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1 Introduction

This report describes properties relevant for the implementation of the energy collecting
receiver (ECR). It starts with the description of the system model comprising a 2PPM
(2-slot pulse position modulation) transmitter, an UWB (ultra-wideband) channel and a
noncoherent or energy collecting receiver.

Narrowband interference (NBI) can severely deteriorate the sensitivity of an energy
collecting receiver as there is no mechanism like, e.g., matched filtering, that would
distinguish to a certain degree between interfering and desired signal components. Even
if the assumption is justified that NBI is a priori out of band, its expected intensity
must be considered to design the slopes of the receiver filter. In Section 3 the effect of
narrowband interference on the ECR’s performance is assessed and compared with that
of the coherent ideal matched filter receiver. The criterion for the comparison is the
ratio of the mean value to the variance of the decision variable. It turns out that, for a
practical set of system parameters, the ECR’s sensitivity to NBI is about 15 dB higher
than for the coherent matched filter receiver.

The considered noncoherent receiver performs a square operation along it’s signal
path, which results in spectral components with twice the maximum frequency of the
received signal. Typically, a receiver circuit will cut-off some of these high frequency
components. The effect of this energy loss is estimated in Section 4, the result is that even
a cut-off frequency below the minimum signal frequency will only marginally deteriorate
the receiver performance.

Section 5 shows the parallelism between the considered communication system to
BPSK (binary phase shift keying) signaling over the discrete time memoryless AWGN
channel; for this class of systems, some exemplary codes and their coding gains are listed.

2 System Model

2.1 Transmitter

The transmitter modulates the symbol sequence 〈ak〉 with, ak ∈ {0, 1}, such that each
symbol determines the position of one UWB pulse. The shape of an individual pulse is
defined by g(t), which is the impulse response of an ideal bandpass filter with center fre-
quency f0 and bandwidth B. The pulse g(t) has energy 2B, i.e., ‖g‖2 =

∫

∞

−∞
g2(t) dt =

2B. The choice of an ideal bandpass filter g(t) is justified, because in contrast to an
implementable but more complex filter, the ideal bandpass filter results in simpler an-
alytical expressions for the signals involved in the receiver. However, we observe that
the receiver characteristics will change within some range when another, more realistic,
bandpass filter is assumed, see [1]. The transmitted signal is of the form

u(t) =

√

Et

2B

K−1
∑

k=0

ck g(t − kT − ak∆T ), (1)

representing a data block of K data symbols. The time interval available for the transmis-
sion of an individual symbol is T ; the corresponding data symbol ak determines whether
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2 SYSTEM MODEL

the pulse is transmitted at the beginning of this interval or with a time offset ∆T . The
energy per transmitted pulse is Et. The sequence 〈ck〉, ck ∈ {−1, +1}, is an i.i.d. pseudo-
random binary sequence that randomizes the polarity of the transmitted pulses to smooth
the power spectrum of the signal u(t); thus the power spectral density of the transmitted
signal is proportional to the energy density spectrum of the transmitted pulse. Reference
[2] documents properties of a signal with a power spectrum that is smooth in the sense
of the FCC’s emission rules [3]. From this it follows that for a symbol rate, higher than
about 106 symbols/s, the power limit of −41.25 dBm/MHz cannot be exploited, if no
polarity randomization is employed. The sequence 〈ck〉 has no impact on the receiver’s
design or performance as we consider noncoherent receivers.

To prevent intersymbol interference and to maintain the orthogonality of the received
symbols, it is required that the delay ∆T as well as T −∆T exceed the maximum channel
delay spread τc. Note that this condition limits the maximum data rate to 1/(2τc)
for 2PPM. Let b(t) be the received pulse shape representing the combined response of
transmitter filter g(t), transmitter antenna, propagation channel, and receiver antenna
[4]. Note that because of the wide bandwidth, the received pulse shape is not only
influenced by the transmitter filter and the channel impulse response but also by the
transmitter’s and receiver’s amplifier and antenna. For this and various other reasons,
channel models for the UWB channel include the characteristics of the transmitter and
receiver antennas. This composite channel impulse response corresponds to our received
pulse shape b(t), as we assume both the signal at the transmitter antenna feedpoint and
the impulse response of the receiver filter to be ideal bandpass impulse responses. For this
reason we can call the received pulse shape, b(t), synonymously channel impulse response.
The signal that appears at the feed point of the receiver antenna and that corresponds
to the symbol ak is

r(ak, t) = ckb(t − kT − ak∆T ). (2)

