
RZ 3582 (# 99592) 02/07/2005
Computer Science 86 pages

Research Report

Thesis Report
Building and Querying a Repository of BPEL Process Specifications

Jussi Vanhatalo

IBM Research GmbH
Zurich Research Laboratory
8803 Rüschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its dis-
tribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies (e.g., payment of royalties). Some reports are available at
http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research
 Almaden • Austin • Beijing • Delhi • Haifa • T.J. Watson • Tokyo • Zurich

HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Computer Science and Engineering

Software Business and Engineering Institute

Building and Querying a Repository of BPEL
Process Specifications

by Jussi Vanhatalo

Thesis submitted in partial fulfillment of the requirements

for the degree of Master of Science in Technology

Zurich, September 29, 2004

Supervisor: Professor Casper Lassenius, M.Sc. (Tech.)

Instructor: Jana Koehler, Ph.D. (Dr. rer.nat.)

 2

Abstract of the Master’s Thesis

Author:

Title of the Thesis:

Date:

Pages:

Jussi Vanhatalo

Building and Querying a Repository of BPEL Process
Specifications

September 29, 2004

86

Department:

Professorship:

Field of Study (Major):

Department of Computer Science and Engineering

T-76 Software Engineering

Software Engineering and Business

Supervisor:

Instructor:

Professor Casper Lassenius, M.Sc. (Tech.)

Jana Koehler, Ph.D. (Dr. rer.nat.)

There are no suitable repositories available satisfying the existing requirements of the
domain around the Business Process Execution Language for Web Services
(BPEL4WS, BPEL for short). This Master’s Thesis explores an object-oriented
approach for providing data retrieval and querying services to other software. The
BPEL repository is built on top of the Eclipse platform and it uses the Eclipse Modeling

Framework (EMF) for handling the data persistence of objects as XML files.

Instead of using the native querying language of a database system, an object-
oriented approach is utilized. The data is queried in EMF object representation. The
Eclipse Modeling Framework takes care of converting the data from one form to
another and transforming the data models to another.

The Object Constraint Language is used as an object-oriented querying language for
the repository data. The power of an object-oriented approach is that only the object
representation of data must be known when the queries are formulated. Programs use
this object representation internally and thus, it is straightforward to construct queries
for this data representation. It is not necessary to know how the data is stored, for
example in a relational database, or in an XML database.

The querying performance of the BPEL repository scales linearly compared to the
repository size, because all the queried files are loaded completely in a main memory,
when the query is executed. No indexing mechanisms or other query speed-ups familiar
from database systems are utilized. However, the querying mechanism scales well
enough for the purpose it was created. Future work could explore how only the
necessary parts of the files are loaded into objects using for example a lazy XML
loading mechanism. Another option is to map the object-oriented queries to a query
language provided by a database system.

Keywords: Repository, object-oriented, query, BPEL, OCL

 3

Diplomityön tiivistelmä

Tekijä:

Työn nimi:

Päivämäärä:

Sivumäärä:

Jussi Vanhatalo

Tietokannan ja hakumenetelmän toteutus BPEL
prosessikuvauksille

29.9.2004

86

Osasto:

Professuuri:

Pääaine:

Tietotekniikan osasto

T-76 Ohjelmistotuotanto ja -liiketoiminta

Ohjelmistotuotanto ja -liiketoiminta

Työn valvoja:

Työn ohjaaja:

Professori Casper Lassenius, DI

Jana Koehler, TkT (Dr. rer.nat.)

Business Process Execution Language for Web Services (BPEL4WS, lyhyesti BPEL)
on suunniteltu bisnesprosessien kuvauskieleksi. Näille tiedostoille sopivaa
dokumenttikirjastoa ei ole olemassa. Tämä diplomityö tutkii oliosuuntautunutta
lähestymistapaa tarjoten tiedonhakupalveluja muille ohjelmistoille. BPEL-
dokumenttikirjasto on suunniteltu Eclipse alustalle ja se hyödyntää Eclipsen
mallinnusmenetelmää (Eclipse Modeling Framework, EMF) hoitamaan tiedon
muuntamisen olioesitystavasta XML-tiedostoiksi.

Dokumenttikirjasto käyttää oliosuuntautunutta lähestymistapaa tiedonhakuun, sen
sijaan että haut suoritettaisiin suoraan tietokannan tukemalla kielellä. Haettava tieto on
mallinnettu EMF-olioina. EMF hoitaa tiedon muuntamisen kuvauskielestä toiselle ja
tietomallien muuntamisen mallinnuskielestä toiselle.

Oliorajoituskieltä (Object Constraint Language, OCL) on käytetty oliomallisen
tiedon hakemiseen. Oliosuuntautuneen tavan etuna on se, että ainoastaan tiedon
oliomalli täytyy olla tuttu ohjelmistokehittäjälle, kun hän laatii kyselyjä. Ohjelmat
käyttävät oliomalleja sisäisesti ja siksi on suoraviivaista laatia kyselyjä käyttäen samaa
tietomallia. Siten ei ole tarpeellisesta tietää tiedon tallentamissyntaksia, jota käytetään
tiedon tallentamiseen relaatio- tai XML-tietokantoihin.

Hakumenetelmä käyttää prosessointi- ja muistiresursseja lineaarisesti verrattuna
tietokirjaston kokoon, koska kaikki haussa tarvittavat tiedostot ladataan
kokonaisuudessaan keskusmuistiin, kun haku prosessoidaan. Dokumenttien sisältöjä ei
ole indeksoitu, eikä muita tietokantoista tuttuja haun nopeuttamismekanismeja ole
käytetty. Kuitenkin hakumenetelmä skaalautuu tarpeeksi hyvin sen käyttötarkoitukseen.
Tulevaisuudessa voitaisiin tutkia, kuinka tietokirjastoa voitaisiin parantaa lataamalla
vain hauille olennainen tieto dokumenteista käyttämällä esimerkiksi laiskaa XML-
latausmenetelmää. Toisena vaihtoehtona olisi suorittaa haut oliohakukielellä suoraan
tietokannassa.

Avainsanat: Dokumenttikirjasto, oliosuuntautunut, hakumenetelmä,
BPEL, OCL

 4

Résumé de Thèse

Auteur :

Titre de la Thèse :

Date :

Pages :

Jussi Vanhatalo

Construction et interrogation d'une bibliothèque pour les
spécifications des processus BPEL

29 septembre, 2004

86

Département :

Professeur :

Option :

Department of Computer Science and Engineering

T-76 Software Engineering

Software Engineering and Business

Superviseur :

Encadrant:

Professeur Casper Lassenius, M.Sc. (Tech)

Jana Koehler, Ph.D. (Dr. rer.nat.)

Il n’y pas actuellement de bibliothèque adaptée disponible satisfaisant les contraintes
existantes dans le domaine des langages d’exécution pour les processus d’affaires pour les
services Internet (Business Process Execution Language for Web Services, BPEL4WS, BPEL
en résumé). Ce travail de diplôme présente une approche orientée objet qui a pour but de fournir
la récupération de données et des services de requêtes pour d’autre logiciel. La bibliothèque
BPEL est construite au sommet de la plateforme Eclipse et utilise le cadre de la modélisation
Eclipse (Eclipse Modeling Framework, EMF) pour gérer la persistance des données de type
objet tels que les fichiers XML.

Au lieu d’utiliser le langage de requêtes d’un système de bases de données, une approche
orientée objet est utilisée. Les données sont interrogées dans une représentation EMF objet. Le
cadre de la modélisation EMF prend correctement en compte la conversion de données et de
modèles d’un format à un autre.

Le langage objet de contrainte (Object Constraint Language, OCL) est utilisé en tant que
langage orienté objet de requêtes pour les données de la bibliothèque. L’intérêt d’une approche
orientée objet est que seule une représentation objet des données ne doit être connu au moment
où les requêtes sont formulées. Les programmes utilisent cette représentation objet de manière
interne et par conséquent, il est simple de construire des requêtes pour cette représentation de
données. Il n’est pas nécessaire de savoir comment les données sont stockées, par exemple dans
une base de données relationnelle ou dans une base de données XML.

Les performances des requêtes d’une bibliothèque BPEL augmentent linéairement par
rapport à la taille de celle-ci, étant donné que la totalité des fichiers de requêtes sont
complètement chargés par la mémoire principale, au moment où la requête est exécutée. Les
indexages, ou encore les mécanismes permettant d’accélérer les requêtes ne sont pas utilisés.
Cependant, le mécanisme de requêtes se comporte suffisamment bien pour le but dans lequel il a
été créé. De futurs travaux pourront explorer comment seules des parties nécessaires de fichiers
ont besoin d’être chargées en tant qu’objet en utilisant par exemple un mécanisme de
chargement XML. Une autre possibilité est de faire passer les requêtes orientées objet dans un
langage de requête fourni par un système de base de données.

Mots-clés : Bibliothèque, orienté objet, requête, BPEL, OCL

 5

Acknowledgements

First, I would like to thank Ed Merks for the technical help given to me during my
project. He helped me to solve the technical challenges related to Eclipse Modeling
Framework. In addition, he helped me to overcome my problems with the Eclipse
platform from another continent, even though it is not in his area of responsibility.

Jana Koehler gave exceptional academic guidance with her strong experience, as the
industrial supervisor. She contributed to the technological decisions as well. Her
theoretical approach and advanced skills in writing academic publications was useful
support to my work.

My academic supervisors, Professor Casper Lassenius from the Helsinki University
of Technology, and Professor Benoit Huet from the Institute Eurecom, gave their
valuable instructions through my Master’s Thesis.

John Novotnack contributed to the repository project by designing example BPEL
processes. While finalizing the report I was fortunate to have his support as a native
English speaker. Michael Wahler instructed me with his Object Constraint Language
knowledge, among other support.

In addition, I would like to thank the other BPIA project members, Rainer Hauser,
Shane Sendall and Jochen Kuester for providing me a fruitful environment for
developing ideas.

I want to thank the researchers in the CHAMPS partner projects, especially Biplav
Srivastava, Alexander Keller, Aaron Brown and Joseph Hellerstein, for the co-operation
on three continents.

I express my deep gratitude to Maija, Jaakko and Rita for always being there for me
no matter what has been going-on.

All my friends around the world, especially in Finland and Switzerland, have kept
my free-time interesting and thus, my working motivation high. In addition, Johan
Roman provided me his help as a native French speaker.

Last but definitely not least, I am grateful to my loving parents, who have supported
me on my path all the way to the academic studies.

 6

Table of Contents

Abstract of the Master’s Thesis... 2

Diplomityön tiivistelmä .. 3

Résumé de Thèse... 4

Acknowledgements ... 5

Table of Contents.. 6

Abbreviations.. 9

1 Introduction .. 10
1.1 Motivation .. 10

1.2 Goal .. 11

1.3 Scope .. 12

1.4 Structure of the Thesis.. 12

2 Requirements for a BPEL Repository .. 13
2.1 Functional Requirements.. 13

2.1.1 BPEL File Support ... 13
2.1.2 Support of Related Standard File Types... 15

2.1.2.1 WSDL Public Interface Files.. 15
2.1.2.2 XSD Message Type Files ... 16

2.1.3 Support of Arbitrary XML Metadata Files... 16
2.1.3.1 WS-Policy Metadata Files .. 16
2.1.3.2 Multiple Sources for Creating Repository XML Schemas................. 16

2.1.4 Data Persistence.. 16
2.1.5 Querying Capabilities ... 17
2.1.6 Graphical User Interface... 17

2.2 Non-Functional Requirements.. 17

2.3 Usage Scenario – Change Management with Planning and Scheduling 18
2.3.1 Project Specific XML Metadata ... 19

3 State of the Art.. 20
3.1 Generic Data Storages .. 20

3.2 XML File Support .. 21

3.3 Links amongst XML Documents ... 21

3.4 Querying Capabilities ... 21

3.5 Loading a BPEL File as an Object ... 22

4 Repository Design ... 23
4.1 Implementation as an Eclipse Plug-in .. 23

4.1.1 Implementation Support Provided by the Eclipse Platform 23

4.2 Architecture .. 24
4.2.1 Repository API Plug-in .. 25

4.2.1.1 Repository Logics Component ... 25

 7

4.2.1.2 Query Engine Adapter Component .. 25
4.2.1.3 Data Handler Component ... 26

4.2.2 User Interface Plug-in... 27
4.2.2.1 Graphical User Interface Component ... 27
4.2.2.2 Query Wizard and Result View Component 28

4.2.3 External Software Using the API Services... 29

4.3 Data Structure ... 30
4.3.1 Tree-Structured Organization Hierarchy.. 30
4.3.2 Descriptor File for each Organization .. 31

4.3.2.1 Example Contents of the Descriptor File ... 32
4.3.2.2 Automatic Generation of the Descriptor Files.................................... 32

4.4 Data Persistence.. 33
4.4.1 Eclipse Modeling Framework .. 33
4.4.2 Extensibility to Service Data Objects... 34

4.5 Query Mechanism .. 36
4.5.1 Query Parameters ... 36
4.5.2 Query Result Table... 38
4.5.3 Querying Algorithm ... 39
4.5.4 Query Performance Optimization Approaches 40

4.5.4.1 Minimizing the Number of Loaded Files ... 40
4.5.4.2 Minimizing Memory Requirements Using Iteration 41
4.5.4.3 References to the Organizations and Files in Hashtables................... 41

5 Repository Performance Measurements .. 42
5.1 Profiling Environment .. 42

5.1.1 Repository Contents Used in the Performance Tests 43

5.2 Repository Start-Up Performance Test Cases .. 43
5.2.1 Repository Start-Up Time as a Function of the Repository Size 44
5.2.2 Repository Start-Up Time with Different Repository Contents............. 46
5.2.3 Repository Start-Up Memory Usage .. 47

5.3 Querying Performance Test Cases ... 49
5.3.1 Scalability of the Querying Mechanism ... 50

5.3.1.1 Results of the Query Processing Time Tests 52
5.3.1.2 Results of the Main Memory Usage Tests.. 54

5.3.2 Scalability of the Querying Mechanism with Fixed Scope 56
5.3.3 Query Performance Depending on the Result Types 59

6 Qualitative Analysis of the Repository Design... 63
6.1 Comparison to Other Repositories ... 63

6.1.1 Object Representation of the Data.. 63
6.1.2 Support of Object-Oriented Querying .. 64
6.1.3 Performance of the Querying Mechanism.. 65
6.1.4 Links amongst the XML Documents ... 65
6.1.5 Summary of the Repository Comparison ... 66

6.2 Querying Capabilities ... 66

6.3 Extensibility.. 67

7 Synthesis of the Repository Work... 69

 8

7.1 Object-Oriented Querying Capabilities .. 69

7.2 General Analysis of the Repository Performance .. 70

7.3 Suitability to the Intended Purpose... 71

7.4 Future Work.. 72

8 Conclusions ... 74

References.. 76

Appendix I Dictionary of the Repository Terms.. 80

Appendix II Example WSDL File... 82

Appendix III UML Diagrams of the Repository API ... 84

 9

Abbreviations

API Application Program Interface

BPIA Business Process Integration and Automation project

BPEL Business Process Execution Language for Web Services (BPEL4WS)
[ACD+03]

CHAMPS Change Management with Planning and Scheduling project [KB04],
[KHW+04]

CPU Central Processing Unit

CVS Concurrent Versions System [Ced04]

DB2 IBM DB2 Universal Database [Ibm04]

DOM Document Object Model [HHW04], [W3c04]

EMF Eclipse Modeling Framework [BSM+03], [Ecl04b]

GUI Graphical User Interface

HUT Helsinki University of Technology

IBM International Business Machines Corporation

MDA Model Driven Architecture

MOF Meta-Object Facility [Omg03c]

OASIS Organization for the Advancement of Structured Information Standards

OCL Object Constraint Language [WK03]

OMG Object Management Group, Inc.

QVT MOF 2.0 Query / Views / Transformations [Omg02]

SDO Service Data Objects [IB04]

SQL Structured Query Language

SWT Standard Widget Toolkit [CR04]

UML Unified Modeling Language [Omg03a]

URI Uniform Resource Identifier [BFI+98], [Ecl04b]

XMI XML Metadata Interchange [Omg03b]

XML Extensible Markup Language [BPS+04]

XQuery XML Query Language [BCF+04]

XPath XML Path Language [BBC+04b]

XSD XML Schema definition language [TBM+01]

WSDL Web Service Definition Language [CCM+01]

 10

1 Introduction

This Master’s Thesis is a part of the Business Process Integration and Automation
(BPIA) project at the IBM Zurich Research Laboratory. The project explores the ability
of high-level business process models to be transformed into executable applications,
such as Web services. There have been a number of XML notations for executable
business processes designed by individual software companies including IBM (WSFL
[Ley01]) and Microsoft (XLANG [Tha01]). There is on-going work towards a standard
for a language for executable business processes, which is under consideration by the
Organization for the Advancement of Structured Information Standards (OASIS). At the
moment of writing, version 1.1 of the Business Process Execution Language for Web
Services (BPEL4WS, or BPEL for short) [ACD+03] is anticipated to be accepted in the
near future. It has already become a defacto standard for Web service composition
[MSS+04].

The purpose of my internship is to build a repository for a collection of BPEL
processes. The repository supports the retrieval of the BPEL files and provides a
powerful querying mechanism to find a process with searched properties or metadata.

1.1 Motivation

Despite many on-going research and development projects around the BPEL
specification, there is a rather limited set of publicly available BPEL files. A file
collection would provide example processes while building software or formulating
theory related to the BPEL specification. Thus, there is an interest to have a collection
of BPEL files.

As BPEL uses an XML notation, it does not provide very convenient access to the
object model for object-oriented programming languages such as Java. In addition to the
XML notation, it would be efficient to provide an object model of the BPEL schema for
software that handles BPEL files as Java objects. This would allow a developer to use
the object model directly as a basis of the application, instead of building a separate

 11

mechanism for each application to convert XML files to objects. A repository where
BPEL files are stored could be a reasonable choice to offer this functionality.

