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Abstract

Software evolution analysis is concerned with analysis
of artifacts produced during a software systems life-cycle.
Execution traces produced from instrumented code reflect
a system’s actual implementation. This information can be
used to recover interaction patterns between different en-
tities such as methods, files, or modules. Some solutions
for detection of patterns and their visualization exist, but
are limited to small amounts of data and are incapable of
comparing data from different versions of a large software
system. In this paper, we propose a methodology to ana-
lyze and compare the execution traces of different versions
of a software system to provide insights into its evolution.
We recover high-level module views that facilitate the com-
prehension of each module’s evolution. Our methodology
allows us to track the evolution of particular modules and
present the findings in three different kinds of visualizations.
Based on these graphical representations, the evolution of
the concerned modules can be tracked and comprehended
much more effectively. OurEvoTraceapproach uses stan-
dard database technology and instrumentation facilities of
development tools, so exchanging data with other analyses
is facilitated. Further, we show the applicability of our ap-
proach using the Mozilla open source system consisting of
about 2 million lines of code.

1 Introduction

Dynamic analyses based on execution traces are used in
software testing, software performance analysis, distributed

∗The work described in this paper was supported in part by the Aus-
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the Austrian Industrial Research Promotion Fund (FFF), the European
Commission in terms of the EUREKA 2023/ITEA project FAMILIES
(http://www.infosys.tuwien.ac.at/Cafe/) and the European Software Foun-
dation under grant number 344.

and parallel systems evaluation, and to some extent also in
program comprehension and reengineering.

Dynamic information is typically expressed by execu-
tion traces that are recorded when instrumenting the source
code and storing all events that occur in a given scenario.
For that, typical scenarios for an application can be cho-
sen and instrumented. This allows an engineer to focus on
important aspects to be validated or comprehended. For a
browser software such as Opera or Mozilla, this would be
the connection to an http server and the loading of a page.

One challenge with dynamic data is its size: simple sce-
narios can result in very large execution traces. Because of
that, researchers have investigated compression techniques
to cope with the size challenge, e.g. [10].

In our previous work, we have investigated scenarios for
the Mozilla open source software system to investigate the
evolution of its features [6]. We instrumented the code and
analyzed the execution traces to find out the relevant func-
tions implementing a particular feature. This was combined
with change and bug information to discover all kinds of
change dependencies between features. This information
was reflected onto the source base structure and visualized
for the analyzing engineer.

In [13] we presented an architecture analysis approach
that utilizes certain evolution data sources and provides an
integrated view. The analysis applies fact extraction and
generates specific directed attributed graphs that represent
information on accesses, includes, inherits, invokes, and
coupling between certain architectural elements. For that
purpose, we only considered static information but in many
situations it appeared that dynamic information could be
supplemented rather beneficially. Especially, since our goal
is to point software engineers to locations in a software sys-
tem that may be critical for maintenance and evolution ac-
tivities.

Execution traces have been used in program comprehen-
sion to facilitate understanding about interactions between
building blocks of a software system. Further, they have



been used to dynamically discover likely program invari-
ants that must be preserved when modifying and evolving
source code [5].

So far their full potential for coarse and fine grained anal-
ysis of program evolution has not been exploited. Research
work in this area mainly focused on the visualization of ex-
ecution traces (information mural by Collberg), detection
of patterns in the resulting traces for data reduction to over-
come the problem of information explosion and their repre-
sentation as graph.

While in reverse architecting dynamic information such
as call graph information is used to get a completestatic
picture of the actual implementation of a software system,
execution traces have not been exploited for detailed retro-
spective software evolution analysis.

Most of the information recorded in execution traces is
captured as well by profiling information. Thus, profiling
information can be used to generate a call graph or to gain
information about the invocation frequency of each method.
But patterns of invocation are not recorded, i.e., it is not
possible to deduce how frequently a methodC was invoked
asA → C or B → C.

