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Abstract 
 

Operational-risk quantification has recently become important owing to the 
new Basel II regulations.  Current methods based on observation of losses and 
their magnitudes to quantify operational risk do not preserve the cause-to-
effect relationship that shows how operational risk can be reduced, managed, 
and controlled.  We introduce a cause-to-effect operational-risk modeling 
methodology that enables operational risk to be reduced, managed, and 
controlled.  As part of this methodology we develop a decomposition 
algorithm to address the complexity of large-scale models.  We demonstrate 
the use of this methodology with an example inspired by the settlement 
process of an inter-bank financial clearinghouse.  

 
 

 
Introduction 

 
Operational-risk quantification has recently become important owing to the new Basel 
II regulations that come into effect in the 2006-7 timeframe.  These regulations 
require capital allocation for operational risk, complementing the existing 
requirements on market and credit risk. Many researchers and practitioners have 
proposed methods based on observation of losses and their magnitudes to quantify 
operational risk.  However none of these preserve the cause-to-effect relationship that 
reveals how operational risk can be reduced, managed, and controlled.  From a 
practical point of view, these are crucial aspects of operational-risk management and 
can only be directly addressed through cause-to-effect modeling.   
 
We use the term cause-to-effect operational-risk quantification to describe models that 
capture the causes of operational failures and their resulting effects in terms of losses. 
This quantification includes explicit modeling of the linkage between cause and 
effect. 
 
Cause-to-effect operational-risk modeling is important firstly for managing the 
operational risk beyond simple quantification.  That is, if a financial institution wants 
to change the capital allocation required under Basel II for operational risk it must 
understand the root causes of operational risk and how they lead to loss events. 
Beyond this overall management of operational risk, cause-to-effect modeling also 
enables the inclusion of operational risk in the business decision processes, such as 
business process re-engineering, infrastructure re-engineering, and infrastructure 
operation.   
 



  2 of 27  

In this paper, we introduce a new dynamic cause-to-effect operational-risk 
quantification methodology that shows how to model failure dependencies, impact 
dependencies, and which information to collect and monitor. We also introduce a new 
decomposition algorithm to break the complex large-scale problem correctly into 
smaller submodels without losing the important cause-to-effect relationships.   
 
Our methodology is dynamic in that it captures failure dependencies such as the fact 
that failure rates for many software components exhibit a transient increase following 
software upgrades.  It also captures impact dependencies such as that failures during 
certain time periods, say weekends, incur no losses whereas the impact will be 
extreme if a failure of significant duration occurs during rush hour.  The model also 
reveals a reduced operational risk on hardware replacement and when better 
maintenance policies are applied. 
 
We demonstrate how cause-to-effect operational-risk quantification can be applied in 
practice using a simplified version of an inter-bank settlement process.  This 
settlement process is based on a large financial clearinghouse whose operations are 
outsourced.  Our goal is to show how our cause-to-effect methodology can be used to 
resolve risk-management questions.  Specifically we examine one architectural 
question, i.e., the value of redundant systems, and one operational question, i.e. the 
value of different hardware replacement policies.  The fact that the settlement 
operation we study is outsourced means that it is particularly easy to identify the value 
and the definition of business disruption.  The definition of business disruption is 
specified in the service-level agreements (SLAs) and their value is defined, for the 
purposes of this investigation, by the penalty clauses.  
 
 

Previous Work 
 
Previous work ranges from high-level approaches, e.g. insurance, to the many recent 
loss distribution models. 
 
High Level Approaches 
Doerig (2003) provides comprehensive high-level suggestions for operational risk 
management best practices in the financial service industry. Operational risk can be 
mitigated by insurance. Operational risk insurance products are offered by, for 
example, Swiss Re’s FIORI (Financial Institutions Operational Risk Insurance) 
product and AON’s e-business risk insurance solutions (Doerig, 2003).  In the area of 
business-disruption prevention, IBM Business Continuity and Recovery Services unit 
(IBM, 2004) provides solutions such as backup facilities or guaranteed emergency 
repair/replace services.  
 
Methodology Classification 
Doerig (2003) categorizes methodologies into three types: i.e. factor-derived or 
indicator-based; statistical / actuarial / simulation-based; and loss-scenario / 
qualitative assessment. Only the simulation-based models can capture the dynamics of 
the underlying system. With this type of model, users can see the impact or effects of 
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operational-risk management actions on the operational-risk numbers. In the financial 
industry, the loss-scenario methods are the most widespread. 
 
Loss-Scenario Methods 
Many researchers have worked on the estimation of loss distributions, which are key 
inputs to their risk assessment models. Medova (2000a, 2000b, 2001) discusses the 
use of extreme value theory in modeling the rare but catastrophic events of 
operational risk. Significant efforts in collecting loss data have been done by most 
banks (Ramadurai et al, 2004; Finlay et al, 2002). 
 