The energy per received pulse is

Er =

∫ ∆T

0
b2(t) dt (3)

and we define the reciprocal value of the path loss or path gain, α, as the ratio of the
received and transmitted energies, i.e.,

α =
Er

Et
. (4)

2.2 The Receiver

The optimal receiver in the absence of channel state information is the generalized max-
imum likelihood receiver (GMLR) derived in [5] and described by the decision rule

zk
âk=1

≷
âk=0

0, (5)
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âk

Figure 1: An architecture of the generalized maximum likelihood receiver for 2PPM
signals.

with the definition of the decision variable for the k-th symbol

zk =

kT+TI
∫

kT

y2(t) dt −
kT+∆T +TI
∫

kT+∆T

y2(t) dt, (6)

where TI < ∆T is a variable integration duration that can be adapted to the channels
delay spread, τc. A possible implementation of this receiver is shown in Fig. 2.2 The bit
error probability (BEP) of the GMLR is expressed by the approximation [1]

Pe =
1

2
erfc

(

η(TI)Er/N0

2
√

TIB + η(TI)Er/N0

)

, (7)

where η(TI) is the ratio of the captured energy per received pulse to the total energy of
the received pulse Er, i.e.,

η(TI) =

∫ TI

0 b2(t) dt
∫ ∆T

0 b2(t) dt
. (8)

For reference we also give the BEP of the coherent maximum likelihood receiver (MLR),
which is

Pe =
1

2
erfc

(

√

Er

2N0

)

, (9)

for the case where the pulse polarity is constant, i.e., ck = 1 for all k; note that the
performance of the corresponding MLR is reduced if the pulse polarity is randomly chosen.

The BEP over SNR curve of the GMLR and the MLR is shown in Fig. 2 for a
channel impulse response realization of the channel model CM1 and CM4 respectively,
these channel models are defined in [4].

3 Effect of Narrowband Interference

Narrowband interference reduces the sensitivity of a receiver, which is equivalent to in-
creasing the BEP for a given receiver signal-to-noise ratio (SNR). As an indirect measure
for this effect, we derive the ratio of the mean value of the decision variable to its standard
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3 EFFECT OF NARROWBAND INTERFERENCE
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Figure 2: BEP of GMLR for various integration durations TI and BEP of the MLR.

deviation under the assumption of narrowband interference. For comparison we derive
this ratio for both the GMLR receiver and the MLR for 2PPM signals. Note that this
ratio is proportional to the argument of the erfc(·) functions that describe the BEP of
the corresponding receivers.

3.1 Decision Variable Statistics for the GMLR

We start by deriving the statistics of the decision variables zk, under the assumption of
narrowband interference plus noise. As the decision variables are i.i.d. random variables,
we consider only the variable z0 which is denoted by z for simplicity. In (6) the decision
variable z is defined as the difference z = fs − gs of the integrals

fs =

∫ TI

0
[b(t) + u(t) + n(t)]2 dt, (10)

gs =

∫ TI

0
[u(t + ∆T ) + n(t + ∆T )]2 dt, (11)

which are the integrals of the squared observed signal y(t) = r(t)+u(t)+n(t) in the first
and the second part of a symbol interval, where u(t) =

√
2Pu cos(2πf0t+ϕ0), with power

Pu. To prepare the derivation of the mean and variance of these two terms we summarize
some results from an intermediate calculation [6]:

y = 2

∫ TI

0
[x(t) + n(t)]2 dt ≈

N∆−1
∑

n=0

|xn + nn|2,
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3.1 Decision Variable Statistics for the GMLR

where xn and nn are the corresponding discrete time complex baseband signals of x(t)
and n(t). The distribution of y is called a non-central chi-square distribution

1

2N0

( y

s2

) N∆ − 1

2
e
−

s2−y

2N0 IN∆−1

(√
y

s

N0

)

,

with

s2 =

N∆−1
∑

n=0

|xn|2 ≈ 2

∫ TI

0
x2(t) dt,

and the degree of freedom

2N∆ = 2TIB.

The mean value of y is

µy = 2N∆N0 + s2 ≈ 2N0TIB + 2

∫ TI

0
x2(t) dt,

and the variance is

σ2
y = 4N∆N2

0 + 4N0s
2 ≈ 4N0TIB + 8N0

∫ TI

0
x2(t) dt.