As a further shortcoming, we identified the impossibility
to determine how these invocations are distributed over the
execution time, i.e., during which program execution phase
the invocation patterns emerge. Reason for the limited data
recording capabilities of “traditional” profiling is the infor-
mation explosion during program execution and the impact
on execution time if detailed data are gathered. But for a
significant number of software systems and their use cases,
this limitations can be neglected if data can be collected us-
ing specific test environments.

In contrast to a call graph analysis of a single release of
a software system, in retrospective software evolution anal-
ysis we are interested in the deltas applied to the software
system which describe the changes from one release to an-
other.

We are interested in the occurrence of specific invocation
patterns between modules or files and their change when
different releases of a software system are compared.

We have seen the need for integrating dynamic informa-
tion in our previous works and propose anexecution trace
analysis approachto support an engineer in tracking a sys-
tem’s evolution.

The contribution of this paper isa methodology to exploit
program execution traces for retrospective software evolu-
tion analysis and provide different visualizationsto support
the reasoning about program evolution. For that, we use
Mozilla, a multi-million line open source software system,
to show the applicability of ourEvoTraceapproach.

The paper is organized as follows: OurEvoTraceap-
proach is described in Section 2. In Section 3 we apply it
on a large Open Source Software system and present inter-

esting findings. Related work with respect to retrospective
software evolution analysis is discussed in Section 4, and
finally in Section 5 we draw our conclusions and indicate
future work.

2 Methodology

In this section we describe the methodology we use in
the EvoTraceapproach to obtain evolutionary information
from execution trace data.EvoTracecurrently comprises
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Module Info
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Figure 1. Import and analysis process

three steps as depicted in Figure 1: (1) instrumentation,
trace- and map-data generation; (2) import from execution
traces; (3) sequencing invocations between modules; and
(4) visualization. While the first step is development plat-
form dependent, the subsequent steps ofEvoTraceuse Perl,
Java and MySQLwhich are available for a number of OS
platforms. Next, we describe the data representation and
import process based on our implementation ofEvoTrace.
Though, the process is tailored for our Linuxdevelopment
environment, other OSs can be used as well, provided that
the required information is available.

The central element is a release history database
(RHDB) [7] that contains history information from version-
ing systems such as CVS and bug tracking data together
with links to architectural information.

2.1 Instrumentation, trace- and map-data gener-
ation

As noted in [11] there exist three methods to gener-
ate traces of method calls: (1) insertion of probes such as
prints; (2) modification of the runtime environment such as
Java; and (3) debugging to monitor program execution. In
the Linux environment the first method is supported by the
compiler so only two functions–one for entering and one for
exiting–must be implemented. Appropriate calls to these
functions are then generated by the compiler. After compil-
ing and linking the application can be tested.
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For Mozilla we used a typical scenario in which a web
page from our web server was loaded. To avoid user inter-
action with the application, the application is terminated via
an externalQUIT signal when no more additional events are
recorded.

Before the trace information can be used in the further
analysis process, the recorded addresses must be mapped
onto method- and file-names. This is done with map data
generated from the two GNU toolsldd and nmThe first
tool, ldd , generates a mapping of base addresses for the
dynamic linked libraries. These base addresses are required
to determine the library for which a call was recorded. The
second tool,nm, lists symbols from object files with source
file name and line number information. Both outputs are
written to a map file so the mapping information together
with the trace data can be used in the following import pro-
cess.

2.2 Importing execution traces

Result of the import from the execution traces and map
file data are two separate database tables containing the re-
spective traces of each Mozilla release with linkage to exist-
ing artifacts in the Release History DB (RHDB). The import
works via a Perl script and is divided into two steps: (1) read
map file information and try to find corresponding artifacts
in the RHDB; and (2) read the execution trace information
and add one record in the database for each event in the trace
file. After some experiments with the trace data we decided
to use the format depicted in Table 1 for the database table
which we calledinvocation sequence(invosequ ). The
field sizes are specified in bytes. The trace data generated
during execution of the testee, are stored in the four fields:
callee, caller, type, andthreadid. The remaining fields are
evaluated during the import from the Perl script:

id: Is a unique identifier assigned during data import to
facilitate further analysis.

callee: The code address of the method invoked during
program execution fromcaller.

