
RZ 3594 (# 99604) 06/06/05
Computer Science 61 pages

Research Report

A Cross-Layer System Simulator for UWB-based Wireless Sensor
Network

Božidar Radunović*

IBM Research GmbH
Zurich Research Laboratory
8803 Rüschlikon
Switzerland

*This work was performed while the author was at the IBM Zurich Research Laboratory. For more
information on the project, contact Hong Linh Truong (hlt@zurich.ibm.com)

LIMITED DISTRIBUTION NOTICE

This report will be distributed outside of IBM up to one year after the IBM publication date.
Some reports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich

A Cross-Layer System Simulator for

UWB-based Wireless Sensor Network

Božidar Radunovíc

Februar 27, 2005

Acknowledgements

This work would not be possible without numerous fruitful discussions with my colleagues Hong
Linh Truong and Martin Weisenhorn.

Contents

1 Introduction 6
1.1 Motivation .. . 6
1.2 Transmit-only UWB Sensor Networks 7

1.2.1 Ultra-Wide Band Physical Layer and Coding 7
1.2.2 Transmit-Only Sensor Nodes 8
1.2.3 System Requirements .. 8
1.2.4 Application Scenarios 8
1.2.5 Performance Metrics .. . 10

1.3 Sensor Architecture 11
1.3.1 Packet Sizes . 11
1.3.2 Transmit Power .11
1.3.3 Coding . 11

1.4 Clusterhead Architectures 13
1.4.1 CH Architecture Based on Detection Threshold 13
1.4.2 Switched CH Architecture 18

1.5 Server Architecture 19

2 Simulator Description 20
2.1 Overview .20
2.2 Scheduling and Events 21
2.3 Physical Layer and Coding 26

2.3.1 Physical Layer .26
2.3.2 Coding . 26

3 Class Structure 28
3.1 Event . 28
3.2 Scheduler .. 28
3.3 Packet .29
3.4 Node . 30
3.5 Sensor .30

3.5.1 SensorIA . 31
3.5.2 SensorRA . 31
3.5.3 SensorSA . 32

3.6 Traffic .32
3.6.1 TrafficExponential .. . 33

4

3.6.2 TrafficConstant .. 34
3.7 Clusterhead .. . 34

3.7.1 ClusterGauss .37
3.7.2 ClusterNoncoherentSimple 37
3.7.3 ClusterNoncoherentAdaptive 38
3.7.4 ClusterNoncoherentSwitch 39

3.8 Server .40
3.9 Channel .42
3.10 Simulator .. . 43

4 Command Line, Configuration Files and Output 44
4.1 Command Line Parameters 44
4.2 Simulation Scenario Description 44
4.3 Channel Impulse Response Samples 47
4.4 Simulator Output 47

5 Future Work 49

Bibliography 50

A Sample Script Files 51
A.1 Static Scenario 51
A.2 script.pl .. . 51
A.3 plot cs.m . 59

5

Chapter 1

Introduction

1.1 Motivation

Wireless Sensor Network Simulator (WSNS) is a discrete-event simulator of a sensor network, design
for WP 3 of PULSER project. Its goal is to simulate low-data rate, transmit-only, PPM-UWB sensor
networks. For more details on network architecture see [5].In this document we describe the network
architecture as implemented in the simulator.

The goal of the simulator is to evaluate performance of different variants of network architec-
ture. It has thus to provide an accurate model of both physical and network layer of a networks
while maintaining reasonable simulation times. In addition, the analyzed network scenario requires
transmit-only sensors and hence half-duplex communication. This in turn implies an extremly simple
network layer. In order to exploit this simplicity, we have decided to write a new simulator, and not
to use some of the existing network simulators.

The simulator is a set of C++ classes that implement different parts of a sensor networks: sensors,
clusterheads, servers, packets, etc. The simulator takes input configuration from a configuration file
and generates a corresponding network. It then performs a discrete event simulation where each event
represent a change in a system (packet generation, packet arrival, traffic change, etc.). All the events
are logged, and the log file is used latter to produce different statistics and evaluate performance.

In this document we describe the basic principles of a transmit-only UWB wireless sensor net-
work, give an overview of the simulator, give details about the classes, define configuration files and
log output, and give several examples on how to write scriptsthat can explot these information.

6

1.2 Transmit-only UWB Sensor Networks

There is a recent increase in demand for wireless sensor networks, due to its simplicity, low cost and
easy deployment. Those networks can serve for different purposes, from measurement and detection,
to automation and process control.

A typical wireless sensor network consists of sensor nodes (SNs) and sinks. SNs are wireless
nodes equipped with sensing devices whose goal is to gather data in the environment and transmit
it to a central server. It is important that the transmissionis wireless, since the number of sensors is
typically very large, and cost of deployment of a wired infrastructure is prohibitively expensive.

In order to have a long life time, SNs typically use small transmission powers. The area covered
by a sensor network may be large, hence we need intermediate devices to relay data. These devices
are called cluster heads (CHs). A CH is a device whose task is to capture transmissions of SNs in its
environment, optionally do some limiting processing of thedata, and forward it to a central server.
One CH is responsible for coordinating a number of SNs: for a network of 100 SNs, we envisage to
have less than 10 CHs, depending on the network area. Since there are much fewer CHs than SNs,
they can be more expensive. They can rely on more sophisticated wireless technology to transmit
data to the central server, or in some cases they can also be wired. In this work we focus on the
communication between the SNs and CHs, and we assume all CHs have reliable (wired) links to the
central server.

1.2.1 Ultra-Wide Band Physical Layer and Coding

One of the promising physical layer technologies for futurewireless networks is the ultra-wide band
physical layer. The characteristic of UWB is that it uses a large bandwidth, typically of order of
several GHz, which allows it to transfer data at high data rates using low powers. Even though sensor
applications typically do not require very high data rates,the whole network may require a high data
rate due to a large number of simultaneously transmitting SNs.

One particular implementation of UWB is a pulsed-based UWB physical layer. It consists of
sending a very short pulses (of order of 1ns). Additional benefit of this technology, which is derived
from radar systems, is an accurate distance estimation. Sensor networks based on pulse-based UWB
are location aware, which is an important feature for applications like location tracking and intrusion
detection.

Another benefit of pulse-based UWB architecture is a simple transmitter architecture. A typical
modulation scheme for such physical layer is 2-PPM. A transmitter needs a pulse generation circuit,
and the position of a pulse is a simple function of a transmitted symbol. On the contrary, an alternative
UWB technology based on OFDM requires a much more complex transmitter that will generate
multiple carrier frequency and distribute the load accordingly.

A pulse-based UWB receiver is a significantly more complex circuit. There are two main types
of receivers: coherent and non-coherent. A coherent receiver achieves high data rates, but it needs
to estimate the channel impulse response and a very accuratesynchronization. On the contrary,
non-coherent receiver does not estimate channel and needs less accurate synchronization. It has a
simpler architecture, but it yields lower data rates. We assume that SNs and CHs are equipped with
a non-coherent UWB physical layer that is described in [8].

Fundamental design parameters of a physical layer are transmitting power, coding and rate. In
order to achive long range communication, one has to use hightransmission power or powerful codes

7

to cope with signal attenuation. However, due to regulatorylimit, high transmission power implies
longer delays between pulses and thus a lower data rate. The same holds for coding: more powerful
codes are more error-prone but decrease the rate of communication. Our choice of these parameters
are explained in detail in Section 1.3.

1.2.2 Transmit-Only Sensor Nodes

A sensor network comprises a large number of SNs. It is thus important that these nodes are as
simple and as cheap as possible. We want a sensor network to have a relatively high data rates
and location capabilities, and focus our SNs with pulse-based UWB physical layer. As discussed
in Section 1.2.1, pulse-based UWB transmitters are cheap and simple to implement. Nevertheless,
even a simpler, non-coherent receiver, requires complex elements, such as synchronization circuit,
and may be prohibitively expensive for low-end SNs.

We assume a network of transmit-only SNs, equipped with sensing and transmitting devices.
These SNs measure some data and transmit it to CHs. They can use an arbitrary medium access
scheme, but this scheme depends only on the available data. The SNs cannot sense the medium
nor can they receive any feedback from CHs or other SNs, henceSNs are completely unaware of
the global state of the network. This choice of sensor architecture implies that most of the design
complexity is in the backend.

1.2.3 System Requirements

Sensor networks are usually low data rate networks, as described in [7]. The main reason is that
low traffic, hence lowaveragedata rates imply low power dissipation and long network lifetime.
However, we emphasize that we are talking about low average data rate. The peak traffic may still be
high, but only during very infrequent time intervals. A typical sensor traffic thus may vary from a few
packets per hour up to 400 kbps for video transmissions. Notethat these numbers represent average
data rates: sensors will transmit packets at physical layerdata rate (which is of order of MBps), and
the average rate will depend on time gaps between packets.

A typical network consists of up to hundreds of sensors. Therefore, even if a video transmission
from a single sensor is considered low traffic, a simultaneous video transmissions of tens of sensors
is several times larger than the rate of the physical layer itself. A network should thus be designed
in such a way that it can maximize its performance both duringlow traffic intervals and high traffic
bursts.

We assume there exist low priority and high priority nodes. High priority nodes are located near
clusterheads and are expected with high probability to successfully transmit packets. Low priority
nodes are expected to deliver packets only when the total traffic is low and may be placed far from
cluster heads. This facilitates a deployment of a network and makes it cheaper.

1.2.4 Application Scenarios

In order to better explain system requirements, we illustrate them on on an example of a surveillance
system, based on scenario 21 from [7]. An underground car park is filled with sensors. There
are several types of sensors. Some sensors are low priority sensors, like temperature and humidity
measurements. They have very low traffic (< 10 kbps) and one or a few transmissions can be lost.

8

Other sensors are high-priority sensors, like seismic, infrared and microphone sensors are used to
detect movements of an intruder (≈ 10kbps traffic), and cameras that are transmitting live videos
from the area (≈ 400kbps traffic). Typical network of this type consists of 10-100 SNs, and when
cameras are active the aggregate rate may go up to several tens of Mbps. The scenario is depicted in
Figure 1.1.

Figure 1.1:An illustration of a transmit-only sensor network in the intrusion detection scenario. SNs
are denoted with circles, and CHs with crossed boxes. Empty circles are low-traffic sensors and
solid circles are video sensors. Sensors that are placed in shaded areas around cluster heads are
high-priority sensors. Others are low-priority sensors.

Camera and movement detection nodes are placed near clusterheads. When a traffic is high, there
will be lot of collisions. Sensors are unaware of network traffic, so collisions cannot be prevented.
However, if high priority nodes are close to clusterheads, interference from distant transmissions is
going to be low compared to received signal power, hence the packet error rates are going to be
low. On the contrary, low priority sensors may be significantly farther away. Their packets will
be correctly received only when there is no intrusion detection, which is sufficient for this type of
application.

Similar frameworks are described in scenarios 15 and 26 of [7]. Scenario 15 discussed position
monitoring for training purposes. A typical network contains 100 nodes and maximal rate is 100
kbps. Scenario 26 presents a smart shelf management and monitoring system. The system is required
to accommodate up to 1000 nodes with rates of 10-100 kbps. Although hardly ever all nodes will be
active at the same time, the total aggregated input traffic ofa network can easily go to tens of Mbps.

A similar example is a fire detection sensor network [6]. Sensors are distributed on an area, and
their goal is to detect a fire, and to monitor its spreading. The average traffic in such a network is very
low. However, in case of fire, there is a burst of traffic from those SNs that detect fire. Most of these
information are redundant to some extent: it is sufficient toget packets from one sensor to detect fire.
In order to get more precise information on fire spreading, weneed to capture more packets.

9

Another important application parameter is the communication range. As described in [7], a
range of communication for this type of applications is from10m to 100m. We select the target
communciation range to be 60m. Network coverage can be further improved by deploying more
clusterheads.

1.2.5 Performance Metrics

Summarizing the above requirements, we focus on sensor networks with low average data rates and a
large number of nodes, but with high peak data rates. Our goalis to develop network architecture that
will be available to sustain the bursts periods of peak transmission rates, defined by these examples,
and which will in parallel be efficient in low-traffic periods.

When a traffic is low, collision probability is low. The goal of cluster heads is to capture packets
from as many sensors as possible, thus to cover the largest possible area. Therefore, in low-traffic
regime, our performance metric isrange maximization.

On the contrary, when a traffic is high, there will be lot of collisions. All sensors are transmit-
only, hence they cannot sense the existing traffic and avoid collisions. In this regime, cluster heads
should concentrate only on high-priority sensor in its neighbourhood and maximize the total number
of packets they capture from these types of sensors. Thus, inhigh-traffic regime, our performance
metric isthroughput maximization .