Using these results and assuming that u(t) and b(t) are deterministic signals we observe
that the sampled values fs and gs are both non-central chi-square distributed random
variables with degree of freedom 2N∆. fs and gs are statistically independent with respect
to the noise n(t) because of the time shift ∆T , which is present in (10) but not in (11).
Their mean and variance are

µfs
= N0TIB +

∫ TI

0
[b(t) + u(t)]2 dt,

σ2
fs

= N2
0 TIB + 2N0

∫ TI

0
[b(t) + u(t)]2 dt, (12)

µgs = N0TIB +

∫ TI

0
u2(t + ∆T ) dt,

and

σ2
gs

= N2
0 TIB + 2N0

∫ TI

0
u2(t + ∆T ) dt. (13)

The decision variable z = fs − gs has the mean value

µz = µfs
− µgs

=

∫ TI

0
b2(t) dt + 2

∫ TI

0
b(t)u(t) dt +

∫ TI

0
u2(t) dt −

∫ TI

0
u2(t + ∆T ) dt. (14)
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3 EFFECT OF NARROWBAND INTERFERENCE

Considering the received pulse shape b(t) and the interference signal u(t) again as real-
izations of random signals, then µz has also a mean and a variance. Evaluation of the
first term of (14) yields

∫ TI

0
b2(t)dt = Erη(TI), (15)

see [1]. The second term of (14) is described as a random variable by (48) in Appendix
A, i.e.,

2

∫ TI

0
b(t)u(t) dt = 2ρu,b ∼ N

(

0,
2PuErη(TI)

B

)

. (16)

The third therm can be written by inserting the definition of u(t):

∫ TI

0
u2(t) dt = 2Pu

∫ TI

0
cos2(2πf0t + ϕ0) dt

= Pu

∫ TI

0
1 + cos(4πf0t + 2ϕ0) dt

= PuTI +
Pu

4πf0
sin(4πf0t + 2ϕ0)

∣

∣

∣

∣

TI

0

= PuTI +
Pu

4πf0
[sin(4πf0TI + 2ϕ0) − sin(2ϕ0)]

= PuTI +
Pu

2πf0
sin(2πf0TI) cos(2πf0TI + 2ϕ0). (17)

Similarly, the fourth term yields

∫ TI

0
u2(t + ∆T ) dt = 2Pu

∫ TI

0
cos2(2πf0(t + ∆T ) + ϕ0) dt

= 2Pu

∫ TI+∆T

∆T

cos2(2πf0t + ϕ0) dt

= PuTI +
Pu

4πf0
sin(4πf0t + 2ϕ0)

∣

∣

∣

∣

TI+∆T

∆T

= PuTI +
Pu

4πf0
[sin(4πf0(TI + ∆T ) + 2ϕ0) − sin(4πf0∆T + 2ϕ0)]

= PuTI +
Pu

2πf0
sin(2πf0TI) cos(4πf0∆T + 2πf0TI + 2ϕ0). (18)

With this, the difference of (17) and (18) is

∫ TI

0
u2(t) dt −

∫ TI

0
u2(t + ∆T ) dt =

Pu
4πf0

sin(2πf0TI)

[cos(2πf0TI + 2ϕ0) − cos(4πf0∆T + 2πf0TI + 2ϕ0)]

=
Pu

2πf0
sin(2πf0TI) sin(2πf0∆T ) sin(2πf0(∆T + TI) + 2ϕ0).

(19)
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3.1 Decision Variable Statistics for the GMLR

A practical narrowband interference signal u(t) will be modulated, therefore we as-
sume that the phase ϕ0 is randomly distributed between 0 and 2π, which means that
the difference (19) oscillates between ± Pu

2πf0
in the worst case, i.e., when the product

sin(2πf0TI) sin(2πf0∆T ) equals one. In this case the difference (19) has zero mean and
variance 1

2 [Pu/(2πf0)]
2.

With this result and with (17) and (18) we can write the mean and variance of µz as

µµz = Erη(TI), (20)

and

σ2
µz

=
2PuErη(TI)

B
+

P 2
u

8π2f2
0

, (21)

where we assumed that ρu,b is statistically independent form (17) and (18); note that ρu,b
is a function of both random signals, U(t) and B(t).

