce network traffic, it may delegate and revoke control for
requested ranges to a client. A client can indicate that it does not immediately
need a required range lock and thereafter waits for the server to grant it. Note that
range locks smaller than the basic storage-block unit are automatically expanded
to block size on the client side.

22 Chapter 3. SAN.FS Protocol

3.5.5 Data Locks

Side by side to a session lock, a client can acquire a data lock that actually allows
for reading or writing a file system object or caching of (meta)data. Note that data
locks apply to a whole file and cannot be combined with range locks. Data locks
are fully preemptable because they do not have to protect an application file state.
This implies two things: First, a client holding a specific lock must release it as soon
as the server requests it (and might therefore have to commit dirty caches to the
storage devices). Second: A client request for a lock will be granted as soon as all
other clients holding a conflicting lock have released or downgraded the conflicting
lock to a compatible mode.

For directories and symbolic links, the caching is read-only and only covers meta-
data. This data lock mode is called the clean (C) mode. If such an object must
be modified, a transactional request is issued to the server. Caches are kept up-
to-date using a publish-subscribe mechanism. Updates on the cached objects are
propagated synchronously to all clients holding a data lock for it.

For files, the data locks are handled differently since both data and metadata are
involved. The following modes are distinguished for file data locks:

Shared Read (SR) Multiple clients can concurrently hold this mode for read-only
caching of data and metadata.

Shared Write (SW) Multiple clients can concurrently hold this mode for read-only
caching of metadata. Data is read or written to using uncached direct I/O.
This mode is useful for distributed applications such as databases, which im-
plement their own caching and coordination model.

Exclusive (X) A single client can hold this mode for both reading and writing data
or metadata.

3.5.6 Managing File Access

SAN.FS provides a powerful virtualized access to its data using a block-allocation
map. The file address space is mapped on the metadata server to the physical blocks
on the storage devices. This concept allows to save physical blocks for unused or
empty parts in the file address space or to spread the blocks over many physical
devices. A detailed description of the mappings and communication involved can
be found in [Wag03, IBM03].

3.5.7 Failure Handling

Several scenarios exist, where well-defined failures must be handled and state must
be recovered. One difficulty arises from the fact, that different failure types show the
same behavior. Especially network partitions are not distinguishable in the short
run from node failures and appropriate measurements such as leases or lock version-
ing have to be taken. The situation is potentially complicated because two separate
networks are involved (i.e., an IP-based and maybe a fibre channel network).

3.5. Diving into SAN.FS 23

A lock version is a two-tuple represented as <filesetEpoch,lockVersion>. The file-
setEpoch is increased whenever the workload is handled by a new instance (on the
same or a different physical machine) after a metadata server crash or shutdown.
The lockVersion is increased whenever a client holding a lock should release it but
its lease is expired. This is known as lock stealing. Additionally, data lock versions
are increased, whenever (meta)data is modified. Note that for performance reasons,
only lock version information is made persistent on the metadata server. Informa-
tion about which client holds what locks in which mode is kept in volatile memory
on the metadata server and on the clients.

Whenever the server or the IP network is down, the client will not be able to
renew its lease. Before the lease actually expires, the client locally stops updates
to the cache and tries to flush the cache to the storage devices. The cache sizes
are chosen such that the flush operation will complete before the lease eventually
expires. When the lease expires, all cached data or metadata is kept as is for later
recovery but not read nor written. In case the client can acquire a new lease after
the failure was resolved, it must also reacquire any session, range, or data locks it
held. This is done using lock versioning as follows: A lock is reacquired and its
version compared to the cached version. If they match, work is resumed. If they
don’t match, caches are cleared and a fresh lock is requested from the server.

Whenever a client or the IP network is down, the client lease will expire on the
server. After an additional safety period, any locks held by the client can safely be
transferred to other clients if requested (lock steal). The lock version is increased in
this case to control the lock reacquisition of clients becoming available again later
on.

Whenever the server itself fails, it eventually restarts and immediately enters a grace
period. During this grace period, only lock reacquisitions are allowed. Thereafter,
fresh locks can be acquired as usual. This approach is necessary to protect the
current global state even after a metadata server crash. If the global state would
not be restored accurately, client applications would likely have to report errors or
at least to refresh large amount of (meta)data in their caches.

24 Chapter 3. SAN.FS Protocol

4 Security Issues

4.1 Overview

The first generation of SAN-based DFS expected other file-servers (e.g., NFS file-
servers) to be their clients, i.e., that all components of the SAN-based DFS could
be trusted. The second generation aims at spreading the SAN-based DFS directly
to the organizations’ insecure desktops. As a consequence, some components get
deployed into environments that cannot be trusted or are connected via public net-
works. The rapidly growing number of computer devices and the various needs and
intentions of their users introduce new aspects and problems not known or consid-
ered before. What used to be simple identifiers must be authenticated identifiers
today. Data that was not sniffed at or modified by contract must be encrypted and
its integrity assured. Protocols that provided access on a best effort basis must be
hardened against abuse and their resilience – even under malicious attack – must
be guaranteed.

This chapter gives a brief summary of security considerations, followed by a two-
stepped approach to find issues with the SAN File System Protocol for client to
metadata server communication as described in the task of this thesis: First, we
looked at issues that arise during normal operation. Second, we took malicious
operation into consideration. Since most of the found issues do not only affect
SAN-based DFS but any DFS or local file system (FS), it is also mentioned in
parenthesis with each issue, where it should be considered as well. Note that it is
hard with failing nodes or applications and also in asynchronous systems, to keep
apart normal from malicious operation. Finally, a conclusion will be drawn.

4.2 Security Considerations

Before one can look for security issues, it must be clear, first: what the environment
is and second, what kind of security is expected.

4.2.1 Whom to Trust

A DFS consists of many different components, from which some are trusted and
some are not. While trusting a component simplifies protocols and implementations
and improves performance due to less complexity, it is often not practically feasible

25

26 Chapter 4. Security Issues

to extend the trust to the whole system. The trust levels for SAN.FS should look
as follows (diverging from the assumptions of the current protocol version):

Network The underlying networks are not trusted.

Metadata Server Metadata servers are fully trusted. A trusted administrator can
easily control the cluster of metadata servers in a safe place.

Storage Device Storage devices are fully trusted. A trusted administrator can
easily control the storage racks in a safe place. Further security within SAN
environments is not part of this paper and an active research topic (e.g.,
[AJL+03]).

Client Clients cannot be trusted because they could be tampered with malicious
code either on the SAN.FS kernel driver or at the application level. Trusting
users and applications is not in the scope of SAN.FS but must certainly be
addressed by other means. Note that clients could also be partially trusted,
i.e., the kernel is trusted but not the user space.

4.2.2 What to Expect

A wide range of concepts and expectations is covered by the word security ([AS99,
CDK01]):

Authorization and Authentication

SAN.FS in the current version uses access control lists (ACL) to authorize an user to
access files; authorization happens on the client side. Not only file access should be
authorized, but any access to the system or its resources. Even more, any component
of the system should authenticate itself to prevent forging identities; also trusted
entities must prove who they are. The current SAN.FS protocol version does not
support authentication.

Metadata Server Metadata servers should authenticate themselves to assure clients
do not communicate with malicious third party metadata servers.

Client The client has to authenticate itself with the SAN.FS. This assures that only
the expected set of clients can communicate with the SAN.FS.

User and Application Users and applications have to authenticate themselves on a
layer higher than the SAN.FS. Whenever a user or application is requesting
SAN.FS services on a client, it is assumed they already have been authorized
and authenticated by other means. To get access to specific files they must
still be authorized. This is a feature of the current protocol version and is
implemented as access control lists (ACL).

Storage Device Storage devices are identified by a logical unit (LU). Authenticat-
ing LUs would be in the scope of the underlying protocols such as iSCSI.
Note again that securing SANs is an active research topic and not part of this
thesis.

4.2. Security Considerations 27

Encryption

Preferrably, data must be encrypted to protect it in flight and at rest to prevent
eavesdropping (adapted from [Wag03]).

Data In Flight Client to metadata server or storage device communication must be
encrypted if confidential information is transmitted. Since encryption might
adversely affect network throughput and latency, one might want to only
encrypt parts of the transmitted protocol messages.

Data At Rest The stored data itself must be protected. One could argue that the
virtualized mapping of the file address space to physical blocks provides a
reasonable level of protection because a malicious client would need to know
where the blocks of a specific file are stored to access them. This statement
would require further investigation. Data at rest however is much more ex-
posed to attacks since the attacker has more time and flexibility compared to
attacking data in flight.

Integrity

Speaking of data security implies speaking of data integrity. It must at least be
possible to detect malicious changes of the data. This aspect is covered in [Wag03].
The next step is not only to detect but also to recover such manipulation using
ECC1 or other techniques such as data versioning or simply backups.

Resilience

Besides the requirement for continuous operation even in case of node failures, it
must be ensured that the services are not susceptible to any potential type of denial
of service (DoS) attack.

Metadata Server Metadata servers can be clustered to increase resilience. But
physical availability is not the only issue. Since metadata servers control
distributed file access, they must keep state information such as leases and
locks. It should not be possible at any time for a malicious client to prevent
other clients from normal operation through consuming all metadata server
memory and processing capacity.

Storage Device The availability of storage devices can be achieved with either de-
ploying RAID systems as one LU or replicating the physical blocks using an
extended virtualized file address space mapping. The RAID layer solution
is currently used, which unloads the protocol from the burden of replication.
The protocol level replication would probably introduce more communication
overhead. On the other side, it could be more flexible and even show better
resistance to network partitions because blocks could be widely spread.

1Error correcting code (ECC).

28 Chapter 4. Security Issues

4.3 Natural Failure Conditions

The investigation of the protocol could not reveal any weaknesses for non-malicious
fail-free operation. Several potential failure scenarios have to be covered however,
from both the client and metadata server perspective since these are the active
components in the system. For all given scenarios, it is important to remember
that clients apply different types of interaction for either communicating with the
metadata server or the storage device:

Client to Metadata Server Any interaction between a client and a metadata server
is transactional and atomic. This is a synchronous mode where the transaction
participants immediately see any failure.

Client to Storage Device Client to storage device interaction is direct for certain
data lock types. In this case, client applications are assumed to implement
their own specialized caching model. Other data lock types provide driver
level caching. This cache is flushed at specific points in time, introducing
asynchronous communication. As described in [BHJ+93], it is not always
possible with asynchronous caches to report failures to the applications, e.g.,
when the application quit before the cache was flushed.

4.3.1 Client Perspective

From the point of view of a client, the following events must be analyzed:

Partitioned Storage Device(s) No data blocks can be read from or written to the
storage device. While the data is still protected by locks, it may happen that
dirty caches cannot be flushed. This will lead to unresolvable errors if the
partition lasts for an extended period of time or another client requests the
lock protecting a dirty cache.

Storage Device Failure Failing storage devices cannot be distinguished by the client
from partitioned ones. Nevertheless, this scenario will potentially lead to a
loss of data. A failure means the complete failure of the device.

Partitioned Metadata Server The client lease will expire but caches can be flushed
to storage since clients cache at most as much data as they can flush to
storage devices before the lease expires. When the lease eventually expires,
any SAN.FS operation must be suspended and errors must be reported to the
applications if the lease cannot be renewed within a specific amount of time.

Metadata Server Failure Failing metadata servers cannot be distinguished by the
client from partitioned ones unless the workload is moved to another metadata
server.

Partitioned Client When the client is disconnected from both, the metadata server
and the storage device, the lease will expire, but the client will not be able
to (completely) flush potentially dirty caches. This will lead to problems
described above in partitioned storage devices(s).

4.3. Natural Failure Conditions 29

Client Failure A crashing client will potentially lose data as any UNIX system does,
if caches were dirty at the event of failure. If caches were partially written
to the storage devices, other clients will see dirty data which they cannot
distinguish from clean data.