As a part of the Eclipse open-source project [Ecl04a], the Eclipse Modeling
Framework (EMF) [Ecl04b] provides data persistence mechanism for objects, which
can be stored as XML files. In the BPIA project, we are interested in evaluating the
ability of EMF to support our design goals.

Since we have an interest to collect a large number of files in the BPEL repository,
there should be an efficient way to find these files, search information from them, or
retrieve a file with some wished data structure or data. There are specialized languages
such as XPath [BBC+04b] and XQuery [BCF+04] for querying XML data. A
disadvantage of these languages is that the structure of the XML Schema (XSD)
[TBM+01] must be known to formulate the queries. Since we are interested in offering
an object model for XML files, we are interested in providing a query mechanism on
this object model. It is a more intuitive model for humans to use as a basis of queries
than any XML based document syntax, such as XSD. This will provide an advantage for
application programmers, who can use the services of the repository to build their
software using only the object model and ignoring the corresponding XML syntax.

There is a standard language called Object Constraint Language (OCL) [WK03],
which is a part of the broadly used Unified Modeling Language (UML). We were
interested to explore how OCL suits for our querying purposes.

BPEL files are often related to other XML files, which provide metadata or a public
interface for a BPEL file. However, the mechanism to link these files and their locations
is not provided by the standard XML Schemas. Thus, it is necessary to provide storage
for this information, if a large collection of files is stored in the same repository.

There is an IBM research project, which is looking for a BPEL repository
implementation to be used under its software components. The requirements from the
Change Management with Planning and Scheduling (CHAMPS) [KB04], [KHW+04]
project provide an example use case of how a BPEL repository can be used in the near
future.

1.2 Goal

The goal of my Master’s Thesis is to build an open-source BPEL repository. It is
targeted to support research projects, which collect, harvest, and exchange BPEL files.
In addition to BPEL files it supports other XML files, which are related to BPEL files.
It also provides a way to link these files together.

The repository provides an Application Programming Interface (API) for other
software to be used as a basis of other solutions. In addition, a graphical user interface
(GUI) is implemented for demonstration purposes.

The repository API is generic such that it can be used for multiple purposes. It is
designed in an extensible way, so if some necessary functionality is missing from it,
open source code can be easily extended from other projects using the repository as a
basis of their applications.

 12

The API provides an object model of the BPEL schema and other related files, which
can be used by other programs. Retrieving and searching files and their contents from
the repository are possible by querying the object model.

1.3 Scope

The scope of my Master’s Thesis is to build a BPEL specific repository. It is not
meant to be a generic XML database, even though it can support multiple XML file
types. Rather it is planned from the BPEL specification point of view, and how other
file types relate to BPEL files.

The BPEL repository provides an API for querying and retrieving XML files from
the repository. The underlying file storage mechanism, such as a file system or a
database is not designed by this project, but the storage system is used under the
repository API.

The BPEL repository API provides a querying mechanism for the files, but the query
engine itself may be designed by other projects, if a suitable query engine is available.

The goal of the project is rather to build a research prototype of a BPEL repository to
be a publicly available example than to build a commercial quality product to be sold by
IBM.

1.4 Structure of the Thesis

This Introduction chapter provides the motivations behind the BPEL repository
work. The next chapter “2 Requirements for a BPEL Repository” goes into the details
for the requirements for the BPEL repository by explaining both the functional and non-
functional requirements for the solution. In chapter “3 State of the Art”, the existing
alternatives for the BPEL repository are examined.

The chapter “4 Repository Design” presents the detailed design for the repository. Its
performance is profiled and analyzed in chapter “5 Repository Performance
Measurements”. The next chapter “6 Qualitative Analysis of the Repository Design”
discusses the design decisions behind the repository architecture and compares it to
other alternatives. The analysis chapters are followed by chapter “7 Synthesis of the
Repository Work”, which discusses the results from the quantitative and the qualitative
analyses. It also takes an outlook on future work. Finally, the last chapter “8
Conclusions” gives an overview of the explored topics. In addition there is a short
dictionary of repository terms in Appendix I.

 13

2 Requirements for a BPEL Repository

The requirements for the BPEL repository are divided into functional and non-
functional requirements. First, the functional requirements are explained. Then, the non-
functional requirements for the repository are introduced. Finally, the CHAMPS partner
project is presented in the last section 2.3.

2.1 Functional Requirements

The repository is designed for BPEL files and other files related to them. It is not
meant to be a generic multipurpose XML repository, but it is built to support BPEL-
centric environments.

2.1.1 BPEL File Support

The Business Process Execution Language for Web Services defines a notation for a
set of communicating executable business processes. It can also be used to describe
abstract processes. [ACD+03]

As an example of a simple BPEL document, a Hello World process [Nov04] is
illustrated on the next page. A BPEL document consists typically of four different parts.
In the first part, the attributes of the process XML element declare the namespaces from
the referred XML files. The second part consisting of the partnerLinks element refers to
the public interface of the BPEL process. The public interface is stored in a separate file
using the Web Services Definition Language (WSDL).

The variables element is the third part of a BPEL file. It introduces the message
types that are exchanged between this BPEL process and its partner processes. Finally,
the fourth part describes the orchestration-logic as a process activity tree. In this
example, a sequence is the root element of the activity tree. It declares that the child
activities are processed sequentially. The activity for parallel computing is a flow. Other

 14

possible activities are receive, reply, invoke, assign, throw, terminate, wait, empty,
switch, while, pick, scope, and compensate. [ACD+03]

The Hello World process takes a name encoded as a string from a partner process as
an attribute and concatenates it with the string Hello. The concatenated string is returned
as an output. The WSDL public interface for this process is presented in Appendix II.

<?xml version="1.0"?>
<!—- SyncHelloWorld BPEL Process -->
<!-- ~~ ~~~~~~~~~~~~~~~~~
 NAMESPACE DECLARATIONS (Part 1)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ --> 
<process name =" SyncHelloWorld "   
   targetNamespace =" http://zurich.ibm.com/bpia/bpel "   
   suppressJoinFailure =" yes "   
   xmlns:tns =" http://zurich.ibm.com/bpia/bpel "   
   xmlns =" http://schemas.xmlsoap.org/ws/2003/03/business-proc ess/ "   
   xmlns:bpelx =" http://schemas.collaxa.com/bpel/extension ">  
  <!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 
     PARTNERLINKS (Part 2) 
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ --> 
 <partnerLinks >
 <partnerLink name =" client " partnerLinkType =" tns:SyncHelloWorld "
 myRole =" SyncHelloWorldProvider "/>
 </ partnerLinks >
 <!-- ~~ ~~~~~~~~~~~~~~~~~
 VARIABLES (Part 3)
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ --> 
  <variables > 
    <variable name =" input "   
       messageType =" tns:SyncHelloWorldRequestMessage "/>  
    <variable name =" output "   
       messageType =" tns:SyncHelloWorldResponseMessage "/>  
  </ variables > 
  <!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 
     ORCHESTRATION LOGIC (Part 4) 
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ --> 
 <sequence name =" main ">
 <!-- ** ****************-->
 <!-- Receive a name from the user, append "Hell o " to the front-->
 <!-- of the string, and return the final result to the user. -->
 <!-- ** ****************-->
 <receive name =" receiveInput " partnerLink =" client "
 portType =" tns:SyncHelloWorld " operation =" process "
 variable =" input " createInstance =" yes "/>
 <assign name =" createReturnStr ">
 <copy >
 <from expression =" concat('Hello ', bpws:getVariableData(
 'input', 'payload', '/SyncHelloWorldReq uest/name')) "/>
 <to variable =" output " part =" payload "
 query =" /tns:SyncHelloWorldResponse/tns:helloString "/>
 </ copy >
 </ assign >
 <reply name =" replyOutput " partnerLink =" client "
 portType =" tns:SyncHelloWorld " operation =" process "
 variable =" output "/>
 </ sequence >
</ process >

 15

2.1.2 Support of Related Standard File Types

A BPEL file describes only the operational logic of a business process, but there is
additional information stored separately in other files. The repository must support these
file types, because they are needed when a BPEL process is executed, or when a BPEL
process is searched based on metadata related to the process. Figure 2.1 illustrates the
different file types that can be related to a BPEL file.

Metadata

XML(s)

Partner links

WSDL(s)

Public interface

WSDL

Message types

XSD(s)

0..1

0..*

0..*

0..*

Business process

BPEL

Figure 2.1: A BPEL file is related to its WSDL public interface, the public

interfaces of its partner processes, the message types exchanged by the processes

and metadata related to the process. Message types are also referred from WSDL

files and they can be integrated to the WSDL files.

2.1.2.1 WSDL Public Interface Files

The Web Services Definition Language (WSDL) [CCM+01] defines a standard
notation for Web service interfaces. Typically, this file is used to provide a public
interface for a BPEL process.

The BPEL and WSDL files do not contain links to the locations where other related
files are stored. However, when a BPEL file is executed as a process it needs to be
linked to other files, such as its public interface defined as a WSDL file. In order to
enable copying a file from one location to another without changing its contents, these
links cannot be contained in the files. Nevertheless, applications that make use of these
files are dependent on linkages. Therefore, it is helpful for application development that
the repository, which provides access to the XML files, takes care of the linkages. The
purpose of keeping the file contents independent of location is to make it possible to
execute them from different locations.

An example WSDL file is presented in Appendix II. It is the public interface for the
Hello World BPEL process. A message type schema is included in the WSDL file.

 16

2.1.2.2 XSD Message Type Files

The XML Schema (XSD) [TBM+01] files are used to describe the types used by the
messages exchanged amongst Web services. These schemas are often included in a
WSDL file, such as in Appendix II.

2.1.3 Support of Arbitrary XML Metadata Files

It should be possible to attach arbitrary XML files as metadata to a BPEL file.
Keeping the metadata in independent files of a BPEL file allows relating arbitrary
metadata to BPEL files without extending the standard BPEL XML schema. The
metadata is not added unstructured into a BPEL file, which would make reading the
metadata more difficult. Independent metadata files allow BPEL files to be deployed in
multiple environments, where metadata is separated from the process description.

2.1.3.1 WS-Policy Metadata Files

One example of metadata related to BPEL is WS-Policy [BBC+04a], [BCH+03], a
standard for expressing metadata related to Web services. However, in addition or
instead of using WS-Policy files, it is possible to link other XML files to a BPEL file in
the repository.

2.1.3.2 Multiple Sources for Creating Repository XML Schemas

In addition to using XML metadata files with standard XML schemas, it is possible
to add links from a BPEL file to arbitrary metadata files. These files can be defined by
their XML schemas, but also other ways of relating metadata to a BPEL file are possible
in order to support multi-purpose use of the repository.

Often applications themselves contain information in their data structure, which must
be stored in files, while the application is not running. This information has its form of
presentation in the object model of the application. It would be convenient to allow
storing this data directly from objects to an XML file. Therefore, the repository should
enable creating XML metadata files, which get their structure from the class models of
the Java objects. Ideally, this structure will be created either from the classes themselves
or their UML models.

2.1.4 Data Persistence

The repository offers a data persistence functionality for the software using its
services. The repository API provides an object model for BPEL files and other related
files. Any client software could directly use these object models as their data structure
and they do not have to know how these objects are stored in XML files. The repository
hides the details behind the data persistence on the objects and thus, the client software
does not to be concerned with them.

There are several kinds of data storage alternatives, such as a file system and
different kinds of database systems. These systems have diverse advantages over each
other. For example, a file system is an easy solution for a file storage, while databases

 17

often offer more efficient and scalable querying mechanism. Ideally, the repository
could use any of these, so a suitable system could be selected depending on the purpose
of use. The repository allows any method of data storage and offers a common interface
to the client software, which separates them from the data storage details. The
repository architecture should be designed in a way that the data storage can be
exchanged.

2.1.5 Querying Capabilities

The repository contents can be queried based on their object model representation.
The purpose of this requirement is to allow the client software to handle the BPEL and
other XML file contents as Java objects, instead of requiring the developers to be aware
of the syntax, which is used to store the Java objects as XML. Handling the objects is
also a more natural approach to data manipulation. It supports an easy way of
navigation by utilizing associations when navigating through elements of the data.

It should be possible to reduce the number of files used in a search by storing the
files in a structured way. Reducing the scope of the query also decreases the number of
files used in a search by applying the query only to the relevant set of data.

It is possible to retrieve a file, which is selected based on the information that is
stored in another file related to the file. For example, a BPEL file can be retrieved by
querying metadata linked to the BPEL file.

2.1.6 Graphical User Interface

Even though the repository API is the main contribution of this project, a graphical
user interface (GUI) can be implemented in order to demonstrate how the repository
functionality works. This helps other software developers to integrate the BPEL
repository to their software.

Providing a graphical user interface to the repository enables human-users to
manipulate BPEL file collections. This further increases the advantages of using the
BPEL repository in other research projects. It also serves as a starting point for
applications extending the BPEL repository.

2.2 Non-Functional Requirements

The repository should be designed to be scalable for large numbers of XML files. It
is necessary to know the repository scaling behavior.

The repository is a generic solution for storing and retrieving BPEL files. This
enables it to be used for multiple purposes. It must be extensible in order to be adopted
by client software for required purposes. In order to make it possible to extend the
repository for different purposes, its code will be released as open-source, allowing any
developer to examine the repository design and modify it based on their requirements.

The repository uses common standards or other widely used solutions, in order to
provide support for the standards and to encourage using them. For example, there are
several proprietary extensions to the BPEL specification, but the repository is based on

 18

the standard and does not force anyone to use unwanted proprietary extensions of the
BPEL specification. Of course, it is an advantage if the BPEL extensions could be
handled as well with the repository API, but it is not the main goal of the project.
However, since the repository is to be extensible, developers wishing for using the
repository with any standard extensions could implement required changes to the
design.

2.3 Usage Scenario – Change Management with Planning and

Scheduling

There is an IBM research project for Change Management with Planning and
Scheduling (CHAMPS) [KB04], [KHW+04]. The BPEL repository API is a part of the
research prototype for the change management solution for an IT system illustrated in
Figure 2.2. Although developed with this application in mind, the repository is built as a
general solution, and not only fulfills the requirements from the partner project.

IT system

Planning and

Scheduling

Task Graph

Builder

BPEL Engine

Tivoli Orchestrator

Request for change

= query

Query-based

retrieval

Execution and

monitoring (automatic)

Change Management

with

Planning and Scheduling

project (CHAMPS)

Automatic

software update

System Administrator

Change plan proposal

(semi-automatic)

Approved

BPEL

Repository

Change

Management Plans

(BPEL+XML)

Figure 2.2: The Change Management with Planning and Scheduling (CHAMPS)

system. Change management plans and metadata are stored into the BPEL

repository. BPEL files are retrieved from the repository based on queries to the file

contents.

The BPEL repository is used to store BPEL files, which contain the workflows of the
change management plans. In addition, metadata associated with the plans is stored in

 19

the repository. The XML file content querying mechanism is an important contribution
of the repository to this usage scenario.

Based on the system administrator’s request for a change, the query retrieves related
plans from the BPEL repository. The BPEL file metadata is used as a search criteria.
The Task Graph Builder component creates a task graph based on the retrieved plans.
The Planning and Scheduling component builds a change plan proposal from the task
graph.

There are two ways to deploy the change plan. In the semi-automatic way, the
system administrator needs to approve the change plan before it is executed. In the other
option, the plan is deployed automatically after it is completed. The BPEL Engine
possibly used in the Tivoli Orchestrator could execute the BPEL processes in the order
of the change plan. These BPEL processes update the IT system.

2.3.1 Project Specific XML Metadata

In this project, a BPEL file is related to project specific XML metadata, which is
designed as a UML class diagram represented in Figure 2.3. This is an example case of
the need to create a structure for XML files from a Java class model.

Figure 2.3: The UML class diagram of the planner metadata for the CHAMPS

project.

The planner metadata annotations are similar to the essential language elements of
the Planning Domain Definition Language (PDDL) [EH04]. The metadata contains a
number of attributes including preconditions and postconditions of the BPEL process.

 20

3 State of the Art

There are no publicly available BPEL repositories that could be compared to the
approach in this project. There are only generic XML file storages available, where
BPEL files can be stored. Applications that use BPEL files as objects do not have a
BPEL repository underneath as a separate layer, but instead each application takes care
of the data persistence individually.

The solution built in this project is compared to a number of these other more generic
storage systems, which do not support all the required BPEL specific functionalities.
These storages include:

o File systems (e.g. in Windows XP)

o Version control systems (e.g. CVS [Ced04])

o XML databases (e.g. Natix [FHK+02])

o Relational databases (e.g. DB2 [Ibm04])

The example implementations of the storage types are shown above. These choices
are used in the comparisons if not otherwise stated.

3.1 Generic Data Storages

All the above introduced data storages are built for generic use. They support storing
various kinds of data. File systems, version control systems and XML databases are
built for keeping data organized in files. XML databases provide extra services for
handling XML files, unlike normal file systems and version control systems, which do
not have specific services for XML files. None of these handle BPEL or WSDL files
any differently than other XML files. They are built for storing data rather than
providing special services for specific types of files.

Relational databases are built for efficient data storage as their performance in
querying and retrieving information outperforms the others. However, they require a

 21

different kind of data organization using a relational representation with tuples. Data is
organized in tables, which can have indexes to make the queries more efficient. Thus,
they do not have as such native XML file support.

3.2 XML File Support

There are three conceptually different methods for storing XML data: unstructured,
shredded and structured [McC04]. The unstructured approach saves an entire XML
document as a single unit, an approach used by file systems and version control
systems. Relational databases support this approach by allowing the XML document to
be stored as a single CLOB data type (Character Large Object). Querying the
unstructured XML document is inefficient, as the whole document must be parsed for
the query. The structure of the XML document cannot be used to load only the parts of
the document relevant to the query.