The variance σ2
fs

given in (12) can be expanded to

σ2
fs

= N2
0 TIB + 2N0

∫ TI

0
b2(t) dt + 4N0

∫ TI

0
b(t)u(t) dt + 2N0

∫ TI

0
u2(t) dt. (22)

With (15), (16) and (17) this becomes

σ2
fs

= N2
0 TIB + 2N0Erη(TI) + 4N0ρub + 2N0PuTI , (23)

where we ignored the second term in (17) which is much smaller than the part PuTI for
practical cases where 1/f0 � TI . The variance σ2

gs
given by (13) becomes with (18)

σ2
gs

= N2
0 TIB + 2N0

∫ TI

0
u2(t + ∆T ) dt

= N2
0 TIB + 2N0PuTI , (24)

where we ignored the second term in (18) for the same reason as above.
The variance σ2

z of the decision variable z = fs − gs is a function of σ2
µz

, σ2
fs

and σ2
gs

.

The component 4N0ρub of σ2
fs

, see (23), is a random variance and therefore complicates

the computation of σ2
z . However, for the practical range of parameters, TI > 10/B, and

Er > 10N0, the standard deviation of this term is dominated with a certain probability
by the terms 2PuErη(TI)/B and 2N0Erη(TI) in (21) and (23). For Pu/B ≤ N0 the term
2N0Erη(TI) is dominant over the standard deviation

√

8N2
0 ErPuη(TI)/B of the term

4N0ρub, because

σ2
3

σσ4

=
2N0Erη(TI)√

8N0

√

Pu/B
√

Erη(TI)
=

√

Erη(TI)√
2Pu/B

>

√
10N0√
2N0

=
√

5,

whereas for the case Pu/B > N0 the term 2PuErη(TI)/B is dominant over the standard
deviation

√

8N2
0 ErPuη(TI)/B:

σ2
µ2

σσ4

=
2(Pu/B)Erη(TI)√

8N0

√

Pu/B
√

Erη(TI)
=

√

Pu/B
√

Erη(TI)√
2N0

>

√
N0

√
10N0√

2N0

=
√

5
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3 EFFECT OF NARROWBAND INTERFERENCE

From this argumentation it follows that ignoring the term 4N0ρub in (23), results in at
least a rough approximation of σ2

fs
.

We can now give an expression for the variance, σ2
z , of the decision variable z. As

noted above, the terms σ2
fs

and σ2
gs

stem from the noise signal n(t) within the disjoint
intervals [kT, kT +∆T ] and [kT +∆T , kT +T ] and are therefore statistically independent.
The term σ2

µz
stems from the random channel B(t) and the random phase ϕ0 of the

interference u(t), hence the variability of z described by σ2
µz

is statistically independent
from the noise. With this and by skipping the term 4N0ρub, the total variance of the
decision variable z is

σ2
z = σ2

µz
+ σ2

fs
+ σ2

gs

=
2PuErη(TI)

B
+

P 2
u

8π2f2
0

+ 4N0PuTI + 2N2
0 TIB + 2N0Erη(TI). (25)

The mean value of z is

µµz = Erη(TI). (26)

Hence, the ratio of the mean value of z to the standard deviation of z for the GMLR is

RGMLR =
Erη(TI)

√

2PuErη(TI)
B + P 2

u

8π2f2
0

+ 4N0PuTI + 2N2
0 TIB + 2N0Erη(TI)

. (27)

For an integration durations in the order of TI = 40 ns this analytical expression has been
tested by simulation which showed good agreement. Note that for Pu = 0, i.e., when no
narrowband interference is present, then the BEP Pe = P (z < 0) is approximated by

Pe =
1

2
erfc

(

1√
2
RGMLR

)

,

compare with (7).

3.2 Decision Variable Statistics for the MLR

The MLR for 2PPM signals bases the symbol decision, â0, on the variable z = fs − gs.
For the MLR which is a coherent receiver, we assume that the polarity ck in (1) is always
positive, i.e., ck = 1 for all k; for this type of receiver, a random polarity would result in
a reduced sensitivity. Unlike the GMLR which computes the correlation of the received
signals with themselves, the MLR correlates the received signals with the template b(t);
i.e., under the assumption that ak = 0 the correlator samples are

fs =

∫ ∆T

0
b(t)[b(t) + n(t) + u(t)] dt, (28)

gs =

∫ ∆T

0
b(t)[n(t + ∆T ) + u(t + ∆T )] dt. (29)