Application Failure A rogue application on a client can harm session lock man-
agement since session locks are semi preemptable. As long as a session lock
protects the application state, the client must deny a metadata server revok-
ing the session lock from it. The only way the metadata server can forcibly
revoke the stale session lock is during an administrator-level operation such
as FlashCopy.

Distributed Application Misbehavior Since distributed applications are not aware
of the underlying DFS and its optimizations, they might request the wrong
lock modes from the SAN.FS point of view, e.g., a shared write data lock
instead of a range lock. As a result, the client repeatedly has to acquire the
same data lock and fill its cache, only to relinquish it on behalf of a metadata
server request to release the data lock und flush the cache. The time the
client can provide the lock to an application to actually perform some work
is therefore reduced substantially. This is also known as trashing.

4.3.2 Metadata Server Perspective

From the point of view of a metadata server, the following events must be analyzed:

Partitioned Storage Device(s) No metadata blocks can be read or written from or
to the storage device. Since the metadata server uses caching, it may work
some short time without having to read or write from or to a storage device.
Afterwards, or as soon as a synchronous write occurs, the metadata server
has to cease operation.

Storage Device Failure Failing storage devices cannot be distinguished by the meta-
data server from partitioned ones. Nevertheless, this scenario will potentially
lead to a loss of data.

Partitioned Client The client lease will expire and after an additional safety period,
any locks formerly held by the client will be granted to other clients requesting
it. The server cannot be certain, whether the client could safely flush all dirty
cached data as described above.

Client Failure Same as described in partitioned client.

Failure of Client Application The metadata server will not be able to revoke a
session lock from a client hosting a failing (i.e., hanging) application. As a
result, starvation might occur if another client waits for this session lock, or
at least the server has to keep stale lock state information.

Distributed Client Application Misbehavior The metadata server has to handle
hot spots on certain data locks moving them back and forth between two
or more clients. The lock is trashed between the clients causing noticeable
overhead on the metadata server.

30 Chapter 4. Security Issues

Partitioned Metadata Server The metadata server ceases operation as soon as all
leases expired due to a network partition. Whenever the metadata server is
reconnected, clients will start to reacquire leases and locks without the meta-
data server entering a grace period, which could lead to clients losing session
locks, which consequently must be reported as an error to the applications.
This is a clear violation of the global state recovery, which demands grace
period semantics.

Metadata Server Failure A crashing metadata server will potentially lose any cached
metadata or state information. When restarted, it will enter a grace period to
prefer lock reacquisitions over fresh lock acquisitions to reestablish the current
global state.

4.3.3 Issues From Natural Failure Conditions

The following issues should be addressed for natural failure conditions. The issues
are ordered by their impact on other file systems. Note that an issue affecting
SAN.FS can also affect any DFS and an issue affecting a DFS can also affect any
local FS:

Non-Atomic Disk Writes (FS) Without atomic disk operations, application or client
crashes and lease expiration combined with network outages might lead to
dirty persisted data on storage devices without having a possibility for de-
tection or recovery. In contrast to local operation where such errors mostly
occur when the application itself crashed too, distributed applications might
see dirty persisted data unexpectedly and therefore misbehave or report er-
rors.

Grace Period Usage (DFS) Metadata servers do not enter a grace period after
being partitioned from the clients. This deviates from the semantics defined
for a metadata server crash — the client should see consistent behavior since it
cannot distinguish crashed from partitioned metadata servers. The omission
of the grace period might lead to an inaccurate global state recovery with a lot
of communication overhead or even application errors because a client cannot
reacquire a session lock stolen by another client.

Data Lock Full Preemptability (SAN.FS) The trashing of data locks under cer-
tain conditions causes a lot of overhead and inefficiency that should be avoided
or cured.

Session Lock Semi Preemptability (SAN.FS) Clients will protect the state of an
application by holding session locks even in the case this application hangs.
This will lead to “zombie” session locks that cannot be reclaimed by the server
during normal operation until the client is shut down or the application is
killed. Only the next administrator-level operation such as detaching a fileset
or restoring a FlashCopy image will force the release of a all session locks.

4.4. Malicious Operation 31

4.4 Malicious Operation

A malicious user could harm SAN.FS in two fundamentally different ways: First,
he could simply want to disrupt the service. Second, he could either read or write
data without authorization. Comparable to criminal stories, our malicious user will
always choose the most economic path to achieve his goals. SAN.FS has to apply the
appropriate counter-measurements step by step also in an economic order. This will
require the malicious user to invest ever-growing resources and therefore successively
limits the number of potential malicious users.

At least two questions arise for a malicious user: First, how is the set of clients
connected to the SAN.FS service organized and protected? Second, is it possible to
attack the service from unprivileged user space? If the set of clients is well protected,
the malicious user probably has to break into existing hosts. If unprivileged access
is not sufficient, he must obtain root rights, which is even more difficult.

4.4.1 Denial of Service (DoS)

Denial of service tries to bring the system to its limits and eventually render it
useless for others by using up all resources such as memory, processing capacity,
network bandwidth, or disk capacity [CDK01, LRST00]. The following attacks can
be performed (ordered by difficulty):

Byzantine Messages The malicious client tries to confuse the metadata server or
another client by sending arbitrary messages causing byzantine errors. Since
it is not clear, what impact some message combinations have, it must be tried
out for each metadata server or client implementation. Depending on the
checks performed, this might lead to quick and therefore cheap results.

Disk Space Without having to analyze network traffic or hijacking connections to
send fictitious protocol messages, it is feasible for only one client to consume
all available disk space in a given fileset. It only must create one or more
files and acquire block after block. The impact of this attack depends on the
granularity of quotas on the filesets. The finer it is, the less harm it does.
Note that SAN.FS supports file sizes of up to 264 − 1 bytes and that block
allocations are expensive operations.

Session Locks The semi preemptability of session locks makes them an interesting
target for a denial of service attack because only administrator-level operations
will allow the metadata server to forcibly reclaim session locks. A malicious
client could now start to acquire as many session locks as possible. The more
clients follow this pattern, the faster the service is unusable for compliant
clients, which cannot obtain session locks for specific files as required anymore.
It is an important issue that clients can acquire a session lock on any file
regardless of the ACLs protecting it, since authorization is done on the client
side. Note that this attack requires an adaptation of the client or a SAN.FS
protocol simulation if locks need to be stolen on objects the client would
theoretically have no access to.

Data Locks The full preemptability of data locks makes them an interesting target
for a denial of service attack if the accompanying session lock was first acquired

32 Chapter 4. Security Issues

by a good client and allows for shared access. A malicious client could then
continuously acquire a data lock and release it again on demand, which would
lead to trashing and an unusable service for the good client. Adaptation of
client code is required for the same purpose as described for session locks.

Lock Reacquisition Since the global state is mostly kept in volatile memory and
must be recovered after server crashes from the client memories, this offers the
possibility for maliciously reacquiring locks formerly held by other clients or
maliciously upgrading locks. Furthermore, it would be possible for malicious
clients to reacquire locks from disconnected or crashed clients forging their
identities. Both would break the global state and potentially cause good
clients to report errors.

Other Fancy Attacks With the current protocol, some other highly specific attacks
might be imaginable such as man-in-the-middle attacks where a malicious
client would hijack an existing metadata server to client TCP connection and
try to break the global state or make the service unusable. But all must rely
in one way or the other on security issues discussed later on.

4.4.2 Read or Write Data

A malicious client has two ways to read or write data on the storage devices: First,
it can learn the exact storage device and block numbers by querying the metadata
server. Second, it can sniff on the network.

Via Metadata Server

Without having the possibility to sniff on the network, a malicious client must
perform four steps to manipulate data:

1. Locate the required file, i.e., find the associated id (see Section 3.5.1).

2. Acquire a session and a data lock for read access on the file.

3. Fetch the block addresses from the metadata server.

4. Access the blocks on the storage device without performing authorization.

The malicious client must simulate the protocol to circumvent authorization.

Direct Access

If the malicious client somehow learned about the exact location (i.e., storage device
and blocks) or if the client just wants to overwrite data randomly on the storage
devices, it can directly access them without first requesting a lock. This is possible
because locks are only advisory in the current protocol. Note that this currently is
an operation involving only clients and storage devices but still should be mentioned
here since the locking basically is in the domain of the metadata servers.

4.4. Malicious Operation 33

4.4.3 Issues from Malicious Operation

The following issues should be addressed during malicious operation where clients
and their network connections are no longer trusted. The issues are ordered by their
impact on other file systems. Note that an issue affecting SAN.FS can also affect
any DFS and an issue affecting a DFS can also affect any local FS:

No Authentication (FS) If the partners are not authenticated, it is particularly
easy to forge an identity or dynamically exchange identities. E.g., locks are
bound to a client identifier and an IP address which must not be authenticated.
The set of clients accessing the service can therefore hardly be controlled.

No Encryption (FS) The client to metadata server communication must be en-
crypted if confidential information is transferred (e.g., symmetric keys for
data encryption as mentioned in [Wag03], or the contents of some home direc-
tory) or untrusted clients could easily eavesdrop on the communication and
gather metadata information.

Spare Resource Limitation (Quotas) (FS) To prevent unlimited damage to the
system, certain resources must clearly be limited per client or even per user.
These are the number of session, data and range locks a client can hold, as
well as the storage space a client or user can allocate. The current protocol
version supports disk space quotas on a per fileset basis where the chosen
quota granularity renders the SAN.FS more or less vulnerable to DoS attacks
exploiting disk capacity. The finer the granularity, the less vulnerable it is. A
trade-off must be chosen however since storage devices are statically assigned
to filesets. A more coarse quota granularity leads to multiplexing gains2 in
storage space. Another aspect is the manageability of the system. The finer
the granularity, the less manageable it becomes.

Advisory Locking (FS) The current advisory locking is not sufficient to prevent di-
rect access from malicious clients to storage devices circumventing metadata
servers and therefore potentially breaking the global lock state. Mandatory
locking should be introduced to enforce locking semantics under all circum-
stances. This could require a protocol modification on both client to metadata
server and client to storage device communication and maybe require a coop-
eration of metadata servers and storage devices.

Frugal Misbehavior Penalty (FS) There are some cases (especially if authentica-
tion is introduced), where malicious operation can easily be detected due to
protocol violations. In most cases however, malicious operation cannot clearly
be distinguished from normal or faulty operation. Nevertheless, there are in-
dications such as trashing data locks or attempts to exceed quotas. All these
events must be monitored and immediate penalties or deferred administrative
actions must be triggered (e.g., reinstall a rogue client) according to config-
urable policies. Note that the current protocol already defines some incidents
where the client lease is expired as a penalty.

Distributed Lock Recovery (DFS) Since SAN.FS uses a distributed, unauthenti-
cated lock state recovery, malicious clients can make false lock claims after
a failure and maliciously steal or upgrade locks which breaks the global lock
state.

2Multiplexing gains are known from network traffic where the combination of multiple sources into
one channel leads to efficient data transmission because of the varying bandwidth utilization
of each source over time.

34 Chapter 4. Security Issues

Client Side Authorization (SAN.FS) Authorization performed on the client side
is conceptually weak if clients are not trusted. It specifically allows a client to
acquire any lock type in any mode without having to proof, the user requesting
it would finally be allowed to do so. This is important together with the
described lock issues.

Session Lock Semi Preemptability (SAN.FS) makes session locks an attractive
target for DoS consuming all available session locks in exclusive mode without
having to hand them back before the next administrator-level operation. This
is even aggravated taking the issue with client side authorization described
above into account and will lead to the starvation of good clients waiting for
a session lock.

Data Lock Fully Preemptability (SAN.FS) makes data locks an attractive target
for DoS against a specific client holding data locks because data locks must
be handed back to the metadata server on request. An attacker could enforce
trashing by continuously requesting the same data lock. If the intention is
not to prevent clients from accessing a file but keeping the clients and the
metadata servers busy, trashing can be achieved by first acquiring a shared
session lock and then moving the data lock accompanying it back and forth
between the malicious and the good client. Trashing is also very effective if
applied within two malicious clients.