Dependency Modeling 
Wilson (1999) explains a causal approach in modeling the relationship between 
failure events. With this approach, the conditional dependencies among events are 
taken into account, making the input assumption realistic. Hageback et al. (2003) 
suggest a way to capture risk event dependencies by copulas. However, when being 
implemented in a real system, it requires numerous assumptions, e.g. the copula must 
be standard. Thus, the results obtained by this method run the danger of being less 
meaningful. Gewald et al. (2004) develop a framework to decompose operational risk 
into a matrix, and claim that it can be used as a Bayesian Belief Network in order to 
assess operational risk. The paper, however, does not provide supporting details of the 
claim. Leippold et al. (2003) provide a mathematical framework for modeling 
operational risk, but cause-to-effect relationships are not the focus of their paper. 
 
Simulation Methods 
Simulation is widely used in business modeling but has not yet been used to model 
operational risk explicitly.  In Monte-Carlo simulations, the business is modeled and 
simulated using a discrete-event simulator.  This enables the capture of the cause-to-
effect relationships that are vital for understanding and managing operational risk – 
and not just quantifying the losses.  Simulation modeling can be applied to most real 
systems. The complexity and size of real systems are one of the main practical 
challenges in operational-risk modeling.   Some of the contributions of the 
methodology presented here relate to how to choose the appropriate level of 
aggregation at which to model and to a decomposition method to address the 
complexity issue. A standard simulation model will not be helpful if the modeler does 
not know how to decompose the big model correctly, such as we propose in this 
paper.  
 
 

Cause-to-Effect Operational-Risk Quantification Methodology 
 
In this section we explain the concept of model decomposition and the quantification 
methodology. 
 
Model Decomposition Concept 
The wide spectrum of operational-risk event types complicates quantification. Figure 
1 shows our operational-risk failure-event taxonomy, which is based on the Basel II’s 
classification of operational risk event types.  There are more than 30 types of 
operational-risk loss events, and each type of event also has several subtypes. 
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Figure 1: Operational risk taxonomy of failure-event types 
 
 
When cause-effect relationships are modeled and all types of risk events are included, 
the model rapidly becomes complicated and intractable. Decomposing this large 
model into smaller submodels facilitates the modeling task, especially on highly 
complex systems typical of operational-risk quantification. We propose a 
decomposition approach to cope with this challenge. This approach maintains the 
failure and impact dependencies, thus facilitating the aggregation of the results in the 
final step.   
 



  5 of 27  

 
 
Figure 2: Concept of operational-risk model decomposition.  Decomposition is first 
done by independent impact distributions.  Impact distributions are built up from 
separate, unique root causes leading to failure events. 
 
 
Figure 2 illustrates the concept of the operational-risk model decomposition map or 
decomposition map.  The decomposition is done in two layers. In the first layer, the 
failure-event type occurrences from the Operational-Risk Failure-event Type 
Taxonomy are categorized by impact dependencies. The failure types that cause the 
same impact are grouped into the same submodel. For example, a contract violation 
penalty is calculated using the sum of the numbers of failure events of type A and B, 
thus both types must be in the same submodel in this layer. People stealing a 
company’s secret would not cause a day-to-day business disruption impact; hence we 
can categorize such theft events into a different submodel than types of failures that 
entail a business disruption impact. We call the submodels in this layer the Impact 
submodel. 
 
The submodels are decomposed further in the second layer. Within each impact 
submodel, failure-event types are categorized by their root causes of failures. The 
failure events that have the same root causes are grouped together in the same 
submodel. We call the submodels in this layer the Failure submodel. 
 
The submodels in each layer can be dealt with separately. For each failure submodel, 
the modeler only needs to model the system in such a way that it generates correct 
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failure arrivals for each failure type. Because the failures from the same root cause 
can be correlated, having them in the same model allows us to correctly model the 
correlated failure arrivals. 
 
For each impact submodel, the failures are translated into financial impacts. Since all 
failures having the same impact type are in the same submodel, the model can 
correctly calculate the resulting impact distribution. Moreover, the resulting impact 
distributions from different impact submodels are independent because they do not 
share root causes. Hence, these impact distributions can be easily and appropriately 
aggregated, i.e. by convolution, into the total impact distribution for the system. The 
convolution can be done numerically (or analytically if the outputs of the submodels 
permit it). 
 
In general, the majority of the computation time is spent on solving the submodels 
rather than on the convolution. This is usually the case when submodels are 
simulation models. In this case, the benefit of the decomposition technique is to 
reduce the number of simulation replications. Suppose there are m submodels and 
each requires n replications, with this decomposition the complexity is O(nm), 
whereas without this decomposition the complexity is O(nm). 
 
In the following subsections, we describe our new cause-to-effect operational-risk 
quantification methodology based on this layering and decomposition concept. Figure 
3 shows an overview of the workflow for the cause-to-effect operational-risk 
quantification methodology.  
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Figure 3:  Cause-to-effect operational-risk quantification methodology.   
 
 
Input information 
The modeler needs to identify the study objectives of operational risk quantification 
and obtains the related system and business process information. The system and 
process information describes the business processes, people and IT systems of 
interest.  This information is typically obtained from questionnaires and interviews as 
well as from process and IT architecture documents.  The study objectives define the 
appropriate level of detail for the modeling. 
 
