
RZ 3601 (# 99611) 04/18/05
Computer Science 20 pages

Research Report

Cryptographic Key Secrecy of the Strengthened Yahalom
Protocol via a Symbolic Security Proof

Michael Backes and Birgit Pfitzmann

IBM Research GmbH
Zurich Research Laboratory
8803 R̈uschlikon
Switzerland
{mbc,bpf}@zurich.ibm.com

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available
at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich

Cryptographic Key Secrecy of the Strengthened Yahalom Protocol
via a Symbolic Security Proof

Michael Backes, Birgit Pfitzmann
IBM Zurich Research Laboratory, Switzerland

{mbc,bpf}@zurich.ibm.com

Abstract

Symbolic secrecy of exchanged keys is arguably one of the most important notions of secrecy shown
with automated proof tools. It means that an adversary restricted to symbolic operations on terms can
never get the entire key into its knowledge set. Cryptographic key secrecy essentially means computa-
tional indistinguishability between the real key and a random one, given the view of a much more general
adversary.

We provide the first proof of cryptographic key secrecy for the strengthened Yahalom protocol, which
constitutes one of the most prominent key exchange protocols analyzed by means of automated proof
tools. The proof holds in the presence of arbitrary active attacks provided that the protocol is imple-
mented using standard provably secure cryptographic primitives. We exploit recent results on linking
symbolic and cryptographic key secrecy in order to perform a symbolic proof of secrecy for the Ya-
halom protocol in a specific setting that allows us to derive the desired cryptographic key secrecy from
the symbolic proof.

1 Introduction

Cryptographic protocols for key establishment are an established technology. Nevertheless, most new net-
working and messaging stacks come with new protocols for such tasks. Since designing cryptographic
protocols is known to be error-prone and, owing to the distributed-system aspects of multiple interleaved
protocol runs, security proofs of such protocols are awkward to make for humans, automation of such proofs
has been studied almost since cryptographic protocols first emerged. From the start, the actual cryptographic
operations in such proofs were idealized into so-called Dolev-Yao models, following [16] with extensions
in [17, 29], e.g., see [31, 28, 22, 38, 39, 1, 27, 34]. These models replace cryptography by term algebras,
e.g., encrypting a message m twice does not yield a different message from the basic message space but the
term E(E(m)). A typical cancellation rule is D(E(m)) = m for all m. It is assumed that even an adver-
sary can only operate on terms by the given operators and by exploiting the given cancellation rules. This
assumption, in other words the use of initial models of the given equational specifications, makes it highly
nontrivial to know whether results obtained over a Dolev-Yao model are also valid over real cryptography.
One therefore calls properties and actions in Dolev-Yao models symbolic in contrast to cryptographic.

Arguably the most important and most common properties proved symbolically are secrecy properties,
as initiated in [16], and in particular key secrecy properties. Symbolically, the secrecy of a key is represented
by knowledge sets: The key is secret if the adversary can never get the corresponding symbolic term into
its knowledge set. Cryptographically, key secrecy is defined by computational indistinguishability between
the real key and a randomly chosen one, given the view of the adversary. Hence symbolic secrecy captures
the absence of structural attacks that make the secret as a whole known to the adversary, and because of its

1

simplicity it is accessible to formal proofs tools, while cryptographic secrecy constitutes a more fine-grained
notion of secrecy that is much harder to establish.

The Yahalom protocol [14, 35] is one of the most prominent key exchange protocols. Paulson discov-
ered that the original protocol from [14] is insecure and proposed a strengthened variant [35]. This was
extensively investigated, e.g., in [35, 18, 13, 10]. However, all existing security proofs are restricted to the
Dolev-Yao model. We provide the first security proof of the strengthened Yahalom protocol in the more
comprehensive cryptographic sense, i.e., we show that keys exchanged between two honest users are secret
in the strong sense of indistinguishability from random keys. This holds in the presence of arbitrary active
attacks, provided that the Dolev-Yao abstraction of symmetric encryption is implemented by a symmetric
encryption scheme that is secure against chosen-ciphertext attacks and additionally ensures integrity of ci-
phertexts. This is the standard security definition of authenticated symmetric encryption [12, 11]. Efficient
symmetric encryptions schemes provably secure in this sense exist under reasonable assumptions [11, 37].

We achieve this result by exploiting recent work on linking Dolev-Yao models to the standard model of
cryptography. We analyze the Yahalom protocol based on the cryptographic library of Backes, Pfitzmann,
and Waidner [8, 9, 6], which corresponds to a slightly extended Dolev-Yao model that can be faithfully
realized using provably secure cryptographic primitives. In combination with a recent result on linking
symbolic and cryptographic key secrecy [7], this allows us to perform a symbolic proof of secrecy for the
Yahalom protocol and to derive the desired cryptographic key secrecy from that. This is the first symbolic
proof of a cryptographic protocol that can be exploited to derive cryptographic secrecy for the exchanged
keys. (Another such proof was conducted concurrently and independently by Canetti and Herzog, cf. below.)

Further Related Work. Cryptographic underpinnings of a Dolev-Yao model were first addressed by
Abadi and Rogaway [3]. They only handled passive adversaries and symmetric encryption. The proto-
col language and security properties were extended in [2, 23, 19], but still only for passive adversaries. This
excludes most of the typical ways of attacking protocols. A full cryptographic justification for a Dolev-Yao
model, i.e., for arbitrary active attacks and within arbitrary surrounding interactive protocols, was first given
in [8] with extensions in [9, 6]. Based on that Dolev-Yao model, the well-known Needham-Schroeder-Lowe
and Otway-Rees protocols were proved in [5, 4]. The former is entirely an authentication proof and hence
does not have to reason about secrecy aspects. The latter contains a key secrecy property but this was refor-
mulated by hand into a (considerably weaker) integrity property so that the integrity preservation theorem
could be used.

Laud [24] has recently presented a cryptographic underpinning for a Dolev-Yao model of symmetric
encryption under active attacks. His work enjoys a direct connection with a formal proof tool, but it is
specific to certain confidentiality properties, restricts the surrounding protocols to straight-line programs
in a specific language, and does not address a connection to the remaining primitives of the Dolev-Yao
model. Herzog et al. [20] and Micciancio and Warinschi [30] have recently also given a cryptographic
underpinning under active attacks. Their results are narrower than that in [8] since they are specific for
public-key encryption, but consider slightly simpler real implementations; moreover, the former relies on a
stronger assumption whereas the latter severely restricts the classes of protocols and protocol properties that
can be analyzed using this primitive. Section 6 of [30] further points out several possible extensions of their
work which all already exist in the earlier work of [8].