4.5 Conclusion

SAN.FS currently is a DFS trusting all cooperating parties. This allows many
optimizations such as client side authorization or the lack of authentication and
encryption. Introducing malicious client activity, there is a shift of the interest
from high performance towards sustainable long-term operation. Mechanisms such
as distributed lock recovery must be rethought and adapted.

Not only during malicious, but also during fully trusted normal operation, there
are some issues. Special failure scenarios must be addressed. It has to be said that
these normal-operation issues have a low probability of occurrence. Nevertheless, a
highly reliable DFS should be hardened even for rare failure events.

The next chapter tries to eliminate a selection of the found issues suggesting possible
design modifications and evaluates their impact on the overall SAN.FS performance
and security.

5 Design Modifications

5.1 Overview

This chapter addresses some of the issues found. For each, a possible design mod-
ification is suggested. First, a short overview is provided, discussing alternatives.
Then, the mechanism, and where necessary, the protocol design or an implementa-
tion prototype is presented. Finally, an evaluation of the security and performance
impacts on SAN.FS as well as a discussion of the remaining open issues conclude
each suggested design modification.

5.2 Authentication and Encryption

The set of possible attacks can be dramatically reduced if clients and servers have to
authenticate themselves and communication is encrypted. Out of the seven Open
Systems Interconnection (OSI) Reference Model layers [Tan96], this is commonly
achieved on either the network (IP) or the transport (TCP/UDP) layer. What-
ever solution is chosen, it is expected, that the runtime performance of SAN.FS
is adversely affected by introducing cryptographic operations and that the key or
certificate management can become an issue for large-scale installations.

The minimal requirement is to mutually authenticate clients and metadata servers
to prevent unauthorized access. Encryption on top of authentication is not necessary
to protect the current protocol: First, malicious clients that cannot authenticate
themselves with the metadata server, are excluded from the protocol. Second,
trusted but malicious clients can decide on the global protocol state by legally
challenging the metadata server. On the other hand, encryption is a prerequisite,
if the protocol is extended to transport confidential metadata such as secret keys
or if the metadata itself must be protected; without encryption, a malicious client
can learn the metadata by eavesdropping on the authenticated communication in
the long run. An intermediate step could be only to encrypt selected parts of the
protocol messages.

A promising candidate is the IP Security Protocol (IPsec, [TDG98]). It provides
network-level integrity, confidentiality and authenticity on an end-to-end basis; end-
to-end means host-to-host and not user-to-user. IPsec is optional for IPv4, manda-
tory for the next generation Internet Protocol IPv6 and available today for all major
operating systems. Its main advantage from a SAN.FS point of view is, that its
setup does not require touching existing SAN.FS client or server implementations
and can be plugged-in transparently on the lower layer. Non-SAN.FS applications

35

36 Chapter 5. Design Modifications

can automatically leverage IPsec. This would not be the case with a transport layer
security (TLS, [APS99]) based solution.

5.2.1 Mechanism Design

Metadata-ServerTrusted Client

IP C1
Identifier C2

Trusted Client

IP B1
Identifier B2

Trusted Client

IP A1
Identifier A2

Metadata-Server

IPsec Authentication

Malicious Client

IP M1
Identifier M2

Network layer

A1

IP IPsec Auth

SAN.FS protocol layer

A1

IP Identifier Granted

B1

C1

A2

A2C1

B1 B2

M1 Malicious

Figure 5.1: IPsec allows to restrict access to the metadata server to trusted clients. It is
not possible for a malicious client (trusted or not) to forge the identity of a trusted client.
Note that trusted clients can become malicious after they have been hacked. As a conse-
quence, trusted but malicious clients can still access the metadata server. Nevertheless, the
bar to access the metadata server is substantially higher with authentication.

The set of clients is divided into a set of trusted clients and a set of untrusted
clients. This separation is configurable by an administrator on the network (IP)
layer. The metadata server shares a different secret with each of the trusted clients
and requires all communication with trusted clients to be authenticated with IPsec.
Non-IPsec traffic is not accepted. Neither is traffic with bad authentication. This
guarantees that only trusted and authenticated clients can access the metadata
server (see Figure 5.1).

The set of trusted clients must not necessarily be disjoint from the set of malicious
clients. It is assumed that trusted clients could be hacked and become malicious
without violating the authentication of IPsec. Note that the ease of hacking a
trusted client depends on the administration and security policies applied within
an organization. IPsec however states, that it is not computationally feasible for a
malicious client to forge the identity (i.e., the IP address) of a trusted and authen-
ticated client or to modify the sent packets in any other way.

On the SAN.FS protocol layer, the metadata server identifies each client with an
unique client ID, which is chosen by the client itself and is valid for the lifetime of a
lease (see [IBM03], Section 4.7.3, Client ID). Note that the client ID and the lease

5.2. Authentication and Encryption 37

expire when the IP address of the client changes. Whenever the metadata server
receives a protocol message, it assures that the IP address and the client ID of the
message match the IP address and client ID stored in volatile memory. As soon
as a specific client initializes these values on the metadata server by sending it an
Identify message, the client ID is authenticated by the IP address which in turn is
authenticated by IPsec.

5.2.2 Implementation

A firewall (e.g., iptables on Linux systems) is configured to drop non-IPsec TCP
or UDP traffic to a specific port on the metadata server. This reduces the set of
clients accessing the metadata server to the trusted clients because IPsec traffic is
only accepted on the IPsec layer, if it is successfully authenticated.

The prototype uses Internet Key Exchange (IKE) implemented by the KAME1

based racoon daemon to automatically exchange Security Associations (SA) based
upon a common configuration. Racoon also makes sure to regularly exchange the
symmetric key to increase security. HMAC SHA1 is used for authentication, AES
for encryption. This configuration is suggested by the IPsec implementation because
it offers the best performance and security trade-off. The set of trusted clients is
controlled by the metadata server IPsec-configuration listing the pre-shared keys
for all clients. If a client is added to the set, its pre-shared key is added to the list
and removed from it, whenever the client is removed from the set. In addition, each
client stores the pre-shared key of the metadata server.

It is worthwhile to note that there is some critique about IPsec [FS00] especially
because of its complexity. The implementation prototype is taking this into con-
sideration and uses the Encapsulating Security Payload (ESP) in tunnel mode for
encryption and authentication. Transport mode or authentication alone is not used
because it is only a special case of tunnel mode and does not work together properly
with the current iptables of Linux.

5.2.3 Evaluation

IPsec performance was measured by [MIK02]. Some own measurements were made
to verify these results. The measured performance drops compared to non-IPsec
operation depend on the test setup (i.e., network bandwidth and minimal available
CPU power on both hosts). While the latency of IPsec is not affected throughout
different setups (see Figure 5.2 on Page 38), the throughput clearly is (see Figures 5.3
and 5.4 on Pages 39 and 40). The reason lies in the fact that the available network
bandwidth is the bottleneck in non-IPsec operation while it usually is CPU power
in IPsec operation. The two setups chosen for the final measurement consisted of:

Slow Scenario An IBM xSeries 335 server with a XEON 2.8GHz and an average
1.8GHz Pentium4 desktop connected over a 100Mbit Ethernet. While the
server showed a CPU utilization of less than 20%, the desktop CPU was

1www.kame.net

38 Chapter 5. Design Modifications

utilized by over 99%. Note that the slow host dictates the overall system
performance.

Fast Scenario Two IBM xSeries 335 servers with a XEON 2.8GHz connected over
a 1Gbit Ethernet. Both servers showed a CPU utilization of over 90%.

On both hosts, the actual Linux operating system was running in a virtual machine.
The results are listed in Table 5.1 on Page 39. Note that encryption requires slightly
more CPU power than decryption.

Figure 5.2: IPsec latency for non-IPsec (Plain), IPsec with authentication (AH), and
IPsec with authentication and encryption (ESP)

The SAN.FS protocol intermittently transmits small packets of mostly less than
512 bytes. Each transmission is accompanied by some server-side work-time and
potential reads and writes on storage devices. This protocol characteristics support
the assumption, that the IPsec performance penalty is not that severe if applied to
the SAN.FS protocol (see Figure 5.5 on Page 41).

The PostMark benchmark [Kat97] was applied for several setups to verify this.
PostMark was chosen because it offers a good mix of metadata and data operations
– it simulates the workload of a mail, news, or e-commerce server. It is not clear,
why the results contain a serrated pattern. But all measurements – even if taken
after some time – lie within a narrow interval. The setup consisted of a storage and
a metadata server running in a virtual machine on a IBM xSeries 335 server with
a XEON 2.8GHz. The client running in a virtual machine on an average 1.8GHz
Pentium4 desktop was connected with the server over a 100Mbit Ethernet. All hosts
and virtual machines were equipped with sufficient memory not to start swapping
and no other tasks were running. Both, the storage and metadata server showed
CPU utilizations of mostly less than 50%. The client CPU was utilized by over
90%. Network bandwidth was never saturated. It follows, that the client was the

5.2. Authentication and Encryption 39

Figure 5.3: IPsec throughput in a slow scenario for TCP and UDP.

Table 5.1: IPsec throughput evaluation. As a rule of thumb, two fast hosts achieve a
throughput with IPsec comparable to two slow hosts without IPsec. The values are in
Mbit/s.

UDP UDP UDP TCP TCP TCP
Plain AH ESP Plain AH ESP

Slow Scenario
Min 67.1 34.1 21.4 58.3 33.9 17.3
Avg 77.9 40.0 22.0 69.0 35.3 18.2
Max 83.3 41.6 22.6 72.2 36.4 19.3
MDev 4.6 2.2 0.4 3.5 0.6 0.5
Conf95(Avg) ±2.0 ±1.0 ±0.2 ±1.5 ±0.2 ±0.2
Conf99(Avg) ±2.6 ±1.3 ±0.2 ±2.0 ±0.3 ±0.3
Fast Scenario
Min 515.0 177.0 71.1 455.0 159.0 71.1
Avg 524.5 186.5 80.3 478.5 189.3 72.9
Max 541.0 211.0 90.1 502.0 226.0 76.1
MDev 9.0 10.6 6.3 15.8 12.7 1.3
Conf95(Avg) ±4.0 ±4.7 ±2.8 ±6.9 ±5.6 ±0.6
Conf99(Avg) ±5.2 ±6.1 ±3.6 ±9.1 ±7.3 ±0.7

bottleneck – a clear indication of SAN.FS scalability. Table 5.2 on Page 40 lists the
results.

Three cases were identified (see Figure 5.5 on Page 41):

Best Case The performance of SAN.FS is not affected by introducing IPsec. This
case occurs when the client file system operation does not involve any com-

40 Chapter 5. Design Modifications

Figure 5.4: IPsec throughput in a fast scenario for TCP and UDP.

Table 5.2: The PostMark benchmark applied to several SAN.FS setups. The number of
files tests was 1’000; the number of transactions 10’000. For each setup, 20 runs were per-
formed. Runtimes varied between 81 and 124 seconds. AH stands for IPsec authentication
in transport mode and ESP for IPsec authentication and encryption in tunnel mode. All
provided values denote the number of transactions per second.

UDP UDP UDP TCP TCP TCP
Plain AH ESP Plain AH ESP

Min 96.0 90.0 81.0 102.0 90.0 81.0
Avg 107.5 99.9 95.9 113.4 101.4 92.3
Max 117.0 107.0 107.0 123.0 111.0 99.0
MDev 7.2 6.1 7.6 7.4 6.3 5.3
Conf95(Avg) ±3.1 ±2.7 ±3.3 ±3.2 ±2.8 ±2.3
Conf99(Avg) ±4.1 ±3.5 ±4.4 ±4.3 ±3.7 ±3.1

munication with the metadata server. E.g., reading a file from which the
metadata is already cached on the client.