9



3.2 Decision Variable Statistics for the MLR

Here fs corresponds to the first sample taken during the symbol interval and gs corre-
sponds to the second sample. Note that the coherent receiver captures the energy of the
received pulse within an interval of duration ∆T , while the optimum integration interval
for the noncoherent receiver is of the reduced duration TI , with TI < ∆T . The only
component of these samples, whose statistics is not yet described above, is the term

a :=

∫ ∆T

0
b(t)n(t) dt

of which statistically independent realizations appear in both terms, fs and gs. The mean
value of a is zero, because n(t) has zero mean; the variance is computed by the assumption
that n(t) is white Gaussian noise, i.e., has the autocorrelation function (N0/2)δ(τ). This
assumption does not change the result, because the output of the matched filter, which
is implicitly contained in the MLR, does not depend on whether the bandwidth of n(t)
is limited to the bandwidth of the matched filter impulse response b(t) or is unlimited.
Hence, the variance of a is

σ2
a = E

{

[
∫ ∆T

0
b(t)n(t) dt

]2
}

=

∫ ∆T

0

∫ ∆T

0
b(t)b(τ)E {n(t)n(τ)} dtdτ

=
N0

2

∫ ∆T

0

∫ ∆T

0
b(t)b(τ)δ(t − τ) dt dτ

=
N0

2

∫ ∆T

0
b2(t) dt

=
N0Er

2
. (30)

The terms

∫ ∆T

0
b(t) u(t) dt and

∫ ∆T

0
b(t + ∆T )u(t + ∆T ) dt,

have variance Erη(TI)Pu/B as characterized by (48) and are statistically independent
for the assumption that the phases ϕ0 of the interference u(t) in the two integration
intervals are statistically independent; this assumption is justified when we assume that
the narrowband interference u(t) is a modulated signal. With this, (30), (15), (48), and
from η(∆T ) = 1, see (8), fs is characterized by

fs ∼ N
(

Er,
N0ER

2
+

PuEr

2B

)

. (31)

and gs is described by

gs ∼ N
(

0,
N0ER

2
+

PuEr

2B

)

. (32)

10



4 EFFECT OF FINITE INTEGRATOR BANDWIDTH

As the components of fs are statistically independent of the components of gs, the decision
variable z is characterized by

z = fs − gs ∼ N
(

Er, N0ER +
PuEr

B

)

. (33)

In the considered case where ak = 0, a decision error occurs if z < 0. As the 2PPM
scheme is symmetric with respect to ak = 0 and ak = 1, the BEP is Pe = P (z < 0) and
is given by

1

2
erfc

(

1√
2
RMLR

)

,

with

RMLR =
Er

√

N0Er + PuEr

B

. (34)

In the absence of narrowband interference, i.e., when Pe = 0, the BEP is

Pe =
1

2
erfc

(

√

Er

2N0

)

. (35)

3.3 Comparison of GMLR and MLR

We make the following assumptions: B = 1 GHz, f0 = 4 GHz, TI = 40 ns, η(TI) = 0.8,
Pu < Erf0, Er = 10N0 (this corresponds to a receiver SNR of 10 dB. For the GMLR the
contribution of the narrowband interference to the denominator of (27) is

Pu

(

2Erη(TI)

B
+

Pu
8π2f2

0

+ 4N0TI

)

≈ PuEr · 17.6 · 10−9 s,

while for the MLR the contribution of the narrowband interference to the denominator
of (34) is

PuEr

B
= PuEr · 0.5 · 10−9 s.

We observe, that the MLR has a better immunity to narrowband interference. One
consequence for a practical GMLR receiver implementation with the given numerical pa-
rameters could be that the receiver filter, suppressing out-of-band interference, in contrast
to the MLR needs higher attenuation by about 15 dB. This result is plausible because
the GMLR uses the received signal as a correlation template and therefore collects any
signal passing the receiver filter, while the MLR has a fixed receiver template b(t) that
attenuates signal components that are not in the signal space spanned by the template.

4 Effect of Finite Integrator Bandwidth

Ideally, the integrator will compute the integral of the signal s2(t) over the interval [0, TI ],
i.e, the integrator output is

q =

∫ TI

0
s2(t) dt.

11



In practice, the bandwidth of the square argument in the integration, s2(t), will be
reduced in bandwidth. This effect is modelled by the convolution with the response of
an ideal lowpass filter response g(t) with one-sided bandwidth B and no attenuation in
the passband, hence,

g(t) =
4B sin(2πBt)

2πBt

t,f
◦−−•

{

1, for |f | < B,
0, else.

We compute the integrator output as

q′ =

∫ TI

0
[s2(t) ∗ g(t)] dt.