Study objectives may be business process (BP) driven, information technology (IT) 
driven, or loss driven.  Typical examples of objectives driven by these different 
interests are 
 

• BP-driven objectives 
- What is the effect (in operational-risk terms) of adding a new insurance 

product to an existing people/systems infrastructure? 
- How can the operational risk of this BP be reduced by 50 percent? 
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• IT-driven objectives 
- What is the effect (in operational-risk terms) of consolidating these 

servers into one mainframe? 
- How can we reduce the operational risk of our database access by 50 

percent? 
• Loss-driven objectives 

- What are the three most important root causes of loss for this line of 
business and what would it cost to reduce them by 50 percent? 

- Should we have a mirror system for BP X? 
 

The identified objectives drive the level of detail for model development, data 
collection, and monitoring. 
 
Creation of the Interdependency Graph 
To facilitate the decomposition, an interdependency graph is used. This graph, as 
shown in Figure 4, has three columns, namely, root causes of failures, failure-event 
types, and independent impact types. This links root causes of failure with failure-
event types and their impact (loss distributions). An arrow from root cause R to 
failure event E denotes ‘R can cause E’, and an arrow from failure event E to impact 
type T signifies ‘E can have impact type T’. 
 
 

Root causes of failures failure dependency
Failure event types impact dependecy

Independent impact 
types

root cause #1
root cause #2
root cause #3

root cause #4

root cause #5 event #3
root cause #6
root cause #7

impact #3

impact #2

impact #1
event #1

event #2

event #4
 

Figure 4: Interdependency graph linking root causes of failure with failure-event 
types and their impact (loss distributions) 
 
 
The taxonomy in Figure 1 provides a general list of failure (or operational-risk) events 
to be used as a starting point for compiling the list of relevant risk events for the 
study. The impact of these risk events is also identified in this step, and failure and 
impact dependencies are determined. For example, in determining a failure 
dependency, the modeler needs to understand the relationship between the failure rate 
and the age of the failure component or the state of the system. In determining an 
impact dependency, he/she needs to understand the relationship between the impact 
and the system state or the failure duration. For example, it is very common that in a 
continuous impact, such as a business disruption, the impact increases — possibly 
exponentially — with the failure duration. 
 
Base information to create the interdependency graph can be provided in many forms.  
Table 1, the event-dependency chart, is one such example that is used to assist 
modelers in identifying failure and impact dependencies. Typically, such an event-
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dependency chart is derived from operations surveys, actual experience, and 
interviews 
 
Most researchers and practitioners in operational-risk quantification currently do not 
have this step in their models. As a result, their models cannot capture the cause-to-
effect relationships of the system. 
 
 
Table 1: An example of an event-dependency chart 

f(age) f(state)
f(dura
tion)

Remark

hardware failure
high for new, low for non-
new, high again for very old

high if high volume or bad 
maintenance

backup system failover, 
replacement/repair of the 
failed hardware

yes
high if the backup also 
breakdown.Otherwise, low

backup data storage 
failure

high for new, low for non-
new, high again for very old

high if high volume or bad 
maintenance

cannot retrieve history, 
recovering cost, 
replace/repair cost

yes
depend on the loss data and 
recovering time

communication 
network failure

high for new, low for non-
new, high again for very old

high if high volume or bad 
maintenance

unable to communicate 
with customers, 
replace/repair cost

yes
depend on whether there is a 
critical information to convey

Internal 
Hardware 
failure

failure arrival rate Impact
Sub-class Events Effect

 
 
 
Decomposition using Interdependency Graph 
The decomposition concept can be carried out appropriately by using an 
interdependency graph. In this step, we use standard graph-theory methods to identify 
disconnected (independent) subgraphs in the interdependency graph. For example, the 
graph in Figure 4 contains two subgraphs in the impact layer, i.e. the (1, 2, 3; 1, 2; 1, 
2) subgraph and the (4, 5, 6, 7; 3, 4; 3) subgraph, where (x ; y ; z) denotes a subgraph 
containing root causes x, failure events y, and impact types z. These two disconnected 
subgraphs represent two separate impact submodels. As a result, the failure-event 
types that have the same impact are grouped together into one impact submodel. 
These impact submodels are shown in the first layer of the decomposition map in 
Figure 2 
 
Within the second subgraph, there are two subgraphs in the failure layer, i.e. the (4; 3) 
subgraph and the (5, 6, 7; 4) subgraph, where (x ; y) denoted a subgraph containing 
root causes x and failure events y. These two disconnected subgraphs represent two 
separate failure submodels within their same impact submodel. As a result, the 
failure-event types that share the same root causes are grouped together into one 
failure submodel. These failure submodels are shown in the second layer of the 
decomposition map in Figure 2. 
 
Solving Submodels 
In this step, the modeler separately solves each submodel, i.e. each box in Figure 2, to 
obtain its output. For the failure submodels, the modeler needs to generate correlated 
failure-event arrivals or the failure probability distributions for each failure type. The 
common techniques to solve these submodels are statistical analysis and/or 
simulation. For the impact submodels, the modeler needs to translate the failure 
arrivals or distributions into impact distributions. The impact is represented in terms 
of monetary value, i.e. loss distributions. Depending on the complexity of the impact 
dependencies, the loss distribution might be deduced directly from failure 
distributions using an analytical approach; otherwise it can be done through 
simulation. 
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For each submodel, the system should be modeled at the highest detail level possible 
to avoid unnecessary work. For example, in a power-failure-event type, all 
components that share the same power line can be grouped into one single object in 
the model because they all will fail in a power outage. On the other hand, in a 
hardware-failure event type, each component should be treated as a separate object in 
the model because its failure pattern heavily depends on its age. 
 