Average Case In the expected average case, IPsec does only slightly affect SAN.FS’s
performance (11% decrease on average). This is because other operations such
as metadata server-side operations or operations on the storage consume com-
parably more time than the client to metadata server communication. The
PostMark benchmark with mixed metadata and data operations is a good
example.

Worst Case The performance drop of SAN.FS equals the performance drop of IPsec
which is 72% on average. In this case, the client exchanges a huge amount of
data with the metadata server. E.g., reading of a directory containing many
ten thousands of files.

5.2. Authentication and Encryption 41

Best case (equals non-IPsec): Read files with cached metadata
Average case: PostMark benchmark
Worst case (equals IPsec only): Read huge uncached directory

B
A
W

Client

B
A

W
A IPsec

Non-IPsec

Metadata
Server

Figure 5.5: IPsec SAN.FS performance evaluation. Applying IPsec on client to metadata
server communication affects the overall SAN.FS performance in a wide range. Best, av-
erage and worst-case scenarios have been identified. Notably, the expected average loss in
performance is far less dramatic than the preceding IPsec throughput performance evalua-
tion indicated.

If only the times to send a message are considered, the performance characteristics
obey this idealized equation:

f(ts, tm) =
ts + tm

ts + 3.57tm
|ts, tm ∈ R, ts, tm ∈ [0; 1], (ts + tm) = 1 (5.1)

Here, ts is the fraction of communication time between client and storage; tm is the
fraction of communication time between client and metadata server. For the best
case, the tuple (ts, tm) would be (1.0, 0.0) with a performance of 100%. For the
worst case, it would be (0.0, 1.0) with a performance of 28%.

The following is recommended for the IBM SAN.FS:

Non-IPsec For the current non-IPsec setup, it is recommend to use TCP for client
to metadata server communication. TCP offers about five percent better
throughput on average compared to UDP. The corresponding 95% confidence
intervals hardly overlap.

IPsec For IPsec scenarios, it is recommended to use the ESP tunnel mode over
UDP. This provides authentication and encryption. The average loss from
non-IPsec operation to IPsec operation with authentication is about seven
percent. The additional average loss from IPsec with authentication to IPsec
with authentication and encryption is only four percent. The 99% confidence

42 Chapter 5. Design Modifications

intervals of IPsec with authentication and IPsec with authentication and en-
cryption overlap by 50%. Given that encryption prevents eavesdropping on
metadata information, this price is more than justified. UDP outperforms
TCP in this case on an average of four percent.

5.2.4 Open Issues

The following issues are not covered by the implementation prototype:

Large Scale Management The preshared key method is not feasible as soon as
multiple metadata servers or more than some few clients have to be managed.
In this scenario, a switch to the Kerberos based method is highly recom-
mended. With Kerberos, all keys are managed centrally.

Dynamic IP Addresses There is an issue with dynamically assigned IP addresses.
With the preshared key method, IP addresses must be static.

Dynamic Configuration Because of a flaw in the current Linux IPsec implementa-
tion, a client cannot be dynamically removed from the metadata server IPsec
configuration without restarting IPsec. This affects normal operation because
some clients might have to start lock recovery procedures since their locks
were expired.

5.3 Secure Distributed Lock Recovery

Centralized lock recovery puts all the responsibility for persistently maintaining the
lock state onto the server. This effectively requires the server to perform a syn-
chronous write to stable storage on whenever a lock is acquired or relinquished.
These writes significantly slow down the lock request process and severely limit
the performance and scalability of the file system. The advantage is, that the
global state can quickly and securely be recovered after failures at the server with-
out involving the clients. There is no need for a grace period and the clients can
immediately resume work after the server has sent them their locks. Note that
authentication is required to provide an appropriate level of security.

Distributed lock recovery in contrast only persists a fraction of the global lock state.
SAN.FS for example found an optimal trade-off and only stores rarely changing
information such as the file system object identifier, the epoch and the lock version
on the disk. Frequently changing information such as client identifier or lock mode
is only kept in volatile memory – redundantly on both servers and clients. This
approach favors scalability and performance over security and short recovery times.
Recovery should be a rare process, as such recovery performance is not a prime
criterion for normal operation, but may become critical in real-time environments.
Recovery times are affected because of the inescapable restoration of the global lock
state on the server after its failure. The complete trust and reliance upon the client
cooperation is no longer tolerable without appropriate precautions if malicious client
operation must be taken into consideration.

5.3. Secure Distributed Lock Recovery 43

Fileset Served by Metadata Server

Persistent Volatile

ObjID ModeClientIDVersionEpoch

Client

ObjID ModeClientIDVersionEpoch

Volatile

Client

ObjID ModeClientIDVersionEpoch

Volatile

Client

ObjID ModeClientIDVersionEpoch

Volatile
Recoverable from disk
Lost after server crash;
must be recovered from clients

A
B

A B

Figure 5.6: Distributed lock recovery. The lock state is handled at the fileset level. Epoch
and lock versions are used for failure handling as described in Section 3.5.7 on Page 22.
After a metadata server crash, the global lock state must be recovered from the clients.

The following sections suggest a mechanism to secure the distributed lock recovery
in a way that does not impose substantial overhead and keeps the advantages of
scalability and performance.

5.3.1 Mechanism Design

All three types of locks, namely session, data and range locks are involved with
distributed lock recovery. Session locks must be protected in all modes since they
themselves protect the application state. Data locks must be protected in the
shared and exclusive modes because they themselves protect the distributed caching
mechanism. Clean mode data locks do not need protection because of their read-
only nature; modifications on the corresponding file system objects (i.e., directories
and symbolic links) are based on a separate publish-subscribe mechanism. Range
locks are protected by session locks and the overhead to protect the range locks
too is not justifiable, especially because their handling is comparatively much more
complex.

The key idea to making distributed lock recovery secure is to hand out a secure
token to a client requesting a lock (see Figure 5.7 on Page 44). The token is secure
because only the server is able to generate it from the lock state known to both
the server and the client. This is achieved by introducing a server-side secret. On
lock reacquisition, the client has to hand in the token together with the lock state
it claims to recover. The server can now simply compare the provided token with
the token derived from the provided lock state. The lock is granted again only if

44 Chapter 5. Design Modifications

the tokens match.

Metadata Server

Metadata Server

Client

Fileset Secret

Object ID Lock ModeClient ID Lock Version Timestamp Secure Token

Secure Token

Object ID Lock ModeClient ID Lock Version Timestamp Secure Token

=

Grant Lock

yes

Granted Lock

Fileset Secret

Object ID Lock ModeClient ID Lock Version Timestamp Secure Token

Reacquire Lock after Failure

Figure 5.7: The secure distributed lock recovery is based on a secure token that can only be
generated at the metadata server for a given set of lock attributes (such as object identifier,
lock mode etc.). On a lock reacquisition request, the metadata server can simply check the
integrity of the attributes provided by the client. A client can thus no longer maliciously
reacquire any locks.

The authentication mechanism described in Section 5.2 guarantees the authentic-
ity of the client identifier contained in the token. Thus, it is not possible for a
third client to replay an eavesdropped token. Furthermore, the server provides a
timestamp that is also contained in the token and changes whenever the lock mode
changes into an incompatible mode (e.g., another client requests the data lock in
exclusive mode). Only the client(s) with the latest timestamp will be allowed to
recover the lock. If a malicious client tries to acquire an old lock, the server has
its lease expired after the grace period, if another client reacquired a newer lock.
Since a client is not allowed to perform any other action than lock reacquisition,
this is safe. Naively, this would require waiting until the end of the grace period
before actually granting any locks. As the SAN.FS protocol allows the revocation of
locks by the server ”for administrative reasons”, the lock can be opportunistically
granted and later revoked. Some implementations might also choose not to allow
lock reacquisitions for locks older than t hours. Authentication and timestamps
make the token replay-safe. Note that this implies a common accurate notion of
time within the metadata server cluster.

The actual cryptographic method for the token is chosen such that the number of
exchanged messages is not increased and the demand for message size and server
processing capacity is minimal. Nevertheless, it must be strong enough to quench
possible attackers. Keyed-hashing for message authentication (HMAC, [KBC97])
based on the secure hash algorithm (SHA-1, [EJ01]) offers several important prop-
erties:

5.3. Secure Distributed Lock Recovery 45

Confidentiality It is impossible to figure out what data generated that digest.

Integrity It is essentially impossible to find another set of data to generate the same
digest.

Size The digest has a fixed size, which is only a fraction of the digested data.

Performance The digest can be computed in reasonably fast time.

SHA-1 based HMAC digests can be applied as secure tokens as follows: The lock
state information is hashed together with a persistent per-fileset secret key on the
metadata server currently handling it. The format of the hashed data is given in
Table 5.3.

Table 5.3: The following format is hashed using SHA-1 based HMAC. The resulting digest
has a size of 20 bytes. All types are described in [IBM03].

Byte Type Description
1 - 20 ObjID File system object identifier
21 - 28 Uint64 Client identifier
29 - 41 [Sess|Data]LockVersn Epoch and lock version
42 - 42 Uint8 Lock mode
43 - 50 Uint64 Timestamp
51 - 66 Uint8[16] Per-fileset secret
1 - 20 Uint8[20] SHA-1 based HMAC digest

Fileset Served by Metadata Server

Persistent Volatile

Epoch K1 K2 Epoch K1 K2

i

i

i+1

ki
ki
ki+1

-

ki+1
-

i

i+1
i+1

ki
ki
ki+1

ki-1
ki+1
ki

A
B
Ct

Lock Reacquisition

i-2

Epoch Token Base Granted

ki-2

i-1 ki-1

i ki

i+1 ki+1

Lock Reacquisition

Epoch Token Base Granted

i-1 ki-1
i ki

i+1 ki+1

i+2 ki+2

Normal operation epoch i
Grace period after stop or crash
or crash during grace period
Normal operation epoch i+1

A
B

C

Figure 5.8: The figure shows the different stages of fileset secrets for token generation
and verification.

Each fileset persistently stores two 128 bit secret keys K1 and K2. K1 contains
the value ki for the current epoch i. K2 is null if the last grace period successfully
ended or ki+1 else.

46 Chapter 5. Design Modifications

Whenever a new instance of a metadata server starts to serve the fileset, the epoch
number is incremented in memory. If K2 is null, a new value ki+1 is generated and
written to stable storage. If not, ki+1 is read from K2.

During the grace period following the service startup, lock reacquisitions with the
former epoch number i can be checked using ki. Lock reacquisitions with an epoch
number of the current epoch number can be checked using ki+1 and are an indicator,
that the server crashed during the grace period. Other epoch numbers are not
accepted for lock reacquisitions. If the lock is granted, the metadata server publishes
a fresh token based on ki+1.

If the server fails during the grace period, a new instance will restart the process
again as described above and will be able to recover ki+1 from stable storage. When
the grace period successfully ends, ki+1 is written to K1 together with the new epoch
number i + 1 and K2 is set to null on stable storage.

Since according to the protocol, clients can reacquire locks also after the grace pe-
riod (unless the lock was legitimately acquired by another client after the grace
period had ended), the metadata server can still check tokens from epoch i with
ki kept in volatile memory. This behavior reflects the current protocol lock reac-
quisition semantics. Note that an implementation might choose to cache generated
tokens to reduce the digest calculation overhead.

5.3.2 Protocol Design

Consecutively, all adapted or added protocol messages are listed and described. The
original message formats can be found in [IBM03], Chapter 6, Message Formats.
Some messages where split to reduce either the message size for the usual case or
to save one token generation. An alternative could be to use a variable-size token
type. This would later on allow exchanging the secure hash algorithm easily.

AcquireSessionLock

The fields containing the lock version and alternate client ID could be removed,
because lock reacquisition is no longer handled with this message.

Byte Type Description
1 - 40 TxnMsgHdr Transaction message header
41 - 60 ObjID File system object identifier

[DROPPED] Epoch and lock version
61 - 61 Uint8 Desired session lock mode
62 - 62 Uint8 Opportunistic correlated data lock mode

[DROPPED] Alternate client identifier
63 - Variable data

5.3. Secure Distributed Lock Recovery 47

ReAcquireSessionLock

The new fields timestamp and secure hash are required for lock reacquisition.