The conventional approach to enable efficient queries in relational databases of XML
data is to shred it into the relational tables. However, with this approach the hierarchical
relationships of the XML document are lost. For this reason exporting a file as it was
imported is not possible.

Some relational databases have recently started to provide a structured XML storage,
also known as native XML support. The structured approach allows efficient queries
and preserves the hierarchy of the data. Commercial relational databases, such as IBM
DB2 8.1, Oracle 10g, and Sybase ASE 12.5.1, support structured XML storage.
However, at the moment only Oracle supports efficient content query with XQuery to
XML data.

XML databases, such as Natix from the University of Mannheim, are built to provide
structured XML storage. Similarly to Oracle, Natix supports XQuery. Since Oracle 10g
is a commercial product, Natix is more suitable as a basis of open-source research
prototypes.

3.3 Links amongst XML Documents

None of the compared data storages provide links directly to the locations where
related files are stored, but the links can be implemented on top of them. Each
application using these data storages implements this functionality itself and most
probably differently than in other applications.

An example of this approach is in the Oracle-Collaxa BPEL Designer [Ora04], where
linkage information is stored in a separate file and the application is responsible for
keeping this data up-to-date. However, these linkages belong to the basic functionalities
provided by the BPEL repository.

3.4 Querying Capabilities

In the context of BPEL files, it is important to have an efficient querying mechanism
to search file content. File systems and version control systems do not provide

 22

sophisticated querying mechanisms. Instead, file search functionality can be used on the
data stored in these systems. This makes it possible to search for a file containing a
substring, but any querying mechanisms taking advantage of the structured content of
XML files may significantly outperform any file search. In addition, the simple
substring search is prone to errors, since the user is most often interested in finding the
string in a specific context rather than anywhere in the file. Therefore, a file search can
lead to misinterpretations of the data.

XML repositories provide native querying of XML data. Two example query
languages XPath [BBC+04b] and XQuery [BCF+04] have the capability of taking
advantage of XML document structure. Therefore, XML repositories have efficient
querying services for XML documents. Indexing mechanisms over the contents of the
documents provide further improvements to querying performance.

Relational databases are specialized in representing data in a way that is efficient for
storing, retrieving, and querying data. For example, indexes are often more
straightforward to build supporting a broad set of queries than in native XML
repositories. Indexes are even better suited for tuples than the unstructured XML
document representation. However, storing and indexing structured XML content is
more difficult with relational databases, because they are not especially designed for
this purpose. Therefore, only Oracle 10g is the only relational database supporting
XQuery, which is needed for sophisticated XML queries. For example, it is not possible
to combine XML data and produce XML as a result with a relational query language
alone [McC04].

3.5 Loading a BPEL File as an Object

 The examined data storage systems are not BPEL-specific, so they do not provide a
mechanism for converting XML files to objects in some object-oriented programming
language, such as Java. As a BPEL object model is not available in these systems, they
cannot take care of loading a BPEL file to a BPEL object. For this approach, a
repository provides a way to generate an object class model from XML schemas and a
default implementation for the generated model.

None of the compared repositories provides an object representation for XML files,
so applications which use these repositories implement the functionality themselves if it
is necessary. A BPEL repository must provide this functionality, so each application
will not have to take care of data serialization individually. In fact, this allows client
software to use only the object model. Then the applications do not need to take into
consideration the XML representation of the files at all.

 23

4 Repository Design

The repository is designed and implemented as a part of my Master’s Thesis. The
following sections describe the details of the design decisions and the repository
implementation.

4.1 Implementation as an Eclipse Plug-in

In order to make the repository easy to be used as a component in other software, the
implementation is designed to be an Eclipse plug-in. Eclipse is an open-source platform
for developing software [Ecl04a]. It provides a powerful way to integrate software
components. Each component is a plug-in to the platform. Other software can be
integrated into existing software components by extending these plug-ins with a new
plug-in. Each plug-in must declare other plug-ins it requires, and the extension points it
provides for other plug-ins.

The power of the Eclipse architecture is that it can be extended with arbitrary new
plug-ins. Eclipse plug-ins are loaded in memory only when they are needed, so the
starting time and memory requirements can be minimized. It is still possible to provide
a large range of functionality in the same application, and different companies or
organizations can implement this functionality independently of each other.

The Eclipse platform provides a powerful support for extensibility, which is one of
the main requirements for the repository API. There is a large number of on-going
development projects based on the Eclipse platform, which makes it more likely that the
repository API will be used as a basis of some other software in the future.

4.1.1 Implementation Support Provided by the Eclipse Platform

In addition to the component integration support that the Eclipse platform supports, it
has other powerful features, which increase the interest to use it as the underlying
software platform.

 24

The Eclipse project provides the Standard Widget Toolkit (SWT) and JFace libraries
for building graphical user interfaces. The libraries provide widgets that are efficient to
execute and easy to implement. The repository user interface is implemented on top of
the basis that the Eclipse workbench provides. The usability of the application increases,
since the look and feel follows the guidelines for any Eclipse application. This further
improves the extensibility and usage of the repository as a basis of other software.
[GB03]

The Eclipse Modeling Framework (EMF) provides data persistence services to other
software. It helps to manage documents as object resources. The resources can be stored
in a file system. This topic is further discussed in section 4.4.

4.2 Architecture

The repository implementation is divided into several components, which provide
services for each other and hide the details of the solution. This component based
approach increases the manageability of the software, since each component
concentrates on its specific well-defined functionality. This approach follows the
generally accepted design patterns of information hiding and encapsulation [GHJ+95].
The component structure is presented in Figure 4.1.

Eclipse

Repository API

Data

Handler

Query Engine

Adapter

Repository Logics

Graphical User Interface

BPEL Repository

External

software

External

query engine

Repository UI

Query Wizard

and Result View

EMF/XSD/(SDO)SWT/JFace

1)

1)
1)

1)

File

system

Figure 4.1: The BPEL repository is divided into two Eclipse plug-ins: the

repository API and the repository user interface. The plug-ins are further divided

into components.
1)

 Replaceable components.

 25

The repository implementation is divided into two Eclipse plug-ins. This separation
is based on the common recommendation to separate the application logic from the user
interface. Thus, the repository API plug-in provides the repository business logic
functionality, which can be used by other applications or the user interface plug-in.

4.2.1 Repository API Plug-in

The repository API is further divided into three sub-components: repository logics,
data handler, and query engine adapter components. Each of them has own
responsibilities and provides a specific functionality.

4.2.1.1 Repository Logics Component

The repository logics component is responsible for providing the services as an API
for other applications, which are using the repository as a basis of their implementation.
The main services that it provides are:

o saving and loading data into the repository

o providing a query mechanism to the repository

However, it uses the services provided by the data handler component for loading
and saving data. Similarly, the query engine component is used to execute a query in a
loaded object. Nevertheless, in both cases only one file is handled at a time by the used
component and the repository logic component iterates over the whole search query
scope or the list of persisted files. It selects the repository files that are related to the
query.

The class structure of the repository logics component is presented in Figure 8.6 of
Appendix III.

4.2.1.2 Query Engine Adapter Component

The query engine adapter component provides an implementation for the query
engine interface in the repository logics. With this adapter component, an external query
engine can be plugged into the repository. The repository logics component uses a
generic interface, which can be implemented by multiple query engines. The query
interface is illustrated in Figure 8.3 of Appendix III.

As an example, two different object-oriented query engines are already plugged into
the repository by implementing a simple class, which adapts the public methods to
implement the query engine interface. The selection of the query engines is illustrated in
Figure 4.2.

The primary query engine for the public version of the repository is the OCL Tool
from the University of Kent. It is an open-source query engine that implements standard
OCL 2.0 and some OCL extensions its authors have decided to implement in it.

For IBM internal use the repository is using an object-oriented query engine that is
built at IBM. It is not publicly available and therefore not further discussed in this
public Master’s Thesis.

 26

In addition, a simple query engine has been implemented especially for the
repository in order to illustrate how easily a custom-made query engine can be plugged
into it. The simple query engine searches for a substring in the name attribute of the
EMF objects.

IBM internal
object query engine

Repository API

IBM internal versionIBM internal version

OCL Tool from
the University of Kent

Public versionPublic version

Simple Example
Query Engine

Interface Adapter Interface Adapter

Figure 4.2: Query engine options that are available for the BPEL repository. An

external query engine can be adapted to the repository query interface, or a query

engine may implement the interface directly.

The query engine interface follows the guidelines of the adapter [GHJ+95], low
coupling and indirection design patterns [Lar02]. It allows hiding unnecessary
complexity of query engines from the repository logics component as it is interested
only the couple of querying services, which are provided by implementing the interface.
This design enables a flexible selection of a suitable query engine for the needed
purpose. Different query engines can be plugged into the repository, even at runtime by
changing the used query engine to another. A reference to a selected query engine is
passed to the repository API before querying. At query time, the repository passes the
query parameters and the object to be queried through the query interface to the query
engine, which it has a reference to.

4.2.1.3 Data Handler Component

The data handler component is responsible for providing access to the underlying
persistent data storage system. It hides the selection of the data storage system from the
rest of the repository, so data storage system properties do not affect the upper layers of
the repository. This approach follows the low coupling and high cohesion design
patterns [Lar02].

The data handler takes care of providing access to the object model of the stored
files. Thus, it returns a Java object of the retrieved file to the clients using its services.
The implemented data handler interfaces are presented in Figure 8.4 of Appendix III.

 27

4.2.2 User Interface Plug-in

The repository user interface plug-in consists of two components. The graphical user
interface component is the basis of the plug-in. The other component adds query engine
specific functionality to the general user interface.

4.2.2.1 Graphical User Interface Component

The graphical user interface component provides the general user interface illustrated
in Figure 4.3. It shows the BPEL Repository perspective in the Eclipse workbench. It
contains the Organization Explorer view showing the organization tree in the repository
and the Organization Contents view displaying the files inside the selected organization.

Figure 4.3: The BPEL repository user interface is integrated in the Eclipse

workbench.

The user interface is integrated in the Eclipse workbench. It uses the support
provided by the Eclipse user interface libraries Standard Widget Toolkit and JFace.
Thus, it is seamlessly a part of the Eclipse workbench. This approach has the advantage
in usability, since it follows the user interface guidelines for Eclipse having consistent
look-and-feel with other Eclipse plug-ins. In addition, it eases extensibility of the

 28

repository as any other Eclipse plug-in can be seamlessly integrated in the same
workbench.

The implementation of the BPEL user interface follows the model-view separation
principle [Lar02]. The Eclipse API provides the model part, while the view part is
separated in the user interface plug-in.

4.2.2.2 Query Wizard and Result View Component

The BPEL user interface is extended with a component implementing a query wizard
and a query result view. These widgets are query engine dependent as they collect the
necessary parameters for the repository queries. The query wizard determines which
query engine is used to execute the query. When a query is about to be executed, it
passes a reference of the query engine to the repository logics component.

The query wizard and OCL Query Result view in Figure 4.4 are implemented in the
Query Wizard and Result View component.

Figure 4.4: The screen shot shows the OCL query wizard and OCL Query Results

view that extend the graphical user interface component of the repository.

 29

Adding new wizards and views to the Eclipse workbench is straightforward with the
support that the Eclipse platform provides. Providing a wizard for each query engine
allows the wizard to collect query engine specific parameters. It also makes it possible
to choose an implementation of the user interface, which is most suitable for each query
engine. The query engine extends the provided extension points in the Eclipse
workbench and the graphical user interface component.

4.2.3 External Software Using the API Services

The BPEL repository is designed primarily to be a service provider for other
software. Therefore, the repository API has been designed to implement the services for
any external software. The dependencies of the components are presented in Figure 4.5
below.

Eclipse

Repository API

Data

Handler

Query Engine

Adapter

Repository Logics

External software

External

query engine

EMF/XSD/(SDO)

1)
1)

1)

Figure 4.5: External software using the repository API plug-in.
1)

 Replaceable

components.

The repository logics component provides the generic API functionalities for
external software, for example, querying over specified scope and file retrieval from the
repository. In addition, external software must specify which query engine it is using.
The external software selects the respective query engine adapter and passes a reference
to the repository logics component before executing a query. The query engine can be
changed between the queries by passing a reference to another query engine.

 30

4.3 Data Structure

Typical contents of the repository are BPEL files and other related XML files. Thus,
a straightforward way has been selected to group these files together. Each BPEL file
has its own group, where it and the other files related to it are gathered together. This
group is called an organization. It helps to find related files and organize files in a
hierarchy.

4.3.1 Tree-Structured Organization Hierarchy

Each organization may have suborganizations and all organizations together form a
tree-structured hierarchy. Each organization can contain files. This design principle is
analogous to a file system in which folders, subfolders, and files are located. An
example of the organization tree is illustrated in Figure 4.6.

Figure 4.6: An example of the organization tree.

However, a direct mapping to a file system is not used as a basis of the repository
data structure. Different operating systems have different types of file systems and the
direct mapping would make the data structure dependent on absolute Uniform Resource
Identifiers (URI) [BFI+98]. Instead, inside the repository relative URIs to the repository
contents root location are used. This root can be a folder in the local file system or in
another file system in the same Local Area Network (LAN).

o An example URI referring to a local file system folder:
file:/C:/Repository-Contents

o An example URI referring to a folder in the same intranet:
file://Computer-Name/Share-Name/Repository-Contents

In general, URI can be used to identify the Eclipse workbench workspace folder in a
file system or a directory on the Internet. Alternatively, URIs can refer to identifiers in a

 31

database system. This generic way of expressing file locations makes it possible that
many different kinds of file storages can be used as a data storage mechanism in the
repository. The BPEL repository can be extended to use these different data storages by
implementing a data handler component supporting them.

4.3.2 Descriptor File for each Organization

Each organization has a descriptor XML file (descriptor.xml), which specifies how
the various XML files are related to a BPEL file in the organization folder.

Metadata

XML(s)

Partner links

WSDL(s)

Public interface

WSDL

Message types

XSD(s)

Organization

0..1

0..*

0..*

0..*

0..1Business process

BPEL
Descriptor

XML

Figure 4.7: Descriptor file links other files in the same organization to the BPEL

file and specifies their roles.

For the organization, a descriptor file specifies:

o Folder Name – identifier of the organization in its parent organization

o Folder URI – identifier relative to the repository root forming a tree structured
hierarchy

For each file in the organization the descriptor file entry specifies:

o File Name – identifier of the file in its organization

o File Type – file type for the file. There are five different options for the file type:
BPEL, WSDL, XSD, metadata, and descriptor. It is used together with the file
content type identifier to determine the EMF model used in the serialization
processes of the file. The pair maps an EMF model to an XML Schema.

o File Content Type – identifier among the files in the same organization having
the same file type, but different roles and often different XML Schemas.

o URI – identifier relative to the repository root forming a tree structured
hierarchy.

 32

4.3.2.1 Example Contents of the Descriptor File

The XML document below is an example descriptor file. Repository-Contents URI is
the identifier for the root organization of this repository. The Repository-

Contents/John/FlightService organization is a grandchild node of the root organization.
It includes one BPEL file and a WSDL public interface for the process. In addition,
there is another WSDL public interface file of the partner processes and three different
kinds of XML metadata files. Their different roles are identified with content type
descriptions. The information of the descriptor file itself is also included.

<?xml version="1.0" encoding="ASCII"?>
<emf:EDescriptor xmlns:emf =" http://com/ibm/bpia/repository/emf "
 folderName =" FlightService "
 folderURI =" Repository-Contents/John/FlightService ">
 <process name =" FlightService.bpel "
 uri =" Repository-Contents/John/FlightService/FlightServic e.bpel "
 fileType =" bpel "/>
 <descriptor name =" descriptor.xml "
 uri =" Repository-Contents/John/FlightService/descriptor.x ml "
 fileType =" xml " contentType =" descriptor "/>
 <publicInterface name =" FlightService.wsdl "
 uri =" Repository-Contents/John/FlightService/FlightServic e.wsdl "
 fileType =" wsdl " contentType =" PublicInterface "/>
 <partnerLinks name =" TripHandlingGlobal.wsdl "
 uri =" Repository-Contents/John/ FlightService/TripHandlingGlobal .wsdl "
 fileType =" wsdl " contentType =" PartnerLinks "/>
 <metadata name =" bpel.xml "
 uri =" Repository-Contents/John/FlightService/bpel.xml "
 fileType =" metadata " contentType =" Collaxa-bpel "/>
 <metadata name =" build.xml "
 uri =" Repository-Contents/John/FlightService/build.xml "
 fileType =" metadata " contentType =" Collaxa-build "/>
 <metadata name =" PlannerMetaData.xml "
 uri =" Repository-Contents/John/FlightService/PlannerMetaD ata.xml "
 fileType =" metadata " contentType =" PlannerMetaData "/>
</ emf:EDescriptor >

4.3.2.2 Automatic Generation of the Descriptor Files

When a folder is opened for the first time as a BPEL repository root organization, the
descriptor files are created for the whole organization tree below it. This functionality
helps when importing an existing file collection into the repository.

The automatic descriptor file generator cannot fill in all the information
automatically. Content type identifiers must be added manually to the descriptor files.
For example, one WSDL file per organization is assumed to be a public interface for the
process. When an organization contains multiple WSDL files, the repository chooses
the first one in alphabetical order to be the public interface. This assumption can, of
course, be incorrect and would thus need to be corrected by hand.

The primary method to add new content to the repository, is importing files
individually with their descriptor data. This can be done from the user interface using
the import file wizard or programmatically using the repository API methods. The
automatic generation of the descriptor data is only an additional support feature.

 33

4.4 Data Persistence

The BPEL repository provides access to objects loaded from XML files. The reason
behind this is to enable other software using the BPEL repository API to access directly
the Java objects representing the files, instead of needing to convert them to objects
themselves. Thus, external client software does not need to be aware of the XML
representation of a BPEL process and other related schemas for XML files. Instead it
can fully concentrate on handling the Java objects. The BPEL repository maintains the
data persistence of these objects.