Efforts are also under way to formulate syntactic calculi for dealing with probabilism and polynomial-
time considerations, in particular [32, 25, 33, 21] and, as a second step, to encode them into proof tools. This
approach can not yet handle protocols with any degree of automation. It is complementary to the approach
of proving simple deterministic abstractions of cryptography and working with those wherever cryptography
is only used in a blackbox way.

Concurrently and independently to our work, Canetti and Herzog [15] have linked ideal functionalities

2

for mutual authentication and key exchange protocols to corresponding representations in a formal language.
They apply their techniques to the Needham-Schroeder-Lowe protocol by considering the exchanged nonces
as secret keys. Their work is restricted to the mentioned functionalities and in contrast to the universally
composable library [8] hence does not address soundness of Dolev-Yao models in their usual generality.
The considered language does not allow loops and offers public-key encryption as the only cryptographic
operation (symmetric encryption is not considered although the language is used to reason about symmetric
keys). Moreover, their approach to define a mapping between ideal and real traces following the ideas
of [30] only captures trace-based properties (i.e., integrity properties); reasoning about secrecy properties
additionally requires ad-hoc and functionality-specific arguments.

2 The Strengthened Yahalom Protocol

The Yahalom protocol [14] and its strengthened variant [35] are four-step protocols for establishing a shared
secret encryption key between two users. The protocol relies on a distinguished trusted party T, and it is
assumed that every user u initially shares a secret key Kut with T. Expressed in the typical protocol notation
as in, e.g., [26], the strengthened Yahalom works as follows.1

1. u → v : u,Nu

2. v → T : v,Nv , (u,Nu)Kvt

3. T → u : Nv, (v,Kuv , Nu)Kut , (u, v,Kuv , Nv)Kvt

4. u → v : (u, v,Kuv , Nv)Kvt .

User u seeks to share a new session key with user v. It generates a nonce Nu and sends it to v together with
its identity (first message). Next, v generates a new nonce Nv, creates a new message containing the identity
u and the nonce Nu, and encrypts it with the key it shares with T. Then v sends its identity, its nonce Nv, and
the encryption to the trusted party (second message). Now T decrypts the encryption yielding the identity of
u and the nonce Nu, generates a fresh key Kuv for u and v, generates a message according to the protocol
description, and sends it to u (third message). Then u decrypts the first encryption and tests whether the
contained nonce is the one it sent to v before, i.e., to the identity that is contained in this encryption. If so, it
forwards the second encryption to v (fourth message) and terminates the protocol by outputting a handle to
the shared secret key Kuv to its user. Finally v decrypts this message, obtains the shared key Kuv, and tests
if the message contains its own identity and the contained nonce was previously sent to T. If so, it outputs a
handle to the shared key Kuv to its user and terminates the protocol.

2.1 Protocol Details with the Dolev-Yao-style Cryptographic Library

Almost all formal proof techniques for protocols first need a reformulation of the protocol into a more
detailed version than the four steps above. These details include necessary tests on received messages, the
types and generation rules for values like u and Nu, and a surrounding framework specifying the number
of participants, the possibilities of multiple protocol runs, and the adversary capabilities. The same is true
when using the Dolev-Yao-style cryptographic library from [8], i.e., it plays a similar role in our proof as
“the CSP Dolev-Yao model” or “the inductive-approach Dolev-Yao model” in other proofs. We now present
the protocol details in this framework, and explain general aspects of the framework in Section 2.2.

1The strengthened protocol presented in [35] further contains an encryption of the nonce Nv with Kuv in the fourth term to
guarantee entity authentication of u to v. We omitted this encryption to concentrate on the key secrecy property of the core key
exchange functionality.

3

Algorithm 1 Evaluation of User Inputs in MYa
u with u �= T (Protocol Start)

Input: (new prot,Yahalom, v) at KE inu? with v ∈ {1, . . . , n} \ {u}.
1: nhnd

u ← gen nonce().
2: Nonceu := Nonceu ∪ {(nhnd

u , v, 1)}.
3: uhnd ← store(u).
4: mhnd

1 ← list(uhnd, nhnd
u).

5: send i(v,mhnd
1).

We write “:=” for deterministic assignment, and ↓ is an error element available as an addition to the
domains and ranges of all functions and algorithms. The framework is automata-based, i.e., protocols are
executed by interacting machines, and event-based, i.e., machines react on received inputs. By MYa

i we
denote the Yahalom machine for a participant i; it can act in the roles of both u and v above.

The first type of input that MYa
i can receive is a start message (new prot,Yahalom, v) from its user

denoting that it should start a protocol run with user v. The number of users is called n.2 User inputs
are distinguished from network inputs by arriving at a so-called port KE inu?. The “?” for input ports
follows the CSP convention, and “KE” stands for key exchange because the user interface is the same for
all key exchange protocols. The reaction on this input, i.e., the sending of the first message, is described
in Algorithm 1. The command gen nonce generates the nonce. MYa

u stores the resulting so-called handle
nhnd

u (a local name that this machine has for the corresponding term) in a set Nonceu for future comparison
together with the identity v and an indicator that this nonce was generated and stored by u in the first step.
The set Nonceu formally consists of triples (nhnd, w, j) where nhnd is a handle, w ∈ {1, . . . , n} \ {u}, and
j ∈ {1, 2, 3, 4}. A triple (nhnd, w, j) means that MYa

u stored the handle nhnd in the j-th protocol step in a
session with w. The command store inputs arbitrary application data into the cryptographic library, here
the user identity u. The command list forms a list, and the final command send i means that MYa

u sends the
resulting term to v over an insecure channel. The effect is that the adversary obtains a handle to the term
and can decide what to do with it (such as forwarding it to MYa

v or performing Dolev-Yao-style algebraic
operations on the term). The superscript hnd on most parameters denotes that these are handles, i.e., the
users obtain local names for the corresponding terms. This is an important aspect of [8] because it allows
the same protocol description to be implemented once with Dolev-Yao-style idealized cryptography and
once with real cryptography. The four commands we saw so far and their input and output domains belong
to the interface (in the same sense as, e.g., a Java interface) of the underlying cryptographic library. This
interface is implemented by both the idealized and the real version. In the first case, the handles are local
names of Dolev-Yao-style terms, in the second case of real cryptographic bitstrings, on which the adversary
can perform arbitrary bit manipulations. We say more about these two implementations below.