Byte Type Description
1 - 40 TxnMsgHdr Transaction message header
41 - 60 ObjID File system object identifier
61 - 61 Uint8 Desired session lock mode
62 - 73 SessLockVersn Epoch and lock version
74 - 74 Uint8 Opportunistic correlated data lock mode
75 - 82 Uint64 Alternate client identifier (under former lock)
83 - 90 Uint64 [NEW] Timestamp
91 - 110 Uint8[20] [NEW] Secure hash
111 - Variable data

AcquireSessionLockResp

The new fields timestamp and secure hash are required to propagate a new token
to the client.

Byte Type Description
1 - 40 TxnMsgHdr Transaction message header

41 - 53 SessionLock Granted session lock
54 - 54 Boolean Locking internals
55 - 172 DataLock Granted correlated data lock
173 - 180 Uint64 [NEW] Timestamp
181 - 200 Uint8[20] [NEW] Secure hash
201 - Variable data

PublishLockVersion

The new field secure hash is required to propagate a fresh token to the clients.
Since only the lock version was incremented, there is no need to transmit a fresh
timestamp.

Byte Type Description
1 - 32 MsgHdr Message header

33 - 52 ObjID File system object identifier
53 - 64 SessLockVersn Epoch and lock version
65 - 84 Uint8[20] [NEW] Secure hash

DemandDowngradeSessionLock

The new fields timestamp and secure hash are required to propagate an updated
token opportunistically to the client. If the client denies the request, it must keep
the old timestamp and secure hash. In case it complies, there is no need to transmit

48 Chapter 5. Design Modifications

another message for the token.

Byte Type Description
1 - 32 MsgHdr Message header
33 - 52 ObjID File system object identifier
53 - 53 Uint8 Desired session lock mode
54 - 54 Uint8 Locking internals
55 - 62 Uint64 [NEW] Timestamp
63 - 82 Uint8[20] [NEW] Secure hash

DemandReleaseSessionLock

If the client complies, it must not be provided with a fresh token and timestamp.
If it does not comply, it keeps the lock and the old token.

Byte Type Description
1 - 32 MsgHdr Message header
33 - 52 ObjID File system object identifier

[DROPPED] Desired lock mode
53 - 53 Uint8 Locking internals

DowngradeSessionLock

The message format does not need to be changed. The message semantics does
not need to be changed if the downgrade is server-initiated by a Demand[Release |
Downgrade]SessionLock message. In this case, the client already obtained the new
secure hash.

When the client could spontaneously downgrade the lock to a weaker mode, it does
not send a message to the server and keeps the old lock state. This avoids an
additional message from the server to the client providing a fresh secure hash. If
another client requests the lock in a stronger mode, the server will have to demand
the lock first. This is known as being lazy. The hope is, that this rarely happens
and the lock is either used in a stronger mode on the same client again or then
completely released.

In case the client could spontaneously release the lock and therefore does not need
a fresh secure hash, it can aggregate several locks and economically send a bulk
release message to the metadata server (see BatchReleaseSessionLock).

Byte Type Description
1 - 32 MsgHdr Message header
33 - 52 ObjID File system object identifier
53 - 53 Uint8 Desired new lock mode

5.3. Secure Distributed Lock Recovery 49

BatchReleaseSessionLock

This message is used to release a bunch of locks at once. It efficiently aggregates
several DowngradeSessionLock messages with the purpose to completely release
a lock; the amount of messages and bytes transferred can thus be considerably
reduced. The amount of locks released is implementation specific. The suggestion
is to aggregate as few locks as possible (at least two) and send it as early as possible
to allow for faster lock acquisitions by other clients and reduce server state but on
the other hand to send as few messages as possible to save network bandwidth.

Byte Type Description
1 - 32 MsgHdr [NEW] Message header
33 - 40 Vector [NEW] ObjIDs for which to release session lock
41 - [NEW] Variable data of type:

[NEW] <ObjID>

AcquireDataLock

The fields containing the lock version and alternate client ID could be removed,
because lock reacquisition is no longer handled with this message.

Byte Type Description
1 - 40 TxnMsgHdr Transaction message header
41 - 60 ObjID File system object identifier
61 - 61 Uint8 Desired data lock mode
62 - 62 Boolean Locking internals

[DROPPED] Epoch and lock version
[DROPPED] Alternate client identifier

ReAcquireDataLock

The new fields timestamp and secure hash are required for lock reacquisition.

Byte Type Description
1 - 40 TxnMsgHdr Transaction message header
41 - 60 ObjID File system object identifier
61 - 61 Uint8 Desired data lock mode
62 - 62 Boolean Locking internals
63 - 74 DataLockVersn Epoch and lock version
75 - 82 Uint64 Alternate client identifier (under former lock)
83 - 90 Uint64 [NEW] Timestamp
91 - 110 Uint8[20] [NEW] Secure hash

50 Chapter 5. Design Modifications

AcquireDataLockResp

The new fields timestamp and secure hash are required to propagate a new token
to the client.

Byte Type Description
1 - 40 TxnMsgHdr Transaction message header
41 - 158 DataLock Granted data lock
159 - 166 Uint64 [NEW] Timestamp
167 - 186 Uint8[20] [NEW] Secure hash
187 - Variable data

DemandDowngradeDataLock

The new fields timestamp and secure hash are required to propagate an updated
token opportunistically to the client. If the client is allowed to defer the request,
it must keep the old timestamp and secure hash. Opportunistic demands must be
handled with a DemandReleaseDataLock message since they do not require a fresh
timestamp or secure hash.

Byte Type Description
1 - 32 MsgHdr Message header
33 - 52 ObjID File system object identifier
53 - 53 Uint8 Desired data lock mode
54 - 54 Uint8 Opportunistic flag
55 - 62 Uint64 [NEW] Timestamp
63 - 82 Uint8[20] [NEW] Secure hash

DemandReleaseDataLock

Opportunistic data lock demands must also be handled with this message.

Byte Type Description
1 - 32 MsgHdr Message header
33 - 52 ObjID File system object identifier

[DROPPED] Desired data lock mode
53 - 53 Boolean Opportunistic flag

DowngradeDataLock

The message format does not need to be changed. The message semantics does
not need to be changed if the downgrade is server-initiated by a Demand[Release
| Downgrade]DataLock message. In this case, the client already obtained the new
secure hash.

When the client could spontaneously downgrade the lock to a weaker mode, it does

5.3. Secure Distributed Lock Recovery 51

not send a message to the server and keeps the old lock state. This avoids an
additional message from the server to the client providing a fresh secure hash. If
another client requests the lock in a stronger mode, the server will have to demand
the lock first. This is known as being lazy. The hope is, that this rarely happens
and the lock is either used in a stronger mode on the same client again or then
completely released.

In case the client could spontaneously release the lock and therefore does not need
a fresh secure hash, it can aggregate several locks and economically send a bulk
release message to the metadata server (see BatchReleaseDataLock).

Byte Type Description
1 - 32 MsgHdr Message header
33 - 52 ObjID File system object identifier
53 - 53 Uint8 Desired data lock mode
54 - 54 Boolean Is access time that follows is valid
55 - 62 Timestamp Optional new access time
63 - Variable data

BatchReleaseDataLock

This message is used to release a bunch of locks at once. It efficiently aggregates
several DowngradeDataLock messages with the purpose to completely release a lock;
the amount of messages and bytes transferred can thus be considerably reduced. The
amount of locks released is implementation specific. The suggestion is to aggregate
as few locks as possible (at least two) and send it as early as possible to allow for
faster lock acquisitions by other clients and reduce server state but on the other
hand to send as few messages as possible to save network bandwidth. Note that
the variable data consists of a complex type containing the additional information
about access times as listed in DowngradeDataLock.

Byte Type Description
1 - 32 MsgHdr [NEW] Message header
33 - 40 Vector [NEW] ObjIDs for which to release session lock
41 - [NEW] Variable data of type:

[NEW] <ObjID, Boolean, Timestamp>

BlockDiskUpdateResp

The new field secure hash is required to propagate a fresh token to the client.
Since only the lock version was incremented, there is no need to transmit a fresh
timestamp.

Byte Type Description
1 - 40 TxnMsgHdr Transaction message header
41 - 109 BasicAttr File system object attributes
110 - 129 Uint8[20] [NEW] Secure hash

52 Chapter 5. Design Modifications

5.3.3 Evaluation

The message sizes of the old and new messages are listed in Table 5.4 on Page 52. It
is also listed whether a message requires the generation of a new token on the server
side (to transmit it to the client or check the integrity of provided attributes). Note
that PublishLockVersion messages are potentially sent to multiple clients simultane-
ously so that only one token must be generated for the whole set. The expectation
is, that the overall network traffic is slightly increased. Nevertheless, the impact of
the secure distributed lock recovery on message throughput over an IPsec-secured
network should be very moderate.

Table 5.4: Overview of adapted messages. Sizes are in bytes. Negative change indicates
a decrease in message size.

Message Old Size New Size Change New token
AcquireSessionLock ≥ 82 ≥ 62 ≤ −24% no
ReAcquireSessionLock ≥ 82 ≥ 110 ≤ 35% yes
AcquireSessionLockResp ≥ 172 ≥ 200 ≤ 16% yes
PublishLockVersion 64 84 31% yes
DemandDowngradeSessionLock 54 82 52% yes
DemandReleaseSessionLock 54 53 −2% no
DowngradeSessionLock 53 53 0% no
BatchReleaseSessionLock ≥ 106 ≥ 80 ≤ −25% no
AcquireDataLock 82 62 −24% no
ReAcquireDataLock 82 110 35% yes
AcquireDataLockResp ≥ 158 ≥ 186 ≤ 18% yes
DemandDowngradeDataLock 54 82 52% yes
DemandReleaseDataLock 54 53 −2% no
DowngradeDataLock ≥ 62 ≥ 62 0% no
BatchReleaseDataLock ≥ 124 ≥ 80 ≤ −35% no
BlockDiskUpdateResp 109 129 18% yes

Both the client and the metadata server have to store additional data in volatile
memory. The overhead is 28 bytes per lock, consisting of an eight-byte timestamp
and a twenty-byte secure hash. This increases the SessionLock data structure of
13 bytes by 315% and the DataLock data structure of 118 bytes by 24%. The
overhead increases linearly with the number of locks n. Note that a data lock
mostly accompanies a session lock.

f(n) = 2n(28) [byte] |n ∈ Z+ (5.2)

With 200’000 data and session locks, for example, the memory consumption on
a client and metadata server would grow from 12.49MB to 17.83MB each. Lock
quotas as discussed in Section 5.4 could set reasonable limits.

The worst-case scenario for performance is lock reacquisition after a server crash.
Since the metadata server cannot verify the tokens from its memory, it must first
generate a token to check the request and second generate a fresh token to transmit
it back to the client. Measurements on an IBM xSeries 335 server with a XEON
2.8GHz showed an average token generation rate of 462’616 per second (token size
is 66 bytes). This theoretically results in 231’308 possible lock reacquisitions per

5.4. Quota Management 53

second. Measurements showed that without token generation or IPsec, the average
session lock acquisition rate per second on a metadata server is 503, which is sub-
stantially slower. It follows, that the impact of token generation on the metadata
server is in the per-mill-range if compared to the already existing workload.

5.3.4 Open Issues

The following is not covered and left for future work:

Secure Range Lock Recovery The complex management of range locks with im-
plicit range splitting and merging on both the client and metadata server does
not allow to apply the token mechanism without further analysis. Either an
advanced mechanism can be found or it must be proven that it is not necessary
to secure range lock recovery at all.

Message Probability Distribution There is no in-depth knowledge about the prob-
ability distribution of events such as lock release or (re)acquisition (on the
same or another client). Without this information, the protocol cannot be
optimized properly. Furthermore, it is not possible to analyze the impact of
the increased message sizes.