caller: This address determines the exit point of an in-
vocation in the execution trace. While the callee address
has a direct mapping to linker addresses, the caller address
maps to the code segment between methods and thus is not
directly usable. Instead, an application of the caller address
lies in the search of correspondingenter-exit pairs. These
pairs can unambiguously identified within a thread context
via the 3-tuplecallee-, caller-address and invocationlevel.
Finally, the thread context is used to distinguish between the
different execution paths.

type: Each event in the database is marked either with
’e’ for enter and ’x’ for exit of a method.

threadid: Every event requires information about the
corresponding thread context; otherwise traces are inter-

Table 1. Record format for trace data

Name Size Description
id 4 Unique ID for this event
callee 4 Text segment address of called method
caller 4 Call issuing address
type 1 Method callc or returnr
threadid 1 ID of thread context
level 1 Invocation or recursion level
cvsitemid 3 ID of artifact in RHDB

mixed.
level: The recursion level information is simply derived

from the type-field by counting enters and exits on a per-
thread basis. This information is added to simplify database
queries.

cvsitemid: From the import of release history data into
our RHDB, a mapping from source files to unique IDs al-
ready exists. With the symbol information from object files
we are able to map thecallee-address to the corresponding
entry in the RHDB. This information is required to assign
the file information to modules.

After importing and linking relevant information, the in-
vocation database is ready to serve queries. In our case
study (see Section 3) we give some examples for a quan-
titative evolution. Next, we describe an analysis algorithm
for the detection of interactions between modules based on
the invocation sequence data.

2.3 Sequencing

We focus on invocations between different modules.
This reduces the amount of information to be displayed and
characterizes the communication between modules. Thus
we are interested in invocation sequencesS1, S2 between
modulesMa,Mb and their methodsa, b, c such asS1 =
Ma.a(Mb.a();Mb.b()) or S2 = Ma.a(Mb.a(Mb.b())). S1

exhibits two module switches andS2 exhibits only one
module switch. These invocations are derived from the in-
vocation data stored in theinvosequ table using the fields
type , cvsitemid andlevel . Since data are not repre-
sented as graph in the database, we need to traverse the com-
plete content of the invocation sequence table which is per-
formed by a small Java program. Figure 2 shows the (sim-
plified) Java code which is used to detect the invocations
between modules. To reveal the transitions between the dif-
ferent modules a data structure holds information about the
invoked modules. For each change of invocation level, the
event pairs(new event in trace, old event on stack)are com-
pared and a change is checked and recorded via the function
save diff module(o,n) . This function compares the
module IDs and counts the transitions of the program flow.
Transitions within a method, i.e., on the same invocation
level, are recorded with the code in the else-branch. Here,
the topmost element of the stack is replaced with the new
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Event [] events =newEvent[MAX STACK];
events [0] = tracedata ();
int cntevent = 1;
while ( more tracedata ()){

Event n =newEvent( tracedata ());
Event o = events [ cntevent−1];
if ( n. level > o. level ){

savediff module (o,n);
events [ cntevent ++] = n ;// save new event

}
else if ( n. level < o. level ){

savediff module (o,n);
events[−−cntevent−1] = n; // replace old event

}
else {

events [ cntevent−1] = n ; // replace old event
o = events [ cntevent−2]; // get new old event
savediff modules (o,n);

}
}

Figure 2. Java code for transition detection

event. Then the two elements on the stack are checked for
different module IDs. While the if-statements check for in-
vokes and returns such asMa.a(...Mb.a(); ...) the default
branch detects a series of invocations such asMb.b() and
Mb.c() in Ma.a(...Mb.a(); ...Mb.b(); ...Mb.c(); ...). Ev-
ery detected transition—i.e., their respective module ID—is
written to a separate database table. Next, input data for vi-
sualizations are generated from this information.