The throughput maximization metric does not explicitly consider fairness issues. By maximizing
throughput some distant sensors may starve. However, some form fairness is implied by network
topology design. As described in application requirements, high priority sensors are expected to
be placed near clusterheads. Therefore, all high-prioritysensors will get approximately the same
traffic, while only low priority sensors will starve during traffic burst (which is one of the design
assumptions). We also propose two additional metrics that address more thoroughly the fairness
issue. The first one isproportional fairness [4]. Each sensor is assigned a log utility which is log of
the number of successfully transmitted packets. The goal isto maximize the sum of log utilities of
all sensors. This metric is widely used in networking. The second one isα-coverage time. It is the
time until at least one packet is received fromα fraction of deployed sensors. It depicts capability of
clusterheads to extract information from the whole network. All of these metrics can be evaluated in
the simulator, and an example is given in scrip files in Section A.2.

10

1.3 Sensor Architecture

There are three parameters that define sensor arhitecture: packet sizes, transmit power, coding and
medium access. Medium access is described in details in [5].Here we describe the choice of transmit
power, coding and packet sizes.

1.3.1 Packet Sizes

Sensors typically send small chunks of data. Here we assume packet size is fixed to 100 bytes (800
bits) with preambles. Similar performance results would beobtained with different packet sizes.

1.3.2 Transmit Power

As defined in Section 1.2.4, we require communication range to be 60m. The upper limit on power
spectral density of a UWB signal, defined by FCC, is -41.25 dBm/MHz. The goal is to transmit data
at a power sufficiently high such that a clusterhead 60 metersaway can synchronize to the signal. As
described in [8], synchronization is possible if the bit error rate is lower than10−1.

We choose pulse energy to be 30 pJ, which implies that the timebetween consecutive pulses is 400
ns. This in turn yields a rate of 2.5 Mbps. The bit error rate at60m links is around10−1. Although
this is sufficient for synchronization, it is not enough for successful packet reception. Additional
forward error correction or signal combining has to be performed to cope with this error rate. This is
described in the following subsection and in Section 1.5.

1.3.3 Coding

As we have seen above, the transmit power is tuned to achieve target bit error rate of10−1 at 60m
links. In order to receive a packet at that distance, it is necessary to use some form of forward error
correction.

We use a simple model of coding. We assume the underlying channel between a sensor and a
clusterhead is a binary symmetric channel [2]. This means that every bit at the output will be flipped
with some probabilityp, called error probability. The capacity of this channel is

C(p) = 1 − H(p) = 1 + p log2(p) + (1 − p) log2(1 − p).

In other words, we can construct a code of infinite block length that will be able to achieve capacity
C(p). For example, if error probabilityp = 0.1, the achievable capacity isC(p) = 0.5 which means
we can transmit 0.5 bits per channel use, or in order to conveyn bits of information, we need to
transmit2n symbols.

We assume that during a design time we can select a maximum sustainable error ratep. We then
construct a code to cope with that error rate. The end-to-enddata rate will be the physical data rate
multiplied byC(p). Again, if we want to cope with 10% error rate, the end-to-endbit rate will be
1.25 Mbps (the physical data rate is still 2.5 Mbps but in order to transmit a packet of 800 bits we
need to send 1600 coded symbols).

Since the maximum tolerable error rate for synchronizationis 10%, there is no need to consider
codes for higher error rates than that. In the performance analysis part we will evaluate performances
of different codes in conjunction with different clusterhead and server architectures.

11

Note that our model of coding is just a simple approximation.A real implementation would
apply coding on soft samples, and not on hard ones, as we assume here. This would increase the
performance of codes hence possibly change some of our conclusion. An implementation of coding
remains as a future work.

12

1.4 Clusterhead Architectures

Once a packet is transmitted from a sensor, it will be successfully received at a clusterhead if the sig-
nal strength is high enough, and if the level of the interference coming from concurrent transmissions
is low enough.

The goal of clusterheads is to successfully receive as many packets from sensors as possible. If
a sensor network is lightly loaded, the optimal strategy of aCH is trivial: it should try to decode
every packet it sense on the medium. Since CHs do not control sensors’ medium access, they cannot
prevent transmission failures that occur due to collisions.

However, the story is different when a network load is high. Atypical wireless receiver has only
a single receiving circuit, thus can receive only one packetat a time. While a CH is receiving a
packet from a distant SN, another transmission may starts from a near-by SN. This transmission will
interfere and may corrupt the received packet. At the same time, the CH will not be able to receive
the interfering packet since its receiving circuit was busywhen the transmission started. Hence, both
packets will be lost.

In this section we propose two clusterhead architectures that overcome this problem:adaptive
threshold architecture andswitched architecture.

1.4.1 CH Architecture Based on Detection Threshold

We first consider a CH with a single receiving circuit and a variable detection threshold, which we
denote withPdt. If the signal strength of a received packet is lower thanPdt, then the packet will be
ignored. Otherwise, the CH will try to receive it. We say thata packet isdetectedif the received
signal is stronger thanPdt. Only then a CH will try to receive it.

For simplicity of presentation, one can assume that the signal attenuation is a time invariant
function of distance and that all SNs send with the same power. Than there exists a threshold region
of radiusRdt, such that if a SN is outside of this region, a CH will not startreceiving packets sent by
this SN. This is illustrated on Figure 1.2.

dtR

Figure 1.2:An illustration of the detection threshold. Transmissions of sensors whose received signal
at the clusterhead is higher than Pdt are denoted with solid lines. The transmissions of sensors
whose received signal is below Pdt are denoted with dashed lines. The equivalent detection region
of radius Rdt is represented with a shaded circle.

13

The main reason why a clusterhead does not want to start receiving a packet is that if it starts
receiving a packet whose signal strength is low, there is a high probability that the packet will be
dropped due to collision. In the meantime, other packets, possibly with a higher signal strength, will
be rejected since the only receiving circuit is busy.

An obvious drawback of this approach is that distant SNs willnot be able to convey any infor-
mation at all to the central server. However, this drawback is a consequence of the constraints on the
SN architecture, and not of the protocol. Since SNs cannot adapt their medium-access policy, there
is no way to receive packets from distant SNs when the traffic is high, regardless of the CH architec-
ture. Nevertheless, this problem can be mitigated in several ways. Firstly, as one can see from the
examples in Section 1.2.4, a burst of traffic is usually triggered by an event. Therefore, even if some
packets from distant SNs are dropped, we might not loose too much information due to a correlation
among data. However, if a reliability of information is crucial, a simple solution is to add more CHs
on critical places, to maximize the capture probability. Since the number of CHs is anyway expected
to be significantly lower than the number of SNs, the solutionwill be cheaper than implementing a
receiver in each SN.

Theoretical Analysis

In order to better understand this issue, we define a simple model of the system and we analyze it
analytically. First we assume that the traffic of every SN is Poisson. This is somewhat reasonable
assumption, since if a system is heavily loaded, the optimalmedium access for every SN is to defer
each transmission for some random time (similar to random backoff in ALOHA). We also assume
a simplify physical layer model: if a CH receives a packet from a node at powerP rcv, and if an
interfering packet, which overlaps even for a small fraction of time, comes with power larger than
P rcv−∆, then the received packet will be lost. We tested this approximation on physical model in [8],
using networks with 2 nodes, and we found that approximationholds. This simplification neglects
the impacts of multiple concurrent interferers, but as we will see it fits well with the simulated results.

We now consider a scenario depicted on Figure 1.2 with one CH andn SNs. Signal from SNi is
received at the CH with powerP rcv

i. Each SNi generate a Poisson traffic with distributionλi. Let
the detection threshold bePdt, which means that we will try to decode packets whose received power
is larger thanPdt. The total traffic generated by those nodes is

λa(Pdt) =
∑

i:P rcv
i≥Pdt

λi.

We first estimate the probability that the receiver is idle atany given moment in time. The receiver
is idle if it has finished decoding a previous packet (successfully or unsuccessfully), and if no other
packet has arrived in the meantime with received power larger Pdt. The state of receiver (busy or
idle) is a stationary process in time so we call the probability of receiver being idlePrcv idle. We
can describe this process with a continuous Markov chain andwe get the stationary probability
Prcv idle = 1/(1 + λa(Pdt)).

We next model the probability that a SNi will successfully transmit a packet. This will happen if
the receiver is idle at the time a packet transmission starts, and if the packet does not overlap with any
packet whose received power is higher thanP rcv

i − ∆. We assume all packets have a fixed length
and we assume that the packet transmission time is one. Similar to non-slotted Aloha, we have that

14

if a packet arrives at time 0, then any other packet arriving within [−1, 1] will interfere with it and
cause collision. Therefore, the packet capture probability of nodei is

Pcapture(i, Pdt) = Prcv idle(Pdt) exp(−2
∑

j:P rcv
j≥P rcv

i−∆

λj).

The average throughput of SNi is thenλiPcapture(i, Pdt) and the average throughput of all SNs is

X̄(Pdt) =
∑

i:P rcv
i≥Pdt

λiPcapture(i, Pdt) (1.1)

The optimization problem of maximizing (1.1) can be solved numerically. We solved it for a
large number of topologies and traffic distribution and we find that it is always optimal to maintain
λa = 0.75 which yields the efficiency of the medium̄X of 22%. In other words, we should estimate
λa(Pdt) and varyPdt to obtainλa = 0.75.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

Aggregate input rate [Mbps]

A
gg

re
ga

te
 e

ffe
ct

iv
e

ou
tp

ut
 r

at
e

[M
bp

s]

Figure 1.3: We consider 50 SNs uniformly distributed on 40m×40m square, with one CH in the
middle. On x axis we see the aggregate input SN traffic. On y axis we see the aggregate goodput.

We verify our model by simulations. We randomly distribute 50 SNs on 40m x 40m square and
look at the goodput of the system for different load. The physical link rate is 5Mb/s, and we can see
in Figure 1.3 that the goodput is maximal when the aggregate traffic is around 75% of the physical
link rate. At that point, the utilization of the system is around 22%.

It may seems at the first sight that a simple model of non-slotted Aloha can be use to model the
problem. However, in non-slotted Aloha, the maximum utilization is 18%, which is achieved when
the total load is 50% of the physical fixed rate. These numbershave a high discrepancy with the
simulation results from Figure 1.3, hence they cannot be used to design an efficient adaptive receiver.

Optimal Architecture of Adaptive Receiver

As described in Section 1.4.1, it is optimal to keepλa = 0.75. We propose a simple method to track
loadλa and utilizationX̄ of the system, and to adaptPdt in order to keep utilization at the maximum.
We give a simple example of packet arrivals in Figure 1.4 to illustrate the idea.

15

Tu

� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �2 3

Tl

Tend

Tend_succ Tdetect

Tnext_succ

� � � � �
� � � � �
� � � � �
� � � � �1 4 5

� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �

Figure 1.4:An example of packet arrivals that illustrates the adaptation mechanism. Packet 1 has
arrived and is well received. Packet 2 was being received when it collided with packet 3 and is
discarded. Packet 4 is not detected because it arrives from a node outside of a detection threshold.
Finally, packet 5 again is well received.

We first show how to estimateλa, X̄. As shown in Figure 1.4, we denote withTl the average idle
time of a receiver, that is the average time between two packets from sensors that are detected. We
keep track of the end timeTendof the last detected packet (successfully or unsuccessfully received)
and at the momentTdetectwhen we detect a new packet, we updateTl = αTl + (1 − α)(Tdetect−
Tend). The estimate of the intensity of detected load is thenλa = packetduration/Tl.

Similar thing is done for estimating utilization̄X. We denote withTu the average time between
two successful receptions. We then keep the time of the end ofthe last successful packet transmission
Tendsucc. At the instant of the next successful packet transmissionTnext succ, we updateTu. For
updating, we use exponential weighted averageTu = αTu + (1− α)(Tnext succ− Tendsucc). The
estimate of the utilization is then̄X = packetduration/Tu. We set the filter constantα = 0.95 in
both cases.

In parallel, a CH also needs to learn about existing SNs and their distances. This is done during
packet receptions. Note that a CH does not need necessarily to successfully receive a whole packet to
perform this estimate. It might be sufficient to decode the header, and to estimate signal strength. As a
result of this estimation a CH keeps a list of active sensors and their received powers{i, P rcv

i}i=1,···,n,
ordered decreasingly by powers.

The key idea of the algorithm is to keep utilization at 22% anddetected load at 75%. In theory it
should be sufficient to use detected load as an estimator, butwe use both detected load and utilization
to have better robustness. First we setPdt = 0 and we are able to detect any SN. We start receiving
packets, and we updateTl, Tu and the list of SNs. Initially, at the bootstrap, the estimated detected
load and utilization are low. Once the detected load goes over 75% and at the same time the utilization
drops below 22%, it means that we have passed over the top of the curve on Figure 1.4, hencePdt is
too small and has to be increased.

The decision on the size of the detection threshold happens every time a new packet is sensed on
the medium. It is important to notice that it is more dangerous to overestimate the detection threshold
than to underestimate it. This is due to the shape of the curveon Figure 1.3. If we overestimate the
detection threshold when the total input traffic is low (leftside of the curve), this means that we
further decrease the input traffic hence further decrease the effective output. Similarly, when the total
input traffic is high (right side of the curve), if we underestimate the detection threshold, we increase
the total number of detected packets and again decrease the effective output rate. However, as we can

16

see from Figure 1.3, the slope of the curve is much steeper forlower input rates, hence the potential
loss when overestimating the detection threshold is higher.