To see the impact of the bandwidth B on the integrator output q′ we compare this with
the ideal integrator output q. The impulse response of the lowpass filter, g(t), decays
to zero in proportion to 1/t, e.g., for B = 2 GHz, the response g(t) decays to a tenth
of its maximum value, g(0), for t10 = 10/(2πB) = 0.8 ns. The support of the signal
y(t) = s2(t) ∗ g(t) is infinite. However, with s2(t) having finite support, and g(t) having
a decay time that is much shorter than the integration duration TI , i.e, when TI >� t10,
we can approximate:

q′ =

∫ TI

0
[s2(t) ∗ g(t)] dt ≈ q′

∫

∞

−∞

[s2(t) ∗ g(t)] dt.

With

s2(t) ∗ g(t)
t,f

◦−−• [S(f) ∗ S(f)]rect(f/B),

where rect(f) is 1 for |f | < B and zero outside, we can write

q′ ≈
∫

∞

−∞

s2(t) ∗ g(t) e−2πft dt

∣

∣

∣

∣

f=0

=

∫

∞

−∞

[S(f) ∗ S(f)]rect(f/B)

∣

∣

∣

∣

f=0

= [S(f) ∗ S(f)]|f=0

=

∫

∞

−∞

S(f)S(−f) df

=

∫

∞

−∞

S(f)S∗(f) df

=

∫

∞

−∞

|S(f)|2 df. (36)

Note that

q =

∫ TI

0
s2(t) dt =

∫

∞

−∞

|S(f)|2 dt

i.e., we conclude from the above approximation that q ≈ q′. This means, that a bandwidth
B = 2 GHz of the lowpass filter has only a negligible impact on the receiver performance.
An intuitive explanation of this effect is that the short time integration over the interval
[0, TI ] is equivalent to a lowpass filtering; thus, the effect of an additional lowpass filter
changes the result only marginally.
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6 CONCLUSION

5 Coding for a 2PPM System with an Energy Collecting

Receiver

From the analysis in [1] it follows that the communication channel including the 2PPM
transmitter, the wireless propagation channel and the noncoherent energy collecting re-
ceiver, can by approximation be modelled as a symbol-clocked discrete-time 2PAM trans-
mitter, a memoryless AWGN channel and a coherent receiver. Figure 3 shows the real
system and the simplified equivalent model. With this it follows that all codes that are

PSfrag replacements

ai,k ∈ {0, 1}
a2,k ∈ {0, 1}

a1,k ∈ {0, 1} 2PPM

b1,i(η, t)
b1,2(η, t)

b1,1(η, t)

n(t), N0

2

f(t) (·)2
∫

· dt

Control Unit

∆T
− Detector

Detector

Synchronized to symbol clock

â1,k

â1,ka1,k ∈ {−1, +1} 2PAM

nk

nk ∼ N (µn, σ
2
n)

µn = χ(t1) − χ(t2)

σ2
n = σ2

ψ(t1) + σ2
ψ(t2) + σ2

ω(t1) + σ2
ω(t2) + 2σ2

ζ

Figure 3: 2PPM system with energy collecting receiver and simplified model.

suited for the discrete-time memoryless AWGN channel can also be applied to the con-
sidered UWB system. Table 1 gives some examples of codes and their coding gain for
the raw bit error rates 10−2 and 10−3.

6 Conclusion

This work reviews the BEP performance of a the noncoherent generalized maximum like-
lihood receiver (GMLR) in comparison with the BEP of the coherent maximum likelihood
receiver (MLR).

As a measure for the sensitivity of the GMLR and the MLR to narrowband inter-
ference, we defined the ratio of the mean value of a decision variable to its standard
deviation. It turned out that the MLR has better immunity to narrowband interference
by about 15 dB compared to the GMLR. This is plausible as the GMLR uses the received
signal as a correlation template and therefore collects any signal passing the receiver fil-
ter, while the MLR uses a perfect channel estimate as the correlation template, which
attenuates signals that do not perfectly lie in the signal space spanned by the template.
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Code Uncoded
BER

Coded BER Source

Rate 1/2 convolutional code with
constraint length 7 and hard deci-
sion Viterbi decoding

10−2

10−3
2.8 · 10−3

1.8 · 10−6
[7], Fig. 8-2-21

Rate 1/3 convolutional code with
constraint length 7 and hard deci-
sion Viterbi decoding

10−2

10−3
10−3

� 10−6
[7], Fig. 8-2-21

Hamming (15,11) code with hard
decision decoding

10−2

10−3
> 10−2

3.5 · 10−4
[8], Fig. 12-7

Hamming (15,11) code with soft de-
cision decoding

10−2

10−3
2.1 · 10−2

1.8 · 10−5
[8], Fig. 12-7

Table 1: Examples of codes and their gain for an AWGN channel and binary antipodal
modulation (BPSK).