Results Aggregation 
In this step, the impact distributions resulting from impact submodels are combined to 
obtain the net loss/impact distribution of the system. According to the decomposition, 
the resulting impact distributions from impact submodels are independent of each 
other because they do not share the same root cause of failure and their failure events 
do not affect the impact of the other submodels. Therefore, the impact distributions 
from the impact submodels can be correctly aggregated by convoluting them 
numerically. In a very special case, i.e. if all impact distributions are standard, it may 
possible to convolve them analytically.  
 
 

Case Study Example 
 
Overview and Objectives 
To demonstrate the proposed methodology, we consider a simple version of a 
settlement process in an outsourced IT system for settlement processes in a financial 
clearinghouse.  
 
The objectives of this example – beyond direct exposition and quantification – are to 
illustrate the use of this methodology for making business decisions impacting 
operational risk.  Specifically, we examine a system-architectural question, namely, 
the value of having a redundant system, and an operational question, namely, the 
optimal frequency for server replacement. 
 
All simulations were run for a five-year period using a discrete event simulation 
system (ArenaTM).  Numerical results are given for the entire period. 
 
The settlement unit consists of (potentially) two redundant systems. Each system 
comprises one server and one data storage unit. The business process and related IT 
map are shown in Figures 5 and 6, respectively. 
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Figure 5: Settlement process 

 
  

 
Figure 6: IT map of the settlement unit 
 
 
For this exercise, let us assume that the practitioner wants to resolve two business 
problems. The first is an architectural problem, i.e. whether to have a redundant 
system, and the second is an operational problem, i.e. when to replace aging servers. 
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The level of detail needed in the model must be sufficient to capture the effects of 
these decisions. 
 
Creation of Interdependency Graph 
For this example, there are several types of impact. The most important one is penalty 
charge from SLA violation. The charge is calculated based on the performance and 
the breakdown time. The impact function is defined in a form of service credit (or 
service-level violation penalty). 
 
Each month, the outsourcing service provider will be charged $500,000 if any one of 
the following events occurs: 

• The aggregate breakdown time is more than two hours per calendar month. 
• There is a single breakdown of more than one-hour duration. 
• There is more than one breakdown of 30-minute duration or longer each 

month in the rolling three-month period. 
 
Each month, the outsourcing service provider will also be charged $100,000 if any 
one of the following events occurs: 

• The settlement completion is delayed by 30 minutes in any given day. 
• It is delayed by ten minutes or more for two or more business days. 
• The total delay time exceeds 90 minutes in that month. 

 
Other impacts besides SLA violation penalties are: maintenance cost; disaster or other 
recovery cost; loss due to stealing of company assets or confidential information; and 
potential reputation loss, which includes the future sales loss. 
 
The taxonomy in Figure 1 helps us in producing a list of potential operational-risk 
events related to this system. In the event-dependency chart in Table 2, this list is 
shown in the column labeled ‘Event’. The column f(age) explains the relationship 
between the failure rate and the age of the failing component (when all other state 
variables are fixed). The column f(state) of the failure arrival rate indicates the state of 
the world that influences the failure arrival rate. Similarly, the column Remark of the 
impact indicates the influence of the system state on the size of the impact. The 
column f(duration) indicates whether the impact size depends on the failure duration. 
Usually in a continuous impact, such as a business disruption, the impact increases — 
possibly exponentially — with the failure duration. 
 
 
Table 2: Possible operational-risk events related to the settlement unit example shown 
in the event-dependency chart 
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Possible Operational Risk Events

f(age) f(state)
f(dura
tion)

Remark

hardware failure
high for new, low for non-
new, high again for very old

high if high volume or bad 
maintenance

backup system failover, 
replacement/repair of the 
failed hardware

yes
high if the backup also 
breakdown.Otherwise, low

backup data storage 
failure

high for new, low for non-
new, high again for very old

high if high volume or bad 
maintenance

cannot retrieve history, 
recovering cost, 
replace/repair cost

yes
depend on the loss data and 
recovering time

communication 
network failure

high for new, low for non-
new, high again for very old

high if high volume or bad 
maintenance

unable to communicate 
with customers, 
replace/repair cost

yes
depend on whether there is a 
critical information to convey

HVAC failure
high for new, low for non-
new, high again for very old

high if bad maintenance
can lead to hardware 
failure, replace/repair 
cost

yes
depend on when it occurs, 
weekend or rush hours

internal electricity 
system failure

constant over time
high if bad maintenance or a 
new change in electricity 
system

backup system failover yes
high if the backup also 
breakdown.Otherwise, low

main settlement 
software failure

high for new version or new 
patch, low for old

high if there is a change in the 
system

backup system failover if 
detected

yes
high if not detect or the backup 
system is also 
breakdown.Otherwise, low

non-core software 
failure

high for new version or new 
patch, low for old

high if there is a change in the 
system

non-core software 
mulfunction

yes
depending on how critical of 
the failed application

Stealing
higher for a new hire, 
decreasing over time

may depend on opportunities monetary loss no
mild (use company phone for 
private calls), high (steal 
company property)