Therefore, we perform a conservative decrease ofPdt: if it happens 4 times in a row that the
detected load is higher then 75% and the utilization lower than 22%, only then we will increase the
detection threshold by removing one SN from it (in other words, if we assume thatPdt = P rcv

i, then
we updatePdt = P rcv

i−1, if i > 1).
On the contrary, when decreasing the detection threshold, we are less conservative. The first

moment when the detected load is lower then 75% and the utilization is lower than 22%, we set
Pdt = P rcv

i+1 (if i < n, or elsePdt = 0).
Another important point is to keep updatingTl andTu even when no packet arrivals are being

detected. In case when a traffic intensity suddenly drops, ornearby nodes cease transmitting, we
might have the detection threshold too high. If a new packet arrives at timeTnow, we will take the
following values ofλa, X̄:

λa =
packetduration

αTl + (1 − α)(Tnow− Tend)
,

X̄ =
packetduration

αTu + (1 − α)(Tnow− Tendsucc)
.

This way, the detection threshold will gradually drop in time while there is no detected packet.
At the end, for completeness, we give the pseudo code of operations. Operation

start transmission(j) is called at a clusterhead when a packet from nodej is sensed. Op-
eration end transmission(j) is called when a packet transmission is finished. Note that
end transmission(j) is called only if a packet was detected (the received power isabove
the detection thresholdPdt).

start transmission (from node j):

lambda_a = packet_duration
/ (ALPHA * T_l + (1-ALPHA) * (now - T_end));

X = packet_duration
/ (ALPHA * T_u + (1-ALPHA) * (now - T_end_succ));

if (X < 0.2) count = count + 1;
else count = 0;

if (lambda_a < 75% and X < 20%)
begin

i = i+1;
P_dt = Prcv_i;
count = 0;

end
else if (count >= 4 and lambda_a > 75% and X > 20%)
begin

17

i = i-1;
P_dt = Prcv_i;
count = 0;

end

if (Prcv_j >= P_dt)
begin

// Receive

T_l = ALPHA * T_l + (1-ALPHA) * (now - T_end);
lambda_a = packet_duration / T_l;

end

end transmission:

if (successfully_received)
begin

t_u = ALPHA * t_u + (1-ALPHA) * (now - last_rcv);
util = packet_duration / utime;

T_end_succ = now;
end

if (packet_was_detected) T_end = now;

1.4.2 Switched CH Architecture

As we have seen in the previous section, the main reason for low efficiency of a CH is that if it starts
receiving a weak packet, and a stronger packet arrives during this reception, the weaker packet will
be dropped due to the interference, and the stronger packet will not be received because the receiving
circuit was busy when the packet arrived.

The most general way to solve this problem is to include several receiving circuits in parallel
so that a CH can cope with all arriving packets. This is not necessary in most of the cases. We
propose an alternative solution that offers a similar performance while being simpler and cheaper to
implement.

The basic idea is to include another circuit for detection and synchronization, in addition to the
full receiving circuit. This additional circuit is constantly monitoring the wireless medium for a
newly arriving packets. If a transmission of new packet starts, if its signal is stronger than the signal
of the packet currently being received, and if it significantly overlaps with the current packet, the CH
stops receiving the current packet and switches to the new, stronger packet. We call this architecture
switched CH architecture.

18

1.5 Server Architecture

The goal of a central server is to collect information from clusterheads about received packets. In its
most simple implementation, a server only receives packetsthat are successfully decoded by at least
one clusterhead. If no clusterhead successfully decoded a packet, the packet is lost.

In order to improve the performance of the system, we also propose a more advanced server
architecture. It is based on ideas from multi-antenna systems. Several clusterheads connected to a
central server can be viewed as a multiple input antenna system. If a clusterhead cannot decode the
apcket, it just send demodulated soft samples to the centralserver.

If at least one clusterhead successfully decodes the packet, there is no need for further processing.
However, if all of them fail, the server then combines the received samples from multiple clusterheads
and tries decoding it.

It is known that the optimal combining for channels with additive white Gaussian noise ismaxi-
mum ratio combining[1]. As we can see from the analysis in [8], our physical layercan be closely
approximated with a 2-PAM channel with Gaussian noise, hence maximum ratio combining should
also be the optimal combining.

In presence of interference, the interference is no more Gaussian, hence the maximum ratio com-
bining is not anymore the optimal combining. More advanced techniques, like minimum mean-
square error (MMSE) receivers should be applied.

Nevertheless, this approach is difficult to pursue for two reasons. Firstly, it is difficult to derive
the optimal receiver in case of interference, since the interference introduces the mixed terms (as
explained in [8]), and is not purely Gaussian. Secondly, to design an optimal receiver we would need
the perfect estimate of total interference at any point in time, which is difficult to implement.

Finally, as we will see in the performance evaluation section, combining is used to increase the
range in case of low traffic. In that case, the dominant noise component is background Gaussian
noise. When the traffic is high, clusterheads will focus on nearby sensors, hence there will be no use
in combining. For the above reasons we do not analyze more advance combining schemes but we
focus solely on maximum ratio combining.

19

Chapter 2

Simulator Description

2.1 Overview

In this chapter we turn to the simulator. We first give an overview of the simulator architecture, and
explain the most important parts like event processing, physical layer and coding. Later we give
detail descriptions of class hierarchy.

The network consists of two types of nodes. One type of nodes are sensors and the other type
are clusterhead. Sensors are transmit-only devices and they periodically send packets. The goal of
clusterheads is to receive sensor packets. They do not transmit in wireless medium. Instead, they use
wired connections to forward data to the central server.

We first give a brief overview of simulator architectures. Itcomprises the following classes:

• Sensors- defines sensor nodes, that transmit packets to the wirelessmedium.

• Clusterheads - defines clusterhead nodes, that receive packets from the wireless medium.
Each clusterhead can hear all the packets.

• Server - defines the central server that collects all the data. Each clusterhead passes data to
the central server through wirelines (which is implementedsuch that each clusterhead calls a
corresponding method of Server class).

• Traffic Generator - generates packet for a sensor according to a predefined distribution. Each
time a generator generates a packet, it puts it in a sensor’s queue and sets the next time it will
generate a packet. Each traffic generator has to be attached to one server at some point in
time. In some cases we want to change a traffic of a sensor during a simulation (e.g. before an
event occures we have very low data rate traffic, and afterwards we have a very high one). We
implement a traffic change in the simulator by attaching a newtraffic generator (with different
characteristics) at the point in time when the traffic changed.If a new generator is later attached
to the same sensor, the old generator is destroyed.

• Channel - keeps the parameters of the wireless channel, such as attenuation, rate and band-
width.

• Packet- an object that keeps the information about a transmitted packet, such as packet content
and the source id.

20

• Event - each event in the system, such as packet generation, packettransmission, reception, is
described with an event object.

• Scheduler - keeps a list of all events in the system, sorted according tothe event times.
Dispatches events one by one in the chronological order.

• Node- superclass, from which both sensor and clusterhead classes are inherited.

Network topology is defined by a configuration file, and it is created during the startup. Thus
at the very beginning, the simulator creates a channel object, a server object, all nodes (sensors and
clusterheads). A scheduler is also at the startup. Traffic generators for each sensor are assigned during
lifetime at time instants defined in the script file. If a traffic pattern should change at some point in
time, it is sufficient to assign a new traffic generator for that node, which will automatically replace
the old one. Packet objects are created by traffic generatorsand destroyed by central server (whether
or not they are correctly received). A life cycle of a packet is depicted on Figure 2.1. Dynamics is
depicted on Figure 2.2. A detailed description of a configuration file is given in Section 4.2.

Figure 2.1:Packet life cycle: generated by the traffic generator, it is forwarded to the sensor’s queue.
It is then broadcasted and observed by all clusterheads. Decoding information is forwarded to the
central server which decides whether the decoding is successful.

2.2 Scheduling and Events

The main part of the simulator is the scheduler. It handles all the events in the system. While parsing
a configuration file, the simulator inserts the initial events in the scheduler’s queue. The scheduler
starts processing these events, which in turn generate further events, until an event that stops the
simulation occurs.

There are five types of events in the simulator. EventPKT CREATE is scheduled when a packet
is to be created (and it creates an actual packet), eventPKT START is scheduled when a packet
transmission is to start,PKT END is scheduled when a packet transmission is about to finish, event
TRAFFIC CHANGE is scheduled when there is a change in traffic pattern and event SIMULA-
TION END is scheduled when the simulation should be ended. The actionto be performed when

21

Figure 2.2:Both sensors 1 and 2 transmit a packet. Sensor 2 is closer to clusterheads hence they
will detect its packet first. The packet from sensor 1 interferes, but does not destroys the reception,
hence packet 2 is received. Packet 1 is lost since no one was listening to it.

an event is executed depends on the event type. Type of event is given in variabletype of each event
object. Next we give a detail list of event types (defined inscheduler.h, in typeEventType).

• PKT CREATE - Packet is being created.

Figure 2.3:Schematic illustration of PKT CREATE event.

Parameters:

– packet: a new packet with the payload, generated by traffic generator, which is to be
inserted in the sensor’s queue.

– traffic generator: the traffic generator that has created the packet. This fieldis used to
verify if the generator has changed in the meantime (see Scheduler description for more
info).

– time: time at which the packet is inserted in the sensor’s queue.

22

Traffic generator decides when a new packet is generated. It first createspacket, and then
decides at whattime instant the new packet will be placed in the sensor queue. Then, it creates
an event of typePKT CREATE with parameterspacket andtime, and inserts it in the event
list.

When this event is processed by the scheduler, scheduler calls the inQueuemethod of the
corresponding sensor to store the packet in its queue. It then calls the methodnextof the traffic
generator. This method will then create a newPKT CREATE event that will correspond to
the next packet to be generated.

Note: an event of typePKT CREATE is associated to a particular traffic generator object.
Before generating a new event of this type, the scheduler verifies if the corresponding traffic
generator is still active on its sensor. If this is not the case, than the newPKT CREATE event
is not created, since there is another traffic generator assigned to the sensor. This can happen
when a change of a traffic generator (e.g. from constant to exponential) is requested in the
configuration file. Once a new generator is active, the old oneshould not generate packets
anymore.

Event processing code:

e->getPacket()->getSrc()->inQueue(e->getTime(), e->g etPacket());
if (e->getPacket()->getSrc()->getTraffic() == e->getTr affic())

e->getPacket()->getSrc()->getTraffic()->next(e->get Time());
break;

• PKT START - A sensor starts transmitting a packet. There are two subtypes of this event (see
below).

Figure 2.4:Schematic illustration of PKT START event.

Parameters:

– packet- packet a sensor starts transmitting.

– time - time at which the event occurs (packet transmission is started).

– clusterhead- if this field is not empty, that means thatclusterheadis starting to hear the
packet. This event is delayed w.r.t. the start of packet transmission at the sensor since
there is a signal propagation delay.

23

There are two subtypes of this event. If parameterclusterhead is NULL, then this event
means that at timetime, a sensor is starting to transmitpacket. The second subtype is when
clusterhead is not NULL. This means thatclusterhead is detecting the start of transmission
of packetpacket. This event is delayed w.r.t. the start of packet transmission at the sensor due
to signal propagation delay.

When an event of typePKT START, for a given packet, is processed by the scheduler for
the first time (which implies parameterclusterhead is set to NULL), it first callsstartTrans
method of the parent sensor. This method puts the corresponding sensor in the busy state, and
creates thePKT END event corresponding to the time when the packet transmission will be
over. The time of this event depends on the packet size, and isdecided by the sensor.

After methodstartTransis invoked, the scheduler creates severalPKT START events for the
same packet, one instance for each clusterhead registered in the system. Each event will occur
with a delay that is equal to the time the signal travels from the sensor to the corresponding
clusterhead.

Finally, if an event of typePKT START that occurs has a non-nullclusterhead, then the event
signifies thatclusterheadhas started receiving the signal. The scheduler than calls method
startTransof the clusterhead. The goal ofstartTransis to maintain a list of the active pack-
ets, including the packet being received and those interfering with it. For more details see
documentation for class Clusterhead.

Event processing code:

if ((ch = e->getClusterhead()) == NULL){
e->getPacket()->getSrc()->startTrans(e->getTime());
for(iter = simulator->chs.begin(); iter != simulator->ch s.end(); ++iter)

schedule(new Event(PKT_START, e->getPacket(), (* iter)),
e->getTime() + (* iter)->delay(e->getPacket()->getSrc()));

} else {
ch->startTrans(e->getTime(), e->getPacket());

}

• PKT END - A sensor ends transmitting a packet. There are two subtypesof this event (see
below).

Figure 2.5:Schematic illustration of PKT END event.

Parameters:

24

– packet- packet a sensor stops transmitting.

– time - time at which the event occurs (packet transmission is finished).

– clusterhead- if this field is not empty, that means thatclusterheaddetects the end of the
transmission of the packet. This event is delayed w.r.t. theend of packet transmission at
the sensor since there is a signal propagation delay.