We now define formally how protocol machines and the trusted party behave upon receiving an input
from the network. To increase readability we augment the algorithm with comments at its right-hand side
to depict which handle corresponds to which Dolev-Yao term. We further use the naming convention that
ingoing and outgoing messages are labeled m, where outgoing messages have an additional subscript cor-
responding to the protocol step. Ciphertexts are labeled c, the encrypted lists are labeled l, and terms whose
type is still unknown are labelled t or x, all with suitable sub- and superscripts.

Network inputs arrive at port outu? and are of the form (v, u, i,mhnd) where v is the supposed sender, i
denotes that the channel is insecure, and mhnd is a handle to a list. The port outu? is connected to the cryp-
tographic library, whose two implementations represent the obtained Dolev-Yao-style term or real bitstring,
respectively, to the protocol in a unified way by the handle mhnd.

2The set of users is {1, . . . , n} and the Yahalom protocol is designed such that T �∈ {1, . . . , n} where T denotes the trusted
party.

4

The behavior of MYa
u for u ∈ {1, . . . , n} is given in Algorithm 2. Upon receiving a network input MYa

u

first decomposes the obtained message and checks if it could correspond to the first, third, or fourth step
of the protocol. (Recall that the second step is only performed by T.) This is implemented by querying
the type of the first component and by looking up the respective nonce in the set Nonceu. After that,
MYa

u checks if the obtained message is indeed a suitably constructed message for the particular step by
exploiting the content of Nonceu. If so, MYa

u constructs a message according to the protocol description,
sends it to the intended recipient, updates the set Nonceu, and possibly signals to its user that a key has been
successfully shared with another user. The behavior of MYa

T upon receiving an input (v,T, i,mhnd) from the
cryptographic library at port outT? is defined similarly.

The formal definition of the behavior of the trusted party is given in Algorithm 3. We omit an information
description.

A machine should immediately abort the handling of the current input if a cryptographic command does
not yield the desired result, e.g., if a decryption fails. This is captured by the following convention.

Convention 1 If MYa
u receives ↓ as the answer of the cryptographic library to a command, then MYa

u aborts
the execution of the current algorithm, except for the command types list proj or send i.

2.2 Overall Framework and Adversary Model

The framework that determines how machines such as our Yahalom machines and the machines of the ide-
alized or real cryptographic library execute is taken from [36]. The basis is an asynchronous probabilistic
execution model with distributed scheduling and with a well-defined Turing-machine refinement for com-
plexity considerations. We already used implicitly above that for term construction and parsing commands
to the cryptographic library, so-called local scheduling is defined, i.e., a result is returned immediately. The
idealized or real network sending via this library, however, is scheduled by the adversary.

When protocol machines such as MYa
u there is no guarantee that all these machines are correct. A trust

model determines for what subsets H of {1, . . . , n,T} we want to guarantee anything; here these are the
subsets that contain at least the trusted party: We prove secrecy of keys shared by u and v whenever u, v ∈ H
and thus whenever MYa

u and MYa
v are correct. Incorrect machines disappear and are replaced by the adversary.

Each set of potential correct machines together with its user interface is called a structure, and the set of
these structures is called the system. When considering the security of a structure, an arbitrary probabilistic
machine H is connected to the user interface to represent all users, and an arbitrary probabilistic machine
A is connected to the remaining free ports (typically the network) and to H to represent the adversary. In
polynomial-time security proofs, H and A are polynomial-time. This setting implies that any number of
concurrent protocol runs with the honest participants and the adversary are considered because H and A can
arbitrarily interleave protocol start inputs (new prot,Yahalom, v) with the delivery of network messages.

For a set H of honest participants, the user interface of the Yahalom protocol machines is SKE
H :=

{KE inu?,KE outu ! | u ∈ H \ {T}}. The ideal and real Yahalom protocol serving this interface differ only
in the cryptographic library, i.e., the Yahalom machines either rely on a setM̂ cry

H := {Mcry
u,H | u ∈ H} of

real cryptographic machines or an ideal machine THcry
H called trusted host. With M̂ Ya

H := {MYa
u | u ∈ H},

the ideal system is SysYa,id := {(M̂ Ya
H ∪ {THcry

H },SKE
H) | {T} ⊆ H ⊆ {1, . . . , n,T}}, and the real system

is SysYa,real
SE := {(M̂ Ya

H ∪ M̂ cry
H ,SKE

H) | {T} ⊆ H ⊆ {1, . . . , n,T}}, where SE denotes the symmetric
encryption scheme used.

5

Algorithm 2 Evaluation of Network Inputs in MYa
u with u �= T

Input: (v, u, i,mhnd) at outu? with v ∈ {1, . . . , n} \ {u} ∪ {T}.
1: thnd

i ← list proj(mhnd, i) for i = 1, 2, 3.
2: typethnd

1
← get type(thnd

1).
3: if typethnd

1
= data ∧ v �= T ∧ ∀j : (thnd

2 , v, j) �∈ Nonceu then {First Message is input}
4: type thnd

2
← get type(thnd

2).
5: t1 ← retrieve(thnd

1).
6: if t1 �= v ∨ typethnd

2
�= nonce then Abort end if

7: nhnd
u ← gen nonce().

8: Nonceu := Nonceu ∪ {(nhnd
u , v, 2)}.

9: uhnd ← store(u).
10: lhnd

2 ← list(thnd
1 , thnd

2). {lhnd
2 ≈ (v,Nv)}

11: chnd
2 ← sym encrypt(sksehnd

u,T, lhnd
2). {chnd

2 ≈ (v,Nv)Kut}
12: mhnd

2 ← list(uhnd, nhnd
u , chnd

2). {mhnd
2 ≈ (u,Nu, (v,Nv)Kut)}

13: send i(T,mhnd
2).

14: else if typethnd
1

= nonce ∧ v = T then {Third Message is input}
15: lhnd ← sym decrypt(sksehnd

u,T, thnd
2). {lhnd ≈ (v,Kuv , Nu)}

16: xhnd
i ← list proj(lhnd, i) for i = 1, 2, 3.

17: x1 ← retrieve(xhnd
1).

18: typexhnd
2

← get type(xhnd
2).

19: type thnd
3

← get type(thnd
3).

20: if (xhnd
3 , x1, 1) �∈ Nonceu ∨ typexhnd

2
�= skse ∨ type thnd

3
�= symenc then Abort end if

21: Nonceu := (Nonceu \ {(xhnd
3 , x1, 1)}) ∪ {(xhnd

3 , x1, 3)}.
22: mhnd

4 ← list(thnd
3). {mhnd

4 ≈ (u, v,Kuv , Nv)Kvt}
23: Output (ok initiator,Yahalom, x1, x

hnd
2) at KE outu !.