2.4 Visualization

Currently, the visualization of results is used as substitute
for the comparator function until an efficient pattern detec-
tion algorithm such as [12] is implemented. As substitution,
we combine data from the two versions of execution traces
into diagrams so they can be compared visually. One major
problem for visualization are the deficiencies of the often
used Gantt charts for the presentation of2 · 106 transitions
between modules within the usual viewing range. Conse-
quently, we had to reduce the amount of information. A fre-
quently applied solution is the application of sub-sampling.
Since no constraints on the time-slots were given, we de-
cided to use twenty time-slots since it was most appropriate
for use in the generated diagrams.

Based on this sub-sampling interval, we counted the
module transitions detected in the previous step and gener-
ated data sets for three different diagram types: (a) A Gantt
chart provides a good view on different phases of the pro-
gram execution. Different phases such as system initializa-

tion or user interface related activities can be distinguished;
(b) the “matrix” view emphasizes the quantitative aspect of
changes in invocations between modules. The two commu-
nication directions between entities are depicted separately;
and (c) for a more detailed view on the interaction between
modules we use Kiviat diagrams. In this view, the commu-
nication between each module is shown on separate axes in
the diagram.

The diagrams are generated automatically via a Perl
script from the given data sets. Results are depicted in Fig-
ures 3, 4, and 5, respectively.

2.5 Optimizations

Next, we discuss some optimizations which we identi-
fied during the development of this approach and in relevant
literature.

As discussed by Hamou-Lhadj and Lethbridge [11], a
limiting factor is the problem of size explosion. Size reduc-
tion through pattern matching seems to be the most appro-
priate solution to this problem.

Deactivation of instrumentation—as sometimes
proposed—for certain files to reduce the amount of
generated traces would require detailed knowledge about
the software system to inspect because otherwise important
invocation transitions could be lost. Another drawback of
the deactivation solution is the required effort to manually
enable or disable instrumentation on a per method basis.
To reduce the amount of records the currently separate
enter and exit records can be merged since most of the
information is redundant. Aside from the size reduction
extra lookups to find a corresponding invocation pair are
avoided.

Support for multi-threaded test applications: Instead of
using a specific database column to hold thread IDs, writ-
ing different thread traces to different database tables could
considerably reduce memory consumption.

Standard database technologies support fast access to
events of selected modules: If the analysis environment pro-
vides sufficient computing power and memory (= 1GB, =
3GHz for a Pentium 4), database tables can bee kept in
memory. Thus the execution time for entries in ad hoc
queries ranges from fractions of a second to less than one
minute depending on whether an index can be used to re-
solve the query.

Support for detection of sequences and patterns: One
field of future work is the detection of invocation patterns.
Detected patterns are a prerequisite for the implementation
of a fast comparator function of the version related trace
data.

Handling multiple versions of execution trace data: In
EvoTracewe use different database tables to handle the ex-
ecution traces originating from different version of the test
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program. Including the version information into the tables
would create a large amount of redundant information.

Linkage with existing release history information: This
linkage is required to facilitate the architectural evolution
analysis process. In recent work [13] we have merged them
to information spaces. The traces contain a wealth of infor-
mation which can be made directly available via database
queries for interactive visualization or retrospective evolu-
tion analysis.

3 Case study

As in our previous research [6, 7] we continue to use the
Mozilla Internet application suite as a representative and
challenging case study. Major reasons for that are the al-
ready existing RHDB with architectural and evolutionary
information and our experiences with Mozilla. Further-
more, results of this work have been integrated into the
RHDB to further augment the exploration of the software
evolution information space.

The current snapshot of the case study is based on ver-
sion 1.7 (released 2004-06-18) and version 1.4 (released
2003-07-01) of the Mozilla code base. While version 1.7
is the latest release we have release history data about, the
reason for using 1.4 is a problem with the development en-
vironment. Releases prior to 1.4 require an outdated version
of the GNU compiler collection (GCC), thus earlier releases
are not compilable with our current development environ-
ment.

Table 2. Selected Mozilla modules and their
source code directories

Module Source Directories
MathML layout/mathml
New Layout Engine layout/base, layout/build, layout/html
XPToolkit content/xul, layout/xul
Document Object Model
(DOM)

content/base, content/events,
content/html/content,
content/html/document, dom

HTML Style System content/html/style, content/shared
XML content/xml, expat, extensions/xmlextras
XPCOM xpcom

For our work on the integration of the architectural and
evolutionary information [13] we used a subset of the avail-
able Mozilla modules which are related to web content rep-
resentation and layout. Table 2 lists the selected modules
which we will use in this case study again.