There are two subtypes of this event. If parameterclusterhead is NULL, then this event
means that at timetime, a sensor is starting to receivepacket. The second subtype is when
clusterhead is not NULL. This means thatclusterhead is detecting the start of reception of
packetpacket. This event is delayed w.r.t. the start of packet transmission at the sensor due to
signal propagation delay.

Event processing code:

if ((ch = e->getClusterhead()) == NULL){
e->getPacket()->getSrc()->endTrans(e->getTime());
for(iter = simulator->chs.begin(); iter != simulator->ch s.end(); ++iter)

schedule(new Event(PKT_END, e->getPacket(), (* iter)),
e->getTime() + (* iter)->delay(e->getPacket()->getSrc()));

} else {
ch->endTrans(e->getTime(), e->getPacket());

}

• TRAFFIC CHANGE - This event denotes that a sensor has changed the traffic generator. For
example, a user may want to change traffic pattern at time instant 5s from constant traffic to an
exponential one. Then, an event of typeTRAFFIC CHANGE is inserted in the scheduler at
time 5s, which will create a new traffic generator and destroythe old one.

Figure 2.6:Schematic illustration of TRAFFIC CHANGE event.

Parameters:

– sensor- sensor that is to change the traffic generator

– traffic generator - the new traffic generator to be installed

25

– time - time at which the event occurs (traffic generator is changed).

At time, sensorchanges its traffic generator totraffic generator. The new one is destroyed.
However, one more packet of the old generator may appear if ithas already been put in the
queue (throughPKT CREATE message), which is usually the case.

Event processing code:

if (e->getSensor()->getTraffic()) delete e->getSensor()->getTraffic();
e->getSensor()->setTraffic(e->getTraffic());
e->getTraffic()->startAt(e->getTime());

• SIMULATION END - When this event occurs, the scheduler stops the simulator.

Parameters:

– time - time at which the simulator should be stopped.

2.3 Physical Layer and Coding

2.3.1 Physical Layer

The goal of this simulator is to provide an accurate simulation of a physical layer. Therefore, the
networking part is kept simple so that we can increase complexity in physical layer part while still
having reasonable simulation time.

It is possible to simulate the actual payload of a packet. It is sufficient to sethasdatavariable of
classTraffic to 1, which will set a variable of the same name of classPacketto 1, and the constructor
of Packetwill create a payload. This payload is currently random and this is sufficient for most of
the simulations.

When a clusterhead receives a packet, it adds noise and interferences from overlapping packets
to the received signal. At any point in time the simulator is aware what packets are active on the
medium, and what bits overlap, so it is able to do an accurate simulation of a physical model by
providingClusterheadclass with corresponding information. A clusterhead then makes a decision
on the signal level as it is done in a real receiver circuit. Thus, the decision might alter a symbol from a
packet. Once all symbols are demodulated, we count the number of alerted symbols and calculate the
symbol error rate. If this rate is higher than the maximum allowed, the packet is declared corrupted
and dropped. One physical layer implemented in the simulator is non-coherent UWB PPM physical
layer, described in details in [8].

2.3.2 Coding

The simulator currently implement a basic support for coding. After demodulating a symbol, physical
layer returns a hard bit decision (0 or 1) on the value of a symbol. We count a number of alerted bits
and if the symbol error rate (SER) is higher than the maximal onemaxerror, the packet is corrupter.

26

The maximum is defined by user. However, a higher tolerable SER usually implies lower data rate.
Since we do not implement a real code, we use a model of a binarysymmetric channel (BSC) to
[2]. This channel assumes there is a random bit flipping with probabilityp. Then the capacity of the
channel is

C(p) = 1 − H(p) = 1 + p log2(p) + (1 − p) log2(1 − p).

Suppose that the maximum error ratemaxerror = 0.1. This mean we want to produce a code for
BSC that will cope withp = 0.1 flipping rate. The rate of that code (which is equal to the capacity
of the BSC channel) isC(0.1) ≈ 0.5. In other words, if we have a packet of 1000 bits, we need
to code it in a packet of1000/C(p) = 2000bits in order to tolerate symbol error of 10%. This is
clearly a suboptimal approach as a more sophisticated coding could be implemented on soft output
of demodulator. More advanced coding remains as a future work.

The implementation then goes as follows: traffic generator is initialized with uncoded packet size
and desirable maximum symbol error rate. Using BSC capacity, traffic generator calculates coded
packet size and creates packets of that size. The actual payload in the packets is random, and is used
only to test SER. At the decoding end, clusterhead counts number of alerted symbols and compare it
with maxerror, discarding faulty packet.

27

Chapter 3

Class Structure

In this section we give a list of all classes with belonging members. Each class and each member of
each class is documented. Some members are skipped, in case they are simple enough so there is no
need to document them.

3.1 Event

ClassEvent defines event objects that are being scheduled. Each event consists of the arrival time
and the action to be performed. These objects are put in the scheduler, and executed in the order of
the arrival time. When an event is executed, it means that thesystem time equals the object arrival
time.

ClassEvent contains the following members:

• static long free id - next free event ID that should be allocated to the new event.

• long id - ID of the event

• Time time - time at which this event occurs.

• EventType type - event type

• Packet * pkt - packet associated to the event (NULL if no packet)

• Clusterhead * clusterhead - clusterhead associated to the event (NULL if no cluster-
head)

• Sensor * sensor - sensor associated to the event (NULL if no sensor)

• Traffic * traffic - traffic generator associated to the event (NULL if no traffic)

3.2 Scheduler

ClassScheduler implements an ordered list of events. It performs basic operations on events, such
as inserting an event in the event list (also calledscheduling), and processing the first event from the

28

list (also calledhandling). Scheduler cannot exist alone, and is always associated toan object of type
Simulator.

Schedulercontains the following members:

• void schedule(Event * event, Time time) - Inserts a newevent in the list of
events, attime. The event will be processed when the current time of the system coincides
with the time of the event.

• void print() - prints the list of all scheduled events.

• int handleEvent() - Processes the first event in the event queue. This method is called
when one event is processed and the simulator wants to process the next available event. The
scheduler than takes the most recent event from the queue, set the current simulator time to be
equal to the time of that event, and processes the event (see the descriptions of the event types
for more details on processing different events).

• Time time - current time of the system, set to the time of the event currently being executed.

• SchedList * start, * end - pointers to the beginning and the end of the event list.

• Event * nextEvent() - private method that returns the next event in the list. Usedin
handleEvent().

• Simulator * simulator - pointer to the simulator owing the scheduler.

3.3 Packet

ClassPacketdefines a concept of a packet. It contains data about a packet,including its size, trans-
mitted power, source node, and the actual data if applicable. If a packet with actual data is generated,
the data is generated at random in the constructor.

Packetcontains the following members:

• static long last id - ID of the last packet. Used by constructors to create new packets.

• long id - the ID of the packet.

• Sensor * src - pointer to the sensor that is the source of the packet.

• long int length - defines the size of the packet in bits. This represents a sizeof an
encoded packet (if coding is used).

• long double power - transmitted power of the packet. From a packet perspective, it is
only a number. The way it is used is defined in clusterhead, andmay vary from one implemen-
tation of a clusterhead to the other.

• int has data - 1 if packet contains data. Data bits are stored in*data. Otherwise,has data
is 0, and*data = NULL;

29

• char * data - pointer to the actual payload.

• double max error - maximum symbol error rate that can occure without corrupting the
packet. Currently we implement only a simple model of coding. For more details see Sec-
tion 2.3.

• int getDataBit(int i) - extracts the i-th data bit from the payload.

Packet memory handling:
A packet is created inTraffic class, in methodgetPacket. The pointer to this structure is then

passed throughout the simulation, until the packet is received by the server. The context of the packet
is actually deleted inServerclass, in methodreceiveStatus. At this point we know that all CHs have
received and finished processing the packet hence we can safely free the packet.

Note also that the same packet might be needed by clusterheads in future, in case if it interferes
with a packet currently being received. Since each clusterhead decides upon this separately, it makes
a copy of the packet when putting it in its interference list.This copying is done inClusterhead
object, in methodaddInterference. Therefore, when a packet is needed, a clusterhead will use the
local copy as the global one might have been deleted by this time. This copy is deleted in method
deleteInterferenceList, once the interference list is no longer needed.

Since in some comparison it may happen that a packet and its copy are compared, it is important
not to compare pointers, but packets IDs, that can be obtained usinggetIdmethod.

3.4 Node

ClassNodeimplements a basic functionality of all nodes in the system,be it a sensor or a clusterhead.
The two types of nodes, sensors and clusterheads, will be later derived from this class.

Nodecontains the following members:

• static long id - ID of the node. This ID is treated as the address and is set by the config
file. We do not check uniqueness.

• double x,y - coordinates of the node.

• Simulator * simulator - the simulator to which the node belongs.

3.5 Sensor

ClassSensorinherits classNodeand implements the basic sensor functionality. It implements the
simples scheduling called instant access (IA). This means that the next available packet is sched-
uled as soon as the medium is free. It is latter derived to implement different types of scheduling
implementations (RA and SA).

• queue< Packet * > queue - this is a queue where packets generated by sensing device
are placed. Currently it has an unlimited size.

30

• int busy - the indicator is true if the sensor is currently transmitting a packet. That means
that a newly arriving packet has to be placed in the queue rather than being directly transmitted.

• int buf size - sensor buffer size. If a packet arrives when the queue is full, the packet will
be dropped, andPKT DROP Q message will be generated.

• Traffic * traffic - contains a pointer to the traffic object that generates packet for this
sensor.

• void inQueue(Time now, Packet * p) - if the queue is empty, schedules the packet
straight away, otherwise stores it in the queue.

• virtual void schedule(Time now) - schedule the next packet transmission if the
sensor is not already busy sending.

The Sensorclass itself implements instant access (IA). That means that the next available
packet is scheduled immediately when the medium is free.

The scheduling is done by insertingPKT START event into the scheduler’s queue at the cur-
rent time instant (now).

If the sensor is busy,scheduledoes not do anything, since it will be called latter anyway by
endTransmethod.

• void startTrans(Time now) - start actually transmitting the first packet in the queue
on the medium. This method is called by scheduler whenPKT START. The role ofstartTrans
is to schedulePKT END event whose time depends on the size of the packet.

• void endTrans(Time now) - called by scheduler when the packet is transmitted (PKT END
event is executed). Since the transmitted packet is still inthe queue, this method removes it
from the queue and callsscheduleto schedule the next packet.

• void setTraffic(Traffic * t) - sets the traffic generator to a sensor.

3.5.1 SensorIA

Performance of classSensorIA is actually implemented bySensorclass. See above for more details.

3.5.2 SensorRA

ClassSensorRAinherits classSensorand implements random access (RA) sensor nodes.

• Time avg delay - average time of exponential backoff performed before sending each
packet.

• virtual void schedule(Time now) - actually performs the exponential backoff. If
the medium is idle, selects a random backoff and inserts the eventPKT START in the sched-
uler queue at that time. If the medium is not idle, does nothing.

31

3.5.3 SensorSA

ClassSensorSAinherits classSensorand implements scheduled access (SA) sensor nodes. Each
node contains a time-hopping code, which is a set of several random numbers. The sensor performs
backoffs using these numbers, each time the following one, looping to the first one when the last one
is reached. This way a pseudo-random access is implemented such that the statistics are the same as
for a random access, but clusterheads actually know schedules of sensors in advance.

In our implementation, a user needs to pass the average delayand the size of the time hopping
code to the constructor. The code itself is generated at random by the constructor.

• Time avg delay - average time of exponential backoff performed before sending each
packet.

• Time * delay - an array of random numbers representing time-hopping codes.

• int ds size, ds current - total size of the time-hopping code, and the index of the
current code being used.

• virtual void schedule(Time now) - performs the backoff equal to the current value
of time-hopping code (delay[dscurrent]).

3.6 Traffic

This class is responsible for generating new packets. OneTraffic object is assigned to each sensor. At
the startup, each sensor initializes its traffic object, which in turn generates the first packet. Whenever
a packet is created withinTraffic object (in other words, an event of typePKT CREATE has oc-
curred), it schedules the next packet by inserting an event of typePKT CREATE in the scheduler’s
list at some point in time. This point is time defines the traffic statistics and is defined differently
in different subclasses (exponential, uniform, etc.). ClassTraffic is purely virtual (abstract) since it
does not implement methodsnextandprintTraffic.

• Traffic(double p, long int ps, double me, int hd) - constructor of the
class.p is the TX power of a packet,ps is the size of an uncoded packet,meis the maximum
error rate (defining the code) andhddenotes if packet contains real data. The last two parame-
ters are by default set to 0. Note that the internal variablepacketsizeis not set to the uncoded
packet sizepsbut is set to coded packet size obtained by dividingpswith code rate.

• virtual void startAt(Time t) - used to start a traffic generator. It will not generate
a packet but will only insert the first event of typePKT CREATE at timet in the scheduler.
Then when this event is processed, the first packet will be generated (at timet), and the next
packet will be scheduled.