24: send i(x1,m
hnd
4).

25: else if typethnd
1

= symenc ∧ v �= T then {Fourth Message is input}
26: lhnd ← sym decrypt(sksehnd

u,T, thnd
1). {lhnd ≈ (v, u,Kuv , Nu)}

27: xhnd
i ← list proj(lhnd, i) for i = 1, 2, 3, 4.

28: xi ← retrieve(xhnd
i) for i = 1, 2.

29: typexhnd
3

← get type(xhnd
3).

30: if x1 �= v ∨ x2 �= u ∨ typexhnd
3

�= skse ∨ (xhnd
4 , x1, 2) �∈ Nonceu then Abort end if

31: Nonceu := (Nonceu \ {(xhnd
4 , x1, 2)}) ∪ {(xhnd

4 , x1, 4)}.
32: Output (ok responder,Yahalom, x1, x

hnd
3) at KE outu !.

33: else
34: Abort
35: end if

6

Algorithm 3 Behavior of the Trusted Party MYa
T

Input: (v,T, i,mhnd) at outT? with v ∈ {1, . . . , n}.
1: thnd

i ← list proj(mhnd, i) for i = 1, 2, 3.
2: t1 ← retrieve(thnd

1). {t1 ≈ v}
3: typethnd

2
← get type(thnd

2).

4: lhnd ← sym decrypt(sksehnd
T,v , thnd

3). {lhnd ≈ (u,Nu)}
5: xhnd

i ← list proj(lhnd, i) for i = 1, 2.
6: x1 ← retrieve(xhnd

1). {x1 ≈ u}
7: typexhnd

2
← get type(xhnd

2).
8: if typethnd

2
�= nonce ∨ typexhnd

2
�= nonce ∨ t1 �= v ∨ x1 �∈ {1, . . . , n} \ {v} then Abort end if

9: sksehnd ← gen symenc key(). {sksehnd ≈ Kuv}
10: l

(1)hnd

3 ← list(thnd
1 , sksehnd, xhnd

2). {l(1)hnd

3 ≈ (v,Kuv , Nu)}
11: c

(1)hnd

3 ← sym encrypt(sksehnd
T,x1

, l
(1)hnd

3). {c(1)hnd

3 ≈ (v,Kuv , Nu)Kut}
12: l

(2)hnd

3 ← list(xhnd
1 , thnd

1 , sksehnd, thnd
2). {l(2)hnd

3 ≈ (u, v,Kuv , Nv)}
13: c

(2)hnd

3 ← sym encrypt(sksehnd
T,v , l

(2)hnd

3). {c(2)hnd

3 ≈ (u, v,Kuv , Nv)Kvt}
14: mhnd

3 ← list(thnd
2 , c

(1)hnd

3 , c
(2)hnd

3). {mhnd
3 ≈ (Nv , (v,Kuv , Nu)Kut , (u, v,Kuv , Nv)Kvt)}

15: send i(x1,m
hnd
3).

3 The Key Secrecy Property

In the following, we formalize the key secrecy property of the ideal and real Yahalom protocols. The
property is an instantiation of a general key secrecy definition for arbitrary protocols based on the ideal
cryptographic library. It was introduced in [7] and is symbolic, based on the typical notion that a term
is not an element of the adversary’s knowledge set. In the given Dolev-Yao-style library, the adversary’s
knowledge set is the set of all terms to which the adversary has a handle.

We start this section by defining the possible states of the ideal and real cryptographic library as needed
for formulating the property, and then define the property.

3.1 Overview and States of the Ideal Cryptographic Library

The ideal cryptographic library administrates Dolev-Yao-style terms and allows each user to operate on them
via handles, i.e., via local names specific to this user. The handles also contain the information that knowl-
edge sets give in other Dolev-Yao formalizations: The set of terms that a participant u knows, including
u = a for the adversary, is the set of terms with a handle for u. The terms are typed; for instance, decryption
only succeeds on ciphertexts and projection only on lists. Moreover, the terms are globally numbered by
a so-called index. Each term is represented by its type (i.e., root node) and its first-level arguments, which
can be indices of earlier terms. This enables easy distinction of, e.g., which of many nonces is encrypted in
a larger term. These global indices are never visible at the user interface. The indices and the handles for
each participant are generated by one counter each.

The data structure storing the terms in [8] is a database D. Generally, a database D is a set of functions,
called entries, each over a finite domain called attributes. For an entry x ∈ D, the value at an attribute
att is written x.att . For a predicate pred involving attributes, D[pred] means the subset of entries whose
attributes fulfill pred . If D[pred] contains only one element, we use the same notation for this element.
Adding an entry x to D is abbreviated D :⇐ x. Moreover, we write the list operation as l := (x1, . . . , xj),

7

and argument retrieval as l[i] with l[i] = ↓ if i > j. In the specific term database D, each entry x can have
arguments (ind , type , arg , hndu1, . . . , hndum, hnd a, len), for {u1, . . . , um} = H and the arguments have
the following types and meaning:

• x.ind is the global index of an entry. Its type INDS is isomorphic to N and distinguishes index
arguments from others. The index is used as a primary key attribute of the database, i.e., we write
D[i] for the selection D[ind = i].

• x.type ∈ typeset is the type of x. We use the types nonce, list, data (for payload data), skse and pkse
(for symmetric encryption keys and corresponding “public-key identifiers”, see below), and symenc
(for symmetric encryptions).

• x.arg = (a1, a2, . . . , aj) is a possibly empty list of arguments. Arguments of type INDS are indices
of other entries (subterms); we sometimes distinguish them by a superscript “ind”.

• x.hndu ∈ HNDS ∪ {↓} for u ∈ H ∪ {a} are handles, where x.hndu = ↓ means that u does not
know this entry and HNDS is another set isomorphic to N. We always use a superscript “hnd” for
handles.

• x.len ∈ N0 denotes the length of the entry.

The machine THH has a counter size ∈ INDS for the current size of D and counters curhndu (current
handle) for the handles, all initialized with 0.

In order to capture that keys shared between users and the trusted party have already been generated and
distributed, we assume that suitable entries for the keys already exist in the database. We denote the handle
of u to the secret key shared with v, where either u ∈ {1, . . . , n} and v = T or vice versa, by sksehnd

u,v .