4.4.1 Eclipse Modeling Framework

The data persistence of the repository is handled using the Eclipse Modeling
Framework (EMF) [BSM+03], [Ecl04b]. It is an Eclipse plug-in especially designed to
save and load objects in XML Metadata Interchange (XMI) [BSM+03], [Omg03b] and
XML formats. The model language used to represent models in EMF is called Ecore.
Ecore is itself an EMF model, and thus it is its own metamodel. Ecore is comparable to
the Meta-Object Facility (MOF) model [Omg03c], as both the models define a subset of
UML for describing class modeling concepts [Ecl04b]. MOF is defined by the Object
Management Group (OMG).

EMF
Java

XML

UML
Rose

EMF
Java

ModelsModels InstancesInstances

UML
Rose

EMF
Ecore

XSD

Java

EMF

EMF EMF

Rose Rose

EMFEMF

Figure 4.8: Model transformations and data format conversions related to the

Eclipse Modeling Framework. The EMF Ecore model can be generated from

UML, Java or XML Schema. EMF Java code can be generated from an Ecore

model. EMF functionality for data persistence is added when the EMF Java code is

created. Therefore, the reverse-engineered UML model from EMF Java code has

more classes and methods than the original UML model. Using the EMF model

Java objects, their instances can be serialized into XML and deserialized from

XML.

 34

It is possible to automatically generate Java EMF model classes directly from Ecore
model. These classes have built-in support for EMF data persistence mechanism. Ecore
models can be generated automatically from several different sources. These sources
include Java code annotations for the classes, IBM Rational Rose UML models and
XML Schemas. Especially in the case of generating Ecore models from XML Schemas,
this approach is very convenient. The EMF objects serialized in XML files are
compliant with the XML Schema from which their Java EMF model was created. For
example, the Java classes generated from the XML Schema for BPEL are serialized as
valid BPEL files. This is very useful, when an application uses standard XSDs. It
produces XML files compliant to those XSDs. This functionality is very useful in the
BPEL repository, which needs to support the standard XML Schemas.

The Eclipse Modeling Framework is used to create object models for the BPEL,
WSDL and XML schemas. In addition, the BPEL metadata EMF object model used in
the CHAMPS project is created from an UML class diagram. Similarly, the descriptor
file contents are designed as UML class diagram, illustrated on the left-hand side of
Figure 4.9. The right-hand side of the figure is the automatically generated EMF model.

Figure 4.9: The descriptor file contents are designed as a UML model, which is

converted to an EMF model. This is an example of the EMF model transformation

capabilities.

4.4.2 Extensibility to Service Data Objects

The Eclipse Modeling Framework provides another powerful service for the
persistence of data objects. The EMF extension Service Data Objects (SDO) functions
as a data mediator service for data objects. The principle idea is to offer a common
interface for software using SDO to store its data objects regardless of the medium,
where the objects are persisted. This enables the data storage to be changed without
modifying the program using the SDO services. SDO takes care of the different data
storage mediums and how they are accessed.

 35

An example of the use of SDO is using a file system as the first data storage, and
changing to a database when the scalability requirements become more critical. This is
the case with the BPEL repository, as it is implemented on top of a file system. When
the repository architecture was designed SDO was not mature enough to be integrated.
For example, there are no database drivers available for SDO. However, the interface
for the SDO access is already known. The architecture is designed in a way that allows
the current data handler component to be potentially replaced by an SDO data handler
component. It is thus also possible to change the underlying data storage medium to one
which supports SDO.

Client Software

(e.g. BPEL
Repository)

SDO

Virtual Data
Mediator

Service

Relational

Database

File

System

XML
Database

SDO DataGraph

Figure 4.10: Service Data Objects (SDO) framework as a data mediator service for

different data storages. [Ecl04b]

 36

4.5 Query Mechanism

The BPEL repository provides a query mechanism, which enables querying the
object model of files in the repository. It is implemented by loading a queried file in
memory as an EMF object. The EMF object is handed over to a query engine together
with query parameters. The query engine executes the query for the object and returns
the result to the repository logics component. The repository logics component
continues by iterating this process through all the relevant files inside the specified
query scope. The query process is illustrated in Figure 4.11. In the following sections,
the query mechanism is used in co-operation with the OCL Tool from the University of
Kent.

Query Engine

BPEL Repository

Query parameters:

3 OCL query string

Result table of:
*(URI Boolean)

or *(URI EMF)

4 Return file type + content type

2 Query file type + content typeC

D

1 Scope URI (0..*)A

A B C

URI

URI

URI

BPEL

BPEL

BPEL

6 Return EMF models

5 Include suborganizations

F

E

F

D
E

B

1 1
0..* 0..*

F

E

Figure 4.11: The querying mechanism of the repository. There are six query

parameters. The parameter (D) OCL query string, is passed to the query engine,

the others are used inside the BPEL repository. Parameters E and F determine the

output types in the query result table.

4.5.1 Query Parameters

There are six parameters for a query. They are identified with letters (A, B, C, D, E
and F) in the Figure 4.11 above. The parameters (A, B, C) are used to determine the
files, which are sent to query engine as EMF objects. The parameter (D) contains the
parameters for the query engine. The parameters (E, F) determine the choice of the
query output.

 37

A) The query scope identifies organizations, where the query is applied. It is
possible to limit a query to a sub-scope of the repository organization tree. In this
case, only the files inside the query scope are queried. The scope is determined
by specifying one or more organization URIs, where the query will be executed.

B) The include suborganizations Boolean variable determines if the query

scope includes the subfolders for each URI specified in the query scope (A).

a) True (default): All the subfolders are included for each URI in the query
scope parameter. This is illustrated in the right-hand side of Figure 4.12.

b) False: Only the organizations that have their URI in the query scope
parameter are included. This is illustrated in the left-hand side of Figure
4.12.

Figure 4.12: In the left tree, the green nodes represent the organizations, whose

URI is in the query scope parameter (A). If the parameter (B) Boolean is true only

they are included in the query. If the parameter has the Boolean value true, also

their suborganizations are included in the query. This case is illustrated on the

right tree, where the lightly colored child nodes are also queried.

C) The query file type and the query content type identify the file(s) in the
organization, which are queried. For the query file type, five options are
available: BPEL, WSDL, XSD, descriptor or metadata. It is a choice from a
limited set of file types. The query content type parameter further refines the
query. For example, a WSDL file can be a public interface or a partner link file
for the BPEL file in the same organization. Content type can be any string, so it
supports a broad range of metadata types. The query file type and the query
content type combinations help the querying mechanism load only files relevant
for the query. For example, if there is an XML metadata file describing
execution properties of a BPEL file and a separate XML metadata file describing
the purpose of the BPEL file, the content type is used to identify the contents of
the file. It does not make any sense to look for a purpose of the BPEL file from
an XML metadata file, which only contains execution time information, or the
other way around. This approach does not rely on the file naming policy.

D) The OCL query string specifies the query that is executed by the query
engine for each EMF object. It is analogous to an SQL query string. Actually,
the parameter D is a map of parameters for the query engine. They are entered as
a key-value pair in the map. This approach allows the query mechanism to pass
to each query engine the parameters it requires. In case of the OCL Tool, the
OCL query string is inserted in the parameter map. The parameter map is
illustrated in Figure 4.13.

 38

KEY OCL context & expression

key value

OCL

Figure 4.13: The parameter map passed to the query engine contains key-value

pairs. In the case of the OCL Tool, key is a string identifier for the OCL string

parameter and the value contains the OCL context & expression string.

E) The return file type and the return content type specify, which file is
returned from an organization, which gave a positive query result. This
allows the system to return files associated with the queried file. For example, if
a user wishes to retrieve a BPEL file that has a certain kind of data in its
metadata file, a query will be targeted for the metadata files and a BPEL file will
be returned for each positive query result.

F) The return EMF models Boolean variable determines what is included in

the result table if the query result is positive.

a) True: For each queried file URI to the file that is wanted to be returned is
inserted in the result table. The EMF object from the file is inserted as the
value for that key. This is illustrated in the right-hand side of Figure 4.14.

b) False (default): For each queried file URI to the file that is wanted to be
returned is inserted to the result table. The query engine result (usually
Boolean true, but can also be part of the queried EMF model depending
on the query) is inserted as the value for that key. The case using Boolean
variables is illustrated in the left-hand side of Figure 4.14.

4.5.2 Query Result Table

A query to the repository returns a hashtable as a result. The URI of each returned
file is stored in the table. The linked value to the key is either a Boolean variable or an
EMF object depending on the query parameter (E) and the query engine return value.
The query result table is illustrated in Figure 4.14.

URI

URI

URI

BPEL

BPEL

BPEL

URI true

URI true

URI true

key valuekey value

1

2

3

1

2

3

1

2

3

1

2

3

Figure 4.14: The query result table is a Java Hashtable object. A return file URI is

stored as a key to each entry, and its value is either a Boolean variable or an EMF

object.

 39

4.5.3 Querying Algorithm

The query mechanism is illustrated in detail in Figure 4.15. It is a refined version
from the previously presented Figure 4.11.

Query Engine

Meta

Data
WSDL

WSDL XSD

BPEL
XML

Meta

Data
WSDL

WSDL XSD

BPEL
XML

Meta

Data
WSDL

WSDL XSD

BPEL
XML

Meta

Data
WSDL

WSDL XSD

BPEL
XML

Meta

Data
WSDL

WSDL XSD

BPEL
XML

Meta

Data
WSDL

WSDL XSD

BPEL
XML

Meta

Data
WSDL

WSDL XSD

BPEL
XML

Meta

Data
WSDL

WSDL XSD

BPEL
XML

Meta

Data
WSDL

WSDL XSD

BPEL
XML

BPEL Repository

Query parameters:

3 OCL query string

Shop

Factory

XML

EMF

Boolean
or EMF

Result table of:
*(URI Boolean)
or *(URI EMF)

4 Return file type + content type

Meta

Data
WSDL

WSDL XSD

BPEL
XML

0..*

1

0..* 1

2 Query file type + content type

Query4

5

7

C

D

1 Scope URI (0..*)

1

A

2 2

3

6

Meta

Data

A

C

D

E

Meta
Data

WSDL

WSDL XSD

BPEL
XML

Meta
Data

WSDL

WSDL XSD

BPEL
XML

Meta
Data

WSDL

WSDL XSD

BPEL
XML

Buy

Sell

6

URI

URI

URI

BPEL

BPEL

BPEL

4 Return EMF models

1 Include suborganizations

F

B

B

Company

E

Make Fix

E F

B

Figure 4.15: The detailed query mechanism. The query parameters are labeled

with a character and colored as the objects to which they refer. The query steps

are numbered.

The query parameters are used in a query process having the following seven steps:

1) The query first finds the query scope (parameters A and B) from the repository.
For each organization inside the scope, the steps 2-6 are executed.

2) A file matching both the query file type and the query content type (parameter C)
is searched in the organization descriptor file. If there are several files that match
in a single organization, all matching files are queried (steps 3-6).

3) The file contents are loaded into an EMF object, which is sent to the query
engine.

4) The query engine executes the OCL query (parameter D) on the EMF object
containing the file contents.

5) The result of the query is returned from the query engine to the repository logics
component. The returned result may be a Boolean variable or an object,

 40

depending on the OCL query. For example the query might be may check,
whether the object matches the query, then the result is a Boolean variable.
Alternatively, a query may retrieve a subpart from the queried object, and then
the result is an object. Since a Collection Java class is also an object, the result
can be a collection of objects.

6) The results of the objects from each organization are collected together into the
result table. There are several possibilities:

a) If the result of the single object query is false, no result is added to the
query result table.

b) If the result of the single object query is true, and the query file type and
query content type (parameter C) are exactly the same as the return file
type and return content type (parameter E), the URI of the queried file is
added to the result table as a key element. If the user requires the EMF
object by setting parameter (F) to true, the EMF object is added as the
value for the key in the result table. Otherwise Boolean variable true is
put as the value.

c) If the result of the single object query is true, and the query file type or
query content type (parameter C) differ from the return file type or the
return content type (parameter E), the file(s) in the organization matching
the return file type and the return content type, the file(s) are added to the
result of the query. The URI of each returned file is added to the result
table as a key element. If the user requires the EMF object by setting
parameter (F) true, the file is loaded as an EMF object and added as the
value for the key in the result table. Otherwise Boolean variable true is
put as the value.

d) If the result of the single object query is an object, it is added to the result
table as a value. The key for the value is the file URI that matches the
return file type and the return content type (parameter E).

7) The result table is returned from the BPEL repository as the complete answer to
the query for the whole query scope.

4.5.4 Query Performance Optimization Approaches

This query mechanism is expected to be rather heavy when executed over large
collection of files. First of all, each file is loaded completely in memory as it is sent to
the query engine. Secondly, this approach does not use any indexing mechanism present
in database systems in general. In order to solve the scalability issues with the expected
repository performance, the following performance optimizations are implemented.

4.5.4.1 Minimizing the Number of Loaded Files

It is often the case that a user does not need to query through all the files in the
repository in order to find the file he is looking for. Thus, the repository supports
narrowing the query by specifying a scope. This allows the user to specify the

 41

organizations, which he wants to search. This approach allows processing power to be
used more efficiently, since only necessary files to a query are processed.

 Another technique to reduce the number of files in a query is to load only the files
that contain the right kind of EMF object. For example, if the search target is a BPEL
process object, only BPEL files are loaded for the query. The same applies to WSDL
files, XSD files, and other XML metadata files. The repository stores a file type and a
content type for each file in a XML descriptor file of the file’s organization. This file
type together with the content type tells which EMF model is used to serialize the
objects. Thus, by loading only the files with the exact file type and content type
specified in the query parameters, only the right kind of files are loaded from the data
storage. This decreases the number of times the hard disk is accessed, which are usually
time-costly operations.

The drawback of this approach is that in each organization in the query scope the
descriptor file is accessed with each query in order to find the relevant files for the
query. Each time at least one file per organization is accessed in addition to the queried
files, but no other irrelevant files are read. In the case of a BPEL file query, this
mechanism saves approximately a dozen of files per organization from an unnecessary
loading operation.

4.5.4.2 Minimizing Memory Requirements Using Iteration

In order to reduce the main memory requirements when the BPEL repository is
queried, the query logics component iterates in a one-by-one manner through the
relevant files inside the query scope. This means that files are loaded one-at-a-time and
sent to the query engine. After the query engine has returned the query result, the
references to the EMF object are deleted if the EMF object is not returned as a part of
the query result. This allows the Java garbage collector to free the memory for reuse.
After one file is handled the next one is loaded and sent to the query engine. This
iteration saves runtime memory, since objects are in the main memory only one-at-a-
time.

4.5.4.3 References to the Organizations and Files in Hashtables

The BPEL repository utilizes Java Hashtable objects as the mechanism to find
objects in the memory efficiently. Hashtables have constant time insertion, deletion and
search operations, which provide a well-scalable search method when the number of
objects in the hashtable increases.

The repository has a common hashtable containing a reference to all of its files and
organizations. The Uniform Resource Identifier (URI) serves as a hashing key. A key
points to the organization itself or the organization where the file is found.

In addition, each organization has a hashtable containing a reference to its
suborganizations and another hashtable for its files. An organization name or a filename
serves as a key in these cases. Moreover, each organization has a reference to its parent
organization. These search mechanisms provide robust navigation in and through
organizations, for example, in the case of a query with an organization subtree as the
query scope.

 42

5 Repository Performance Measurements

In order to measure the scalability and performance of the repository, a set of tests to
profile the implementation was planned and executed. The first section 5.1 introduces
the profiling environment. It is followed by repository start-up performance tests in
section 5.2. Finally, the querying performance is inspected in section 5.3.

5.1 Profiling Environment

A profiling toolset from the Hyades project [Ecl04c] was initially used to profile
execution time performance and memory usage. It is an Eclipse workbench plug-in
extending its functionalities to runtime data collection. The profiling toolset allows
detailed performance measurements of Java applications to be logged.

However, executing the Hyades data collection engine slows down the tests
significantly, since it logs all the function calls and memory used by each object. For
this reason, after the BPEL repository performance was optimized with the Hyades tool,
the following test scenarios were executed without the Hyades tool. Instead, a minimum
number of timestamps was recorded and printed on the screen as the test scenario
advanced. This allowed observing the memory usage of the tests during the different
phases of the execution with the Windows Task Manager. The plans of the relevant test
cases, as well as the results from the measurements, and their analysis are introduced in
the following sections.

 The test cases are executed on an IBM ThinkPad A31p laptop having 1.00 GB of
main memory and an Intel Pentium 4 (1.70 GHz) processor. The profiling tests are
executed from the Eclipse 3.0 workbench with the following setups. A test class directly
called the repository API methods. The amount of memory for the Java Virtual Machine
is set to 1024 MB for the process. Only a minimal number of other applications is
running together with a test, so the test process can reach almost 100% of the processing
capacity.

 43

5.1.1 Repository Contents Used in the Performance Tests

A file collection was gathered as repository contents for the performance tests. This
collection contains BPEL files and related files. There are three sources for these files,
our Business Process Integration and Automation project at the IBM Zurich Research
Laboratory [Nov04], the Oracle-Collaxa website [Ora04] and the BP4J project of IBM.

All these files were collected together. All BPEL and other XML files conforming to
their XML schemas were held in the contents, all the non-compliant XML files were
deleted. Two example repository contents A and B were created:

A) A primary set of files presenting an ideal collection of files for the BPEL
repository.

o The subfolders were deleted if they did not contain BPEL files or XML
files in them or deeper in the organization tree related to them.

B) A secondary set of files presenting a large heterogeneous collection of files for
BPEL repository.

o On contrary to the primary collection (A), these files included also
organizations containing less directly related files to BPEL files, such as
Java and JSP files providing implementation for BPEL related Web
services.

Table 5.1 illustrates the differences between the example repositories A and B.