Implementation Prototype A prototype for the IBM SAN.FS could not be imple-
mented in the course of this work.

5.4 Quota Management

Quotas are a simple means to restrict access to resources on a per user or per client
base. Sophisticated mechanisms can assure that the users are not too limited in
their daily work without widely opening the door for malicious intentions. Quotas
should be applied on all three lock types as well as on disk blocks. The described
mechanism focuses on disk blocks only.

Basically, three types of quota management exist:

Static With static quota management, the limits are fixed by the administrator.
The limit is either set for everybody (client or user) or can be configured
individually. Each request to increase the quota results in a manual action on
behalf of the administrator. This approach is simple to implement, efficient
with respect to CPU and memory utilization, but it is neither flexible nor is
it scalable.

Dynamic Dynamic quota management allows to automatically grow the limits over
a certain amount of time. Implementations could use the token or leaky bucket
algorithm described in [Tan96]. This allows limiting the growth to amounts
acceptable for the whole system without requiring too many administrator
interventions or reducing the flexibility of each client or user.

54 Chapter 5. Design Modifications

Elastic Elastic quotas are described in [LNZ+02] and are an interesting approach
listed for completeness where the file system itself reclaims useless or tempo-
rary files according to an user-defined policy, if disk space becomes scarce.

5.4.1 Mechanism Design

The following algorithm falls in the category of dynamic quota management. To
prevent a consecutive acquisition of an imaginary number of disk blocks followed
by an immediate release through a file deletion, the rate, at which disk blocks can
be acquired, must be limited. The upper limit of the rate is given by the amount of
data a client can actually write to disk; the administrator can choose lower limits
on a per client basis. Note that it should still be possible to allocate new disk blocks
in (limited) bursts.

A leaky bucket fills a token bucket per client with tokens allowing the client to
acquire a multiple of the block size. The leaky bucket generating the tokens assures,
that the maximum rate of allocations is limited to the rate of the leaky bucket
itself. The token bucket serves as a buffer to deal with peak allocation requests and
prevents an unbound growth in case no tokens are used at all.

If the token bucket is empty, no disk block allocation requests are accepted anymore.
The client must put its write operations on hold until it can proceed with allocating
new disk blocks.

5.4.2 Implementation

For demonstration purposes and due to the limiting time constraints, only a small
Java program was written to show, that a single client could consume all available
disk blocks.

5.4.3 Evaluation

It could be observed that the acquisition of disk blocks is an expensive operation
quickly bringing the metadata server to its limits. It could also be shown that
a single client can consume all available disk blocks. If the disk block allocation
happens at the rate the client actually can write the blocks (or even lower), the
CPU utilization on the metadata server can be reduced.

5.4.4 Open Issues

The following is left to future work:

Protocol Design The described mechanism must be integrated into the existing
protocol.

5.5. Data Lock Scheduling 55

Implementation The metadata server must be extended to support quota manage-
ment. The quotas should be configurable on a per user or per client base. It
would be nice to make the quota policies pluggable to facilitate testing and
evaluation.

Evaluation The impact of the quota management not only on the overall SAN.FS
performance (which is to be considered as low) but also on the flexibility of
the users must be evaluated. It must also be discussed whether a combination
of dynamic and static quota management would be useful. The rate at which
the leaky bucket generates the tokens as well as the size of the token bucket
must be specified for several use cases. A realistic trade-off between flexibility
and security must be found.

5.5 Data Lock Scheduling

Data lock trashing is a security issue because it basically leads to a denial of service.
It has been observed, that file access on a ”trashed” file was prolonged by one or
more orders of magnitude and that the CPU utilization on the metadata server was
over 80% if only two clients were involved in such an attack.

5.5.1 Mechanism Design

The idea is to integrate a scheduling algorithm on the metadata server. Each request
for a data lock must be queued. Only if the lock-scheduling policy agrees, it may
continue and start the lock acquisition process. A client is not allowed to queue
more than one request for a specific lock (see Figure 5.9).

The scheduling algorithm itself might vary depending on what should be achieved:

No Scheduling This is the current variant. If no trashing occurs, the lock can
immediately be handed out to the requesting client. If multiple clients court
for the same data lock, it is handed back and forth (trashed) between the
requesting clients. If this happens, no client will really be able to continue
its work. Even though the metadata server does not have to implement any
scheduling algorithm or keep any additional state, it is kept busy by moving
the lock around.

Fixed Scheduling Each data lock acquisition request is delayed on the metadata
server for a fixed amount of time, if the lock is already held by another client.
This allows a client to proceed immediately, if it is the only one to acquire a
specific lock. The implementation is kept simple because the delay is static.
The hope is, that the ratio of working to waiting time can be increased and
that the metadata server is no longer under heavy load since it can work on
other operations when a client was put on hold.

First-Prioritization Scheduling The client which first requested the data lock for a
specific file is prioritized over all other clients. This means, that the delay for
a lock acquisition is very small (or zero) if it is from the prioritized client or
big, if not. The advantage is, that a good client can almost not be attacked if

56 Chapter 5. Design Modifications

C1

MDS

No Scheduling

C2

C1

MDS

C2

C1

MDS

C2

C1

MDS

C2

Fixed Scheduling

First-Prioritization Scheduling Short-Prioritization Scheduling

Acquire data lock
Lock exchange messages

Client waiting
Client working
Metadata server delays request

Figure 5.9: Out of the possible variants for data lock scheduling, four are listed: First,
the current non-scheduling protocol. Second, the fixed time scheduling. Third, the first-
prioritization scheduling. Fourth, the short-prioritization scheduling. Each variant has its
strengths and weaknesses.

it was the first to acquire the lock. If the malicious client was first to acquire
the lock, the scheduling will behave worse than in the no-scheduling case.

Short-Prioritization Scheduling Here, the idea is to favor the small (or short) jobs
over the long ones to increase the overall throughput of jobs. This policy is also
known as least attained service (LAS). The idea comes from TCP scheduling
in routers described in [RBUK04]. From [ODH+85] we know, that most files
are only worked on for a very short amount of time, so it should do a good
job for our purpose. Since it cannot be predicted how long a job will last
neither on the client nor on the metadata server, another mechanism must be
used. The idea is to keep a counter in the metadata server memory, which
reflects the number of lock acquisitions a client made on a lock during a time
interval. The next request is delayed inversely proportional to the counter
of the current request. In other words, young counters are assigned a longer
working time than old counters. It follows, that short jobs are favored over
long jobs.

5.5.2 Implementation

Due to the limiting time constraints, scheduling could only be simulated for the
fixed and first-prioritization scheduling scenario by delaying a data lock acquisition
on the client. For demonstration purposes, a good client plays a movie and a Java
program on a malicious client repeatedly acquires an exclusive data lock on the
movie file, which causes data lock trashing and the film to flicker or freeze.

5.5. Data Lock Scheduling 57

5.5.3 Evaluation

Even though no extensive performance measurements could be done, the impact
of scheduling on the overall SAN.FS performance is considerable. The observation
showed, that the current protocol version without scheduling resulted in freezing
movies and heavy loads on the metadata server. As soon as the clients delayed their
acquisition requests, the movie was playing slow but not freezing and the load on
the metadata server dropped from roughly 80% to less than 10%.

5.5.4 Open Issues

The following is left to future work:

Scheduling Theory There was no in-depth theoretical evaluation of the different
scheduling algorithms. It should be possible to find an optimal scheduling
algorithm under the basic conditions of comparably long switching times and
malicious operation.

Implementation The metadata server must be extended to support scheduling for
data locks. It would be nice to make the scheduling policy itself pluggable to
facilitate the evaluation and prepare the autonomous selection of the policy
depending on the workload (e.g., many short jobs or only jobs from a single
user).

Evaluation Each scheduling algorithm should be evaluated with different workloads
and delay parameters to get a thorough understanding of the impact on the
overall SAN.FS performance.

58 Chapter 5. Design Modifications

6 Virtual Machines

This chapter gives the motivation to introduce virtual machines (VMs) to the re-
search within distributed storage systems and describes a specific product that was
used in the course of this work.

6.1 Work With Distributed Storage Systems

It turned out, that the work with distributed storage systems was not effective and
flexible enough. The setup of the distributed environment was time-consuming and
tightly bound to the selected physical hosts. The sensitivity of the components
regarding installed kernel versions, patches and other software was considerable.
The fact that several people worked on the same set of hosts actually prevented
them to develop, test or run performance experiments concurrently. Note that only
one metadata server or client can be run on a single physical host. This resulted in
trying out VMs, which were soon accepted as a convenient, flexible and swift tool.

6.2 A Convenient Tool

For the development of Linux-based SAN.FS prototypes, VMware Workstation 4.51

was used to host the actual Linux operating system. A set of VMs was produced,
each containing a next step in the evolution towards a full client, metadata or storage
server. These stages can conveniently be copied whenever a new VM is required
in a specific stage. To emerge a running VM out of a selected stage, it can simply
be copied to another directory. A commonly used feature is the snapshot and the
corresponding revert operation to save a currently running VM and continue its
operation later on – maybe on another physical host.

The following experience was made with the VMs:

Physical Requirements Per VM, 1GB or more of physical disk space is required,
depending on the setup of the contained Linux operating system. At least
128MB of physical RAM must be available to run one VM without starting
a time-consuming swapping process on the physical host. Depending on the
workload of one VM, up to four VMs can be run on an average desktop
computer. The limiting factor mostly is the available physical memory.

1http://www.vmware.com

59

60 Chapter 6. Virtual Machines

Client

yverdon
Xeon - 2.8GHz
2048MB Ram

Physical Host
Virtual Machine (VM)
Evolve Stages
Copy VM
Run VM

Stage0
RHEL 3Stage1

RHEL 3
Patches, Tools

Stage2a
RHEL 3
Patches, Tools
Client

Stage2b
RHEL 3
Patches, Tools
Storage Server

Stage2c
RHEL 3
Patches, Tools
Metadata Server jesolo

Pentium4 - 1.8GHz
512MB Ram

Metadata Server

Storage Server

Virtual machine stages

A
B
C

A

B

B

C

C

Figure 6.1: Virtual machines can speed up research within distributed storage systems
significantly.

Long Term Stability A client, metadata and storage server VM setup was up and
running for more than three days, without noticing any remarkable memory
or CPU utilization on the physical host. It can be assumed that the VMs will
be stable in the long run if the contained operating system is too. Note that
the overall loss of performance is in the area of 10%.

Snapshot Mechanism The snapshot mechanism should not be used to make a run-
ning distributed system of clients, metadata and storage servers persistent. If
the VMs are not reverted properly, all kind of errors might occur. It is recom-
mended to stop running services such as iSCSI or metadata servers and only
then perform a snapshot operation. Care must be taken not to overwrite an
old snapshot in the course of some tests; only one snapshot can be taken per
VM.

Specific Hardware The VMs can only offer a subset of the currently available
hardware. E.g., 64bit support is only experimental and special SCSI RAID
adapters are not supported.

Flexibility If VMware is installed on a set of physical hosts, the VMs required to
run a specific configuration of clients, metadata or storage servers can be
distributed flexibly based on the daily availability and needs of the whole
group of developers. This feature turned out to be timesaving for setting up
different performance measurement setups.

It can be concluded, that VMs are a valuable tool and can significantly speed-up
the work with distributed storage systems. As it is with each tool, the operator
must know, what it can do and where it’s limits are.

7 Conclusions

As with each project, some answers can be found for a given question or task. In
the majority of cases however, answers raise new questions and might open the door
for new interests. This chapter summarizes the achieved work and projects some
ideas onto the future.

7.1 Achievements

We identified a set of security threats that arise when SAN File System protocols
for client to metadata server communication are opened to the insecure desktops.
This work discusses and analyzes design modifications for client authentication,
protocol encryption, and distributed lock recovery, which we partly implemented
on a Linux-based SAN.FS environment. In addition, we cover quota management
as well as lock scheduling, and introduce virtual machines as a valuable tool to
support research within distributed storage systems.