• Packet * genPacket(long int ps) - generates a packet of sizepsand returns a pointer
to it. Currently does not do much. In future, some kind of coding should be done here.

32

• virtual void next(Time t) - this method is called at current time t. It should decide
at what timet1 the next packetp is to be send, and should callschedAt(t1, p). This method is
called fromhandleEventmethod ofSchedulerclass when handlingPKT CREATE event, to
schedule the next packet.

Methodnext is also responsible for generating packets. It generates a packet and passes it
to schedAtmethod. This is done here since each traffic generator may generate packets of
different sizes, transmitted powers and possibly contexts, and methodnext is meant to be the
only one that has to be overloaded in an implementation of a specific traffic.

This method is virtual and is not implemented here. It has to be implemented in inherited
classes, and should reflect the chosen traffic distribution.

• void printTraffic() - prints the data about traffic generator. It is not implemented here
and has to be implemented in the subclasses.

• void schedAt(Time t, Packet * p) - inserts aPKT CREATE event in the sched-
uler for the next packet. Does not create the packet. The actual packet is generated innext
method.

• double getCodeRate() - the rate of a code is calculated based onmaxerror (maxi-
mumm tolerable symbol error rate) under the assumption of BSC. For more details see Sec-
tion 2.3.

• long double power - defines the transmitted power of the packet.

• Sensor * sensor - parent sensor of the traffic generator.

• double max error - maximum symbol error rate that can occure without corrupting a
packet from this source. Currently we implement only a simple model of coding. For more
details see Section 2.3.

• long int packet size - size of the packet (if it is fixed). This is a size of a coded packet.
It is obtained by dividing the size of an uncoded packetpswith getCodeRate. For more details
see Section 2.3.

• int has data - defines if the generated packets should contain data

Change of traffic generator: ever sensor can change a traffic generator during a simulation. This
is done by eventTRAFFIC CHANGE . When this event occurs, the scheduler will kill the exist-
ing traffic generator of a sensor, and set the new one, passed throughTRAFFIC CHANGE event.
Events of typeTRAFFIC CHANGE are scheduled when parsing the configuration file.

3.6.1 TrafficExponential

ClassTrafficExponential inheritsTraffic class, and implements an exponential traffic generator. A
time between two consecutive packets has exponential distribution with averageavg delta.

• Time avg delta - average time between packets.

33

• void next(Time t) - uses exponential random generator to generate pause between two
consecutive packets.

3.6.2 TrafficConstant

This is an implementation of a traffic generator that has regular patterns of both packet arrival times
and packet sizes. Packet arrival times are stored indelta seqand packet sizes inpacketsizes. For
every new packet, next delay and the packet size are taken from these arrays in sequence.

• Time * delta seq - sequence of packet inter-arrival times.

• int ds size - length ofdelta seqsequence.

• int ds current - index to the next entry indelta seqsequence to be used.

• Time * packet sizes - sequence of packet sizes.

• int ps size - length ofpacketsizessequence.

• int ps current - index to the next entry inpacketsizessequence to be used.

3.7 Clusterhead

ClassClusterheaddefines a node that receives packets from sensors and tries todecode them. The
goal of a clusterhead is to monitor packets on the wireless medium. If a clusterhead is free it can
decide to try receives an incoming packet. Otherwise, it puts an incoming packet in the interference
list, that contains all the packets that might interfere with its current reception.

We first briefly sketch the functionality of a clusterhead, and then we give a detailed information
about each method. A clusterhead is notified about an arrivalof a packet throughstartTransmethod.
There, the clusterhead has to decide if it wants to starts receiving that particular packet or ignore it. If
ignored, the packet will be stored as a possible future interferer. At the end of the packet transmission,
methodendTransis invoked. If it was the end of the packet being received, theactual demodulation
is performed, and the result of the demodulation is passed tothe central server.

• list< PacketList > active - lists all the packets currently being transmitted in the
wireless medium. This includes the packet that is being received, if any.

Whenever a sensor starts transmitted a packet, it invokesstartTransmethod of each cluster-
head. In this method, the packet is then added toactivelist. When the transmission is over, a
sensor callsendTransmethod of a clusterhead, which removes the packet fromactivelist.

• list< PacketList > interfere - lists all the packets that interfere with the packet
currently being received. When a clusterhead starts a reception of a new packet, all packets
from the active list are copied into theinterfere list. If new transmissions start during the
reception, these packets are added directly to theinterferelist. Once the reception is finished,
interferelist is emptied.

34

Note that the packet currently being received is ininterferelist. This is due to the fact that a
clusterhead may at any time switch to receive an another packet. When that happens, keeping
always all the packets ininterferelist facilitates clusterhead’s implementation. However,that
means that when calculating interference one should avoid including the packet being received
(and remember here, packets are compared by their IDs, not pointers!).

• Server * server - a server to which the clusterhead is attached.

• Channel * channel - a channel model to be used by the clusterhead.

• int startReceiving(Time now, Packet * p) - true if the clusterhead should start
receiving packet p. By default, a clusterheads wants to receive every packet. However, some
adaptive threshold strategies might decide not to receive apacket if its power is to weak. See
subclass’ documentation (e.g.ClusterNoncoherentSimple) for more.

• inline virtual int switchPacket(Time now, Packet * p) - true if CH should
switch to receiving p instead of currently receiving packet. By default, a clusterhead does not
do that. However, in case of advanced architectures, such asswitching ones, it might drop the
packet being received in favor of a stronger one detected. See subclass’ documentation for
more.

• DecodingResult * receive(Time now, Packet * p) - returns the decoding result
of packet p at a clusterhead. The actual demodulation/decoding staff is done here. Since
the demodulation depends on a physical layer, the method is not implemented here and is
purely virtual. In general, one should look at all the interfering packets frominterfere list,
and at the received packet and check the received SNR. See subclass’ documentation (e.g.
ClusterNoncoherentSimple) for more details.

• void receiveNotification(int result) - called by Server with the result of last
packet decoding. Typically needed for adaptive mechanisms. Namely, if a clusterhead manages
to decode a packet, it will update the parameters of an adaptive mechanism. However, in case
of cooperative decoding, it may happen that clusterhead’s decoding fails but that the packet is
decoded at the server. In that case the server notifies the clusterhead about it using this method.

• Time t receiving - arrival time of a packet currently being received.

• Packet * p receiving - the packet being received.

• void addInterference(Time t, Packet * p) - adds packet p, arrived at time t to
the interference list.

• void deleteInterferenceList() - empties the interference list. This is done when
a packet packet reception is finished. It is also done in the destructor.

• void startTrans(Time now, Packet * p) - called whenever some sensor starts trans-
mitting a packet. It is virtual, and is overloaded by some subclass to implement adaptive mech-
anisms.

35

• DecodingResultType endTrans(Time now, Packet * p) - called whenever some
sensor ends transmitting a packet. It is virtual, and is overloaded by some subclass to imple-
ment adaptive mechanisms. Returns the result of decoding, but this returning argument is not
further used at the moment.

• void printActive() - printsactivelist for debugging purposes.

• void printInterference() - prints interferelist for debugging purposes.

• long double attenuation(Node * src) - calculates interference from nodesrc to
the clusterhead.

• long double delay(Node * src) - calculates signal propagation delay from nodesrc
to the clusterhead.

• Packet * getReceiving() - returnsp receiving, that is the indicator whether the clus-
terhead is currently receiving a packet or not.

• long double MRCcoef(Packet * p) - returns a weighting coefficient (MRC or alike)
a server should use for this clusterhead receiving packet p when combining it with other clus-
terheads. The method is purely virtual and is defined elsewhere.

There are several other types that are important for clusterhead functionality and we define them
here:

• PacketList - for every packet inactiveand interfere list, we need to store not only the
packet itself but also the starting time and the attenuation(since the packet class itself contains
only the info about the transmitted power). StructurePacketListencapsulates all this data at
one place.

• DecodingResultType - this is enumerated type that defines possible results of decoding.
Possible results are:

– NOT LISTENING - the clusterhead did not decide to try to receive the packet

– DECODE ERROR - it tried to receive but failed

– DECODE OK - packet successfully received

– DECODE COOP - no clusterhead received the packet alone, but combining at server
succeeded; used only byServer class)

– SYNC FAIL - bit error rate was so high that the clusterhead cannot even synchronize
(which in turn means that this clusterhead cannot even further participate in combining).

• DecodingResult - class that contains different information about decodingprocess, includ-
ing DecodingResultType. However, most of these information, unlikeDecodingResultTypeare
used solely byServer class, so we define it in Section 3.8.

36

3.7.1 ClusterGauss

ClassesClusterGaussSimple, ClusterGaussSimpleOpt, ClusterGaussSwitchare simple subclass
of Cluster class that simulate a simple physical layer with Gaussian signals. All signals are assumed
to be Gaussian, and a packet is received if the average SNR at the receiver during the transmission
is higher than a given threshold. These implementations were done for testing purposes only and are
not fully debugged.

3.7.2 ClusterNoncoherentSimple

This class is an subclass ofCluster class that implements physical layer described in [8]. Its main
contribution is methodreceivethat performs the demodulation described in [8]. This clusterhead also
implements a fixed detection threshold, defined indetectthr. If the received signal power of a packet
is smaller than the threshold, the packet will not be received. File cir.txt is used to provide channel
response samples, and it is necessary to provide this file if the class is used. The description of the
file is given below.

• long double detect thr - defines a fixed detection threshold. If the received signal
power of a packet is smaller than the threshold, the packet will not be received.

• virtual long double MRCcoef(Packet * p) - returns a weighting coefficient (MRC
or alike) a server should use for this clusterhead receivingpacket p when combining it with
other clusterheads. As shown in [8], ifP is the packet received power at the clusterhead,Ti is
the integration interval,B is the bandwidth andN0 is the noise spectral density, then the MRC
coefficient isP/(Ti ∗ B ∗ N0 + P).

• virtual int startReceiving(Time now, Packet * p) - true if the received power
is higher then the threshold, meaning that the clusterhead should start receiving packet p.

• virtual DecodingResult * receive(Time now, Packet * p) - returns the re-
sult of decoding packet p at the clusterhead, using the physical layer from [8].

• long double * CIR - a pointer to channel impulse responses. They are loaded from a file
calledcir.txt. This is a plain text file which contains CIRSIZE lines, each line containing
CIR SAMPLE numbers. A column in this file represents one measuredchannel impulse re-
sponse. Resolution of these samples is defined ints eff, and is hard-coded at the moment. File
cir.txt is parsed during construction of a clusterhead and loaded inthe memory. Different CIR
are latter used for different decodings.

• long double tseff - resolution of channel impulse responses (hard-coded at the moment).

• void eval interf(...) - a private function that is called byreceive(...)to help evalu-
ating the decoding process.

Transmitted power of a packet: It is defined inpowerfield of Packetclass, and it represents energy
of a pulse divided by 200 ns. For example, if a pulse energy is15pJ , then the value ofpowerfield
should be7.510−5. This definition comes from the original physical model description where a time

37

slot was 200ns. The implementation of [8] still uses hard-coded time slot length of 200 ns. When
one changes the bit rate of the channel, it only changes packet durations, and not the implementation
of the decoding. This is, I believe, not perfectly correct since channel samples incir.txt are done
for 200ns time slots, but should be a fairly well and simple approximation.

3.7.3 ClusterNoncoherentAdaptive

This class is an subclass ofClusterNoncoherentSimplewhich implements the adaptive threshold
strategy [5]. Each clusterhead first tries to get a list of allactive sensors by listening to different
packet. Every time a new sensor is discovered, its received power is put indt list. This ordered list
is later used when adapting the threshold.

At the same time, a clusterhead monitors total load and utilization through the four variables:
util, utime, loadandltime. Using these variables, a clusterhead decides whether and how to update
the threshold. When a threshold is adapted, it is always adapted such that it includes or excludes
one more sensor, using information about sensors fromdt list. The actual adaptation algorithm is
described in [5], and the aforementioned variables are described in details below.

• list< long double > dt list - an ordered list of different received powers. Each
received power corresponds to one sensor (the actual ID of that sensor is not important). The
information from the list is used when updating the threshold such that every time it is updated,
exactly one node is excluded or included in the threshold region.

• list< long double >::iterator current dt - a pointer todt list that points to
the received power which corresponds to the actual value of the threshold. When the threshold
is increased, it means thatcurrent id is increased by one, and similarly decreased by one when
the threshold is decreased.

• long double utime - the average estimated time between two received packets.

• long double util - the average utilization (1 / utime)

• long double ltime - the average estimated time between two detected packets.

• long double load - the average load (1 / ltime)

• Time last rcv - the time of the last received packet (used to estimate utime).

• Time last end - the time of the last detected packet (used to estimate ltime).

• L DOWN- when the load is below this constant, the system is considered underutilized. Typi-
cally 60%.

• L UP- when the load is above this constant, the system is considered over utilized. Typically
70%.

• U UP- when the utilization is below this constant, the system is considered inefficient. Typi-
cally 20%.