Table 5.1: The differences between the example repository contents used in the

performance tests.

 Repository contents A Repository contents B

Number of folders 221 534

Number of files 1171 2031

Number of BPEL files 165 165

Size 1.85 MB 3.62 MB

Size on disk 5.08 MB 9.42 MB

5.2 Repository Start-Up Performance Test Cases

The following sections present each a set of tests, which are executed in order to
measure the performance of the repository API plug-in. Each test set is described
individually followed by a hypothesis formulating the expected performance.

In order to query the repository, two computations must be performed, and they can
be executed separately.

1) First, the repository must be started to load the folder and file structure of the
repository. Once this is done, the repository is ready to be queried. If the
repository is queried several times consecutively, the loading must be performed
only once.

 44

2) The second computation is the query itself. It includes loading the descriptor
files in the query scope and locating relevant files based on this information.
Then, these files are loaded and sent to the query engine, which returns the
results of the query. Based on these query engine results, the repository returns
URIs and possibly EMF objects depending of the query parameters.

This section 5.2 concentrates on measuring the start-up performance and it is
followed by the section 5.3 testing the scalability of the querying mechanism.

5.2.1 Repository Start-Up Time as a Function of the Repository Size

The overhead of starting the repository is measured in this test. The test is executed
for several multiples of the repository contents A presented previously in chapter 5.1.1.
The repository contents are multiplied 1, 2, 4, 8, 16, 32, 64, 128 and 256 times for the
tests. The following three scenarios are tested:

1) The repository contents have not yet been loaded before and they do not have the
BPEL repository specific descriptor files. Therefore:

o Descriptor files are created automatically for each organization.

o The files are not yet in the computers main memory.

2) The repository contents are not loaded recently, but descriptor files already exist.

o The files are not yet in the computers main memory.

3) The repository contents have been loaded recently, and descriptor files exist
already.

o The files are already in the main memory of the computer.

The computer is started just before the first two tests to ensure that the relevant files
are not loaded in the main memory before the tests. This approach is followed in any of
the subsequent tests sharing the same assumption.

Hypothesis

i) The start-up time increases linearly with the repository size.

ii) Significantly more time is consumed when the files are not in the main memory,
as reading data from a hard disk is a much more time consuming operation than
accessing the same data from the main memory.

iii) If the descriptor files are not already available additional time is needed for
building them, but it is also linear.

Results

Figure 5.1 shows that more computing time is needed to start-up the repository as the
repository size increases. In addition to observing the processing time, the CPU usage
rate of the repository process is logged. In test cases (1) and (2), the files are not in main
memory and the CPU usage is mostly below 50%.

 45

In test case (3), the files have been loaded previously and thus are already in main
memory. In this case the process is utilizing most of the time 99% of the processing
power.

 However, this behavior changes when the repository size grows over 32 times of the
original content collection A. It seems that instead of reading large amount of files from
the main memory, the hard disk is accessed. This is sure for the largest size of the
repository, since the overall memory usage went up to 1.5 GB, but the computer has
only 1.0 GB of main memory. This means that the operating system is swapping the
main memory to the hard disk, in order to fulfill the processing memory demand
exceeding the main memory size.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 50 100 150 200 250 300

Repository Size (multiples of the repository contents)

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

1) Repository contents A, without descriptors, not in RAM

2) Repository contents A, with descriptors, not in RAM

3) Repository contents A, with descriptors, in RAM

Figure 5.1: Repository start-up time as a function of the repository size.

Analysis

Hypotheses (i) and (ii) are correct as long as the repository size keeps below an order
of 64 times the repository contents A. The file loading overhead from the hard disk is
significant, since roughly twice as much time is needed as if the data is read from the
main memory.

Hypothesis (iii) is correct; the utilized processing time is linear compared to the
repository size. The extra effort needed to create the descriptor files is not
overwhelming compared to the other work.

However, when the repository size is bigger (starting from size 64) hypothesis (i) is
not correct anymore. The files are not handled solely from the main memory and the
needed processing grows faster than linear. In addition, case (3), where the files were
already accessed recently before, gets more close to case (2), where the files are not

 46

already in the main memory. The obvious reason is that if the files are read from the
hard disk anyway, it is not faster to read them from the hard disk swapped from the
main memory than from the files themselves in the main memory.

Nonetheless, as the files were accessed before, case (3) is still faster, because most
probably the most recently accessed data is still kept in the main memory. This data can
be for example folder data, which would not be swapped to the hard disk, but it is still
rather kept in the main memory, since the data is often accessed compared to the files
accessed mostly only once.

5.2.2 Repository Start-Up Time with Different Repository Contents

In the following test scenarios, the preceding tests are applied to the repository
contents A and B. The tests 1A, 2A and 3A are the same tests as previously presented 1,
2 and 3. The tests 1B, 2B and 3B are the same tests with the repository contents B.

In addition, the tests are limited to observe the behavior in a subinterval of the
previous test. The repository size is increased up to 32 times of the example repositories
A and B. This size was selected as the repository scalability stays linear in this interval,
because the computer is still capable of keeping the data in its main memory.

In the case of repository contents A, this maximum size is still sufficient for the
planned purposes of the repository, since A includes over 37 000 files and over 7 000
folders. They need 59 MB of memory and they take on the hard disk 162 MB of
memory. More memory is needed on the disk, since most of the files are smaller than
the minimum file size in the Windows XP operating system with a 30 GB hard disk as a
single partition. The repository size well exceeds the size of any BPEL collection that is
publicly available nowadays.

Hypothesis

i) The start-up time for the repository B is supposed to be around twice as long as
for the repository A, because repository B uses twice as much hard disk memory
and has twice as many files and organizations than repository A.

Results

The results from these six different tests with multiple repository sizes are presented
in Figure 5.2. Test results from scenarios 3A and 3B are an average from three
consecutive executions. No significant variation is noticed between the execution times
with the same parameters. The other tests are run only once being more difficult to
execute, because the computer has to be restarted before rerunning the test. The
computer is restarted to ensure that the files are not yet in the main memory. In addition,
the loading time from the hard disk depends more on the retrieval speed of the hard disk
and the efficiency of the file locations in the hard disk than the functionality of the
BPEL repository. Thus, the cases 3A and 3B illustrate the reachable lower limit of the
start-up time.

 47

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35

Repository Size (multiples of the example repository)

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

1A) Repository contents A, without descriptors, not in RAM 1B) Repository contents B, without descriptors, not in RAM

2A) Repository contents A, with descriptors, not in RAM 2B) Repository contents B, with descriptors, not in RAM

3A) Repository contents A, with descriptors, in RAM 3B) Repository contents B, with descriptors, in RAM

Figure 5.2: Repository start-up time with repository contents A and B.

Analysis

The hypothesis is correct, executing 3B takes roughly twice longer than executing
3A. The same applies to the tests 1A and 1B, as well as to 2A and 2B, respectively. All
the repository start-up times grow linearly as the repository size increases.

The scenarios 3A and 3B have more interesting graphs. They illustrate the lower
limits of the repository loading times with different contents. The repositories B have
many irrelevant files for the querying purposes of the BPEL repository having double as
many files as the repositories A. The larger content doubles the start up time. The most
likely reason is that at each size the repository B contains twice as many folders as
repository A, because each folder is accessed to find out the filenames it contains.

The repository start-up time becomes significant as the repository size increases. It is
not reasonable to wait some tens or hundreds of seconds before each query as the
repository hashtables are built up. For this reason, it is rewarding if the repository is
started up once and let run, if other software or user needs it consecutively when it is
needed consecutively by other software or a user. These data structures are necessary to
provide robust querying mechanisms into the repository. The drawback of starting up
the repository is the memory consumption, which is surveyed in the following test
scenarios.

5.2.3 Repository Start-Up Memory Usage

The repository start-up memory usage is measured under the same test scenarios that
were presented in the previous sections. The memory is mainly used to build up the
structure of the repository contents to make the queries faster to execute. The memory is

 48

reserved since the repository start-up. The memory consumption is the drawback of
keeping the repository alive between queries. In any case, the data structure is also built
up for a single repository query.

Hypothesis

i) The repository start-up memory usage grows linearly as the repository size
increases, because the number of folders is directly dependent on the repository
size in the test scenarios.

ii) The querying memory consumption with repository B is twice as large as with
repository A.

Results

Figure 5.3 below shows the start-up memory usage of the repository. All the tree test
scenarios behave similarly. The only differences are visible with extremely big
repository sizes 128 and 256 times the example repository, where the test scenario 3
uses 1-4 MB more memory than in the cases 1 and 2, which use identically memory.

0

100

200

300

400

500

600

700

800

0 50 100 150 200 250 300

 Repository Size (multiples of the example repository)

M
a
in

 M
e
m

o
ry

 U
s
a
g

e
 (

M
B

)

1) Repository contents A, without descriptors, not in RAM

2) Repository contents A, with descriptors, not in RAM

3) Repository contents A, with descriptors, in RAM

Figure 5.3: Repository start-up main memory consumption with the various sizes

of repository contents A.

The next Figure 5.4 below illustrates the start-up memory consumption for the two
different repository contents A and B. With repository contents B, there is slightly
bigger memory consumption if the descriptor files are built at the start-up time.

 49

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25 30 35

Main Memory Usage (MB)

R
e
p

o
s
it

o
ry

 S
iz

e
 (

m
u

lt
ip

le
s
 o

f
th

e
 e

x
a
m

p
le

re
p

o
s
it

o
ry

)

1A) Repository contents A, without descriptors, not in RAM 1B) Repository contents B, without descriptors, not in RAM

2A) Repository contents A, with descriptors, not in RAM 2B) Repository contents B, with descriptors, not in RAM

3A) Repository contents A, with descriptors, in RAM 3B) Repository contents B, with descriptors, in RAM

Figure 5.4: Start-up memory usage with various repository sizes and different

repository contents A and B.

Analysis

Hypothesis (i) is correct; the start-up repository memory consumption is linear in the
repository size. This holds well even if the repository start-up time starts to grow faster
(repository sizes 64, 128, 256 in Figure 5.4), when the repository size approaches the
size of the main memory. The order of magnitude of the main memory usage is not
significantly larger, when the descriptor files are also created during the first repository
start-up.

As hypothesis (ii) forecasted, the memory consumption with repository B is almost
twice as large as with repository A. The data structure for repository B keeping files and
organizations in memory must be twice the size of the structure for A.

5.3 Querying Performance Test Cases

In the following subchapters, the scalability of the repository querying mechanism is
under evaluation. The test scenarios are set up to evaluate how large collections of files
can be efficiently queried, when they are first deserialized from files to objects. Another
goal is to find out how the increase in the repository size affects its scalability. It would
be interesting to know how many files can be queried within a tolerable querying time
period.

The test scenarios use the OCL Tool from the University of Kent as the query
engine. The same repository contents A and B are utilized as in the previous tests.

 50

5.3.1 Scalability of the Querying Mechanism

The first experiment measures the query processing time as the repository size
increases. The repository contents A introduced in section 5.1.1 are utilized in the tests.
The relevant details for the query tests are presented in Table 5.2 below.

Table 5.2: Number of folders and files in the test repository contents, which are

built by cloning repository contents A multiple times and forming larger content

collections by grouping them together in order to have larger test sets of files.

Size of the

contents

(multiples of

contents A)

Folders Files BPEL files Size

(MB)

Size on

hard disk

(MB)

1 221 1 171 165 1.85 5.08

2 442 2 343 330 3.70 10.1

4 881 4 682 660 7.41 20.3

8 1 763 9 363 1 320 14.8 40.6

16 3 524 18 725 2 640 29.3 81.2

32 7 051 37 451 5 280 59.4 162

64 14 101 74 901 10 560 118 325

128 28 202 149 202 21 120 238 650

256 56 405 299 605 42 240 477 1 290

All these repositories are queried with a simple Object Constraint Language (OCL)
query:

context process::TProcess inv: not self.flow.oclIsU ndefined()

This query is executed for all BPEL files in the repository. The query means: “Is the
root element of the BPEL process activity tree a flow?” TProcess refers to the BPEL
EMF object, which corresponds to process XML element in BPEL files (see the BPEL
example in section 2.1.1). In the test repository contents, the process XML element can
have a sequence, flow or pick element as a child element. Whereas in the EMF object
model, each TProcess object can have an activity tree, which can contain either a
sequence, flow or pick as a root object of the tree. We are interested to find all the BPEL
files that have a flow as a root. If the flow contains null, then oclIsUndefined() returns
true for the flow attribute. If it is not null, it exists. Negating this with the not operator,
the OCL query returns true when there is a flow as the root object.

There are 165 BPEL files in the repository A. Three of them have a flow as the
activity tree root element, 161 have a sequence element and one of the files has a pick
element. The numbers of the BPEL files matching the query in the bigger repository
contents are presented in the last column of Table 5.3. For all the BPEL files that match
the query, a URI to the file is added to the query result table.

There are two different cases for the test queries in the first test scenario:

 51

1) The BPEL files have not been queried recently and thus the operating system has
not loaded them yet from the hard disk to the main memory.

2) The BPEL files have been queried recently and thus, they are already in the main
memory.

The second test experiment applies this same query to the repository content B, and
compares it to the previous results of the repository contents A. The content collection
B has the same BPEL files as A, thus the query results are equal. The difference
between the test cases is that content collection B has roughly twice as many non-BPEL
files as A and it has twice as many folders as well. Thus, this experiment measures
whether it makes any difference in the query speed if there are additional files and
folders in addition to those, which are the target of the query. The differences of the test
repositories A and B are presented in the Table 5.3 below.

Table 5.3: A comparison of the differences between the repository contents A and

B with the used test repository sizes.

Size of the

contents

(multiples of

contents A or

B)

Folders

in A

Folders

in B

Files in

A

Files in

B

BPEL

files in

both A

and B

BPEL

files with

a flow in

both A

and B

1 221 534 1 171 2 031 165 3

2 442 1 068 2 343 4 062 330 6

4 881 2 134 4 682 8 122 660 12

8 1 763 4 267 9 363 16 243 1 320 24

16 3 524 8 532 18 725 32 243 2 640 48

32 7 051 17 067 37 450 64 971 5 280 96

The third test experiment uses the same test cases as the first one, but instead of
measuring the processing time needed, the necessary main memory for the query is
observed, in addition to the memory occupied already at start-up time. The purpose is to
find out the required main memory that must be available for efficient querying with
different repository sizes. The total main memory needed is also observed. The
proportion of the memory occupied already at the start-up time is measured separately
of the proportion used to query the BPEL files.

The fourth test experiment explores the memory consumption differences between
repository contents A and B. The same test conditions are used as in second test.

Hypothesis

i) The processing time increases linearly as the repository size increases. All the
files in the scope are loaded and queried iteratively. It should not affect to a
single file how many other files are iterated through. The processing time might
increase slightly faster than linearly, because of the bigger indexing data
structures, but not at the same rate as the number of files increases.

 52

ii) The query time is larger if the files are loaded from the hard disk instead of the
main memory.

iii) A query in repository B takes longer than a query in repository A.

iv) Used memory needed for a query is constant, since files are loaded in the main
memory iterating them through one-by-one. The required memory depends on
the file size.

v) Memory for repository indexes increases proportionally as the number of files
and folders in the repository increases.

5.3.1.1 Results of the Query Processing Time Tests

Figure 5.5 illustrates the processing time of the repository query under various
repository sizes.

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250 300

Repository Size (multiples of the example repository)

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

1) Search: BPELs with a flow, in A, not in RAM, return value: URI to a BPEL

2) Search: BPELs with a flow, in A, in RAM, return value: URI to a BPEL

Figure 5.5: Limits of linear scalability for the repository querying mechanism.

Query finds 3 BPEL files per each content collection A, which contains 165 BPEL

files, thus 1.8 percent of the queried files match the query.

In addition to the information visible in the figure, the behavior of the CPU usage
changes if the repository size is over 64 times the content collection A. If the files are
used recently and thus, still in the main memory with the smaller repository sizes, CPU
usage reaches almost 100%. If the repository size is bigger, the CPU usage drops under
50% and the rest of the time is used by idle process of the operating system.

Figure 5.6 shows the same the test results as above, but it restricts to the repository
sizes from 1 to 36. In addition it shows a behavioral difference between repository
contents A and B.

 53

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35

Repository Size (multiples of the example repository)

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

1A) Search: BPELs with a flow, in A, not in RAM, return value: URI to a BPEL

2A) Search: BPELs with a flow, in A, in RAM, return value: URI to a BPEL

1B) Search: BPELs with a flow, in B, not in RAM, return value: URI to a BPEL

2B) Search: BPELs with a flow, in B, in RAM, return value: URI to a BPEL

Figure 5.6: Processing time usage for a BPEL query with repository contents A

and B. This figure focuses to show concentrates the results with small repository

sizes having querying time less than few hundreds of seconds.

Analysis

With repository contents A, the querying time remains linear until the repository
content size 64. Hypothesis (i) is accurate for these small repository sizes. In the limit
size, the contents include 14 000 folders, 75 000 files, and 10 500 BPEL files. As it
takes 5 minutes to query through 10 000 BPEL files, or 30 seconds for 1 000 BPEL
files, it can be stated that the query performance is suitable for the purpose it was
designed.

There is only a slight difference in querying time depending on whether the queried
files are loaded in the main memory already before, or not. Hypothesis (ii) is correct,
but the extra need of time is not significant.

As hypothesis (iii) states, querying the repository B takes twice as long than querying
the repository A. Most probably, the key factor is the double number of the folders,
since for each folder its descriptor file is loaded and references for a BPEL file are
searched in it. With content collection B the change in the linear increase happens
already before the repository content size 32 is matched. At this size, the repository
contains 17 000 folders, 65 000 files and over 5 000 BPEL files. The change appears at
around 15 000 folders for the repositories A and B, but it is assumed that the number of
other files in the memory affect the limit as well.