3.1 Data collection

Before data collection can start some preparation
work of the testee has to been done. Both source

code versions of Mozilla are instrumented via the
-finstrument-functions compiler option provided
by GNU compiler collection. This option generates instru-
mentation code for entry to and exit of functions. Just after
function entry and just before function exit, the following
profiling functions will be called with the address of the cur-
rent function and its call site.

void __attribute__
((__no_instrument_function__))

__cyg_profile_func_enter
(void *callee, void *caller)

With a similar C function returns from methods can be
recorded. To avoid conflicts with the instrumentation func-
tion the no instrument function attribute has to
be applied. This avoids its recursive invocation. Another
source of conflict is Mozilla’s thread librarynsprpub .
We require some functions of this library to determine the
thread context under which the instrumentation function is
executed. For this library we disable instrumentation com-
pletely. After this instrumentation work, both programs can
be compiled using the same compiler and configuration op-
tions.

To avoid interference through user interactions, we im-
plemented a shell script which automatically starts the ap-
plication with the specified test-parameters and terminates
the application after a predefined timeout period. As test-
scenario we use a copy of a page of the W3C’sMathML
test suitewhich we placed on our web server1 Difference in
the resulting execution traces due to network indeterminis-
tic can be neglected since the selected modules are not re-
lated to network communication. As timeout when the ap-
plication shall receive theQUIT signal we determined one
second to be sufficient.

Another source for differences in the resulting traces are
changes to Mozilla internal configuration files. To mini-
mize the impact of this source of interference, we usedthree
test-runsin a row whereas only the results of the last one
are used. To avoid conflicting interactions with the window
manager of our test-system, we used a separate X-Window
server without any window manager functionality. During
test-runs the application window is redirected to this sepa-
rate server while trace data are stored on the local disk drive.

Currently, we used the Cprintf -function to record
eachenteror exit event. The snippet below depicts the data
format produced by the instrumentation function:

e0x8cede20m0x8cedf09t0x8f26548

Four types of information are recorded: (1) the event-type
(enteror exit); (2) the callee address; (3) the caller address
(starting at the letter ’m’); and (4) the thread context (start-
ing at ’t’).

1http://www.infosys.tuwien.ac.at/staff/mf/testpages/iwpc05/math3.
xml
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Figure 3. Execution trace for Mozilla modules as Gantt diagram

3.2 Post-processing and quantitative results

After the import of the raw data into the database via
a Perl script, we can obtain first quantitative results with
simple SQL queries. The results are listed in Table 3 for
both Mozilla versions.

The binary file of version 1.7 is large compared to ver-
sion 1.4 but the code seems to be leaner and produces less
execution trace events. Even though listed as exact num-
bers, the number of events vary slightly between test-runs
since network communication or the OS timing is not de-
terministic.

The number of different start addresses of invocations
found in the execution traces is given bycallee addresses.
This differs fromnumber of methods—number of different
methods signatures found in object files—which is based on
the symbol information delivered bynm. Differences orig-

Table 3. Basic results from trace data

Mozilla 1.4 1.7 ∆%
Binary size 82,109,017 101,012,842 +23
Number of events 23,878,728 18,822,452 -21
Callee addresses 12,077 11,644 -3.6
Caller addresses 41,962 37,011 -12
Number of threads 4 5 +25
Deepest call nesting 153 164 +7.2
Number of methods 11,940 11,563 -3.2
Number of files 868 850 -2.1
Files from modules 403 396 -1.7

inate from C++ language constructs and internal manage-
ment tasks of the runtime library. Thecaller addresseslists
the number of different addresses from where methods have
been invoked. To assign traces to the correct thread context
we record the thread ID at each event. Consequently, the
number of threadsgives the total number of different IDs
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(b) Mozilla 1.7

Figure 4. Interval-based tree-ring invocations for Mozilla modules as matrix view

found.
One aspect not covered by “traditional” profiling is the

nesting level. Withdeepest nestingwe give the deepest level
of invocations found in the execution traces. During the im-
port phase thecalleeaddress information is combined with
the symbol information from object files. Here, thenumber
of filesrepresents the number of successful maps to source
files. In a post-processing phase, we then identified those
files which belong to the modules we are interested in (files
from modules). This speeds up later data analysis.