• ALPHA- a constant that is used in the exponential weighted averagefilter

38

• int count - a counter that is increased every time the utilization is above theU UP thresh-
old, and is reset otherwise. It is used to update the threshold as described below.

• N THRUP- a constant that defines when a threshold should be decreased. If counterreaches
N THRUPwhile the load is belowL DOWN, then the threshold will be decreased (more sen-
sors admitted).

• N THRDOWN- a constant that defines when a threshold should be increased. If counterreaches
N THRDOWNwhile the load is aboveL UP, then the threshold will be increased (a fewer
sensors admitted).

• void startTrans(Time now, Packet * p) - called at the beginning of a packet
transmission. Does not implement any new code with respect to ClusterNoncoherentSim-
ple.

• DecodingResultType endTrans(Time now, Packet * p) - called at the end of
a transmission. If the decoding is successful, updatelast rcv, utimeandutil. Also updates
last end.

• virtual int startReceiving(Time now, Packet * p) - called when a packet
should be received. It first checks whether that sensor is already in the list of known sensors
(that is if the received power is already indt list, since for us the attenuations are constant in
time). Next it updatesload andutil as if we have just successfully received a packet. This is
necessary in case when a threshold is high and a load had suddenly dropped; we then risk of
not receiving any packets. Then, we update the threshold based on the currentload andutil
estimates. Finally, we compare the received power to the threshold and decide whether or not
to receive the packet.

3.7.4 ClusterNoncoherentSwitch

This class implement a switching clusterhead. The algorithm is simple: we always accept to receive
a packet (therefore, we implementstartReceivingto always return 1). If a stronger packet arrives, we
switch receiving a stronger packet. This is implemented by overloadingswitchPacketaccordingly.
In the current implementation, there is no coding. That means that whenever two packet of similar
powers overlap, there will be a collision. Therefore, we usea very simple heuristic: whenever a
stronger packet comes that overlaps, we drop the weaker packet, even if the overlap is insignificant.
If some kind of coding is introduced, this policy needs to be changed.

• int startReceiving(Time now, Packet * p) - when a receiver is idle, this method
is called to decide whether we want to receive the incoming packet or nor. In this case, we al-
ways want to receive when idle, so it always returns 1.

• int switchPacket(Time now, Packet * p) - returns 1 if a clusterhead should switch
from the packet currently being received to a newly arrivingpacket p. We always switch if the
received power of p is higher.

39

3.8 Server

This class defines a central server. All clusterheads in the network are connected to the central server
and forward information about received packets to it. In thesimplest form, each clusterhead tries to
decodes a packet on its own, and forwards the packet only if successfully decoded. The packet is
received only if at least one clusterhead decodes it. This type of server is denoted asSRV SINGLE .

More advanced servers allow clusterheads to combine the received information to perform a
more successful decoding. One way to do so is to use majority decoding, which is denoted as
SRV MAJORITY . Each clusterhead sends a hard-bit sample (0 or 1) of each received symbol to the
server. The server then simply decides upon every symbol depending on whether there are more 0s
or 1s.

The second type of combined decoding is Maximum Ratio Combining (MRC). In this case, each
clusterhead sends a soft sample of each received symbol to the server. These samples are weighted
with clusterheads’ weights (obtained through methodClusterNoncoherentSimple::MRCcoef()), and
summed. The server then decides based on the resulting sum. This decoding is denoted asSRV MRC .

A special class calledDecodingResultis defined to carry the information passed from a cluster-
head to a server. There are several objects of typeDecodingResultfor each packet. One object is
created at the server, and one at each clusterhead. The server’s object is initially empty, and a clus-
terhead’s one carries the information about the decoding atthat clusterhead. When a clusterheads
finishes the decoding, it passes itsDecodingResultobject to the server. The server combines the
receivedDecodingResultobject with its own one, usingdecodeOr()method, described latter. Once
the decoding results are received from all clusterheads, the server performs the actual combining
decoding on the data it has received in itsDecodingResultobject.

ClassDecodingResulthas the following structure:

• DecodingResultType result - the information about the decoding at a clusterhead.
It can be one of the following:NOT LISTENING, DECODE ERROR, DECODE OK,
SYNC FAIL .

• long double * data - carries result of demodulation at the clusterhead for eachsymbol.
In the case of majority decoding, it consists of -1s and 1s. Incase of MRC, these are soft
symbols. In case of no combining, this array is NULL.

• int size - size ofdataarray.

• Clusterhead * ch - this is used for tracing purposes. When a clusterhead creates anDe-
codingResult object, it puts its own pointer here. The server, on the otherhand, keeps in
DecodingResultobject a pointer to a clusterhead that first managed to decodethe packet on its
own. A pointer to the first clusterhead that sendsDecodingResultcontainingDECODE OK
will be stored here. If the server does not receivedDECODE OK message, this pointer will
remain NULL. At the end of the day, if the overall result of thedecoding isDECODE OK ,
variablechwill contain a pointer to the clusterhead that managed to decode it. For a description
of DECODE OK , see a discussion in Section 3.7.

• void decodeOr(DecodingResult * dr) - this method is invoked from the server’s
DecodingResultobject, with a clusterhead’sDecodingResultobject as a parameter. The goal
is to update server’s data on a packet with the information received from a clusterhead.

40

In case of a single-antenna approach, the combining is basedonresultfield. If any of the results
is DECODE OK , the new value of the result field at the server will also beDECODE OK
(meaning that up to that moment, at least one clusterhead succeeded in decoding.) Otherwise,
if any of the results isDECODE ERROR, then the result will beDECODE ERROR as well,
meaning that no one decoded, but at least one clusterhead tried to decode and failed. Other-
wise, if any of the results isSYNC FAILED , then the result will beSYNC FAILED as well,
meaning that no one even managed to synchronize but at least one clusterhead tried to synchro-
nize and failed. Finally, if nothing of the above is true, theresult will beNOT LISTENING
meaning that none of the clusterheads even tried to receive the packet.

In case of multi-antenna approaches, in addition to the above, we also combine the received
data. For each received symbol, the corresponding element of dataarray from the clusterhead’s
DecodingResultobject is multiplied by a coefficient (1 in case of majority combining) and then
added todataarray of the server’sDecodingResultobject.

Another helper class, used byServer class isPktInfo . Whenever the server starts receiving
informations about a packet, it createsPktInfo for that packet. The basic idea of this object is
to keep the decoding information about the packet and to count from how many clusterhead we
have received this information. Once the server receives itfrom all clusterheads, it can proceed to
combined decoding if necessary, and decide if the packet is well received.

ClassPktInfo has the following structure:

• Packet * packet - keeps a pointer to the packet being processed.

• DecodingResult * status - current status of the decoding of the packet (see above).

• int noconf - number of clusterheads that have send a decoding information about this
packet until now.

• void addCH(Clusterhead * ch, Time now, DecodingResult * s) - a method
called to add the decoding information from a clusterhead. It callsdecodeOrmethod fromsta-
tus, and incrementsnoconf.

Finally, we describe classServer. It has the following structure:

• list< PktInfo * > pinfo - a list of PktInfo objects for all packets currently being
received by any of clusterheads.

• Simulator * simulator - a pointer to the simulator object.

• ServerType type - a type of the server. As already menitoned, server can be oneof the
following types:SRV SINGLE, SRV MAJOR, SRV MRC .

• void receiveStatus(Time now, Packet * p, Clusterhead * ch, DecodingResult

* status) - this method is called by a clusterhead to pass the decoding information about a
packet to the server. It keeps a track of copies of packets received by different clusterheads.
Once a copy of packet is received from each clusterhead, the method performs decoding by
callingdecodemethod (see below). Furthermore, if decoding is successfuldue to cooperation,

41

it invokesreceiveNotificationmethod of each clusterhead. This way clusterhead learn about a
successful cooperative decoding and may chose to adapt threshold accordingly. Furthermore,
receiveStatusmethod is responsible for deleting the working copy of a packet.

• DecodingResultType decode(PktInfo * pi) - performs the actual combining de-
coding if necessary. If the decoding result status is notDECODE ERROR, it simply returns
the status, as there is not much else a server can do. However,if the status is status isDE-
CODE ERROR, that means at least some clusterheads managed to synchronize to the packet,
but none decoded it alone. In that case, the server tries the combining decoding, based on the
linear combination of samples that is stored inDecodingResultobject. If this decoding is suc-
cessful, the status is changed toDECODE COOP. Otherwise, it remainsDECODE ERROR.

• PktInfo * genPacketInfo(Packet * p) - generates a newPktInfo objects and re-
turns a pointer to it. This function should be modified in caseone wants to create an subclass
of Server that will use an subclass ofPktInfo class to carry data about a packet. It is not
needed and not used at the moment.

• void printResult(DecodingResultType res, Time now, Packe t * p, Clusterhead

* c) - private method that prints trace information.

• void transformResult(DecodingResult * s, Packet * p, Clusterhead * c)
- this method transforms the decoding result according to the combining policy. In case of sin-
gle antenna server, it does not do anything. In case of majority combining, it transforms a
soft sample into a hard sample (by using the sign function). Finally in case of MRC, it mul-
tiplies every sample with a weight obtained from the clusterhead. This method can be further
extended to implement any linear multi-antenna technique.

3.9 Channel

This class contains information about parameters of the physical model and the wireless medium
used in the simulation. It contains the following parameters:

• long double a - the attenuation power exponent

• long double b - the attenuation coefficient

• long double n - power spectral density of the background noise

• long double rate - rate of communication

• long double distance(Node * src, Node * dst) - calculates the distance between
two nodes.

• long double attenuation(Node * src, Node * dst) - calculates the attenuation
between two nodes. Currently, the attenuation is constant in time and depends only on the dis-
tance as the power lawbla.

• long double delay(Node * src, Node * dst) - calculates the signal propagation
delay between two nodes.

42

3.10 Simulator

This is a container object that contains the objects defined by the simulation scenario. This object
parses a configuration file and create all objects defined therein. It creates the scheduler, insert
the appropriate starting and ending events in the scheduler’s queue and runs it. This class has the
following structure:

• Scheduler scheduler - the scheduler that controls the timing of a simulation.

• Server * server - a pointer to the central server.

• list< Clusterhead * > chs - a list of all the clusterheads in the simulation.

• list< Sensor * > sns - a list of all the sensors in the simulation.

• Channel * channel - a pointer to an object that contains channel parameters.

• void endAt(Time t) - inserts an ending event in the scheduler’s queue at time t. void
run();

• void parseConfig(const char * fname) - parses the configuration file and creates
the corresponding objects in the simulators. For details onthe configuration file see Section 4.2.

• void printConfig() - prints the current configuration.

43

Chapter 4

Command Line, Configuration Files and
Output

4.1 Command Line Parameters

To invoke the simulator, type:

./simulator <config> [<seed>]

The first parameter is a configuration file that describes the simulation scenario. It is described in
details below. The second parameter is a seed.

If a seed is not specified, the simulator will take a random seed which is a function of time. Thus,
the standard way to invoke the simulator is without seed, in which case the behavior will be purely
random. Note that the random seed is a function of time, with precision of 1s, hence if you run short
simulations more than once in a second, you might get identical results as the seeds will be the same.
However, more frequently simulations last more than 1s so there is no need to worry about that.

Specifying a seed is useful for debugging purposes. In case of a bug, it is useful to replay exactly
the same simulation. One can put any integer number as a parameter, and whenever the simulator is
run with the same seed, it will produce the same output

There are two configuration files in the simulator. The first one described the simulation scenario,
and is passed through the command line. The second one gives channel impulse response samples,
to be used for a non-coherent receiver when simulating the packet reception. The name of the second
one is hard-coded tocir.txt and has to be placed in the current directory.

4.2 Simulation Scenario Description

This file contains a description of the simulation scenario.It is passed to the simulator through the
command line:

./simulator config.txt

The currently implemented parser is a very simple one. Each line is one command. If a line starts
with # sign, it will be ignored (# has to be the first character in the line, that is, no space before

44

it!). Below, we give a list of configuration primitives with explanations of parameters. All units are
standard (times are in seconds, powers (including noise power) are in Watts, packet sizes are in bits,
rates are in bits per second).

• Sensor:a primitive to add a new sensor is

Sensor <id> <x> <y> <type> <buf_size> <param>

where<id> is the ID of the sensor (given by a user),<x>, <y> are the coordinates, and
<type> denotes the type of the sensor and can beIA , which denotes instant access and creates
an object of typeSensorIA, RA which denotes random access and creates an object of type
SensorIA, andSA which denotes scheduled access and creates an object of typeSensorIA.
buf size defines the size of the sensor’s packet queue.

Parameter<param> denotes additional parameters that depend on the type. For asensor of
typeIA there are no additional parameters.

For the type<RA> the additional parameter is an average random access delay.Every trans-
mission in this will be delayed by an exponential random timewith the given average.

For the type<SA> the additional parameters are a size of the code and an average random
access delay. The sensor itself will create a random time-hopping code of given size, where
each element will be a random exponential delay with the given average. The sensor will keep
an index to the time-hopping code. Every transmission will be delayed by a value of the code
pointed to by the index, and after the transmission the indexwill be moved to the next element
(or to the first element if it has reached the end of the code). Atypical size of the time-hopping
code is 8.