Above the limit sizes, the query processing time grows faster than linearly, and
hypothesis (i) is no longer valid. Thus, it can be said that the repository querying
mechanism does not scale well enough for bigger contents. Beyond the limit, the
operating system starts to swap main memory to the hard disk, or all the needed files are
not kept anymore in the main memory. Instead, files are accessed again from the hard
disk, even though they were recently used before. Whereas with the small repository

 54

sizes, the CPU usage reaches almost 100%, with the bigger repository sizes it drops
below 50%. The rest of the processing power is consumed by the operating system idle
process. Thus, the whole CPU power cannot be utilized. This behavior can be improved
by keeping more files in the main memory or having a faster hard disk drive. However,
these options are beyond the scope of this work.

5.3.1.2 Results of the Main Memory Usage Tests

Figure 5.7 below shows the main memory consumption for the same test cases for
which the processing time was illustrated in the Figure 5.5.

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300

Repository Size (multiples of the example repository)

M
a
in

 M
e
m

o
ry

 U
s
a
g

e
 (

M
B

)

1) Search: BPELs with a flow, in A, not in RAM, return value: URI to a BPEL

2) Search: BPELs with a flow, in A, in RAM, return value: URI to a BPEL

Figure 5.7: Repository main memory consumption with different repository sizes

while querying all the BPEL files in a repository.

If the repository size is below 64 times the content collection A, the memory usage
increases steadily throughout the querying period. Above that size the main memory
usage increases most of the time, but time-to-time it dropped suddenly by several
dozens of megabytes. This sudden drop seems to be affected by waking up the Java
garbage collector. It removes all the instances, which do not have anymore references to
them in the Java program.

The next Figure 5.8 shows results from the same case as the previous Figure 5.7. In
fact, the red graphs (2 and 1Q) are the same. While the previous figure showed clearly
the memory usage change after repository size 64, this following figure shows the total
memory consumption of the BPEL repository when it is querying through the BPEL
files. Graph 1 shows the total memory consumption, 1S shows the static part that is
occupied since the start-up time and 1Q illustrates the extra memory needed to process
the query. Thus, graph 1 is the sum of graphs 1S and 1Q.

 55

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250 300

Repository Size (multiples of the example repository)

M
a
in

 M
e
m

o
ry

 U
s
a
g

e
 (

M
B

)

1) Search: BPELs with a flow, in A, in RAM, return value: URI to a BPEL, whole memory usage

1Q) Search: BPELs with a flow, in A, in RAM, return value: URI to a BPEL, memory usage for the query

1S) Repository contents A, with descriptors, in RAM, start-up memory usage

Figure 5.8: Repository main memory usage – the required repository start-up

memory versus the extra memory requirements for querying BPEL files.

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35

Repository Size (multiples of the example repository)

M
a
in

 M
e
m

o
ry

 U
s
a
g

e
 (

M
B

)

1) Search: BPELs with a flow, in A, in RAM, return value: URI to a BPEL, whole memory usage

1Q) Search: BPELs with a flow, in A, in RAM, return value: URI to a BPEL, memory usage for the query

2) Search: BPELs with a flow, in B, in RAM, return value: URI to a BPEL, whole memory usage

2Q) Search: BPELs with a flow, in B, in RAM, return value: URI to a BPEL, memory usage for the query

Figure 5.9: Memory usage differences of the repository contents A and B.

Figure 5.9 above plots the same graphs 1 and 1Q as in the previous Figure 5.8. The
difference is that the graph concentrates on illustrating the memory consumption for
smaller repository sizes than 64. In addition, it compares the memory consumption of
the content collection A (graphs 1 and 1Q) to the content collection B (graphs 2 and
2Q). It shows a major difference between the repository contents even though both
repositories contain exactly the same BPEL files if the repository sizes are the same.

 56

Analysis

Unlike stated in hypothesis (iv), the main memory usage grows linearly especially
with small repository sizes instead of staying constant. However, this behavior changes
when the repository size grows. The graph curves down and the memory need increases
slower than linearly compared to the repository size.

With the large repository, there are sudden drops of dozens of megabytes of the
memory utilization. Otherwise the memory need grows steadily similarly to the small
repositories. The Java garbage collector is invoked, when the computer is running out of
main memory. This behavior suggests that by invoking the garbage collector with short
regular intervals the memory usage could be kept constant.

However, the approach of invoking the garbage collector must have a hindrance of
increased querying time, since the Java garbage collector uses its share of computing
power. For this reason, the responsibility of invoking the Java garbage collector is left to
the program that is using the repository API. If it prefers to use less memory with the
expense of increased query time, it can invoke the Java garbage collector periodically
while querying the repository.

In this testing environment, the main memory usage of the querying mechanism is at
maximum around one half of the start-up memory usage. With larger repositories the
need is even noticeably lower. Thus, the start-up memory need is still dominant
compared to the query memory need. Of course this changes if the queried files are
larger, or if there are proportionally more queried files in the repository.

The last Figure 5.9 reveals the important fact that the memory usage for a query is
not solely dependent on the number of queried BPEL files. Both content collections A
and B contain the same number of BPEL files with equal file content at each multiple of
the content collections. Nevertheless, the memory need for repository B is nearly the
double compared to the repository A. Thus, hypothesis (v) is correct. For example, at
repository size 32, both repositories contain 5 280 BPEL files, which are queried. The
difference of the repositories is the amount of folders in them. At repository size 32,
repository A has over 7 000 folders, whereas repository has B over 17 000 folders. Per
each folder, a descriptor file is loaded in the memory during the query, and references to
the BPEL files in the folder are searched in it. Since this is done for repository B more
than twice as many times as for repository A, repository B needs more memory.

There are also more files in repository B (at size 32, there are around 65 000 files)
compared to repository A (around 37 500 files). The sizes of these files have no direct
impact on the querying memory usage, since non-BPEL files are not loaded, when
BPEL files are queried. This applies as well for other file types and file content types.
Only the number of the irrelevant files slightly affects to the query memory
consumption, since references to all files are examined in the descriptor files.

5.3.2 Scalability of the Querying Mechanism with Fixed Scope

This test scenario finds out, whether the concept of query scope helps to find results
faster for a query. Instead of querying all the BPEL files in a repository, the query is
narrowed to a subset of the organizations.

 57

The test uses the same repository contents A as introduced before. For each size of
the repository contents a subtree of file system folders is selected for the repository
query scope. With each repository size, the subtree contains exactly the same files and
folders. It is observed if the overall repository size affects the required processing time
or main memory consumption, when the query scope remains equal.

URI to the BPEL files that match to the query are returned. The OCL query is the
same as in the previous query test cases:

context process::TProcess inv: not self.flow.oclIsU ndefined()

Hypothesis

i) The query time does not increase if the repository size increases, and the query
scope remains constant.

ii) The extra memory required for a query does not increase if the repository size
increases, and the query scope remains constant.

Results

Figure 5.10 presents the required processing time for the BPEL query with a
narrowed scope. Regardless of the repository size, the same 3 BPEL files are returned as
the result.

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35

Repository Size (multiples of the example repository)

 P
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

1) Search: BPELs with a flow, in A, in RAM, return value: URI to a BPEL. The whole repository is queried (one multiple of

the repository contains 165 BPEL files)

2) Search: BPELs with a flow, in A, in RAM, return value: URI to a BPEL. Only a limited scope in the repository is queried

(the scope contains 165 BPEL files)

Figure 5.10: Processing time for a query if the scope is fixed for various repository

sizes. It is compared to the case where the whole repository is queried.

As the reference test case (1) from the previous chapter increases linearly as a
function of the repository size, the test (2) with the fixed scope has almost constant

 58

query processing time. The times fluctuate between 5.95 seconds and 6.93 seconds,
however no linear behavior can be found, since these extreme values are results from
the medium repository sizes, whereas with the minimum repository size the query time
was 6.46 seconds and with the maximum repository size 6.51 seconds. The details can
be seen in Figure 5.10 above.

Figure 5.11 presents the main memory consumption as a function of the repository
size with a fixed query scope. It is compared to the case where the scope is not fixed,
and instead, the whole repository is queried.

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35

 Repository Size (multiples of the example repository)

M
a
in

 M
e
m

o
ry

 U
s
a
g

e
 (

M
B

)

1) Search: BPELs with a flow, in A, in RAM, return value: URI to a BPEL. The whole repository is queried (one multiple of the

repository contains 165 BPEL files)

2) Search: BPELs with a flow, in A, in RAM, return value: URI to a BPEL. Only a limited scope in the repository is queried

(the scope contains 165 BPEL files)

Figure 5.11: Main memory usage of the query with a fixed scope.

The main memory consumption fluctuates relatively more than the processing time
consumption. The minimum need is 5 megabytes, whereas the maximum is almost
twice as much, 9 megabytes. However, no clear linear trend is visible as the repository
size increases.

Analysis

Hypotheses (i) and (ii) are reasonably correct since both the query processing time
and the main memory consumption are pretty much constant regardless of the repository
size. They do not grow linearly as a function of the repository size. Instead they
fluctuate in a narrow range of values. It is likely that a part of these differences can be
caused by the variation of the file locations in the file system. A retrieval time from the
hard disk can depend on the physical data location. Another part is likely caused by the
operating system retrieving the data, or by the scalability behavior of the Java data
structures under different repository sizes.

Nonetheless, as a conclusion, using a scope to narrow the queries is a powerful way
to improve the querying performance. This approach is useful if the repository size

 59

grows so big that the query performance becomes insufficient for the intended purpose.
If specifying the scope for a query can reduce a set of files needed to be queried, it can
decrease the query times noticeably. The same mechanism is useful if queries are
chained. A result collection of URIs from the previous query can be used as a scope for
the following query.

5.3.3 Query Performance Depending on the Result Types

The test explores the influence of the result type on the query performance. For
example, when the BPEL files are queried with a query having a Boolean result, a
collection of BPEL files is returned that matches the query. Depending on the query
parameter (F), either a URI of each BPEL file is returned or additionally the EMF object
of each BPEL file is returned.

Alternatively, if a BPEL file is queried depending on the query parameter (E) another
file can be returned for each matching BPEL file. For example, in this test scenario the
WSDL public interface is returned. Either a URI to each WSDL file can be returned, or
additionally the EMF object of each WSDL file is returned.

In addition, it is tested if it makes any difference to the querying performance,
whether most of the queried files match the query or not. Instead of using the same
query as in the previous test cases, another OCL query is used:

context process::TProcess inv: not self.sequence.oc lIsUndefined()

Whereas the previous query returned 3 positive results among the 165 BPEL files in
the content collection A, this query gives 161 positive results. A sequence is much more
common in the BPEL files as the root element of the activity tree than the previously
queried flow.

Hypothesis

i) There is no difference in the querying speed depending on the number of files
matching the query.

ii) The number of file matches should not affect the main memory usage, since the
only difference is that URIs are returned to the positive cases, the URI object is
relatively small.

iii) If the queried BPEL file is returned as an EMF object, it will take as much
processing time as returning only its URI.

iv) Returning URI to another file increases the processing time only slightly.

v) The loading time will double if another file is returned as an object.

vi) If a returned URI refers instead of the queried file to another file, it does not
increase the memory usage.

vii) The memory needed to store the BPEL objects increases proportionally with the
repository size and thus, as the number of positive results increases, because
they are all kept in the memory after they are queried.

 60

viii) If another file type (WSDL) is returned, the memory consumption is equal to the
case, where the queried BPEL file is returned, taking into account that the
average size of BPEL files is equal to the average size of WSDL files.

Results

The Figure 5.12 below shows the query processing times with different return values.

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18

Repository Size (multiples of the example repository)

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

1) Search: BPELs with a flow, in A, in RAM, return value: URI to a BPEL

2 B) Search: BPELs with a sequence, in A, in RAM, return value: URI to a BPEL

2 BE) Search: BPELs with a sequence, in A, in RAM, return value: EMF object of a BPEL

2 W) Search: BPELs with a sequence, in A, in RAM, return value: URI to a WSDL

2 WE) Search: BPELs with a sequence, in A, in RAM, return value: EMF object of a WSDL

Figure 5.12: Query processing time with different return value options.

There is no noticeable difference depending on whether there are many files
matching the query or only a few. Both the query searching for flows (1), and the query
searching for sequences (2B) use the same amount of querying time.

There is no significant difference depending on whether a BPEL file URI, or an EMF
object of a BPEL file, or a URI to its WSDL public interface file is returned. The only
query differing from the others is the one, which returns the EMF object of the WSDL
public interface file for a matching BPEL file.

The following Figure 5.13 below illustrates the differences in the memory
consumption depending on the selected return type. All there queries (1, 2B, 2W) that
return a URI to a file have the same memory usage. When the matching WSDL files are
returned as an EMF object (2WE), the memory usage is significantly bigger. But the
when the matching BPEL files are returned (2BE), the memory usage is even larger.

 61

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18

Repository Size (multiples of the example repository)

M
a
in

 M
e
m

o
ry

 U
s
a
g

e
 (

M
B

)

1) Search: BPELs with a flow, in A, in RAM, return value: URI to a BPEL

2 B) Search: BPELs with a sequence, in A, in RAM, return value: URI to a BPEL

2 BE) Search: BPELs with a sequence, in A, in RAM, return value: EMF object of a BPEL

2 W) Search: BPELs with a sequence, in A, in RAM, return value: URI to a WSDL

2 WE) Search: BPELs with a sequence, in A, in RAM, return value: EMF object of a WSDL

Figure 5.13: Query main memory usage with different return value options.

Analysis

As hypothesis (i) stated, the query processing time is independent of the number of
positive matches. The query mechanism loads all the descriptor files and all the BPEL
files in the memory for the query. Most of the time is spent in this loading process. A
query engine search evaluates the query for all the BPEL EMF objects. The only
difference amongst the cases is, whether true or false is returned from the query engine.
The same reasoning explains why the main memory usages are equal as well, as the
hypothesis (ii) forecasted.

The same behavior is also visible when the queries with different return values are
compared. The processing time remains the same independently of whether a URI to the
BPEL, an EMF object of the BPEL or a URI to its WSDL public interface file is
returned. Therefore, hypotheses (iii) and (iv) are correct. The two first objects are
needed for the query anyway and the URI to the WSDL file can be found fast from the
descriptor file that is already in the memory for the query. If a WSDL file is deserialized
to an EMF object from a WSDL file, the only difference occurs, which is forecasted in
hypothesis (v). The loading operation of another file consumes extra time compared to
the other queries.

For the same reason, the memory behavior matches hypotheses (vi), (vii) and (viii).
There is no difference in the memory consumption whether a URI refers to a BPEL file
or a WSDL file. The number of URIs returned as a result is not significant when
compared to all the other memory usage of the repository.

It makes a difference whether an EMF object is returned as a result or only a URI. If
the BPEL EMF object is returned, it cannot be unloaded from the memory after the

 62

query has been finished. Instead, it must be kept in memory. If its WSDL public
interface EMF object is returned, it must be loaded in memory for all the positive
results. However, the queried BPEL EMF object can be unloaded in this case. Returning
BPEL EMF objects takes more memory than returning the WSDL EMF objects,
because the BPEL objects are larger in the example repository than the WSDL objects.

 63

6 Qualitative Analysis of the Repository Design

In the previous chapter, a quantitative analysis was conducted examining the
repository performance and scalability. This chapter evaluates the qualitative side of the
repository design and the fulfillment of the requirements.

First, the BPEL repository is compared to other repositories. Then, the section 6.2
focuses on the query mechanism. Finally, the extensibility of the repository is evaluated.

6.1 Comparison to Other Repositories

In chapter 3, the state-of-art of the alternative approaches to a BPEL repository are
reviewed. They each provide a way to support storing and querying BPEL and related
XML files. However, none of the approaches is currently optimal for this purpose. In
the following sections, the BPEL repository is compared to the other applications:

o File systems (e.g. in Windows XP)

o Version control systems (e.g. CVS [Ced04])

o XML databases (e.g. Natix [FHK+02])

o Relational databases (e.g. DB2 [Ibm04])

6.1.1 Object Representation of the Data

The BPEL repository takes advantage of the strong support of the Eclipse Modeling
Framework (EMF), which provides powerful support for serialization of the EMF Java
objects to XML files [BSM+03], [Ecl04b]. In addition, this mapping between the
models is provided automatically. One model can be generated automatically from
another, for example an EMF model from an XML Schema, and vise versa.

The goal of the BPEL repository is to provide this strong support for other
applications. Other repositories do not provide a mechanism to transform standard XML

 64

Schemas to an object model and a support to serialize or deserialize the instances of the
model.

File systems, version control systems, and XML repositories are file containers. Thus
they are not capable of building object models from the data they store. Relational
databases are built to support applications, but mapping database data to objects can be
achieved in multiple ways. No automatic linkages between the models and their
serialization are provided.

The Service Data Object (SDO) framework drivers can provide the linkage between
an object model and databases [Ecl04b], but these drivers are not yet available. In
anticipation for the SDO release, the BPEL repository is built in a way that SDO can be
added by changing the file system data handler component to another component that
provides an SDO access to data storages.

6.1.2 Support of Object-Oriented Querying

The power of the BPEL repository querying support is also derived from the Eclipse
Modeling Framework. The EMF object data presentation is used for the queries, which
allows the user to query the object model with the object-oriented query language
Object Constraint Language (OCL). Other compared repositories do not provide any
object-oriented querying mechanism.

The advantage of an object-oriented approach is that the application developers
building their programs on top of the BPEL repository do not need to be aware of the
data storage syntax of the objects. Instead, they can concentrate on handling everything
using the object model. This is a helpful approach if an application is built in the spirit
of the Model Driven Architecture (MDA). Only the object model must be designed and
EMF takes care of the data serialization. The BPEL repository provides a querying
mechanism for these objects in the BPEL domain.