3.3 Visualization

After the generation, filtering and first quantitative evalu-
ation of the test-data, we visualized the results for evolution
tracking. As described in the previous section, we divided
the execution trace into twenty different intervals for sub-
sampling. We have decided to use twenty intervals because
the intervals are sufficiently small to distinguish different
types of interaction but is high enough to create “readable”
visualizations. This interval size is more relevant for the
first diagram type we present here than for the other two.

3.3.1 Gantt diagram

One well known form for visualization of execution traces
are Gantt diagrams which are well suited to study interac-
tions on a very fine grained level. Since ourEvoTraceap-
proach is designed to reveal coarse changes in system inter-
action, we use a “reduced” form of the Gantt diagram type
where the invocations are sketched. In Figure 3 this modi-
fied diagram type is depicted with the filtered invocation se-
quences of Mozilla 1.4 (a) and Mozilla 1.7 (b) respectively.

In both diagrams the invocation frequencies between mod-
ules are divided into six classes:> 50%, > 25%, > 10%,
> 5%, > 2.5% and 5 2.5% whereas invocations of the
last class are not shown. Invocations are depicted as lines
with different shapes representing their frequency between
modules.

When visually comparing diagrams (a) and (b) the differ-
ences in invocation intensity between the modulesOther
andXPCOMare significant. This was surprising, since we
did not expect such extreme changes. Interesting to see are
also the mutual invocations betweenOther andXPCOM.
But this is an expected result sinceOther contains all other
modules we did not explicitly identify.

Roughly, four phases can be distinguished: (α) pre-
lude (time-slots 0-2); (β) user interface–XPToolkit is the
cross-platform user interface–related activities (slots 3-9);
(γ) an intermediary phase (slot 10); and (δ) content related
activities includingMathML (slots 11-19). The main differ-
ences are that phaseα begins in version 1.7 two time-slots
earlier and that the intermediary phaseγ can be clearly iden-
tified. Remarkable is also the strong communication path in
slot 7 from moduleXPCOMto XPToolkit which appears
in both versions.

3.3.2 Matrix view

To overcome the problem of clutter in our Gantt diagram,
we developed a specific matrix view, which supports the
visualization of invocations as cross product between mod-
ules. Callers are placed on the horizontal axis and callees
are placed on the vertical axis. For instance, to find the
invocations fromXPCOMto HTML Style System you
need to go to column 6 and move up till row 4. Dur-
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Figure 5. DOM related invocations in Mozilla 1.4 (left) and 1.7 (right)

ing the development of this view we noticed, that presen-
tation quality suffers from the wide spread of invocation
frequencies that can differ by an order of magnitude of5.
As solution, we introduced five frequency classes accord-
ing to the overall maximum number of invocations. Each
class has a fixed size so we get data sets with maximum
value∈ [0.2, 0.4, 0.6, 0.8, 1.0]. The data are then scaled to
the desired size during diagram generation. As the forth
dimension in our visualizations we have the time dimen-
sion. We decided to use atree-ring schemebased on the
rainbow colors to depict the twenty intervals: blue indi-
cates the first interval (most inner ring) and red indicates
the last interval. Since the values are scaled to different
maxima—one maximum for each Mozilla version—sizes
between both diagrams must be compared to absolute val-
ues from the database. A quick comparison indicates that
the communication in version 1.7 is more distributed com-
pared to version 1.4 of Mozilla. In contrast to Figure 3
where the changes in the invocation frequency are not di-
rectly recognizable, the matrix type view depicted in Fig-
ure 4 supports perception of these changes in an intuitive
way.