• Traffic: a primitive to add a new traffic generator to a sensor is:

Traffic <id> <sensor_id> <time> <type> <param>

where<id> is the ID of the generator,<sensor id> is the ID of the sensor to which this
generator should be attached,<time> says at what time it should be attached (which will
automatically disable the previous generator, if any), and<type> specifies which type of
generator should be attached. Type of generator can be Constant or Exponential.

In case ofconstant traffic generator, additional parameters are

<power> <packet_distance> <packet_size> <max_error> [D ata]

where<power> defines the transmitted power of packets<packet distance> defines
a constant timing between two packets,<packet size> defines a constant packet size,
max error defines code (for more details see Section 2.3), and[Data] denotes that pack-
ets should carry a real data. If one simulates a Gaussian channel, there is no need to generate

45

the actual payload since the physical layer model does not need it (so [Data] is 0). In case of
non-coherent 2-PPM UWB, described in [8], the underlying physical model needs actual data,
so [Data] should be 1.

In case ofexponential traffic generator, additional parameters are

<power> <packet_distance> <packet_size> <max_error> [D ata]

where<power> defines the transmitted power of packets<avg packet distance> de-
fines the average time between two packets (which has an exponential distribution),<packet size>
defines a constant packet size,max error defines code (for more details see Section 2.3), and
[Data] denotes that packets should carry a real data.

• Channel: a primitive to define channel parameters is

Channel <a> <N> <rate>

where fading on distancel is b × la, <N> is the power spectral density of the white noise and
<rate> is the channel nominal rate. Typical values for LOS channel attenuations, taken from
[3] area = −1.7 andb = 1.38 × 10−5. Typical white noise power, for a bandwidth of 1GHz,
temperatureT = 300K, and receiver noise figure 7dB isN = 2.08 × 10−11W (Boltzman
constant isK = 1.38 × 10−23). Finally, for pulse energy of 30 pJ we have a channel symbol
rate of 2500000 bits per second.

• Server: a primitive to define a central server is

Server <type>

where<type> can be one of: SingleUser, Majority, MRC.

• Clusterhead: a primitive to define a clusterhead is

Clusterhead <id> <x> <y> <type> <param>

where<id> is the ID of the clusterhead,<x>, <y> are the coordinates, and<type> is one
of the following: NoncoherentSimple, NoncoherentSwitch, NoncoherentAdaptive. The
first type has an additional parameter,<detect threshold> , which defines a fixed detec-
tion threshold to be used (can be omitted or set to 0 if there isno detection threshold). The
latter two types do not have additional parameters.

• End: a primitive used to stop the simulation is

End <time>

where<time> is the time at which the simulation will be stopped. This simply inserts an end
event in the scheduler queue at time<time> .

46

4.3 Channel Impulse Response Samples

Channel impulse response samples file is calledcir.txt and has to be placed in the current di-
rectory. This is a plain text file which contains CIRSIZE lines, each line containing CIRSAMPLE
numbers. A column in this file represents one measured channel impulse response. Resolution of
these samples is defined ints eff, and is hard-coded at the moment. Filecir.txt is parsed during
construction of a clusterhead and loaded in the memory. Different CIR are latter used for different
decodings.

4.4 Simulator Output

During a simulation, the simulator outputs results to the standard output. Here we explain the content
of this output. The first thing that is printed is the current configuration. This output summarizes the
configuration file and is used primarily for debugging purposes. Here is an example:

Simulator configuration

Server: SingleAntenna

Channel: a=-3.300 b=-55.003[dB] N=-106.819[dB]

Sensor 1: x=4.000 y=4.000 ()
Sensor 2: x=1.000 y=1.000 ()

Clusterhead 1: x=5.000 y=5.000, type = NoncoherentSimple d etect_thr= 0.000

In this example we have two sensors of typeSensor(that is with instant access), one clusterhead
of typeClusterNoncoherentSimpleand a single antenna server.

After printing a configuration, the simulator starts executing a simulation. During a simulation it
displays a time and information about each event that occurs. Events are related to packets, and there
are several types of them:

• PKT GENERATED - a packet is generated. Prints out the packet ID and the source sensor’s
ID.

• PKT TRANS START - packet transmission started. When generated, a packet is stored in a
sensor queue until scheduled for transmission. This eventsinforms us when a sensor has actu-
ally started transmitting a packet. Note that the event is observed at the sensor side; different
clusterhead will be aware of this event later, only after thesignal propagates to them.

• PKT TRANS END - a packet transmission is finished and a sensor releases the medium. Note
that the event is observed at the sensor side; different clusterhead will be aware of this event
later, only after the signal propagates to them.

• PKT RCVD - a packet is successfully received by at least one clusterhead (and there was no
need for cooperative decoding). Prints out the packet ID, the source sensor’s ID and the ID of

47

the clusterhead that first managed to decode the packet (if there are more of them, then the one
closest to the sensor will be printed since the signal propagation is the shortest).

• PKT RCVD COOP - a packet has not been decoded by any single clusterhead but the coop-
erative decoding succeeded. The message is display at the moment when information about
the packet are gathered from all the clusterheads.

• PKT ERROR - a packet has not been decoded, but at least one clusterhead has synchronized
to it and try to decode.

• PKT SYNC FAIL - at least one clusterhead was trying to synchronized to a packet, but none
has succeeded in synchronizing.

• PKT DROP - a packet is dropped as no clusterhead has decided to try to receive it.

• PKT DROP Q - a packet is dropped at the sensor queue since the traffic on sensor was to high
and queue is overfull.

The format of the trace output is defined intrace.h file. We next give an example of the output
with explanations:

0.766351205785 PKT_GENERATED pkt: 165 sns: 1
0.768701848415 PKT_TRANS_START pkt: 158 sns: 1
0.768703848415 PKT_TRANS_END pkt: 158 sns: 1
0.768703985690 PKT_RCVD pkt: 158 sns: 1 ber: 0.000e+00 ch: 2
0.769164785933 PKT_GENERATED pkt: 166 sns: 1
0.769190400153 PKT_TRANS_START pkt: 159 sns: 1
0.769192400153 PKT_TRANS_END pkt: 159 sns: 1
0.769192537428 PKT_DROP pkt: 159 sns: 1 ber: 1.000e+00
0.771468494639 PKT_TRANS_START pkt: 160 sns: 1
0.771470494639 PKT_TRANS_END pkt: 160 sns: 1
0.771470631914 PKT_SYNC_FAIL pkt: 160 sns: 1 ber: 1.752e-0 1
0.777236021990 PKT_TRANS_START pkt: 161 sns: 1
0.777238021990 PKT_TRANS_END pkt: 161 sns: 1
0.777238159265 PKT_ERROR pkt: 161 sns: 1 ber: 1.875e-02
0.777729482645 PKT_TRANS_START pkt: 162 sns: 1
0.777731482645 PKT_TRANS_END pkt: 162 sns: 1
0.777731619920 PKT_RCVD_COOP pkt: 162 sns: 1 ber: 0.000e+0 0
0.777734152174 PKT_GENERATED pkt: 167 sns: 1
0.781251181569 PKT_GENERATED pkt: 168 sns: 1

From the log we see that packets 165 to 168 were generated, packets 158 to 162 were transmitted,
packets 158 was received by clusterhead 2 alone (with no bit errors), packet 159 was dropped because
no one decided to try to receive it, synchronization to packet 160 failed (bit-error rate was1.752 ×
10−1 which is above 10%), packet 161 is lost since not even cooperative decoding helped receiving
it (bit-error rate was1.875 × 10−2 and no coding was used), and finally packet 162 was received by
means of cooperative decoding (again with no bit errors).

48

Chapter 5

Future Work

Here is a list of some features that should be implemented in the simulator in future versions:

• Packet coding: currently, only a simple model of packet coding, described in Section 2.3 is
implemented. In order to have more realistic coding performance, on should implement a real
coding and use it to test packet error rate.

49

Bibliography

[1] J. Barry, D. Messerschmitt, and E. Lee.Digital Communication: Third Edition. Kluwer Acad-
emic Publishers, 2003.

[2] T. Cover and J.A. Thomas.Elements of Information Theory. John Whiley & Sons, 1991.

[3] S.S. Ghassemzadeh and V. Tarokh. Uwb path loss characterization in residential environments.
In IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pages 501–504, June 2003.

[4] F.P. Kelly, A.K. Maulloo, and D.K.H. Tan. Rate control incommunication networks: shadow
prices, proportional fairness and stability.Journal of the Operational Research Society, 49:237–
252, 1998.

[5] B. Radunović and H.L. Truong. On architectures of transmit-only wireless sensor networks.
Technical Report, 2004.

[6] D. Rus. Keynote on autonomous mobile networks. InThe First IEEE Workshop on Embedded
Networked Sensors (EmNetS-I), 2004.

[7] B. van der Wal and al. D2a2 - definition of uwb scenarios.Technical Report from PULSER WP2,
2004.

[8] M. Weisenhorn. Physical layer for reader scenario.IBM Technical Report, 2004.

50

Appendix A

Sample Script Files

In this section we give examples of script files that are used to generate random scenarios and invoke
the simulator. We also give an example how to parse the outputresults. We give two scenarios, a
static and a dynamic one.

A.1 Static Scenario

In a static scenario, nodes are randomly placed on a square, and several clusterheads are regularly
placed on the same square. We vary different parameters, andfor each set of parameters we run sev-
eral simulations. We print all the results in a filelog.txt which can latter be used from MATLAB
to plot the results.

A.2 script.pl
#!/usr/bin/perl -w
use strict;

$| = 1;

#The optimal average backoff is 20 for 20 nodes.
as the rule of a tumb, one canuse ns/2

my @nsn = (2,5,10,20,50);
my @nch = (2);
my @stype = ("IA", "RA", "SA");
my @ctype = ("NoncoherentAdaptive", "NoncoherentSimple" , "NoncoherentSwitch");
my @srtype = ("SingleUser", "MRC");
my @powers = (1.5e-4);
my @avgds = (0.8000, 0.1600, 0.0400, 0.0160, 0.0080,

0.0040, 0.0027, 0.0020, 0.0016);
my @avgsds = (1e-4);
my @dthrs = (0);
my @coders = (0, 0.05, 0.1);
my $sim_length = 1;
my $no_packet = 200;

51

my $ps = 800;
my $run = 5;
my $size = 40;

here we’ll keep distances of all sensors
from the central point (defined in make_config)
my @distances = ();

my ($r, $ns, $nc, $st, $stn, $ct, $srt, $ctn, $srtn, $power,
$avg_delay, $avg_sch_delay, $det_thr, $coder);

$det_thr = 0;

Function make_topo makes a random distribution of sensor n odes. It
is separated from make_config so that we can use the same top ology
with different network parameters (e.g. clusterhead arch itecture)
and have a meaningful performance comparison independent of topology
variance. The function stores the topology into topo.txt f ile. The
topology is latter copied from that file into config.txt fi le.

sub make_topo {
my ($i, $x, $y, $lns, $lnc, $lsim_length, $lst, $lct, $lsrt, $lpower,

$lavg_delay, $lavg_sch_delay, $lps, $ldet_thr, $lsize, $ lcoder,
$c1, $c2, $c3, $tstart, $cx, $cy);

($lns, $lnc, $lsize, $lst, $lavg_sch_delay) = @_;

my $out="topo.txt";
open OUT, ">$out" or die "Cannot open $out for write :$!";

we want to have a 40m x 40m
my $lxsize = $lsize;
my $lysize = $lsize;

define the central point coordinate from which we calculat e the distance
$cx = $size/2;
$cy = $size/2;

foreach $i (1..$lns){
$x = rand($lxsize);
$y = rand($lysize);

push(@distances, sqrt(($x-$cx) ** 2 + ($y-$cy) ** 2));

52

if ($lst eq "IA") {
print OUT "Sensor $i $x $y 100 IA\n";

} elsif ($lst eq "RA") {
print OUT "Sensor $i $x $y 100 RA $lavg_sch_delay\n";

} else {
print OUT "Sensor $i $x $y 100 SA 8 $lavg_sch_delay\n";

}

Traffic generators are attached in make_config
}

close OUT;
}

The main configuration function. It creates the server, cl usterheads, channel
and traffic objects. It copies sensors topology from topo. txt file.

sub make_config {
my ($i, $x, $y, $lns, $lnc, $lsim_length, $lst, $lct, $lsrt, $lpower,

$lavg_delay, $lavg_sch_delay, $lps, $ldet_thr, $lsize, $ lcoder,
$c1, $c2, $c3, $tstart, $cx, $cy);

($lns, $lnc, $lsim_length, $lst, $lct, $lsrt, $lpower, $la vg_delay,
$lavg_sch_delay, $lps, $ldet_thr, $lsize, $lcoder) = @_;

DEBUG - to avoid singularities, we schedule
$lavg_sch_delay = $lavg_delay;

my $out="config.txt";
open OUT, ">$out" or die "Cannot open $out for write :$!";