The disadvantage of file systems and version control systems is that they do not
provide a query mechanism, which would take advantage of the structured data
presentation of the XML files. Their contents can be queried with a file search, which is
an inefficient way of querying and can easily lead to misinterpretations of the meaning
of the data. Since a file search does not take into consideration the structure of XML
files, a searched string can be out of its anticipated context. For this reason, it cannot be
used reliably as a sophisticated query mechanism.

XML repositories support native querying for XML data, since they provide XPath
and XQuery query mechanisms. This is a powerful approach to querying XML data,
since the languages are tailored to XML. However, the disadvantage is that the
knowledge of the XML format for the data is needed when the queries are formulated.
This might not be straightforward to derive from the object model.

The power of relational databases is their highly sophisticated and efficient data
retrieval mechanisms. However, it is not completely straightforward to handle data of
object models or XML files with the relational approach. For this reason, there has been
scientific research for object-oriented databases and XML databases. Nonetheless,
relational databases are still the most common data storage method for applications
handling a large collection of data.

 65

6.1.3 Performance of the Querying Mechanism

The disadvantage of the conventional relational databases is their lack of native
support for XML data. The BPEL repository uses many large XML schemas, which
would need a separate mapping to a relational database and another mapping to the
object model. If these must be done manually, extending the repository with new XML
schemas would require a major effort. The same effort is needed if the mappings are
built for the initial set of XML schemas. The EMF approach for the BPEL repository
decreases the amount of work in this case.

A hindrance of querying an object model is the limited performance. Since models
are loaded completely into the main memory, lots of memory and processing time is
needed even for a simple query. This approach does not take advantage of the structured
format of XML in order to improve the querying speed. The XML structure is only used
to find the data in the right place of the structure. Instead, it could also be used for
loading only the necessary data for queries, which would drastically improve the
querying performance.

XML repositories are planned to provide this kind of querying mechanism by
supporting XQuery and XPath queries. Unfortunately, the queries are applied to the
XML data, not to the object representation. XML repositories support indexing and
other querying speed-ups.

Well-scalable query performance is the power of relational databases. They have
been optimized to handle large amount of data. Much scientific research has been
dedicated developing efficient data retrieving and querying mechanisms for relational
databases. However, the relational databases do not provide support for object-oriented
queries and Oracle 10g is the only database with XQuery and XPath querying support.
Nonetheless, as a commercial product, the Oracle database is not an ideal basis for an
open-source research prototype.

The purpose of the BPEL repository is to provide useful services for other
applications, which handle file collections from hundreds to thousands of files. The
performance tests show satisfying performance results in this order of magnitude.
Relational databases and XML databases could probably handle millions of files
efficiently, but it is not needed at the current time when such a large collections of
BPEL files do not exists. Instead, the BPEL repository provides a querying capability
for object models.

6.1.4 Links amongst the XML Documents

One purpose of the BPEL repository is to provide links amongst the files that relate
to each other. The BPEL repository handles links by grouping the related files in a
single organization and maintaining the links to the file locations and roles in a XML
descriptor file. The descriptor files are accessed while querying the repository in order
to locate files with specific roles for queries.

The BPEL repository provides the linkage service in the API. File systems or version
control systems cannot provide this functionality, so they had to be extended. In XML
repositories, this information could be stored in the tags of the files. In relational
databases, the information could be in separate tables. However, none of the other

 66

repositories provide API functions like the BPEL repository. It would be necessary to
build the service on top of the other repositories as a separate layer, such as the BPEL
repository is built on top of the file system likewise at the moment.

6.1.5 Summary of the Repository Comparison

The differences between the compared data storages are summarized in Table 6.1
below.

Table 6.1: Summary of the repository comparison.

 Data

representation

Query support Links amongst

the XML

documents

BPEL Repository Files,

EMF objects

OCL queries and
Java extensions, or
other query engines
for Java objects

Descriptor file for
each organization
having an object
and XML format

File systems Files File search only, no
structured approach

No native support

Version control

systems

Files File search only, no
structured approach

No native support

XML databases Structured XML
data

XQuery, XPath Tags for files

Relational

databases

Relations, tuples in
flat tables.
Unstructured,
shredded or
structured XML
data

SQL

(XQuery only with
Oracle 10g)

Keys between the
tables

6.2 Querying Capabilities

The strength of the BPEL repository is its ability to execute object queries. In co-
operation with the OCL Tool from the University of Kent [AP04], EMF Java objects
can be queried using the Object Constraint Language (OCL) [WK03]. OCL is both a
query and constraint language. Nowadays it is not yet widely used as a query language
most probably because of lack of object-oriented repositories being widely used. It is
used more to enrich UML models by defining constraints for them, since it is a powerful
method to add formal information to UML models. This information can be used while
creating implementations with the Model Driven Architecture. Hopefully, the use as a
constraint language would cause it to become more popular as a query language.

Another use for the Object Constraint Language would be in the Query / Views /
Transformations (QVT) framework of Meta-Object Facility (MOF) [Omg02]. QVT is a

 67

request for proposals in the Object Management Group (OMG). OCL has been
recommended to be the query language of the standard [GGK+03].

OCL is a powerful query language for object models. It supports Boolean queries
and object retrieval. It is possible to navigate through associations in an object model,
when building up the queries. Thus, it is possible to directly use the object model for
queries and the user does not have to be aware of any other models, such as its
serialization to XML. It supports the type systems of object-oriented programming
languages, for example casting of object types, inheritance, and polymorphism. In
addition, OCL provides many high-level set operations. It has hierarchical sets and it
uses sets instead of relations used in the SQL queries of relational databases.

The strength of OCL is that it is designed for object queries unlike the competitor
query languages XQuery and SQL used in the other repositories. Otherwise, XQuery
would be a good query language alternative for the BPEL repository, since it would
support querying in the standard XML storage format for BPEL, WSDL and XSD files.

A disadvantage of querying the object model is that the queried objects are loaded
completely into the main memory. Furthermore, no indexing of the data is used to speed
up the queries. One query speed-up technique for simple queries could be using lazy
loading of XML to objects. Then only the parts of XML files, the objects that are used
in the query, would be loaded to the object model. The parts would be loaded if they are
necessary. The lazy loading of XML files to a Document Object Model (DOM) is
explored in the Xaluca prototype [Cha04]. Implementing lazy loading for EMF objects
is out of the scope of my thesis.

However, as the BPEL repository uses a general query engine interface, other query
engines can be integrated into the BPEL repository. If another query language is
preferred, it can replace the OCL Tool by implementing the query interface. For
instance, an IBM internal query engine has already been plugged into the BPEL
repository.

6.3 Extensibility

A goal of the BPEL repository development is releasing it as an open-source project
to enable use with other software prototypes. Furthermore, it can be extended and
adapted to their specialized needs. Therefore, the overall architecture is planned for
general BPEL domain use.

The BPEL repository is built on top of the universal Eclipse platform. Eclipse is
designed as an open extensible integrated development environment (IDE) for anything
and nothing in particular [Ecl04a]. Implementing software on top of this platform makes
it easier for other developers to extend it and integrate other software. The BPEL
repository uses the Eclipse workbench as the basis of its graphical user interface, and
EMF to present and manipulate the persisted objects. Use of these frameworks is helpful
for the BPEL repository implementation, and meets the extensibility requirements for
the solution. The user interface can be easily integrated with other software based on the
Eclipse workbench using Standard Widget Toolkit (SWT) and JFace libraries.

The EMF data models can be used and serialized together with other EMF models. A
good example of this capability is the co-operation with the OCL Tool from the

 68

University of Kent. The OCL Tool has an EMF specific version, which takes advantage
of the EMF model properties. It uses EMF to provide a richer OCL query framework
than on a simple Java model. All together this is a good example of how through a
common data framework, applications can take advantage of each other. This is a
source for the good extensibility of the Eclipse platform.

Since the BPEL repository is built to support the standard XML schemas for BPEL,
WSDL and XSD files, it means that any files compliant with those standards can be
handled. In addition, the design policy, which allows keeping the extensions of these
standards in the repository as well, provides an even better basis for the repository to be
extended. It makes it possible to use the BPEL repository even though proprietary
extensions of the standards are manifested in files. This is important, because the BPEL
specification is still under standardization process and there exits already multiple kinds
of extensions of the standard.

Fortunately, it has been possible to have a good approach to build a multi-purpose
BPEL repository as an independent project from other related research projects. This
implies that the repository is not custom-made for the partner projects. Instead, the
architecture is general and applied to the context of the other projects. Being successful,
this gives a good example of the extensibility of the BPEL repository.

 69

7 Synthesis of the Repository Work

In chapter 3, the state of the art of existing repository technology is considered
insufficient with respect to the requirements of this project. This encouraged us to
design a BPEL specific repository.

The goal for the BPEL repository design was to provide strong object-oriented
support for other software, which could leverage the services of the repository. Support
for handling BPEL, WSDL and XSD files based on the standard schemas is supported.
On the other hand, client programs can omit this data presentation completely and focus
on using only the EMF object model for these file contents. The Eclipse Modeling
Framework takes care of the object persistence in XML.

This approach allowed us to provide an object-oriented query mechanism for the
repository data using the Object Constraint Language (OCL). The drawback of this
querying approach is the querying mechanism scalability, which was evaluated
quantitatively. A deep look into the overall performance has been undertaken. These
issues are each discussed in detail in the following sections and they lead us to future
work possibilities in this area.

7.1 Object-Oriented Querying Capabilities

The main contribution of this thesis is to support an object-oriented querying of the
BPEL repository. Object-oriented queries are not a new concept, since both the Object
Constraint Language (OCL) and the utilized OCL query engine existed before the
repository. Instead, a standard XML representation format for different file types has
been given as a requirement for files such as BPEL, WSDL and XSD. An object-
oriented querying mechanism is linked to these standard file types, which are not object-
oriented themselves. However, since it is predicted that many Java applications will be
built using this data presentation standard, the goal is to provide a service to handle
them completely within an object-oriented approach.

 70

The linkage amongst XML and object data formats of the new Eclipse Modeling
Framework is leveraged to bind the representations together. Then OCL is utilized to
query the EMF objects, which reflect the content of the XML files. This allows the use
of the intuitive object-oriented approach to query the BPEL repository. Navigation
through associations, strong typing, inheritance, polymorphism and other support
mechanisms, which object-oriented programming languages provide, can be utilized for
data retrieval and querying.

7.2 General Analysis of the Repository Performance

The drawback of the implemented object-oriented querying mechanism is its modest
performance compared to relational databases. Starting up the BPEL repository takes
time and consumes main memory. Resources are spent to build up the data structure that
is used to make queries more efficient. The start-up time increases linearly as the
repository size grows. The number of files and organizations in the BPEL repository are
the main factors that influence the repository size.

At start-up time, the file index of the organizations and their descriptor files are
loaded into the main memory. Other files are loaded at query time, when required. This
improves the query and retrieval times, since the structure of repository is often used
independently of the file selection. Of course, the cost of this speed-up is the main
memory usage for the repository structure. However, keeping the organization file
indexes in the main memory consumes relatively little memory compared to the
alternative, where all the files of the repository would be kept in the main memory.

The repository start-up takes several seconds for a repository size, which contains a
couple of hundreds of organizations and one thousand files. For bigger repositories, it is
recommended to keep an instance of the repository running, since it makes consecutive
queries reasonably faster. If the repository is started up separately before each query, the
execution time of a simple query roughly doubles.

As with the repository start-up, the repository query resource utilization increases
linearly compared to the repository size. The processing time is spent in searching the
queried files from the descriptor files and loading the queried files from a file system to
build the objects and then querying those objects in a query engine. Similarly, the
memory consumption increases with the number of loaded descriptor files in
organizations and the number of loaded files for querying increase.

In the test environment, the querying mechanism scaled reasonably well for
repositories containing up to 15 000 organizations, a total of 75 000 files and 10 000
queried BPEL files. A query consumed 5 minutes of processing time and the main
memory usage of the repository was around 250 MB. Nonetheless, BPEL file
collections with this size are rare nowadays, so the BPEL repository is targeted for
smaller needs. For example, 1000 BPEL files could be loaded and queried in 30
seconds.

The repository scalability changes after the repository size grows above 15 000
organizations. The execution time for the queries grows faster than linearly as the
repository size increases. A reason for this is that the files are not kept in the main
memory anymore, but they are loaded again from the hard drive. Also the main memory

 71

used by the repository is swapped to the hard disk. However, in the test environment,
the BPEL repository is capable to query even repositories with 300 000 files, 60 000
organizations, and 40 000 queried BPEL files.

An upper-limit of the scalability was not tested, since this repository would not be a
candidate for such big content collections. The repository querying mechanism does not
take advantage of indexes and other efficient methods existing in relational databases.
Thus, querying times are rather linear compared to the repository size than for example
logarithmic. The querying mechanism should scale better than linearly in order to be
efficient for huge amount of data.

Retrieving a file from the repository is efficient, since the entire repository structure
is loaded in a hashtable and a tree structure. The hashtable allows reading, creating, and
deleting a file in the repository in constant time. The tree-structure keeps subtree queries
efficient, since all the files in an organization and its direct suborganizations are found
without a separate search from the repository-wide hashtable. Thus, the retrieval time of
a file is efficient, being more dependent on the hard disk operation time than on the
repository size.

In addition, mechanisms are developed for speeding up the queries. A query can be
targeted to one or more subtrees of the repository organization structure. The
performance tests show that with a given fixed query scope, the repository size does not
influence the query performance. A descriptor file classifies the file contents in the same
organization, so only the needed files are loaded for the queries.

7.3 Suitability to the Intended Purpose

Despite the limited scalability compared to relational databases or XML databases,
the BPEL repository is still suitable for the purpose it was constructed. The repository is
built to provide query, storage and organizational services for other software prototypes.
It saves them handling object serialization to XML files.

The object representation is generated automatically from the XML Schemas with
the power that the Eclipse Modeling Framework offers. The BPEL repository can be
extended with other XML formats with the same automatic generation of the object
model. Another way to bring data models into the repository is to generate an EMF
object model from UML diagrams or Java annotations. Thus, the BPEL repository
provides good extensibility for new data formats and their object representations. This is
important for a multipurpose repository, which is likely to contain new proprietary data
formats.

Additionally, this approach makes the development of applications easier, since they
do not have to handle the data in any other format than in the object representation.
They can query the repository with this same object representation using OCL. Other
query engines can be plugged in, for example, for customized purposes.

The repository is made extensible by building the user interface on top of the Eclipse
platform and using the multi-purpose Eclipse Modeling Framework as the data object
representation. All these factors together make the BPEL repository a useful component
for other software prototypes handling BPEL and related XML files.

 72

7.4 Future Work

The main challenge for the future related to the BPEL repository is how to improve
the scalability of the object-based querying and retrieval to handle larger collections of
data. Maybe then querying objects would make sense even more generally with XML
databases. The Eclipse Modeling Framework would be useful serialization mechanisms
even then.

Actually, the Service Data Objects (SDO) would be a useful toolkit using EMF with
databases. Since it is providing a data mediator service for multiple data storage
mechanisms, it would be a useful way to load objects from database systems. This was
foreseen, when the repository development started. Because no database driver was
available for SDO, it was left out of the scope of this thesis. Nevertheless, the BPEL
repository is designed in a way that the data handler component can be replaced with
another data handler component supporting SDO.

An advantage of using an XML database storing the XML files is that they do not
need to be loaded completely as a file. Instead, only the elements that are of interest to
the query could be loaded in objects. This could utilize a lazy loading mechanism of an
entire file, such as lazy DOM loading. EMF provides as well mechanism of how an
object, such as a BPEL process, can be scattered to multiple files. This way, only the
files that have a relevant part for a query could be loaded while querying. The drawback
is that this separation must be tailored by hand. This approach would also need a
separate import and export mechanisms for the files. The repository should support
inserting and retrieving a BPEL file containing a whole BPEL process. Applying the
EMF framework would be more time consuming to develop.

Since the main source of query inefficiency is that the whole file is loaded for a
query, the problem could be handled also with another approach. Instead of sending the
whole object to the query engine, the queries could be executed directly in a database.
The query would be sent to the data storage, instead of loading the data in the query
engine. This would allow taking advantage of the efficient querying mechanisms that a
database provides, such as indexing the often-queried data. However, neither relational
databases nor XML databases provide an object-oriented query mechanism to query
their contents. This could be achieved by mapping OCL queries to native database
queries, such as SQL for relational databases and XQuery for XML databases.

In fact, there is some on-going research in an early stage to map XML/XQuery to
UML/OCL [SG04a], [SG04b]. The Eclipse Modeling Framework could be utilized if
the OCL queries to EMF objects are mapped to XQuery querying XML documents. A
possible framework for the future work is presented in Figure 7.1.

An EMF model can be created automatically from an XML Schema. The linkage of
the models provides a way to serialize EMF objects to XML documents. OCL navigates
in an object hierarchy using the EMF model while the instances of the model are
queried. Similarly, XQuery navigates in the structure of the XML Schema while
querying the compliant XML documents. An OCL transformation to XQuery could be
designed by taking advantage of the existing transformation technique between EMF
models and XML Schemas.

 73

EMF/UML
class model

OCL

XML
Schema

XQuery

XML
document

Instance of

Modeled by Represented by

Queries

EMF
Java object

Navigates in the structure of

Navigates in the structure of

Instance of

Queries

Serialized in

Figure 7.1: The framework to map OCL to XQuery using Eclipse Modeling

Framework.

 74

8 Conclusions

There is a need in IBM research projects for a BPEL repository that can handle
BPEL files and other related XML files. There are no BPEL repositories available that
offer querying mechanism to the XML file contents and handle the linkages to related
files. However, there are multiple research projects, which are interested in the
possibilities that the BPEL standard allows. Therefore, one goal of the project is to serve
other BPEL research projects by offering them an open-source BPEL repository.

In addition, the suitability of the Object Constraint Language (OCL) as an object-
oriented query language is explored in the project. The Eclipse Modeling Framework
provides a new technology for object serialization to XML files. The work tests how
well it serves its purpose in the BPEL domain.