3.2 The Real Cryptographic Library

In the real implementation of the cryptographic library, each user has its own machine. This machine con-
tains a database Du with only three main attributes: the handle hndu for this user u, the real cryptographic
bitstring word , and the type type . The users can use exactly the same commands as with the ideal library,
e.g., en- or decrypt a message etc. These commands now trigger real cryptographic operations. The op-
erations essentially use standard cryptographically secure primitives, but with certain additional tagging,
randomization etc. Send commands now trigger the actual sending of bitstrings between machines and/or to
the adversary.

3.3 Definition of the Key Secrecy Property

The first step towards defining symbolic key secrecy is to consider one state of the ideal Dolev-Yao-style
library and to define that a handle points to a symmetric key, that the key is symbolically unknown to the
adversary, and that it has not been used for encryption or authentication. These are the symbolic conditions
under which we can hope to prove that the corresponding real key is indistinguishable from a fresh random
key for the adversary. Note that the operations that the Yahalom protocol performs on new keys are allowed
in this sense. For Condition (3) in the definition, note that the arguments of a ciphertext term are (l, pk)
where l is the plaintext index and pk the index of the public tag of the secret key, with pk = sk − 1 for the
secret key index.

Definition 3.1 (Symbolically Secret Encryption Keys [7]) Let {T} ⊆ H ⊆ {1, . . . , n,T}, a database state
D of THcry

H , and a pair (u, lhnd) ∈ H × HNDS of a user and a handle be given. Let i := D[hndu =

8

lhnd].ind be the corresponding database index. The term under (u, lhnd) (1) is a symmetric encryption key
iff D[i].type = skse, (2) is symbolically unknown (to the adversary) iff D[i].hnda = ↓, (3) has not been used
for encryption, or short is unused, iff for all indices j ∈ N we have D[j].type = symenc ⇒ D[j].arg [2] �=
i − 1, and (4) is a symbolically secret key iff it has the three previous properties. �

A secret-key belief function is a general way to designate the keys whose secrecy should be proved. The un-
derlying theory from [7] is based on such functions. We instantiate them for the Yahalom protocol and
thus essentially for all individual key exchange protocols. A secret key belief function maps the user
view to a set of triples (u, lhnd, t) of a user, a handle, and a type, pointing to the supposedly secret keys.
For the Yahalom protocol, we define secret-key belief functions seckeys initiator Ya for the initiator and
seckeys responder Ya for the responder that designate the exchanged keys.

Definition 3.2 (Secret-key Belief Functions for the Yahalom Protocol) A secret-key belief function for a set
H is a function seckeys that maps each view view of the user to an element of (H×HNDS × {skse})∗.

The secret-key belief functions seckeys initiator Ya and seckeys responder Ya of the Yahalom protocol
map each element (ok initiator,Yahalom, v, sksehnd) respectively (ok responder,Yahalom, v, sksehnd) of
view arriving at port KE outu? in the users view to (u, sksehnd, skse) if u ∈ H, and to ε otherwise. Elements
of view that are not of this form are also mapped to ε. �

We now define symbolic key secrecy for such a function. In addition to the conditions for individual keys,
we require that all elements point to different terms, so that we can expect the corresponding list of crypto-
graphic keys to be entirely random.

Definition 3.3 (Symbolic Key Secrecy Generally and for the Yahalom Protocol) Let a user H∗ suitable for a
structure ({THcry

H },S cry
H) of the cryptographic library Syscry,id and a secret-key belief function seckeys for

H be given. The ideal cryptographic library with this user keeps the keys in seckeys strictly symbolically
secret iff for all configurations conf = ({THcry

H },S cry
H ,H,A) of this structure, every v ∈ viewconf (H), and

every element (ui, l
hnd
i , ti) of the set seckeys(v), the term under (ui, l

hnd
i) is a symbolically secret key of

type ti, and D[hndui = lhnd
i].ind �= D[hnduj = lhnd

j].ind for all i �= j.
The ideal Yahalom protocol keeps the exchanged keys of honest users strictly symbolically secret iff

the ideal cryptographic library keeps the keys in seckeys initiator Ya and seckeys responder Ya strictly
symbolically secret with all users H∗ that are the combination of the machines MYa

u for u ∈ H and a user H
of those machines. �

General cryptographic key secrecy requires that no polynomial-time adversary can distinguish the keys
designated by the function seckeys from fresh keys. The cryptographic key secrecy of the Yahalom protocol
is the instantiation for seckeys initiator Ya and seckeys responder Ya and the configurations of the Yahalom
protocol.

Definition 3.4 (Cryptographic Key Secrecy Generally and for the Yahalom Protocol) Let a polynomial-time
configuration conf = (M̂ cry

H ,S cry
H ,H,A) of the real cryptographic library Syscry,real

SE and a secret-key belief
function seckeys for H be given. Let genSE denote the key generation algorithm. This configuration keeps
the keys in seckeys cryptographically secret iff for all probabilistic-polynomial time algorithms Dis (the
distinguisher), we have

|Pr[Dis(1k, va, keysreal) = 1] − Pr[Dis(1k, va, keysfresh) = 1]| ∈ NEGL

where NEGL denotes the negligible function of the security parameter k and the used random variables
are defined as follows: For r ∈ runconf , let va := viewconf (A)(r) be the view of the adversary, let

9

(ui, l
hnd
i , ti)i=1,...,n := seckeys(viewconf (H)(r)) be the user-handle-type triples of presumably secret keys,

and let the keys be keysreal := (ski)i=1,...,n with

ski := Dui [hndui = lhnd
i].word if Dui [hndui = lhnd

i].type = ti, else ε;

and keysfresh := (sk ′
i)i=1,...,n with sk ′

i ← genA(1k) if ti = ska, else sk ′
i ← ε.

A polynomial-time configuration (M̂ cry
H ∪M̂ Ya

H ,SKE
H ,H,A) of the real Yahalom protocol SysYa,real keeps

the exchanged keys of honest users cryptographically secret iff the configuration (M̂ cry
H ,S cry

H , {H}∪M̂ Ya
H ,A)

keeps the keys in seckeys initiator Ya and seckeys responder Ya cryptographically secret. �

The following theorem captures the security of the Yahalom protocol.