Deduce rate from power such that we reach the limit
my $crate = 5e6 * 7.5e-5 / $lpower;

print OUT "Server $lsrt\n";
#NLOS
#print OUT "Channel -3.3 3.16e-6 2.08e-11 $crate\n";
#LOS
print OUT "Channel -1.7 1.38e-5 2.08e-11 $crate\n";

define the central point coordinate from which we calculat e the distance
$cx = $size/2;
$cy = $size/2;

if ($lnc == 1) {
$c1 = $size/2;
if ($lct eq "NoncoherentSimple") {

print OUT "Clusterhead 1 $c1 $c1 NoncoherentSimple $ldet_t hr\n";

53

} elsif ($lct eq "NoncoherentSwitch") {
print OUT "Clusterhead 1 $c1 $c1 NoncoherentSwitch \n";

} else {
DEB
print OUT "Clusterhead 1 $c1 $c1 NoncoherentAdaptive $lavg _delay\n";

}
} elsif ($lnc == 2) {

$c1 = $size * 1./2;
$c2 = $size * 1./4;
$c3 = $size * 3./4;
if ($lct eq "NoncoherentSimple") {

print OUT "Clusterhead 1 $c2 $c1 NoncoherentSimple $ldet_t hr\n";
print OUT "Clusterhead 2 $c3 $c1 NoncoherentSimple $ldet_t hr\n";

} elsif ($lct eq "NoncoherentSwitch") {
print OUT "Clusterhead 1 $c2 $c1 NoncoherentSwitch \n";
print OUT "Clusterhead 2 $c3 $c1 NoncoherentSwitch \n";

} else {
print OUT "Clusterhead 1 $c2 $c1 NoncoherentAdaptive \n";
print OUT "Clusterhead 2 $c3 $c1 NoncoherentAdaptive \n";

}
} elsif ($lnc == 3) {

TBD!
} else {

$c1 = $size * 1./4;
$c2 = $size * 3./4;
if ($lct eq "NoncoherentSimple") {

print OUT "Clusterhead 1 $c1 $c1 NoncoherentSimple $ldet_t hr\n";
print OUT "Clusterhead 2 $c1 $c2 NoncoherentSimple $ldet_t hr\n";
print OUT "Clusterhead 3 $c2 $c1 NoncoherentSimple $ldet_t hr\n";
print OUT "Clusterhead 4 $c2 $c2 NoncoherentSimple $ldet_t hr\n";

} elsif ($lct eq "NoncoherentSwitch") {
print OUT "Clusterhead 1 $c1 $c1 NoncoherentSwitch \n";
print OUT "Clusterhead 2 $c1 $c2 NoncoherentSwitch \n";
print OUT "Clusterhead 3 $c2 $c1 NoncoherentSwitch \n";
print OUT "Clusterhead 4 $c2 $c2 NoncoherentSwitch \n";

} else {
print OUT "Clusterhead 1 $c1 $c1 NoncoherentAdaptive \n";
print OUT "Clusterhead 2 $c1 $c2 NoncoherentAdaptive \n";
print OUT "Clusterhead 3 $c2 $c1 NoncoherentAdaptive \n";
print OUT "Clusterhead 4 $c2 $c2 NoncoherentAdaptive \n";

}
}

Copy SNs topology from a precreated topo.txt file

open TOPO, "topo.txt";

while (<TOPO>) {
print OUT "$_";

}

Attach traffic generators

54

foreach $i (1..$lns){
do not start all traffic at 0 since this confuses the estimat ors!
start them with a delay with an exp. distribution
$tstart = -$lavg_delay * log(1. - rand(1));
print OUT "Traffic $i $i $tstart Exponential ";
print OUT "$lpower $lavg_delay $lps $lcoder Data\n";

}

Ending time

print OUT "End $lsim_length\n";
close OUT;

}

This subroutine calculates different staistics.
For each sensor we monitor how many packets it has generated ,
and how many it has successfully transmitted. We also track
the distance to the farmost sensor that successfully trans mitted
a packet (called the range) and we track when will 90% of sens ors
manage to convey any packet (called the outage time).

sub calc_stat {
my ($ns, @distances);
($ns, @distances) = @_;

We return number of rcvd packets, fraction of rcvd packets, utility,
time until 90% of sensors receive a packet, and the maximum r ange

my ($sum, $util, $fsum, $ftotal, $futil, $otime, $range);
my $no_sn_rcvd = 0;
my $hrd_sns = 0;
$range = 0;
$otime = 0;
#DEB
$sum = 0;

Here we keep the list of all sensors and the number of sent and
received packet from eah one so that we can calculate stats a t the end.
my @sensorID = ();
my @gendata = ();
my @rcvdata = ();
my $i;

open LOG, "tmp.txt" or die "Cannot open tmp.txt for read :$!" ;

while (<LOG>) {

55

if ($_=˜/PKT_GENERATED/){
my @res = split /\s+/, $_;
my $time = $res[0];
my $action = $res[1];
my $pkt_id = $res[3];
my $sn_id = $res[5];

if a packet is generated by a sensor which we don’t know
yet, we have to store the sensor data in arrays
sensorID, gendata and rcvdata. We do that here.

$i = 0;
while ($i <= $#sensorID && $sensorID[$i] != $sn_id) {

$i++;
}

if ($i > $#sensorID) {
push(@sensorID, $sn_id);
push(@gendata, 1);
push(@rcvdata, 0);

} else {
$gendata[$i]++;

}

}

if ($_=˜/PKT_RCVD/ || $_=˜/PKT_RCVD_COOP/){
my @res = split /\s+/, $_;
my $time = $res[0];
my $action = $res[1];
my $pkt_id = $res[3];
my $sn_id = $res[5];

register that sensor $sn_id has received a new packet
$i = 0;
while ($i <= $#sensorID && $sensorID[$i] != $sn_id) {

$i++;
}

if ($i > $#sensorID) {
print "@sensorID\n";
print "$sensorID[$#sensorID] $sensorID[0]\n";
die "Error: no sensor $sn_id!";

} else {
First packet for this sensor -> increase hrd_sns
if ($rcvdata[$i] == 0) {$hrd_sns++;}
if ($otime == 0 && $hrd_sns * 1. / $ns > 0.9) {$otime = $time;}
Add one to the number of packet received by this sensor
$rcvdata[$i]++;

}

check if that is the largest range by now
if ($distances[$sn_id-1] > $range) {

56

$range = $distances[$sn_id-1];
}

}
}

here we add 0.1 to every log() to avoid -inf
$util = 0;
$futil = 0;
$sum = 0;
$fsum = 0;
$ftotal = 0;
for $i (0 .. $#sensorID) {

$util = $util + log(0.1 + ($rcvdata[$i] * 1.)/$sim_length);
$futil = $futil + log(0.1 + ($rcvdata[$i] * 1.)/$gendata[$i]);
$sum = $sum + $rcvdata[$i] * 1./ $sim_length;
$fsum = $fsum + $rcvdata[$i];
$ftotal = $ftotal + $gendata[$i];

}

$fsum = $fsum * 1. / $ftotal;
($sum, $fsum, $util, $futil, $otime, $range);

}

my $res="log.txt";
open RES, ">$res" or die "Cannot open $res for write :$!";

foreach $avg_delay (@avgds) {
foreach $avg_sch_delay (@avgsds) {

foreach $ns (@nsn) {
foreach $nc (@nch) {

foreach $st (@stype) {
foreach $r (1..$run) {

Here we want to use the same network topology for
different parameters, so that the performance difference
does not depend on topology difference. That’s why we
first generate the topology (sensor coordinates) and
then use the same one for different power, coder, ctype
and srtype.

make_topo($ns, $nc, $size, $st, $avg_sch_delay);

foreach $power (@powers) {
foreach $ct (@ctype) {

foreach $srt (@srtype) {
foreach $coder (@coders) {

We want each sensor to generate on average

57

no_packet packets In statistics we already
divide number of packets by the simulation time
to get the rate (in pack/s)
$sim_length = $avg_delay * $no_packet;

make_config($ns, $nc, $sim_length, $st, $ct, $srt,
$power, $avg_delay, $avg_sch_delay,
$ps, $det_thr, $size, $coder);

system("./simulator config.txt>tmp.txt") == 0
or die "Command failed!";

my ($sum, $fsum, $util, $futil, $otime, $range) =
&calc_stat($ns, @distances);

if ($st eq "IA") {
$stn = 0;

} elsif ($st eq "RA") {
$stn = 1;

} else {
$stn = 2;

}

if ($ct eq "NoncoherentSimple") {
$ctn = 0;

} elsif ($ct eq "NoncoherentAdaptive") {
$ctn = 1;

} else {
$ctn = 2;

}

if ($srt eq "SingleUser") {
$srtn = 0;

} elsif ($srt eq "Majority") {
$srtn = 1;

} else {
$srtn = 2;

}

print "$ns $nc $st $ct $srt $power $avg_delay "
print "$avg_sch_delay $det_thr $coder $r $ps $size";
printf ("\t %ld %.4e %.4e %.4e %.4e %.4e\n",

$sum, $fsum, $util, $futil, $otime, $range);

print RES "$ns $nc $stn $ctn $srtn $power $avg_delay ";
print RES "$avg_sch_delay $det_thr $coder $r $ps $size";
print RES "\t $sum $fsum $util $futil $otime $range\n";

system("sleep 1");
}

}
}

}
}

}

58

}
}

}
}

A.3 plot cs.m

Here we give a simple MATLAB script that produces the graphical output of results. There are three
preselected columns, X, Y and Z. We first find all the distinct values in z column. For example if
Z column denotes a type of clusterhead (NoncoherentSimple -0, NoncoherentAdaptive - 1, Non-
coherentSwitch - 2), then the program will first select all record with Z=0 and plot the results for
NoncoherentSimple, then select Z=1 and plot, etc.

When one set of Z has been selected, then the program loops over distinct values of X. For each
value of X it finds all the corresponding values of Y (there areseveral, depending on how many
independent runs we did) and calculates the mean and the confidence interval. Finally, it plots this.

log = load(’log.txt’);

xcol = 7; % which column to be displayed on x axis
ycol = 14; % which column to be displayed on y axis
zcol = 10; % column to be filtered
zcoln = ’code’; % name of Z column (to be displayed in legend)

% preselect which scenario do we choose
nch = 1; % number of clusterheads
nsn = 50; % number of sensors
ssize = 40;
ps = 800;
chtype = 0;
srvtype = 0;

%%% read simulation parameters

R = unique(log(:,11));
norun = length(R);

pow = unique(log(:,6));
if length(pow) > 1

ppp
end

rate = 5e6 * 7.5e-5 / pow;
sym_len = 1/rate;

rate = rate / 1e6; % mbps
pdur = ps * sym_len;

% select distinct Z
Z = unique(log(:,zcol)’);

59

X = unique(log(:,xcol)’);
Xp = ps ./ X * nsn / 1e6;

hold on;

sty = {’-k’, ’-.b’, ’--g’, ’:r’, ’-g’, ’-.r’,...
’--k’, ’:b’, ’-b’, ’-.k’, ’--r’, ’:g’};

lp = [];
str = {};

for z = Z
ind = find(z==Z);

me = zeros(size(X));
sv = zeros(size(X));

for i=1:length(X)
r = log(find(log(:,2) == nch),:);
r = r(find(r(:,1) == nsn),:);
% preselect Size
r = r(find(r(:,13) == ssize),:);
% preselect packet size
r = r(find(r(:,12) == ps),:);
% preselect NoncoherentSimple
r = r(find(r(:,4) == chtype),:);
% preselect MRC
r = r(find(r(:,5) == srvtype),:);
% preselect DT=0
r = r(find(r(:,9) == 0),:);
r = r(find(r(:,zcol) == z),:);
r = r(find(r(:,xcol) == X(i)), ycol) * ps / 1e6;
me(i) = mean(r);
sv(i) = std(r);

end

lineprop = errorbar(Xp, me, sv, sty{ind});
lp = [lp, lineprop];
str{ind} = sprintf(’%s = %.2f’, zcoln, z);

end

hold off;

fs = 16;
set(gca, ’FontSize’, fs);

%xlim([Xp(1) Xp(length(Xp)) * 1.1])
xlim([0 Xp(1) * 1.01])
yl = ylim;

60

ylim([0 yl(2)])

xlabel(’Aggregate input rate [Mbps]’, ’FontSize’, fs);
ylabel(’Aggregate effective output rate [Mbps]’, ’FontSi ze’, fs);

if chtype == 0
sCH = ’Simple’;

elseif chtype == 1
sCH = ’Adaptive’;

else
sCH = ’Switch’;

end

if srvtype == 0
sSRV = ’SA’;

else
sSRV = ’MRC’;

end

title(sprintf(’#SN = %d, #CH = %d, size = %d, %s, %s’, ...
nsn, nch, ssize, sCH, sSRV));

[legend_h, object_h] = legend(lp, str, 1);
set(object_h(1),’FontSize’,fs);

61