Sell customers' trade 
information to a spy

high for a new hire, 
decreasing over time

may depend on opportunities
reputational risk, leading 
to bankruptcy.

no depend on the information

operation error, e.g. 
acidentally switch off 
the server

high for a new hire, 
decreasing over time

same for every state
vary from no impact to 
business disruption

yes depending on the error

uninformed absent of 
an operator

independent of years of 
service

may be higher during a flu 
season!

no one operates the 
system

yes
high if the system require an 
attention

Intentional
Hacker/worm/virus 
attack

Increasing over time if no 
action is done to fix the 
volnerability

high when there is a new 
discovery of new volnerability

vary from no impact to 
business disruption

yes
high if not detect or the backup 
system is also infected. 
Otherwise, low

War independent
higher if there is a tension 
with other countries.

vary from no impact to 
business disruption or 
total loss

yes depending on the situation

Terrorist attack independent
higher if there is an evidence 
that it is a possible target for 
terrorists

vary from no impact to 
total loss

yes depending on the attack

Natural
Hurricane, 
Earthquake, Fire, 
Flood

independent
high if there is a 
weather/geology incident 
forecast

vary from no impact to 
total loss

yes
high if no warning or the 
backup system is also affected. 
Otherwise, low

Software 
failure

Internal

External

Intentional

Unintentional

Indirect

People 
failure

Third 
party

System

Internal 
Hardware 
failure

Supporting 
system failure

failure arrival rate Impact
Internal/
External

Main-
class

Sub-class Events Effect

 
 
 
All the events in the event-dependency chart (the ‘Event’ column in Table 2) are put 
into the middle section of the interdependency graph (the middle section of Chart 1). 
Based on the ‘failure arrival rate’ column in the event-dependency chart (Table 2), we 
can identify the root causes of the failures and drivers, and then list them in the 
interdependency graph (the left-hand section of Chart 1). Next we identify the impact 
types from the information in the ‘Effect’ and ‘Impact’ columns of the event-
dependency chart and put them into the right-hand section of the interdependency 
graph. 
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Root causes of failures failure dependency
Failure event types impact dependecy

Independent impact 
types

aging of the servers
aging of the storages
aging of the network

HVAC failure

aging of HVAC communication network failure
bad system maintenance
bad HVAC maintenance
high transaction volume
external power outage

internal electrical system 
maintenance

software upgrade/patch

software bug discovery
operation error, e.g. accidentally 

switch off the server

employee's experience
Hurricane, Earthquake, Fire, 

Flood
natural events

poor security system
vulnerability discovery

employee ethic/moral
Steal/abuse company's 

asset/property
stealing/abuse 
opportunities

Sell customers' trade 
information to a spy

War War
Terrorist attack

Repair/replace cost due 
to failure

Business delay

software failure

Hacker/worm/virus attack

Business disruption

Terrorist attack

server failure

backup data storage failure

HVAC failure

electricity system failure

Loss of asset or data 
due to war/terrorist 

attack

Loss of asset or data 
due to stealing and 

abuse

Chart 1: Interdependency graph 
 
 
Finally, we link all three sections of the interdependency graph by arrows to indicate 
the dependencies. The information from the ‘failure arrival rate’ column of the event-
dependency chart is used to create the failure dependency arrows, and the information 
from the ‘impact’ column is used to create the impact dependency arrows. 
 
Decomposition using Interdependency Graph 
Identifying the disconnected subgraphs, we break the graph in Chart 1 into three 
subgraphs, and mark them by three colors. Furthermore, the first subgraphs can be 
broken down into smaller disconnected subgraphs. The disconnected subgraphs in this 
layer are color-coded and shown in Chart 2. 
 



  15 of 27  

Root causes of failures Failure event types
Independent impact 

types

aging of the servers
aging of the storages
aging of the network

HVAC failure

aging of HVAC communication network failure
bad system maintenance
bad HVAC maintenance
high transaction volume
external power outage

internal electrical system 
maintenance

software upgrade/patch

software bug discovery
operation error, e.g. accidentally 

switch off the server

employee's experience
Hurricane, Earthquake, Fire, 

Flood
natural events

poor security system
vulnerability discovery

employee ethic/moral
Steal/abuse company's 

asset/property
stealing/abuse 
opportunities

Sell customers' trade 
information to a spy

War War
Terrorist attack

Business disruption

Terrorist attack

server failure

backup data storage failure

HVAC failure

electricity system failure

Loss of asset or data 
due to war/terrorist 

attack

Loss of asset or data 
due to stealing and 

abuse

Repair/replace cost due 
to failure

Business delay

software failure

Hacker/worm/virus attack

 
Chart 2: Interdependency graph decomposition 
 
 
As a result, we have identified the decomposition structure for this problem. The 
decomposition map for this example is shown in Figure 7. 
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Figure 7: Decomposition map of this example 
 
 
In this case, the business disruption impact is calculated by the SLA violation penalty 
described in the preceding subsection. The second layer in the decomposition map 
consists of three impact submodels. In this layer, all failure-event types that affect the 
same impact type are grouped together. In the impact submodel #1, the failures of 
hardware, power, software, human, and failures due to natural disasters can cause a 
business disruption or SLA violation. Therefore, they should be in the same impact 
submodel. The second impact type is the loss of assets or confidential data due to an 
insider, such as the legal cost and asset replacement cost incurred. We assume that 
operating assets cannot be stolen, whereas maintenance assets and spare parts can be. 
This type of event does not entail a business disruption, and hence can be assigned to 
another impact submodel. The same holds true in the case of war or terrorist attack, 
where the loss due to business disruption is protected by a force majeure clause in the 
SLA contract. The only impact of this event type is the costs of repairs and 
replacements.  
 