IPsec was applied to provide authentication and encryption to SAN.FS on the net-
work layer. Securing the network layer for client to metadata server communication
assures that no one can learn or manipulate the global protocol state. Further-
more it is no longer possible to forge the identity of a trusted client. Performance
evaluations state that the expected loss for the average use case is on the order of
11%.

Securing the distributed lock recovery with a replay-safe and efficient secure-token
mechanism prevents malicious clients from breaking the global lock state after fail-
ures. It can be shown that there is no need to move to a centralized lock recovery
mechanism, which performs much worse during normal operation, because the se-
cure distributed lock recovery has a minimal impact on server-processing require-
ments, memory consumption and message sizes.

Both, lock scheduling and quota management could help on making SAN.FS more
secure. Due to the time constraints, it could only be shown that data lock trashing
and block acquisitions can be used for denial of service attacks – and that scheduling
and quotas could limit the damage on the system.

Virtual machines can speed up research within distributed storage systems substan-
tially. Once time-consuming setups can be deployed from appropriately prepared
virtual machines within minutes. This allows multiple researchers to work on the
same physical hosts with different setups of the distributed storage system at the
same time. Varying performance measurements can be set up in virtually no time

61

62 Chapter 7. Conclusions

as well.

We conclude that there are security issues in SAN-based DFS that cannot be ne-
glected if malicious operation must be taken into consideration. However, security
can be improved considerably at a moderate price.

7.2 Future Work

Besides the open issues described in Chapter 5, the following ideas could motivate
further research:

Protocol Simulator A protocol simulator could assist in quickly evaluating different
protocol workloads (be they real or random) as well as protocol versions under
varying environments. It would be instructive to now about the occurrences
of the involved protocol messages and about the probability distributions of
specific events (e.g., ”the probability that a file is reopened on the same client
after t seconds.”). This knowledge would help to parameterize and optimize
the protocol for general or specific workloads. Optionally, the simulator could
test a protocol version for correctness.

Autonomous Protocol Adaption When the parameterizable portions of the proto-
col are known (e.g., data lock scheduling algorithm, number of locks released
by a bulk lock release, etc.), the protocol could adapt itself autonomously to
provide the best performance for specific use cases such as video streaming,
mail servers or databases. Note that such optimizations could be applied at
the fileset granularity.

Policy-Based Block Allocation The current block allocation algorithm does not
take the characteristics of the storage devices into consideration (e.g., perfor-
mance for varying access patterns or block sizes; long-term storage stability).
Neither does the block allocation algorithm distribute the blocks in a high-level
RAID fashion over the available disks to gain either additional performance
or availability.

Mandatory Locking The current advisory locking is not sufficient to protect the
data from malicious manipulation. It could be a challenge to find a scalable,
well performing and secure distributed protocol that provides mandatory lock-
ing to enforce file access coordination.

A Task Description

A.1 Introduction

With the amount of data being stored, also the importance of this data to individ-
uals, companies and governments is increasing. In addition to traditional criteria,
such as performance, capacity, and reliability, security is rapidly becoming an im-
portant feature of storage systems. Large-scale storage systems, such as those used
at CERN to record and evaluate experiment results, require huge amounts of fast
storage space, which is typically provided by complex networked systems, where
clients communicate directly with a disk over a network (as in network-attached
storage (NAS), or in storage-area networks (SANs)).

To achieve maximum performance in such a system, access to the storage devices
should be as direct and unfettered as possible. A successfull approach is to separate
data and control planes, such as used in SAN.FS [IBM03]. There, the disks are
accessible to the clients through a SAN, whereas metadata and mutual exclusion
are communicated through a (cluster of) metadata server(s).

In general, SANs and related systems were (and still are) designed to be used in
closely controlled, trusted environments, such as single server room under common
management. The power of personal workstations and thus the need to move data
quickly to many users’ desks are increasing fast. CERN, for example, plans to give
all users direct access to their multi-petabyte storage system, both from their sensors
and data collectors and from the computational grid or workstations. All storage
will be made accessible directly through iSCSI [SMS+04] (SCSI over IP). This will
change the entire SAN paradigm, as no longer all machines can be considered fully
trusted: Viruses, worms and other forms of malware are much more likely to appear
on end-user machines; also the possibility of hacker attacks (insiders or outsiders)
increases.

Therefore, a typical networked storage system has to be considered as consisting of
three main components: multiple and potentially distrusting clients, the data stores
themselves (typically, these are standard disks attached to a network, but they
may also offer advanced functions), and metadata servers, which mediate access to
the data stores. The data and metadata storage is still considered to be trusted,
under common administration. However, clients and the network connecting the
components have to be viewed as posing a potential security risk.

63

64 Appendix A. Task Description

A.2 Protocol Issues

In earlier work, the problem of data integrity in such an environment has been
investigated [Wag03]. Together with ongoing work on confidentiality protection in
such an environment, that Diploma thesis addressed the data-related issues. What
remains to be investigated are protocol-related issues, which is the area of this
Masters thesis.

As the protocols were typically designed for trusted environments and stringent
performance requirements, they also lack appropriate safeguards. For example, the
locking/consistency protocols, which include a generalized file open/close manage-
ment, enable clients to write-behind the data. While this improves performance,
it requires full cooperation from all clients at all times. Malicious clients could
navigate the metadata server into a state in ehich it no longer has control over the
file. Because the system is asynchronous and clients may need to write-back (flush)
large caches when the metadata server requests returning the lock, it is impossible
to distinguish a slow client from a malfunctioning or malicious client.

Another aspect includes denial of service (DoS). Clients could overwhelm the servers
with requests or cause them to establish state to exhaust their computational, net-
working, and storage resources. In a dynamic environment such as the one at
CERN, static partitioning of resources is wasteful, in terms of both administrative
overhead as well as storage space.

These problems are not limited to SAN.FS; similar problems also arise in NFS,
including version 4 [S+03], AFS [Zay91], and other networked file systems.

A.3 Task Description

As part of this work, you will investigate these protocol issues and evaluate their
handling in different distributed file system protocols. You then propose mecha-
nisms that help solve or at least mitigate these problems. You will evaluate the
performance and reliability of the proposed mechanisms, taking into account three
scenarios: (1) All client machines behave as they should (classical scenario), (2) a
single machine becomes hostile after a break-in (”insecure desktop”), and (3) several
machines can be hostile at different points in time (”Internet scenario”). How do
the solutions differ? Potential workloads might be modeled after CERN with mixed
real-time/best-effort environment. You are also requested to provide a description
of the optimal misbehavior strategy the client(s) should follow to maximize service
disruption to well-behaving clients (e.g., Byzantine fault model [CDK01]).

As part of your study, also think of the risks of incorporating these solutions (e.g.,
could the change cause protocol violations for good clients?) and their impact (per-
formance, complexity, failure modes, recovery times, ...). Can anti-DoS mechanisms
introduced into other protocols (e.g., TCP SYN-Cookies [Ber96]) help? What is the
impact of your proposed changes onto the other security mechanisms?

Besides the theoretical study and observations, a prototype implementation based
on the IBM SAN.FS as well as performance and functionality evaluations are ex-

A.4. General Comments 65

pected.

A.4 General Comments

• Present a project time line after two weeks.

• There will be weekly meetings with the supervisor.

• Prepare a short intermediary report of 1-2 pages by mid-thesis.

• At the end of your thesis, the following has to be handed in: Source codes
and a report (in English) including a one-page summary in both German and
English.

• Source code is to be presented in machine-readable form (ASCII or UTF-8).

• The report should follow the rules of a scientific publication and include per-
formance measures of the prototype. Two paper copies and a PDF document
of the report have to be submitted. The summary is to be submitted in ASCII,
UTF-8, or HTML as well.

• The final presentation of the project at both IBM and ETH is an integral part
of the thesis.

• Development environment: Mainly Linux and C/C++, with sprinkles of Java
and Python.

• Intellectual property and confidentiality rights and duties are handled in a
separate contract.

A.5 Administrativa

Responsible Professor: Prof. Dr. Gustavo Alonso, ETH Zrich

Supervisor: Dr. Marcel Waldvogel, IBM Research GmbH

Start: 26 July 2004

End: 25 January 2005

66 Appendix A. Task Description

B Mid Thesis Report

B.1 Where We Are

After being introduced to the IBM Zurich Research Laboratory during the first week
that was seamless and comfortable I concentrated my work on theoretical research
about distributed file systems including IBM SAN File System until the end of the
second month. The goal was to get a thorough understanding of the problems and
solutions in this field and to obtain the ability to find security issues in the SAN.FS.
I also tried to immediately write down what I was doing and to prepare chapter by
chapter in a pragmatic and logical way to the final paper.

During the third month I concentrated on finding security issues in the SAN.FS
trying to systematically analyze failure conditions and malicious operation. Not
all found issues however can be dealt with within this thesis regarding possible
improvements or implementations; some of the options must be chosen for further
investigation. We decided to start with these two tasks:

Encryption Implement IPsec and firewall rules to provide client to metadata server
communication confidentiality and authentication and make a performance
analysis. This task is completed to 75% by writing this report.

Data lock abuse Implement a scenario to show how a malicious client can interfere
with normal operation of a trusted client, given that a malicious user got priv-
ileged control over a once “trusted” client and find, compare, and implement
remedies. This task is not started yet.

On the practical side of the thesis I had to dive into the world of Linux, which was
completely new for me and therefore challenging. Furthermore I have not before
met such a large project written in C and C++. Even though I feel to advance
much slower than I would have in a Java enterprise environment which I’m used to,
the experience and lessons learned are invaluable for my future work in computer
science.

B.2 Next Steps

For the remaining three months, the emphasis lies on finding theoretical remedies
for the issues mentioned above, comparing and analyzing them as well as writing

67

68 Appendix B. Mid Thesis Report

an implementation prototype to practically test them. The priorities are as follows
(depending on the progress, the last ones might be dropped):

Encryption Complete the task described above. The remaining step is to implement
the firewall rules.

Quotas The current quota granularity on a per fileset basis is not sufficient for many
use cases. Try to find a conveniently simple but flexible solution to introduce
quotas. This will be based on preliminary research and mainly consist of these
two steps:

1. Find concept Find the best concept from literature for quotas in the
SAN.FS and compare them if there are more than one solution applying
criteria discussed above.

2. Implement prototype Implement the best found solution as a prototype.

Data lock abuse Complete the task described above following these steps:

1. Proof of weakness Setup environment and prove malicious operation in-
fluences normal operation. The basic idea is to have a trusted client
showing a movie stored in SAN.FS while a malicious user tries to trash
data locks by repeatedly request a lock interfering with the lock necessary
for the movie file.

2. Find remedy Theoretically describe a solution or algorithm to avoid the
trashing and compare them, if several exist, regarding complexity, pro-
tocol adaptation effort and performance impacts.

3. Implement prototype Implement the best found solution as a prototype.

Session lock abuse Try to find ways to prevent or reduce the possibility of abusing
session locks following these steps:

1. Proof of weakness Setup environment and proof a malicious client (or
even faster a set of them) can interfere with normal operation. The basic
idea is to eagerly aggregate session locks on all files and not hand them
back.

2. Find remedy Theoretically describe a solution or algorithm to avoid this
and compare if several exist regarding complexity, protocol adaptation
effort and performance impacts. As a side effect, the issue with session
locks and normal failure conditions should be fixed.

3. Implement prototype Implement the best found solution as a prototype.

Finally, the thesis paper must be completed, together with the preparation for the
final presentations.

C Summary

After more than two decades evolving a variety of client/server-based distributed
file systems (DFS), the recently emerging storage area networks (SAN) allow the
former file-server to be split into a storage and a metadata component. Metadata
servers perform file access coordination and metadata management, whereas stor-
age devices directly serve the clients’ read and write requests. The clear separation
of duties, the straight data path, and the virtualization of storage result in bet-
ter scalability, performance, and maintainability. Whereas the first generation of
SAN-based DFS focused primarily on performance, the second generation aims at
spreading its service to the organizations’ desktops, where server-room trust-levels
can no longer be presumed.