The main requirement for a BPEL repository is to search objects persisted in XML
files by querying their contents and contents of other linked XML files. For example, a
BPEL file could be retrieved based on its XML metadata file contents. Thus, support for
linking files is needed. The repository needs to be extensible with new file formats,
which can be based on some new XML schemas. Since the purpose is to serve multiple
research projects with a generic approach, the repository is needed to be extensible and
support several ways to use it. In order to make other development work easier, a goal is
to offer a Java API for other software that they can use and not force them to build this
functionality for each product separately.

The designed BPEL repository relies on a completely object-oriented approach. It
uses the power of the Eclipse Modeling Framework, to provide objects to be handled for
the other applications by taking complete care of their serialization to XML files. EMF
is capable of creating EMF object models from XML Schemas and UML class
diagrams. It also takes care of keeping the serialized data compliant with their XML
Schemas. This is important as BPEL, WSDL, and XSD files all have their standard
schemas, which must be supported to enable file exchange.

The BPEL repository architecture is divided into components, which have their own
responsibilities and can be replaced by alternative components. The repository logic

 75

component takes care of executing a query over the repository contents. It is served by
the data handler component, which provides object access to a data storage, and the
query engine component, which adapts a query engine to the repository. These
components form the repository API for other applications. On top of it, a graphical user
interface is built integrated with the Eclipse workbench.

The query mechanism iterates through a query scope by loading all the queried files
and sending them to a query engine. The result of each sub-query is stored and they are
returned all together when the query is finished. The query mechanism scales linearly
compared to the repository size. It does not utilize query speed-ups that are common in
database systems, such as indexing of the stored data. Instead, all the relevant files for a
query are loaded, when the query is executed.

The power of this querying mechanism is an intuitive object-oriented approach using
the Object Constraint Language (OCL). Navigation through associations, strong typing,
inheritance, polymorphism, and other support mechanisms that object-oriented
programming languages provide, can be utilized with data retrieval and queries.

The querying mechanism is still efficient enough for the purposes it is created. BPEL
file collections are not so large that the limited performance of the repository would be
an issue. It provides a useful and completely object-oriented API for applications that
can build features on top of it. Applications can concentrate on using the EMF object
model that the BPEL repository offers. They do not have to pay attention to how the
data persistence is handled, even though the files are compliant with their standard
XML schemas.

Future work could explore how only those parts of the files that are necessary for the
querying mechanism are loaded into objects using a lazy XML loading mechanism.
Another option is to map the object-oriented queries to a query language provided by a
database system.

 76

References

[ACD+03] Andrews T., Curbera F., Dholakia H., Goland Y., Klein J., Leymann F.,
Liu K., Roller D., Smith D., Thatte S., Trickovic I., Weerawarana S.,
Business Process Execution Language for Web Services, Version 1.1,
(05/05/2003), http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel/, OASIS Org.

[AP04] Akehurst D., Patrascoiu O., Object Constraint Language Library,
http://www.cs.kent.ac.uk/projects/ocl/index.html, (referenced:
01/07/2004), OCL project, University of Kent

[BBC+04a] Bajaj S., Box D., Chappell F., Curbera F., Daniels G., Hallam-Baker P.,
Hondo M., Kaler C., Langworthy D., Malhotra A., Nadalin A.,
Nagaratnam N., Nottingham M., Prafullchandra H., von Riegen C.,
Schlimmer J., Sharp C., Shewchuk J., Web Services Policy Framework

(WS-Policy), (09/2004),
ftp://www6.software.ibm.com/software/developer/library/ws-policy.pdf,
BEA Systems, IBM, Microsoft, SAP, Sonic Software, VeriSign

[BBC+04b] Berglund A., Boag S., Chamberlin D., Fernández M., Kay M., Robie J.,
Siméon J., XML Path Language (XPath) 2.0, (23/07/2004),
http://www.w3.org/TR/2004/WD-xpath20-20040723, W3C Working
Draft

[BCF+04] Boag S., Chamberlin D., Fernández M., Florescu D., Robie J., Siméon J.,
XQuery 1.0 : An XML Query Language, (23/07/2004),
http://www.w3.org/TR/2004/WD-xquery-20040723/, W3C Working
Draft

[BCH+03] Box D., Curbera F., Hondo M., Kale C., Langworthy D., Nadalin A.,
Nagaratnam N., Nottingham M., von Riegen C., Shewchuk J.,
Specification Web Services Policy Framework (WSPolicy), (28/05/2003),
http://www-106.ibm.com/developerworks/library/ws-polfram/

[BFI+98] Berners-Lee T., Fielding R., Irvine U., Masinter L., Uniform Resource

Identifiers (URI): Generic Syntax, (1998),
http://www.ietf.org/rfc/rfc2396.txt, RFC 2396, Internet Engineering Task
Force (IETF)

[BPS+04] Bray T., Paoli J., Sperberg-McQueen C., Maler E., Yergeau F., Extensible

Markup Language (XML) 1.0 (Third Edition), (04/02/2004),
http://www.w3.org/TR/2004/REC-xml-20040204, W3C
Recommendation

[BSM+03] Budinsky F., Steinberg D., Merks Ed., Ellersick R., Grose T., Eclipse

Modeling Framework, (2003), Pearson Education, Inc., MA, USA

[CCM+01] Christensen E., Curbera F., Meredith G., Weerawarana S., Web Services

Descriptor Language (WSDL) 1.1, (15/05/2001),
http://www.w3.org/TR/2001/NOTE-wsdl-20010315, W3C Note

 77

[Ced04] Cederqvist P. et al, Version Management with CVS; for CVS 1.12.9,
https://ccvs.cvshome.org/files/documents/19/207/cederqvist-1.12.9.pdf,
(referenced: 26/07/2004), Concurrent Versions System

[Cha04] Charuel J., Optimized XML Parsing with Lazy DOM, (2004), Master’s
Thesis, Institute Eurecom – École Polytechnique Fédérale de Lausanne –
IBM Research GmbH

[CR04] Clayberg E., Rubel D., Eclipse: Building Commercial-Quality Plug-ins,
(2004), Pearson Education, Inc., MA, USA

[Ecl04a] Eclipse Org., Eclipse Org, www.eclipse.org, (referenced: 01/07/2004)

[Ecl04b] Eclipse Org., Eclipse Modeling Framework, www.eclipse.org/emf/,
(referenced: 01/07/2004)

[Ecl04c] Eclipse Org., Hyades Automated Software Quality Evaluation framework,
www.eclipse.org/hyades/, (referenced: 01/07/2004)

[EH04] Edelkamp S., Hoffmann J., PDDL2.2: The language for the Classical

Part of the 4
th

 International Planning Competition, (2004), Technical
Report No. 195, International Planning Competition (IPC-4) hosted at the
International Conference on Automated Planning and Scheduling
(ICAPS)

[FHK+02] Fiebig T., Helmer S,. Kanne C.-C., Mildenberger J., Moerkotte G,.
Schiele R., Westmann T., Anatomy of a Native XML Base Management

System, (2002), University of Mannheim

[GB03] Gamma E., Beck K., Contributing to Eclipse: principles, patterns, and

plug-ins, (2003), Pearson Education, Inc., MA, USA

[GGK+03] Gardner T., Griffin C., Koehler J., Hauser R., A Review of OMG MOF 2.0

Query / Views / Transformations Submissions and Recommendations

towards the Final Standard, (2003), MetaModelling for MDA Workshop,
York, England

[GHJ+95] Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns: Elements

of Reusable Object-Oriented Software, (1995), Addison Wesley
Longman Inc., USA

[HHW04] Le Hors A., Le Hégaret P., Wood L., Nicol G., Robie J., Champion M.,
Byrne S., Document Object Model (DOM) Level 3 Core Specification,

Version 1.0, (07/04/2004), W3C Recommendation

[IB04] IBM Corp., BEA Systems, Inc., Service Data Objects,
ftp://www6.software.ibm.com/software/developer/library/j-commonj-
sdowmt/Commonj-SDO-Specification-v1.0.doc, (referenced: 01/07/2004)

[Ibm04] IBM Corp., DB2 Universal Database for Linux, UNIX and Windows,
http://www-306.ibm.com/software/data/db2/udb/, (referenced:
26/07/2004)

 78

[KB04] Keller A., Badonnel R., Automating the Provisioning of Application

Services with the BPEL4WS Workflow Language, (2004), in Proceedings
of the 15th IFIP/IEEE International Workshop on Distributed Systems:
Operations & Management (DSOM 2004), IBM T.J. Watson Research
Center

[KHW+04] Keller A., Hellerstein J., Wolf K.-L., Krishnan V., The CHAMPS System:

Change Management with Planning and Scheduling, (2004), in
Proceedings of the 9th IEEE/IFIP Network Operations and Management
Symposium (NOMS 2004), Seoul, Korea, IBM T.J. Watson Research
Center

[Lar02] Larman C., Applying UML and Patterns : An Introduction to Object-

Oriented Analysis and Design and the Unified Process, 2nd edition,
(2002), Prentice-Hall Inc., NJ, USA

[Ley01] Leymann F., Web Services Flow Language (WSFL), (2001),
http://www.ibm.com/software/solutions/webservices/pdf/WSFL.pdf, IBM
Corp.

[McC04] McCown S., Databases Flex Their XML, (26/04/2004), Infoworld.com

[MSS+04] Mendling J., Strembeck M., Stermsek G., Neumann G., An Approach to

Extract RBAC Models from BPEL4WS Processes, (2004), in Proceedings
of the 13th IEEE International Workshops on Enabling Technologies:
Infrastructures for Collaborative Enterprises (WET ICE 2004), Modena,
Italy

[Nov04] Novatnack J., A BPEL file collection implemented for the Business

Process Integration and Automation project, (2004), IBM Zurich
Research Laboratory

[Omg02] OMG, Inc., MOF 2.0 Query / Views / Transformations RFP, (2002),
Request for Proposal, http://www.omg.org/docs/ad/02-04-10.pdf,
(referenced: 19/08/2004)

[Omg03a] OMG, Inc., OMG Unified Modeling Language Specification, version 1.5,
(01/03/2003), http://www.omg.org/docs/formal/03-03-01.pdf

[Omg03b] OMG, Inc., XML Metadata Interchange (XMI) Specification, version 2.0,
(02/05/2003), http://www.omg.org/cgi-bin/apps/doc?formal/03-05-02.pdf

[Omg03c] OMG, Inc., Meta Object Facility (MOF) 2.0 Core Specification,
(04/10/2003), Final Adopted Specification,
http://www.omg.org/docs/ptc/03-10-04.pdf, (referenced: 19/08/2004)

[Ora04] Oracle Corp., Collaxa: Model, deploy and manage BPEL business

processes, http://www.collaxa.com/home.index.jsp, (referenced:
01/07/2004)

[SG04a] Sakr S., Gaafar A., Towards Complete Mapping between UML/OCL and

XML/XQuery, (2004), in Proceedings of the IADIS e-Society 2004
conference (ES2004), Avila, Spain

 79

[SG04b] Sakr S., Gaafar A., Towards a Framework for Mapping between

UML/OCL and XML/XQuery, (2004), in Proceedings of the 7th
conference in the UML series (UML2004), Lisbon, Portugal

[TBM+01] Thompson H., Beech D., Maloney M., Mendelsohn N., XML Schema

Part 1: Structures, (02/05/2001), http://www.w3.org/TR/2001/REC-
xmlschema-1-20010502/, W3C Recommendation

[Tha01] Thatte S., XLANG Web Services for Business Process Design, (2001),
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm,
(referenced: 25/8/2004), Microsoft Corp.

[W3c04] W3C DOM Interest Group, Document Object Model (DOM), (2004),
http://www.w3.org/DOM/, (referenced: 26/07/2004)

[WK03] Warmer J., Kleppe A., The Object Constraint Language, Getting Your

Models Ready for MDA, 2nd Edition, (2003), Pearson Education, Inc.,
MA, USA

 80

Appendix I Dictionary of the Repository Terms

The BPEL repository specific concepts and their terms are explained below in an
alphabetical order:

BPEL file A file that contains a business process expressed with the
language specified in the BPEL specification. Thus, the file is a
valid XML file complying with the BPEL XML Schema.

content type A string that specifies the type of contents of a file. It can be
freely selected. Together with the content type information, it is
used to determine which EMF model is used in the serialization
and deserialization processes of the file. They are used to map
which XML Schema matches to an EMF model.

file A file in a file system or the part of another data storage
contents, which would be stored as a single file in a file system.
For example, a database may store a file inside one data type or
it can be divided and scattered for example in different tables in
a database.

file type A type for a file stored in the BPEL repository. It has a value
from a limited set of options: bpel, wsdl, xsd, descriptor or
metadata. Together with the content type information, it is used
to determine which EMF model is used in the serialization and
deserialization processes of the file.

folder A folder is a structure in a file system that matches to an
organization inside the BPEL repository. If the data storage is a
file system, the folder term can be used as an equivalent to the
organization term.

metadata file A file that contains some XML metadata for the BPEL file,
which is stored in the same organization, or other kind of XML
file that contains some data related to the organizations or the
files in the same organization where it is stored.

organization An organization is a collection of files inside the repository. An
organization may contain a single BPEL file and other files that
are related to it. If the data storage mechanism is a file system,
an organization matches to a folder in the file system.

scope (for a query) A repository query can be narrowed to a subset of the repository
contents by specifying a scope for the query. A scope includes
URIs of the repository organizations that belong to the scope.
The scope can contain only the root organizations of the
organizations subtrees that belong into the scope.

WSDL file A file that contains a public interface for a web service or a
BPEL file expressed with the language specified in the WSDL
specification. Thus, the file is a valid XML file complying with

 81

the WSDL XML Schema.

XSD file A file that contains an XML Schema (XSD) expressed with the
language specified in the XSD specification. Thus, the file is a
valid XML file complying with the XML Schema. An XSD file
may contain a message type for a BPEL process.

 82

Appendix II Example WSDL File

A Hello World WSDL file example is presented below. It also contains an XML
schema (XSD) part.

The WSDL file consists of five parts. In the first part, the used namespaces are
referred in the attributes of the definitions element. The second part is an XML Schema,
which defines XML element types for the message types of the BPEL process. The third
part message types based on the types defined previously in the schema part.

The fourth part defines port types for the Web service using the message types. The
fifth part defines the roles for the Web services using this interface.

<?xml version="1.0"?>
<!-- ~~ ~~~~~~~~~~~~~~~~~
 NAMESPACE DECLARATIONS (Part 1)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ -->     
<definitions name =" SyncHelloWorld "   
   targetNamespace =" http://zurich.ibm.com/bpia/bpel "   
   xmlns:tns =" http://zurich.ibm.com/bpia/bpel "  
   xmlns:plnk =" http://schemas.xmlsoap.org/ws/2003/05/partner-link/ "  
   xmlns =" http://schemas.xmlsoap.org/wsdl/ ">  
  <!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 
     TYPE DEFINITION (Part 2) 
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ -->     
 <types >
 <schema attributeFormDefault =" qualified "
 elementFormDefault =" qualified "
 targetNamespace =" http://zurich.ibm.com/bpia/bpel "
 xmlns =" http://www.w3.org/2001/XMLSchema ">
 <element name =" SyncHelloWorldRequest ">
 <complexType >
 <sequence >
 <element name =" name" type =" string "/>
 </ sequence >
 </ complexTyp e>
 </ element >
 <element name =" SyncHelloWorldResponse ">
 <complexType >
 <sequence >
 <element name =" helloString " type =" string "/>
 </ sequence >
 </ complexType >
 </ element >
 </ schema>
 </ types >
 <!-- ~~ ~~~~~~~~~~~~~~~~~
 MESSAGE TYPE DEFINITION (Part 3)
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ -->     
  <message name =" SyncHelloWorldRequestMessage ">  
    <part name =" payload "  element =" tns:SyncHelloWorldRequest "/>  
  </ message > 
  <message name =" SyncHelloWorldResponseMessage ">  
    < part name =" payload "  element =" tns:SyncHelloWorldResponse "/>  
  </ message > 
  <!—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 



 83 

     PORT TYPE DEFINITION (Part 4) 
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ -->     
 <portType name =" SyncHelloWorld ">
 <operation name =" process ">
 <input message =" tns:SyncHelloWorldRequestMessage "/>
 <output message =" tns:SyncHelloWorldResponseMessage "/>
 </ operation >
 </ portType >
 <!-- ~~ ~~~~~~~~~~~~~~~~~
 PARTNER LINK TYPE DEFINITION (Part 5)
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ -->     
  <plnk:partnerLinkType name =" SyncHelloWorld ">  
    <plnk:role name =" SyncHelloWorldProvider ">  
      <plnk:portType name =" tns:SyncHelloWorld "/>  
    </ plnk:role > 
  </ plnk:partnerLinkType > 
</ definitions > 

 



 84 

Appendix III UML Diagrams of the Repository API 

 

This appendix contains the UML class diagrams for the main components of the 
BPEL repository. The structure of the implementation and some architectural choices 
can be seen in detail from them. 

First the package tree is shown in Figure 8.1. It is followed by the main interfaces 
that the repository API components provide. The Query class, which contains the query 
parameters is represented in Figure 8.5. Finally, the main classes of the repository API 
plug-in are illustrated with their associations and attributes in Figure 8.6. The method 
signatures are suppressed, since if all of them had been visible, the diagram would have 
been too complex to be shown as a single figure to provide a good overview to the main 
classes. The detailed UML models will be released together with the open-source Java 
code. 

 

Figure 8.1: Package hierarchy of the repository API plug-in. 



 85 

 

Figure 8.2: The repository API plug-in interfaces provided by the repository logics 

component. 

 

Figure 8.3: The query interface for external query engines. 

 

Figure 8.4: The interfaces provided by the data handler component. 



 86 

 

Figure 8.5: Query parameters are defined by passing a Query object to the 

repository API. 

 

Figure 8.6: The repository API plug-in UML class diagram. 