Note that in this example we assume that a bad maintenance policy can affect the 
hardware, heating, ventilating and air conditioning (HVAC), and cause power 
failures. Human errors, such as accidentally switching off a server, have a direct effect 
in terms of business disruption, but no significant effects in terms of the hardware, 
HVAC and power failure rates. If we want to relax this assumption and allow human 
errors to affect hardware, HVAC, and power failure rates, then the failure submodels 
#1, #2, and #4 must be combined into a single failure submodel. In both cases, all the 
failure submodels can be practically implemented using a simulation approach. 
 
System Modeling and Detail-Level Selection 
For each submodel, the parameters to monitor are identified based on the root causes 
of failures and the failure and impact dependencies identified in Table 2. The 
submodel needs to contain detail levels such that those parameters can be monitored. 
The parameters and variables in the model are listed in the nonshaded columns of 
Table 3. The shaded columns are from the event-dependency chart constructed earlier. 
 
 
Table 3: Failure and impact variables 
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failure modeling Impact modeling

f(age) f(state)
variables to 

monitor
f(dura
tion)

Remark variables to monitor

hardware failure
high for new, low 
for non-new, high 
again for very old

high if high 
volume or bad 
maintenance

hardware age, 
transaction 
volume, current 
maintenance 
policy, HVAC state

backup system 
failover, 
replacement/repair 
of the failed 
hardware

yes

high if the backup 
also 
breakdown.Otherwise
, low

backup system state, 
failure time, duration 
of breakdown, 
repair/replace costs

backup data 
storage failure

high for new, low 
for non-new, high 
again for very old

high if high 
volume or bad 
maintenance

data storage age, 
transaction 
volume, current 
maintenance 
policy, HVAC state

cannot retrieve 
history, recovering 
cost, replace/repair 
cost

yes
depend on the loss 
data and recovering 
time

loss data, failure time, 
time to recover, 
repair/replace cost

communication 
network failure

high for new, low 
for non-new, high 
again for very old

high if high 
volume or bad 
maintenance

hardware age, 
transaction 
volume, current 
maintenance 
policy, HVAC state

unable to 
communicate with 
customers, 
replace/repair cost

yes
depend on whether 
there is a critical 
information to convey

information to 
communicate, failure 
time, time to recover, 
repair/replace cost

HVAC failure
high for new, low 
for non-new, high 
again for very old

high if bad 
maintenance

HVAC age, current 
maintenance policy

can lead to 
hardware failure, 
replace/repair cost

yes
depend on when it 
occurs, weekend or 
rush hours

failure time, time to 
fix, replace/repair 
cost

internal 
electricity 
system failure

constant over 
time

high if bad 
maintenance or a 
new change in 
electricity system

current 
maintenance policy 
and change in 
electrical system

backup system 
failover

yes

high if the backup 
also 
breakdown.Otherwise
, low

backup system state, 
failure time, duration 
of breakdown

main settlement 
software failure

high for new 
version or new 
patch, low for old

high if there is a 
change in the 
system

age of the current 
version/service 
pack, change in 
the system

backup system 
failover if detected

yes

high if not detect or 
the backup system is 
also 
breakdown.Otherwise
, low

fault activities 
performed, backup 
system state, failure 
time, duration of 
breakdown

non-core 
software failure

high for new 
version or new 
patch, low for old

high if there is a 
change in the 
system

age of the current 
version/service 
pack, change in 
the system

non-core software 
mulfunction

yes
depending on how 
critical of the failed 
application

fault activities 
performed, failure 
time, duration of 
breakdown

failure arrival rate Impact
EffectEvents

 
 
 
The failure and impact variables to monitor are the key to determine the level of 
details for each submodel. Each submodel should be at such a level of detail that these 
variables can be monitored. 
 
In each impact-calculation submodel, the failures are transformed into impacts. The 
impact variables to monitor are necessary for impact calculation. For example, we can 
calculate the level of SLA violation due to a hardware failure if we know the state of 
the backup system, the failure time and duration, and the repair/replace cost. It is also 
possible that one type of failure can impact another type of failure. For example, a 
HVAC failure for an extended period of time can increase the failure arrival rate of 
some hardware components. Such correlated events can be captured by a simulation 
model, which is explained in the next subsection. 
 
There are several different ways to estimate the failure or impact functions and their 
parameters. The most acceptable way is to perform statistical analysis of the historical 
data.  If no historical data exists, the operational staff, who defines the dependencies 
listed in Table 1, should be able to at least ‘guesstimate’ or have a rough idea on the 
functions or their parameters. In the worst case, i.e. if we have no idea about a 
particular input assumption, a sensitivity analysis of that assumption must be 
performed. 
 