We identified a set of security threats that arise when SAN File System protocols
for client to metadata server communication are opened to the insecure desktops.
This work discusses and analyzes design modifications for client authentication,
protocol encryption, and distributed lock recovery, which we partly implemented
on a Linux-based SAN.FS environment. In addition, we cover quota management
as well as lock scheduling, and introduce virtual machines as a valuable tool to
support research within distributed storage systems.

IPsec was applied to provide authentication and encryption to SAN.FS on the net-
work layer. Securing the network layer for client to metadata server communication
assures that no one can learn or manipulate the global protocol state. Further-
more it is no longer possible to forge the identity of a trusted client. Performance
evaluations state that the expected loss for the average use case is on the order of
11%.

Securing the distributed lock recovery with a replay-safe and efficient secure-token
mechanism prevents malicious clients from breaking the global lock state after fail-
ures. It can be shown that there is no need to move to a centralized lock recovery
mechanism, which performs much worse during normal operation, because the se-
cure distributed lock recovery has a minimal impact on server-processing require-
ments, memory consumption and message sizes.

Virtual machines can speed up research within distributed storage systems substan-
tially. Once time-consuming setups can be deployed from appropriately prepared
virtual machines within minutes. This allows multiple researchers to work on the
same physical hosts with different setups of the distributed storage system at the
same time. Varying performance measurements can be set up in virtually no time
as well.

We conclude that there are security issues in SAN-based DFS that cannot be ne-
glected if malicious operation must be taken into consideration. However, security

69

70 Appendix C. Summary

can be improved considerably at a moderate price.

D Zusammenfassung

Nach über zwanzig Jahren Entwicklung an Client/Server basierten, verteilten Datei
Systemen (VDS), erlauben die neulich eingeführten Storage Area Networks (SAN),
den Server in eine Metadaten und eine Daten Komponente aufzuteilen. Metadaten
Server synchronisieren den Dateizugriff und verwalten die Metadaten. Die Daten
Einheiten bearbeiten Lese- und Schreibzugriffe. Die klare Aufgabentrennung, die di-
rekten Datenpfade und die Virtualisierung des Speichers resultieren in verbesserter
Performanz, Skalierbarkeit und Wartbarkeit. Nachdem sich die erste Generation
von SAN-basierten VDS vorrangig auf die Performanz konzentrierte, will man in
der zweiten Generation die Sicherheit berücksichtigen, um möglichst vielen Clients
den Zugriff auf das VDS gestatten zu können.

Eine Reihe von Sicherheitsproblemen taucht auf, wenn man SAN-basierte VDS im
Bereich der Client zu Metadaten Server Kommunikation über viele, unsichere Rech-
ner verteilt. Diese Arbeit diskutiert und analysiert Anpassungen im Bereich von
Client Authentifizierung, Protokoll Verschlüsselung und Lock Wiederherstellung,
die wir teilweise in einer Linux SAN.FS Umgebung implementiert haben. Zusätzlich
streifen wir Quota Management und Lock Scheduling und führen Virtuelle Maschi-
nen als wertvolles Hilfsmittel ein.

Um Authentifizierung und Verschlüsselung zu ermöglichen, wurde IPsec auf der
Netzwerk Schicht aktiviert. Dies stellt sicher, dass niemand den globalen Protokoll-
Zustand in Erfahrung bringen oder manipulieren kann. Des weiteren ist es nicht
mehr möglich, die Identität eines vertrauenswürdigen Clients zu fälschen. Eine
Evaluation der Performanz hat gezeigt, dass der zu erwartende Verlust für den
durchschnittlichen Anwendungsfall im Bereich von 11% liegt.

Die verteilte Lock Wiederherstellung kann mittels eines Token Mechanismus gesichert
werden, der die Manipulation des globalen Lock Zustandes nach einem Fehler
verhindert. Es kann gezeigt werden, dass ein Wechsel zur langsameren zentral-
isierten Lock Wiederherstellung unnötig ist, weil der vorgeschlagene Mechanismus
auf Rechenleistung, Speicherverbrauch und Kommunikation praktisch keinen Ein-
fluss hat.

Virtuelle Maschinen (VM) können die Forschung mit VDS massgeblich beschleuni-
gen. Vormals zeitraubende Installationen können mittels vorbereiteten VMs prak-
tisch innert Minuten aufgesetzt werden. Das erlaubt die gleichzeitige Arbeit mit un-
terschiedlichen Installationen auf einer physikalischen Maschine. Unterschiedlichste
Szenarien können ebenfalls ohne grossen Zeitverlust aufgesetzt werden.

In SAN-basierten VDS existieren zusammenfassend Schwachstellen, die böswillig
ausgenutzt werden können. Die Sicherheit kann aber nachhaltig verbessert werden
– bei moderaten Kosten.

71

72 Appendix D. Zusammenfassung

Bibliography

[ADN+96] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S.
Roselli, and R. Y. Wang. Serverless network file systems. ACM
Transactions on Computer Systems, 14:41–79, February 1996.

[AJL+03] Marcos K. Aguilera, Minwen Ji, Mark Lillibridge, John MacCormick,
Erwin Oertli, Dave Andersen, Mike Burrows, Timothy Mann, and
Chandramohan Thekkath. Strong security for network-attached stor-
age. In Proceedings of the USENIX Conference on File and Storage
Technologies (FAST), January 2003.

[APS99] Apostolopoulos, Peris, and Saha. Transport layer security: How
much does it really cost? In INFOCOM: The Conference on Com-
puter Communications, joint conference of the IEEE Computer and
Communications Societies, 1999.

[AS99] Yair Amir and Jonathan Stanton. Lecture 12, 1999.

[Ber96] D. J. Bernstein. SYN cookies. http://cr.yp.to/syncookies.html,
1996.

[BHJ+93] A. D. Birrell, A. Hisgen, C. Jerian, T. Mann, and G. Swart. The
Echo distributed file system. Technical Report 111, Palo Alto, CA,
USA, October 1993.

[Bra03] Peter J. Braam. The Lustre Storage Architecture. http://
www.clusterfs.com/docs/lustre.pdf, 2003.

[C+04] Per Cederqvist et al. Version management with CVS. Technical
report, Concurrent Versions System, 2004.

[Cal00] Brent Callaghan. NFS Illustrated. Addison-Wesley, 2nd edition, 2000.

[CDK01] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed
Systems: Concepts and Design. Addison-Wesley, 3rd edition, 2001.

[CSFP04] Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato.
Version Control with Subversion. 2004.

[EJ01] D. Eastlake and P. Jones. Us secure hash algorithm 1 (SHA1). Tech-
nical Report 3174, September 2001.

[FS00] N. Ferguson and B. Schneier. A cryptographic evaluation of IPsec.
Technical report, 3031 Tisch Way, Suite 100PE, San Jose, CA 95128,
USA, 2000.

73

74 Bibliography

[GMSP00] Gregory R. Ganger, Marshall Kirk McKusick, Craig A. N. Soules,
and Yale N. Patt. Soft updates: A solution to metadata update
problem in file systems. ACM Transactions on Computer Systems,
18:127–153, May 2000.

[IBM03] IBM. IBM TotalStorage SAN File System. http://www.ibm.com/
servers/storage/support/virtual/sanfs.html, April 2003.

[JPPMAK03] Ricardo Jimenez-Peris, Marta Patino-Martinez, Gustavo Alonso, and
Bettina Kemme. Are quorums an alternative for data replication?
ACM Transactions on Database Systems, 28:257–294, September
2003.

[Kat97] J. Katcher. Postmark: a new filesystem benchmark.
http://www.netapp.com/tech library/3022.html, 1997.

[KBC97] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-hashing
for message authentication. Technical Report 2104, February 1997.

[Lee00] Yui-Wah Lee. Operation-based Update Propagation in a Mobile File
System. PhD thesis, The Chinese University of Hong Kong, Depart-
ment of Computer Science and Engineering, January 2000.

[LNZ+02] Ozgur Can Leonard, Jason Neigh, Erez Zadok, Jefferey Osborn,
Ariye Shater, and Charles Wright. The design and implementation of
elastic quotas. Technical Report CUCS-014-02, Columbia University,
June 2002.

[LRST00] Felix Lau, Stuart H. Rubin, Michael H. Smith, and Ljiljana Trajovic.
Distributed denial of service attacks. In IEEE International Confer-
ence on Systems, Man, and Cybernetics, pages 2275–2280, Nashville,
TN, USA, October 2000.

[Mac94] R. Macklem. Not quite NFS: Soft cache consistency for NFS. pages
261–278, San Francisco, California, January 1994.

[MBH93] Timothy Mann, Andrew Birrell, and Andy Hisgen. A coherent dis-
tributed file cache with directory write-behind. Technical report,
Digital Systems Research Center, Palo Alto, 1993.

[Mic04] Microsoft. Microsoft SMB protocol and CIFS proto-
col overview. http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/fileio/base/
microsoft smb protocol and cifs protocol overview.asp,
2004.

[MIK02] S. Miltchev, S. Ioannidis, and A. Keromytis. A study of the relative
costs of network security protocols, 2002.

[ODH+85] John K. Ousterhout, Hervé Da Costa, David Harrison, John A.
Kunze, Mike Kupfer, and James G. Thompson. A trace-driven anal-
ysis of the unix 4.2 bsd file system. In Proceedings of the tenth
ACM symposium on Operating systems principles, pages 15–24. ACM
Press, 1985.

[RBUK04] Idris A. Rai, Ernst W. Biersack, and Guillaume Urvoy-Keller. Size-
based Scheduling to Improve the Performance of Short TCP Flows,
November 2004.

Bibliography 75

[S+03] Spencer Shepler et al. Network file system (NFS) version 4 protocol.
Internet RFC 3530, April 2003.

[SH02] Frank Schmuck and Roger Haskin. GPFS: A shared-disk file system
for large computing clusters. In Proc. of the First Conference on File
and Storage Technologies (FAST), pages 231–244, January 2002.

[SKK+90] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H.
Siegel, and D. C. Steere. CODA – a highly available file system
for a distributed worksation environment. IEEE Transactions on
Computers, 39(4):447–459, 1990.

[SM89] V. Srinivasan and J. D. Mogul. Spritely NFS: Experiments with
cache-consistency protocols. pages 45–57, Litchfield Park, Arizona,
December 1989.

[SMS+04] Julian Satran, Kalman Meth, Costa Sapuntzakis, Efri Zeidner, and
Mallikarjun Chadalapaka. Internet small computer systems interface
(iSCSI). Internet RFC 3720, April 2004.

[SNI02] SNIA. Common internet file system (CIFS) technical reference.
http://www.snia.org/tech activities/CIFS, 2002.

[SS96] Mirjana Spasojevic and M. Satyanarayanan. An empirical study of
a wide-area distributed file system. ACM Transactions on Computer
Systems, 14(2):200–222, 1996.

[Tan96] Andrew S. Tanenbaum. Computer Networks. Prentice Hall, 3rd
edition, 1996.

[TDG98] R. Thayer, N. Doraswamy, and R. Glenn. Ip security. Internet RFC
2411, November 1998.

[TML97] Chandramohan A. Thekkath, Timothy Mann, and Edward K. Lee.
Frangipani: A scalable distributed file system. In Symposium on
Operating Systems Principles, pages 224–237, 1997.

[Wag03] Daniel Wagner. Integrity protection for secure networked storage.
Diploma thesis, Swiss Federal Institute of Technology Zurich, 2003.

[Zay91] Edward R. Zayas. AFS-3 programmer’s reference: File server/cache
manager interface. Technical Report FS-00-D162, Transarc Corpo-
ration, Pittsburgh, PA, USA, August 1991.