Striking are the high number of invocations between
XPCOMand Other in Figure 4.(a) whereas Figure 4.(b)
shows a more distributed characteristic for function invo-

cations in version 1.7. Another interesting result is that
communication starts earlier in version 1.7—e.g.,XPCOM
- HTML Style System —compared to the predecessor
version (which is also supported by the Gantt diagrams).
This can be interpreted in such a way, that the system has
been optimized and web pages are now delivered faster to
the user.

Next, we give a more detailed view of one selected soft-
ware module with respect to invocations with other mod-
ules.

3.3.3 Detailed module view using Kiviat diagrams

As result of theEvoTraceapproach, we obtain multidimen-
sional data sets. To overcome some of the limitations of the
previous views, we decided to use Kiviat diagrams for a de-
tailed view on the communication between modules. Two
diagrams covering a range of 180° each, face by face, al-
low a quick comparison of specific module data between
two releases. Based on the experiences with the wide value
range we sorted values in ascending order and limited the
result set to the eight most frequent invoked module pairs.
Further modifications concern the scaling of the data sets
during diagram generation. For data representation we use
a 4-dimensional dataset. The actual value of each data point
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in the diagram is determined by the following scaling for-
mula:

vk,a,b,s =





2
maxF if 2F < 1
1 if 2F = 1
1 + 0.01 ∗ s if 2F > 1

whereasmax is the overall maximum ofF , and

F =
∑

s5n

fk,a,b,s

is the cumulated value if invocations between moduleMa

andMb for versionk of Mozilla over the time-slotss 5 n
(n ∈ {0, 1, ..., 19}). Division of the maximum by a constant
factor together with the2F > 1 branch, reduces the biasing
effect of “spikes” diagram drawing.

The resulting diagram for moduleDOMis depicted in Fig-
ure 5 whereas theDOM - XPToolkit , XPCOM - DOM,
andDOM -XPCOMare reduced in size (2F > 1 branch).
In contrast to the matrix view, the data sets for the differ-
ent releases are scaled with a common factor. Thus both
sides of of the diagram are directly comparable. Our exam-
ple graph indicates for the modulesDOMandXPToolkit
that the communication has been doubled. Especially dur-
ing the center period (green area) the increment was sub-
stantial. This perception is supported by data from the
database where 50,190 invocations for version 1.4 and
105,001 for version 1.7 have been recorded. Further inter-
esting are the delays when communication starts with rel-
evant modules. Examples for early communication (inner
blue area) in version 1.4 areDOM- XPCOM(both direc-
tions) andDOM- Other , respectively. Compared to ver-
sion 1.7 no significant changes can be found, except for
XPCOM- XPToolkit where communications starts now
earlier. As a counter example we refer to the pairHTML
Style System - DOMwhere communication starts late
in both program versions.

Another interesting area of application is the deduction
of usesrelationships. This is facilitated by this diagram
type, since results are sorted by frequency and further sub-
divided than in the Gantt diagram or Matrix view. As de-
picted in Figure 5 most communication takes place in a sin-
gle direction between modules. Counter examples areDOM-
XPCOMandDOM- Other . ButOther is a virtual module–
a superset of modules we did not further break down–and
therefore its contribution is not significant.

3.3.4 Discussion

With a traditional database approach large amounts of trace
data can be handled efficiently and the database queries are
simple to implement and access via standard SQL query in-
terface for third party tools is possible. Another advantage
is that storing the program traces in the RHDB supports

fast retrieval and detection of a system’s interaction patterns
without losing context related detail information. During
our experiments access speed was not in issue. The detec-
tion of invocation sequences of a single trace with more than
19 · 106 events using a Java program and MySQL database
on a Pentium 4, 2.8GHz, 1GB takes less than 5 minutes,
which we considered reasonably fast. If a speed up for pat-
tern detection is required, the problem can be nicely parti-
tioned via invocation levels.

Though some of the results can be achieved with data
from conventional profiling as well, focus of theEvoTrace
approach is the evaluation of program traces for evolution
analysis. Our visualizations provide insights into changes
on arbitrary detailed level to track the changes between sys-
tem releases.