Theorem 3.1 (Security of the Yahalom Protocol) The ideal Yahalom system SysYa,id from Section 2.2 keeps
the exchanged keys of honest users strictly symbolically secret, and all polynomial-time configurations of
the real system SysYa,real keep the exchanged keys of honest users cryptographically secret. �

4 Proof of the Cryptographic Realization from the Idealization

As discussed in the introduction, the idea of our approach is to prove Theorem 3.1 for the protocol using the
ideal Dolev-Yao-style cryptographic library. Then the result for the real system follows automatically. The
notion that a system Sys1 securely implements another system Sys2 in the sense of reactive simulatability
(recall the introduction), is written Sys1 ≥poly

sec Sys2 (in the computational case). The main result of [8, 9, 6]
is therefore

Syscry,real ≥poly
sec Syscry,id. (1)

If symmetric encryption is present, this result is additionally subject to the condition that the surrounding
protocol, in our case the Yahalom protocol, does not raise a so-called commitment problem for symmetric
encryption. It is a nice obseration that this condition can immediately concluded from the overall proof; we
give the formal argument in Appendix A. For technical reasons, one further has to ensure that the protocol
does not create encryption cycles (such as encrypting a key with itself); this is needed even for much weaker
properties than simulatability, see [3]. This property clearly holds for the Yahalom protocol.

Once we have shown that the considered keys are symbolically secret and that the commitment problem
does not occur for the Yahalom protocol, we can exploit the key-secrecy preservation theorem of [7]: If
for certain honest users H and a secret-key belief function seckeys the ideal cryptographic library keeps the
keys in seckeys strictly symbolically secret, then every configuration of H with the real cryptographic library
keeps the keys in seckeys cryptographically secret.

5 Proof in the Ideal Setting

This section finally contains the proof of the ideal part of Theorem 3.1: We prove that the Yahalom protocol
with the ideal, Dolev-Yao-style cryptographic library keeps the exchanged keys of honest users strictly
symbolically secret. The proof idea is the following: If an honest user u successfully terminates a session
run with another honest user v, we first show that the established key has been created by the trusted party.
Then we exploit that the trusted party and the honest users only send this key within an encryption generated
with a key shared between u and T respectively v and T, and we conclude that the adversary never gets a
handle to the key. The main challenge is to find suitable invariants on the state of the ideal Yahalom system.
This is similar to formal proofs using other Dolev-Yao model, and the similarity supports our hope that the

10

new, sound cryptographic library can be used like other Dolev-Yao models in automated tools. We now
present the invariants of the system SysYa,id. Their proof is postponed to Appendix B.

The first invariants, correct nonce owner and unique nonce use, are easily proved. They essentially state
that handles nhnd where (nhnd, ·, ·) is contained in a set Nonceu point to entries of type nonce and that no
nonce is in two such sets.

Invariant 1 (Correct Nonce Owner) For all u ∈ H\{T}, v ∈ {1, . . . , n}, j ∈ {1, 2, 3, 4} and (nhnd, v, j) ∈
Nonceu, we have D[hndu = nhnd] �= ↓ and D[hndu = nhnd].type = nonce.

Invariant 2 (Unique Nonce Use) For all u, v ∈ H\{T}, all w,w′ ∈ {1, . . . , n}, all j, j′ ∈ {1, 2, 3, 4}, and
all i ≤ size: If (D[i].hndu , w, j) ∈ Nonceu and (D[i].hndv , w′, j′) ∈ Noncev, then (u,w) = (v,w′).

The invariant encrypted-key secrecy states that a key shared between honest u and v as well as all lists
containing this key can only be known to u, v, and T. Moreover, it states that such lists only occur within
symmetric encryptions created with the key shared between u and T respectively between v and T.

Invariant 3 (Encrypted-Key Secrecy) For all u, v ∈ H\{T} and all i ≤ size with D[i].type = symenc: Let
l ind := D[i].arg [1], pkse ind := D[i].arg [2], x ind

t := D[l ind].arg [t], and xt := D[x ind
t].arg [1] for t = 1, 2, 3.

If D[l ind].type = list ∧ pkse ind = pkseu ∧ x1 = v ∧ D[x ind
t].type = skse for some t ∈ {1, 2, 3} then

a) D[x ind
t].hndw = ↓ and D[l′ind].hndw = ↓ for (H \ {u, v,T}) ∪ {a} and for all l′ind with x ind

t ∈
D[l′ind].arg .

b) For all l′, k ≤ size such that D[l′].type = list ∧ x ind
t ∈ D[l′].arg , we have that l′ ∈ D[k] only if

D[k].type = symenc and D[k].arg [2] ∈ {pkseu, pksev}.

The invariant correct encryption owner finally states that certain protocol messages can only be constructed
by the “intended” users or by the trusted party, respectively. We refer to Step i of Algorithm j as Step j.i.

Invariant 4 (Correct Encryption Owner) For all u ∈ H \ {T} and all i ≤ size with D[i].type = symenc:
Let l ind

k := D[i].arg [2k − 1] and pkse ind
k := D[i].arg [2k] for 1 ≤ k ≤ |D[i].arg|

2 (entries of type
symenc have an even number of arguments by construction). Let further xind

k,t := D[l ind
k].arg [t] and

xhnd
k,t,u := D[x ind

k,t].hndu for t = 1, 2, 3, 4, and xk,t := D[x ind
k,t].arg [1] for t = 1, 2.

a) If pkse ind
k = pkseu , xk,1 ∈ H, D[x ind

k,2].type = skse, and (xhnd
k,3,u, xk,1, j) ∈ Nonceu for some j ∈

{1, 3} and some k ∈ {1, . . . , |D[i].arg|
2 }, then D[i] was created by MYa

T in Step 3.11.

b) If pkse ind
k = pkseu , xk,1 ∈ H, xk,2 = u, D[x ind

k,3].type = skse, and (xhnd
k,4,u, xk,1, j) ∈ Nonceu for

some j ∈ {2, 4} and some k ∈ {1, . . . , |D[i].arg|
2 }, then D[i] was created by MYa

T in Step 3.13.

5.1 Proof of the Key Secrecy Property

To increase readability, we partition the proof into several steps with explanations in between. Assume that
u, v ∈ H and that MYa

u outputs (ok initiator,Yahalom, v, sksehnd
u) or (ok responder,Yahalom, v, sksehnd

u)
to its user. We first show that this implies that MYa

u has received a message corresponding to the third
or fourth protocol step so that the contained encryptions are of the form that allows us to apply correct
encryption owner to show that they were created by MYa

T . After that we will exploit encrypted-key secrecy
to show that keys created by MYa

T and to be shared amongst u and v will remain secret to the adversary. The
following property of THH proven in [8] will be useful in this proof to show that properties proven for one
time also hold at another time.