Because in this paper, the input assumption modeling technique for each particular 
submodel is not our goal, we assume some dummy numbers, but that nevertheless 
make sense, for these functions and parameters in this example.  For illustration 
purpose only, we now describe some of our input assumptions for this example. 
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Solving Submodels 
Let us consider Impact submodel #1 in Figure 7. Here we see an example of cause-to-
effect modeling in detail. The system failure submodel is complex, and many failures 
and impacts are interrelated, e.g. HVAC failure can affect the failure rates of other 
hardware components.  Also, many impacts of hardware failures highly depend on 
whether the backup system is working.  
 
The most important features included in Impact submodel #1 are listed below.  We 
first describe the impact model, i.e. how failure events become losses, and then the 
failure submodels that generate the failure events. 
 
Impact submodel #1 
Impact (business disruption, business delay, repair/replacement costs) 

• Business disruptions and delays incur penalties as defined by the SLA; these 
are important (costly) during business hours and not important (i.e. no penalty) 
outside business hours. 

• Repair or replacement cost is stochastic and incurred depending on the 
hardware (including HVAC) failure severity. 

 
Failure submodel #1 

• Hardware aging-repair-replace: The hardware failure rate increases as the 
hardware gets older. For example, the mean number of days between server 
failures is equal to 1200 divided by the server age in months. The age of the 
hardware is reset to zero when it is replaced by new hardware.  

• Facilities aging-repair-replace: The HVAC failure rate depends on its age. 
• Utilization: Utilization of hardware can increase its failure rate; for example, 

the age of a storage disk increases by one month when it handles extremely 
high traffic or high volume. In each settlement round, the traffic can have an 
extremely high volume with a probability of 0.005. 

• Knock-on effect of failures: If HVAC fails for an extended period, the 
hardware will be affected. For example, the hardware age increases by one 
month if the HVAC fails for more than one day. 

• Queuing: The processing delay depends on the transaction volume as 
described by the queuing incurred. The delay increases when the volume 
increases (because of increased queuing). 

• Redundancy: A failure in one system triggers a fail-over to another redundant 
system; if the redundant system is operational then there will be no business 
disruption impact. 
 

Failure submodel #2 
• Power outage: The arrival and duration of outages are random.  The 

uninterruptible power supply (UPS) provides backup power for a maximum of 
one day. 
 

Failure submodel #3 
• Correlated upgrades: The model allows some of software upgrades to affect 

both systems at the same time. For example, 80 percent of software upgrades 



  19 of 27  

will affect both servers, whereas 20 percent of the upgrades will affect only 
one server. 

• Software upgrades: The failure rate of the software increases significantly 
when it is upgraded.  Software failure includes all failure root causes, 
including security violations. 

• Software maintenance: The software failure rate decreases when the software 
gets older. For example, the mean time between software failures is equal to 
2*(age in months)2.  

• Software security:  The effect of attacks on software is modeled by software 
failures and included in the software upgrades and maintenance items above. 
 

Failure submodel #4 
• Human error and experience: The operator error arrival rate is higher for a 

new-hire system operator. The possibility that a human error will affect both 
systems simultaneously can be different from the effects of software failure. 
 

Failure submodel #5 
• Natural disasters: Random arrival and severity. 

 
Only simulation can handle this level of detail.  We use Arena™ software to model 
and run the simulation.  
 
Impact Submodel Results 
In this subsection, we present example outputs of the impact submodels. In this 
particular exercise, we simulated 10,000 replications. The graph in Figure 8 is an 
output of Impact submodel #1, i.e. the model for business disruption, delay, and 
repair/replace cost due to failure. Table 4 shows the statistical results.  The 
logarithmic graph (inset) makes it clear that there are no tail events of interest. 
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Impact Sub-model#1, Single system
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Figure 8: Loss distribution for business disruption, delay, and repair/replace cost due 
to failure.  Linear and logarithmic (inset graph) plots shown with the same data. 

  
 

Table 4: Statistical description of the loss distributions for business disruption with 
and without a redundant system. (For ease of comparison, the results for the 
redundant system are shown before the explicit consideration of redundancy in the 
text)  Clearly the presence of a redundant system has a huge beneficial impact on 
business disruption/delay.  We will see later that for the other impact submodels this 
is not nearly as dramatically the case. 

single  double 
mean  1,144,811  397,922  
s.d.  640,416  169,660  
99% VaR 2,908,608  842,165  
95% VaR 2,283,496  689,555  
min   40   326  
max  3,744,896  1,563,095 

 
 
 

Figure 9 shows the loss distribution from Impact submodel #2, i.e. losses due to 
insider theft or abuse.  Table 5 provides the statistical summary. Theft includes 
maintenance and spares as well as information.  Again, no tail events are evident. 
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Impact Sub-model#2, Single system
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Figure 9: Loss distribution due to insider theft or abuse.  