4 Related Work

Most related work we have seen so far either focuses on
the generation of evolution traces based static software arti-
facts such as the number of lines of code of the individual
modules of the software system, presenting the age of the
code, or the correlation between module changes and pro-
grammers [1, 3, 4].

Other reverse engineering approaches try to take the dy-
namic execution behavior into account and try to infer cer-
tain program characteristics based on these traces. For in-
stance, In [9], for instance, Gschwind et al. present an ap-
proach that allows to identify how certain features within a
program are implemented. This approach is based on ex-
ecution traces and interactive program queries during the
program’s runtime. A similar approach is taken by the Smi-
ley system presented in [8]. For this system, Goldman uses
wrappers to log the interaction between an application and
its external dynamic link libraries (DLL). This work fa-
cilitates the understanding of interactions between COTS
where no source code is available.

In [14] Wilde et al. describe how runtime profile infor-
mation can be used to map features onto source code. In
earlier work of our group we used these technique as well.
The reason we are using execution traces is that when com-
pared with profiling information they contain more relevant
information such as thread data or interaction patterns. The
work that comes closest to the work presented in this pa-
per was presented by Collberg et al. in [2]. In their pa-
per, they present an approach that takes possible executions
into account by analyzing the evolution of the program’s
call-graph. This is accomplished by generating call graphs
for the different versions of the program, merging these call
graphs, and finally highlighting the differences between the
call graphs.

Analyzing the differences in the call graph, however, still
falls short in getting a glimpse of the typical runtime be-
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havior of the program to be analyzed since the call graph
does not give any information about how frequently certain
functions are being invoked and hence does not give a huge
insight into the communication patterns between different
parts of the program. This is especially the case if call-back
functions are being used which cannot be easily identified
on the basis of the call graph.

Other related work was presented by Jerding et al. [12]
and Hamou-Lhadj et al. [11]. Both present different but
similar techniques to identify patterns and similarities in
execution traces. This allows them to compress execution
traces and store them in a more compact form. In [11]
Hamou-Lhadj et al. provide a survey about other trace ex-
ploration tools and techniques. None of these approaches,
however, analyze the differences between different execu-
tion traces. In the future, however, we plan to use such
compression techniques to analyze the differences on a finer
grained level and to identify the similarities and differences
between the traces of different releases. As we have men-
tioned previously, currently we divide the execution traces
into 20 segments which we assume are similar.

5 Conclusions and Future Work

Dynamic information expressed in execution traces of
a software system can be used to understand some evolu-
tion aspects. Especially in pointing a software engineer to
locations in a system that may be critical for maintenance
activities.

Comparing execution traces is a simple but efficient way
to gain information about changes in the as-implemented
architecture without the need to parse or have direct access
to the source code. This information can be used to recover
interaction patterns between different entities such as meth-
ods, files, or modules.

In this paper, we proposed a methodology to analyze and
compare the execution traces of different versions of a soft-
ware system to provide insights into its evolution. We re-
cover high-level module views that facilitate the compre-
hension of each module’ s evolution in relation to others.
EvoTraceallows us to track the evolution of particular mod-
ules and present the findings in three different kinds of vi-
sualizations: Gantt diagrams, Matrix views and Kiviat dia-
grams. Based on these graphical representations, we have
shown that certain aspects such as invocation structures be-
tween modules can be tracked and comprehended much
more effectively.

We showed the applicability of our approach using the
Mozilla open source system consisting of about 2 MLOC
in C/C++. For example, we could determine the evolution
from a “dispatcher” oriented communication in version 1.4
to a more direct communication between software modules
in version 1.7.

Execution trace data are another cornerstone for soft-
ware evolution analysis. The properties of execution traces,
such as detailed information about “scheduling” data, in-
vocation patterns, call frequency, nesting levels, or thread-
ing, can complement results gained via release history and
architectural analysis. Further research will have to show
how dependencies between these three dimensions can be
exploited.

For future work, we plan to integrate existing pattern de-
tection approaches to reduce the amount of information and
improve the comparability of different software versions.
Further, we want to develop an automatism to compute dif-
ferences for given execution traces which would allow us a
more focused analysis.
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