11

Lemma 5.1 The ideal cryptographic library Syscry,id has the following property: The only modifications
to existing entries x in D are assignments to previously undefined attributes x.hndu (except for counter
updates in entries for signature keys, which we do not have to consider here), and appending new elements
to the list of arguments of symmetric encryptions. �

Proof. (Ideal part of Theorem 3.1) Assume that MYa
u outputs (ok initiator,Yahalom, v, sksehnd

u) or
(ok responder,Yahalom, v, sksehnd

u) at KE outu ! for u, v ∈ H at time t3, and let skseind := D[hndu =
sksehnd

u].ind . By definition of Algorithms 1 and 2, this output can only happen in Step 2.23 respec-
tively 2.32, and only after there was an input (w, u, i,m3hnd

u) respective (w, u, i,m4hnd

u) at a time t2 < t3.
Here and in the sequel we use the notation of Algorithm 1, 2, and 3 but we distinguish the variables from its
different executions by an additional superscript indicating the number of the (claimed) received protocol
message, here 3 and 4, and give handles an additional subscript for their owner, here u.

Case 1: Output in Step 2.23. Assume that MYa
u outputs (ok initiator,Yahalom, v, skse3hnd

u) at KE outu !
for u, v ∈ H in Step 2.23 at time t3. Hence the execution of Algorithm 2 for this input must have given
l3

hnd

u �= ↓ in Step 2.15, since the algorithm would otherwise abort by Convention 1 without creating an output.
Let t32

ind := D[hndu = t3
hnd

2,u].ind , l3
ind := D[hndu = l3

hnd

u].ind and (l1, pkse1, l2, pkse2, . . . , lj , pksej) :=

D[t32
ind].arg (which is the general argument format for symmetric encryption entries). The definition of

sym decrypt then implies D[l3ind].type = list and D[t32
ind].type = symenc, and further that there exists

some unique k with 1 ≤ k ≤ j such that D[t32
ind].arg [2k − 1] = l3

ind, and

D[t32
ind].arg [2k] = pkseu. (2)

Let x3
i
ind := D[l3ind].arg [i] for i = 1, 2, 3 at the time of Step 2.16. By Step 2.17 and the definition of

retrieve we have
D[x3

1
ind].arg [1] = x3

1 = v. (3)

By definition of list proj and get type, and since the condition of Step 2.20 is false, we finally have

x3hnd

1,u = D[x3
1
ind].hndu at time t3, (4)

(x3hnd

3,u , x3
1, 3) ∈ Nonceu ∧ D[x3

2
ind].type = skse at time t3, (5)

and
(x3hnd

3,u , x3
1, 1) ∈ Nonceu ∧ D[x3

2
ind].type = skse at time t2. (6)

Case 2: Output in Step 2.32. This case is similar to the first one: Assume that MYa
u outputs

(ok responder,Yahalom, v, skse4hnd

u) at KE outu ! for u, v ∈ H in Step 2.32 at time t3. The execution of Al-
gorithm 2 for this input must have given l4

hnd

u �= ↓ in Step 2.26, since the algorithm would otherwise abort by
Convention 1 without creating an output. Let t41

ind := D[hndu = t4
hnd

1,u].ind , l4
ind := D[hndu = l4

hnd

u].ind

and (l1, pkse1, l2, pkse2, . . . , lj , pksej) := D[t41
ind].arg . The definition of sym decrypt then implies

D[l4ind].type = list and D[t41
ind].type = symenc, and further that there exists a unique k with 1 ≤ k ≤ j

such that D[t41
ind].arg [2k − 1] = l4

ind, and

D[t41
ind].arg [2k] = pkseu. (7)

12

Let x4
i
ind := D[l4ind].arg [i] for i = 1, 2, 3, 4 at the time of Step 2.27. By Step 2.28 and the definition of

retrieve we have x4
i = D[x4

i
ind].arg [1] for i = 1, 2 and

D[x4
1
ind].arg [1] = x4

1 = v. (8)

By definition of list proj and get type, and because of the conditions of Step 2.25 and 2.30, we have

x4
2 = u, (9)

x4hnd

1,u = D[x4
1
ind].hndu at time t3, (10)

(x4hnd

4,u , x4
1, 4) ∈ Nonceu ∧ D[x4

3
ind].type = skse at time t3, (11)

and
(x4hnd

4,u , x4
1, 2) ∈ Nonceu ∧ D[x4

3
ind].type = skse at time t2. (12)

This first part of the proof shows that MYa
u has received an encryption of a specific form as part of a third or

fourth protocol message. Now we apply correct encryption owner to the encryption entry D[t32
ind] for the

first case respectively to D[l41
ind] for the second case to show that this entry was created by MYa

T .

Proof. (cont’d) Equations (2), (4) and (5) respectively (7), (10) and (11) are the preconditions for Part a)
respectively Part b) of correct encryption owner. Hence the entry D[t32

ind] was created by MYa
T in Step 3.11

respectively the entry D[t41
ind] was created by MYa

T in Step 3.13.

In both cases, the algorithm execution must have started with an input (w′,T, i,m2hnd

T) at outT? at a time

t1 < t2 with w′ ∈ {1, . . . , n}. We conclude l2
hnd

T �= ↓ in Step 3.4 because of Convention 1 and set l2
ind :=

D[hndT = l2
hnd

T].ind . The definition of sym decrypt implies D[l2ind].type = list, D[t23
ind].type = symenc,

l2
ind = D[t23

ind].arg [2k′ − 1] and pksew′ = D[t23
ind].arg [2k′] for some unique k′ ∈ {1, . . . , |D[t23

ind].arg |,
cf. the first part of the proof. Let x2

i
ind := D[l2ind].arg [i] for i = 1, 2 at the time of Step 3.5.