The squared received signal contains second order intermodulation products which
cause signal spectra that are nonzero for frequencies up to twice the maximum signal
frequency. It was shown that spectral components above much above 1/TI do not con-
tribute to the decision variables. The reason for this is that the integrate and dump
unit together with the sampler can be understood as a short time integrator, which ob-
viously has a cut-off frequency proportional to the reciprocal of the integration duration
TI , this is typically a few tens of a nanosecond. This favorable property allows to use
low-bandwidth circuits to process the squared signal, which fit well into the concept of a
low complexity and low cost receiver.

The system considered in this work, consisting of a 2PPM transmitter and a nonco-
herent receiver results in approximately the same statistics of the decision variables as
the well documented system of a BPSK (binary phase shift keying) transmitter and a
coherent receiver. For the latter a large class of well documented codes exists that can
be applied.
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A RESPONSE OF A CORRELATOR TO A COSINE SIGNAL

A Response of a Correlator to a Cosine Signal

We assume a correlation template b(t) which is multiplied with the received narrowband
signal u(t) =

√
2Pu cos(2πfIt + ϕ0); this product is integrated over the interval [0, TI ]

and denoted as ρu,b, i.e.,

ρu,b =

∫ TI

0
u(t)b(t) dt. (37)

In the sequel we derive a statistical characterization of ρu,b on basis of the statistical
properties of the template b(t) and the phase ϕ0. For this purpose we define the normal-
ized received pulse b̄(t) with energy ‖b̄(t)‖2 = 2B; with this and according to Subsection
2.1 the received pulse is expressed as b(t) =

√

Er/(2B) b̄(t). The Fourier transform of
b̄(t) which considers only the integration interval [0, TI ] is

B̄(f) :=

∫ TI

0
b̄(t)e−i2πft dt.

This representation suggests to interpret B̄(f) as the sum of many statistically indepen-
dent random variables, i.e., the integral over the random received pulse shape weighted
with an exponential function; from the CLR (central limit theorem) it follows that B̄(f)
is for any f a complex Gaussian distributed random variable. As the real and imaginary
parts of the complex function cos(2πf0t) − i sin(2πf0t) = e−i2πf0t are orthogonal, it fol-
lows that the imaginary and the real part of B̄(f) are statistically independent. Note
that b̄(t) is assumed to be bandlimited to the frequency interval [f0 − B/2, f0 + B/2],
the spectrum B̄(f), however, is not bandlimited because the considered interval [0, TI ]
represents a limitation on the time axis. However, for practical bandwidths B on the
order of 1 GHz, and integration durations TI on the order of several tens of a ns, the time
bandwidth product TIB � 1. Hence, we can assume that the spectrum B̄(f) is nonzero
only for f ∈ [f0 − B/2, f0 + B/2].

The energy of B̄(f) is identical to the fraction of the energy of b̄(t), which falls into
the interval [0, TI ], i.e.,

∫

∞

−∞

|B̄(f)|2 df =

∫ TI

0
|b̄(t)|2 dt

= 2B η(TI); (38)

the definition of η(TI) is given in (8). We assume further that for an integration interval
shorter than the absolute channel delay spread τc, the number of echoes that fall into the
integration interval is large enough such that B̄(f) can still be assumed to be Gaussian
distributed for any f ∈ [f0 − B/2, f0 + B/2].

We assume that within this frequency interval, the variance of B̄(f), i.e., E
{

|B̄(f)|2
}

15



does not depend on f . Based on this and with (38), which is a constant, we can write

∫ f0+B/2

f0−B/2
|B̄(f)|2 df = E

{

∫ f0+B/2

f0−B/2
|B̄(f)|2 df

}

=

∫ f0+B/2

f0−B/2
E
{

|B̄(f)|2
}

df

= 2BE
{

|B̄(f)|2
}

= 2Bη(TI); (39)

this implies that E
{

|B̄(f)|2
}

= η(TI), i.e., that

<
{

B̄(f)
}

,=
{

B̄(f)
}

∼ N (0, η(TI)/2). (40)