 
Table 5: Statistical description of the loss distributions for theft with and without a 
redundant system. With a redundant system, there is more to steal in terms of spare 
parts and maintenance supplies.  However the overall differences are small. 
  single  double 
mean  15,759  23,709  
s.d.  35,569  45,266  
99% VaR 164,998  206,222  
95% VaR 80,052  109,784  
min  0     0    
max  655,657  774,573  
 
 
Figure 10 shows Impact submodel #3, i.e. losses due to war and terrorist attacks, and 
Table 6 gives the statistical summary.  Here most of the events are in the tail and are 
due to both partial and total system losses. 
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Impact Sub-model#3, Single system
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Figure 10: Loss distribution due to war and terrorist attacks. 

  
Table 6: Statistical description of the loss distributions due to war and terrorist attacks 
with and without a redundant system. The redundant system incurs a slightly higher 
risk, which is due to the fact that the worst-case scenario, i.e. total loss, is actually 
worse in the redundant system than in the nonredundant system because there are 
more assets to lose. 
  single  double 
mean  182,959  204,331  
s.d.  1,116,565  1,243,214  
99% VaR 8,994,178  9,428,824  
95% VaR 456   335  
min  0     0 
max  15,098,522  16,162,506 
 
 
Result Aggregation 
The independent loss distributions from the three impact submodels shown in the 
preceding subsection can easily be aggregated into the total loss distribution using a 
numerical convolution program.  Figure 11 shows the total loss distribution resulting 
from aggregating the loss distributions of the three submodels for a nonredundant 
system. 
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Aggregate Model, Single system
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Figure 11: Aggregate (total) loss distribution obtained from the three impact 
submodels in the case of a nonredundant system.  This is obtained by convolving the 
independent (by construction) impact distributions.  See Table 7 for a statistical 
summary. 
 
 
Some example results 
Here we answer the questions we posed earlier, namely, what is the value (in 
operational risk terms) of having a redundant system; and what is the difference 
between different server-replacement policies.  The former is a system-architectural 
question, and the latter is an operational question. 
 
Redundancy system analysis 
The total loss distributions in the two cases (with and without a redundant system) are 
compared in Figure 12 and Table 7.  We see that although having a redundant system 
would reduce operational risk due to business disruption, it increases the operational 
risk due to insider stealing and war/terrorist attack, in addition to the extra cost of 
having a redundant system. For the decision on whether to have a redundant system, 
the decision maker should assess the risk preferences with respect to both mean and 
distributional aspects. In our example, although most indicators would clearly point to 
a preference for the redundant system, the single system might be preferable if the 
decision maker is only sensitive to the 99% VaR.  
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Aggregate Models, Comparison
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Figure 12: Total impact distribution with (double) and without (single) redundant 
system 

  
 
Table 7: Statistical description of the total impact distribution with and without 
redundant system. 
  single  double 
mean  1,343,528 625,963  
s.d.  1,292,178  1,256,480  
99% VaR 9,247,169  9,906,728  
95% VaR 2,740,314  819,350  
min   40   326  
max  19,499,075  18,500,173 
 
 
The operational cost in the redundant system has a significantly lower mean than that 
in the single system. Regarding the business decision, especially for a large company, 
we found that if the initial investment cost for having the redundant system is lower 
than the difference between the mean of the two cases (roughly $700,000 over the 
five-year period used), the company should go for the redundant system.  
 
Replacement policy analysis 
We consider a range of replacement policies in a nonredundant system. We consider 
server replacement policies varying between 10 and 60 months. Figure 13 gives the 
resulting expected total losses when implementing these various replacement 
intervals. The policy with a 32-month replacement interval yields the lowest total 
expected loss. 
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Figure 13:  Comparison of different server-replacement policies in terms of expected 
total loss. Replacing the server when it reaches an age of 32 months will yield the 
lowest total expected loss. 

 
 
 

Conclusion 
 
Operational-risk quantification has recently become important because of the new 
Basel II regulations.  Current methods based on the observation of losses and their 
magnitudes to quantify operational risk do not preserve the cause-to-effect 
relationship that shows how operational risk can be reduced, managed, and controlled. 
Cause-to-effect modeling is also necessary to capture the complex interdependencies 
of business processes and the systems supporting them.  We have introduced a cause-
to-effect operational-risk modeling methodology that enables operational risk to be 
reduced, managed, and controlled.  To the best of our knowledge, we are the first to 
implement and use cause-to-effect modeling in operational-risk quantification.   
 
We demonstrated the use of this new methodology with an example inspired by the 
inter-bank settlement process of a financial clearinghouse. We also introduced a new 
decomposition algorithm to address the complexity problem incurred when dealing 
with large-scale models.  This allowed us to correctly separate large-scale models into 
smaller submodels without losing the important cause-to-effect relationships, and 
subsequently to aggregate the submodels. 
 
In our example, we posed two questions regarding business decisions that potentially 
impact operational risk.  One question was at the system-architectural level on the 
value of a redundant system and the other at the operational level on the effect of the 
server-replacement policy.  We showed that, for our example, a redundant system was 
almost always preferable and that the policy of replacing the server when it reaches 32 
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months of age will yield the lowest total expected loss from all fixed-interval 
replacement policies. 
 
The goal of this study was to demonstrate the methodology and how it can be used for 
answering operational-risk management questions. We showed examples in which 
operational risk quantification can be included in business-decision making both with 
respect to system architectural questions and operational policies while covering the 
entire range of people, process and system risks specified by Basel II. 
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