We denote the complex baseband transform of B̄(f) as B̄l(f), with real and imaginary
part B̄r,l(f) and B̄i,l(f), respectively. From the definition of the equivalent baseband
transform in [7] it follows that these components are i.i.d. for any f and Gaussian
distributed [7]. With (40) and because the energy of the signal is half the energy of
the equivalent signal in baseband representation, we conclude that the variance of these
terms is 2η(TI), hence

B̄i,l(f), B̄r,l(f) ∼ N (0, 2η(TI)). (41)

Note further that in practice the average power spectral density E
{

|B(f)|2
}

decays with
1/f2; we ignore this effect for simplicity and obtain an approximation that is the more
accurate; the lower the relative signal bandwidth B/f0 is. In practice, the absolute
bandwidth will be on the order of 1GHz, and the center frequency is within the interval
[3.35 − 10.35] GHz

To derive the distribution of ρu,b, we express (37) as a function of B(f):

ρu,b =

√

Er

2B

∫ t

t−TI

u(t)b̄(t) dt

=

√

Er

2B

∫ TI

0
u(t)b̄(t)e−i2πft dt

∣

∣

∣

∣

f=0

=

√

Er

2B
U(f) ∗ B̄(f)

∣

∣

f=0

=

√

Er

2B
U(f) ∗ B̄(f)

∣

∣

f=0
, (42)

with U(f) and B̄(f) being the Fourier transforms of u(t) and b(t), respectively. To
compute U(f) we write u(t) in the form

u(t) =
√

2Pu [cos(ϕ0) cos(2πfIt) − sin(ϕ0) sin(2πfIt)];

its Fourier transform is

U(f) =
√

2Pu

{

1

2
[δ(f + fI) + δ(f − fI)] cos(ϕ0) −

i

2
[δ(f + fI) − δ(f − fI)] sin(ϕ0)

}

.

(43)
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A RESPONSE OF A CORRELATOR TO A COSINE SIGNAL

To simplify the derivation we substitute B̄(f) by it’s equivalent lowpass transform

B̄(f) =
1

2
[B̄l(f − fI) + B̄∗

l (−(f + fI))], (44)

see the definition of the inverse complex baseband transform in spectral representation.
Note that for convenience, the frequency shift in the equivalent baseband transform is
set to the frequency fI of the narrowband interference signal u(t). With (43) and (44)
we can express (42) as

ρu,b =

√

Er

2B
U(f) ∗ B̄(f)

∣

∣

f=0

=

√

PuEr

4B

{

1

2
[B̄l(f − 2fI) + B̄∗

l (−f) + B̄l(f) + B̄∗

l (f − 2fI)] cos(ϕ0)

− i

2
[B̄l(f) + B̄∗

l (−f − 2fI) − B̄l(f − 2fI) − B̄∗

l (−f)] sin(ϕ0)

}

f=0

. (45)

The terms B̄l(f − 2fI) and B̄l(−f − 2fI) are zero for f = 0 and for any choice of fI from
the signal frequency band [f0 − B/2, f0 + B/2]. Thus,

ρu,b =

√

PuEr

4B

{

<
{

B̄l(0)
}

cos(ϕ0) + =
{

B̄l(0)
}

sin(ϕ0)
}

. (46)

From this we conclude that, ρu,b is a weighted sum of two statistically independent
Gaussian random variables and thus, Gaussian distributed with variance

σ2
ρ = E

{

ρ2
u,b

}

=
PuEr

4B
E
{

B̄2
r,l(0) cos2(ϕ0) + 2B̄r,l(0)B̄i,l(0) cos(ϕ0) sin(ϕ0) + B̄2

i,l(0) sin2(ϕ0)
}

=
PuEr

4B

{

E
{

B̄2
r,l(0)

}

cos2(ϕ0) + E
{

B̄2
i,l(0)

}

sin2(ϕ0)
}

=
PuEr

4B

{

2η(TI) cos2(ϕ0) + 2η(TI) sin2(ϕ0)
}

=
Pu Erη(TI)

2B
, (47)

where we used the statistical independence of the random variables B̄r,l and B̄i,l and
together with 41). With (47) and since ρu,b is Gaussian distributed, ρu,b is characterized
by

ρu,b ∼ N
(

0,
Pu Er η(TI)

2B

)

. (48)

This result is confirmed by simulation. Note that the realization of ρu,b is a deterministic
function of the current channel realization b(t) and the phase ϕ0 of the interference
signal u(t). The factor one half is explained because only half of the power spectral
density ErB(f)/B is captured in the integral (37), as the other half is orthogonal to the
interference signal u(t).
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