As the condition of Step 3.8 is false immediately afterwards, we obtain x2
hnd

i,T �= ↓ for i = 1, 2. The
definitions of list proj and get type together with Lemma 5.1 imply

x2hnd

i,T = D[x2
i
ind].hndT for i = 1, 2 at time t3. (13)

Step 3.8 further ensures t21 = w′ and x2
1 ∈ {1, . . . , n} \ {w′}. By definition gen symenc key we obtain

skse2hnd �= ↓ and

D[skse2ind].type = skse (14)

in Step 3.9 for skse2ind := D[hndT = skse2hnd
].ind . Now we exploit that MYa

T creates the entry D[t32
ind]

in Step 3.11 with the input sym encrypt(skse2hnd

T,x1
, l

(1),2hnd

3,T) respectively the entry D[t41
ind] in Step 3.13 with

the input sym encrypt(skse2hnd

T,w′ , l
(2),2hnd

3,T). In particular, this implies k = 1 in Equtations (2) and (7) by the

definition of sym encrypt. Let l
(i),2
3

ind
:= D[hndT = l

(1),2hnd

3,T].ind for i = 1, 2. With the definitions of list

and list proj this implies l
(1),2
3

ind
= l3

ind respectively l
(2),2
3

ind
= l4

ind. Together with Equations (3), (8), (9)
and (13), this implies

skseind = x3
2
ind = x2

2
ind = skse2ind ∧ x2

2
ind = x3

3
ind ∧ t21 = x3

1 = v ∧ x2
1 = u, (15)

13

where x2
1 = u follows from pksex2

1
= D[l(1),23

ind
].arg [2] = D[l3ind].arg [2] = pkseu, respectively

skseind = x4
2
ind = x2

2
ind = skse2ind ∧ x2

1
ind = x4

2
ind ∧ t21 = x4

2 = u ∧ x2
1 = x4

1 = v, (16)

where t21 := D[t21
ind].arg [1]. Thus Equations (3), (4) and (6) imply

(x2hnd

2,u , v, 1) ∈ Nonceu ∧ D[x2
2
ind].type = skse at time t2 (17)

respectively Equations (8), (10) and (12) imply

(x2hnd

1,u , v, 2) ∈ Nonceu ∧ D[x2
2
ind].type = skse at time t2. (18)

After this second part of the proof, we will finally derive that the terms selected by seckeys initiator Ya
and seckeys responder Ya are symbolically unused symmetric keys that have furthermore not been used for
encryption yet.

Proof. (cont’d) Note that the entries D[t32
ind] and D[t41

ind] fulfill the requirements of encrypted-key se-

crecy with respect to key entry D[skse2
ind], which implies D[skse2ind].hnd a = ↓. Because of skse2ind =

skseind we have D[skseind].hnd a = D[skse2ind].hnd a = ↓, i.e., the term under (u, sksehnd
u) is symbol-

ically unknown. Moreover skse2
ind = skseind together with Equation (14) imply D[skseind].type =

D[skse2ind].type = skse, i.e., the term under (u, sksehnd
u) is a symmetric key.

It remains to show that the key is unused at time t3. The only way to create an entry D[j] with
D[j].type = symenc and D[j].arg [2] = skseind − 1 is by inputting a command encrypt at port inw?
such that D[skseind].hndw �= ↓. Since we have shown that D[skseind].hndw �= ↓ only if w ∈ {u, v,T},
hence we only have to show that neither of them enters such a command until time t3. By inspection of Al-
gorithm 3, this clearly holds for T, since this may only happen in Steps 3.11 or 3.13. In both cases, the key
used is one of those that were iniatially distributed, i.e., D[j].arg [2] = sksew − 1 for some w ∈ {1, . . . , n}.
Since we have shown that each key selected by seckeys initiator Ya or seckeys responder Ya is newly gen-
erated by MYa

T , we in particular have sksew �= skseind. Similar reasoning can be applied to Algorithm 1
and 2 of MYa

u to show that the only used keys are the ones shared between u and T respectively between v
and T.

References

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus. In Proc. 4th
ACM Conference on Computer and Communications Security, pp. 36–47, 1997.

[2] M. Abadi and J. Jürjens. Formal eavesdropping and its computational interpretation. In Proc. 4th
International Symposium on Theoretical Aspects of Computer Software (TACS), pp. 82–94, 2001.

[3] M. Abadi and P. Rogaway. Reconciling two views of cryptography: The computational soundness of
formal encryption. In Proc. 1st IFIP International Conference on Theoretical Computer Science, vol.
1872 of Lecture Notes in Computer Science, pp. 3–22. Springer, 2000.

[4] M. Backes. A cryptographically sound Dolev-Yao style security proof of the Otway-Rees protocol.
Research Report RZ 3539, IBM Research, 2004.

14

[5] M. Backes and B. Pfitzmann. A cryptographically sound security proof of the Needham-Schroeder-
Lowe public-key protocol. In Proc. 23rd Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS), pp. 1–12, 2003. Full version in IACR Cryptology ePrint
Archive 2003/121, Jun. 2003, http://eprint.iacr.org/.

[6] M. Backes and B. Pfitzmann. Symmetric encryption in a simulatable Dolev-Yao style cryptographic
library. In Proc. 17th IEEE Computer Security Foundations Workshop (CSFW), 2004. Full version in
IACR Cryptology ePrint Archive 2004/059, Feb. 2004, http://eprint.iacr.org/.

[7] M. Backes and B. Pfitzmann. Relating symbolic and cryptographic key secrecy. In Proc. 26th IEEE
Symposium on Security & Privacy, 2005. Extended version in IACR Cryptology ePrint Archive
2004/300.

[8] M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested operations
(extended abstract). In Proc. 10th ACM Conference on Computer and Communications Security, pp.
220–230, 2003. Full version in IACR Cryptology ePrint Archive 2003/015, Jan. 2003, http://
eprint.iacr.org/.

[9] M. Backes, B. Pfitzmann, and M. Waidner. Symmetric authentication within a simulatable crypto-
graphic library. In Proc. 8th European Symposium on Research in Computer Security (ESORICS), vol.
2808 of Lecture Notes in Computer Science, pp. 271–290. Springer, 2003. Extended version in IACR
Cryptology ePrint Archive 2003/145, Jul. 2003, http://eprint.iacr.org/.

[10] D. Basin, S. Mödersheim, and L. Viganò. OFMC: A symbolic model checker for security protocols.
International Journal of Information Security, 2004.

[11] M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and analysis of
the generic composition paradigm. In Advances in Cryptology: ASIACRYPT 2000, vol. 1976 of Lecture
Notes in Computer Science, pp. 531–545. Springer, 2000.

[12] M. Bellare and P. Rogaway. Encode-then-encipher encryption: How to exploit nonces or redundancy
in plaintexts for efficient constructions. In Advances in Cryptology: ASIACRYPT 2000, vol. 1976 of
Lecture Notes in Computer Science, pp. 317–330. Springer, 2000.

[13] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Nielson. Automatic validation of protocol
narration. In Proc. 16th IEEE Computer Security Foundations Workshop (CSFW), pp. 126–140, 2003.

[14] M. Burrows, M. Abadi, and R. Needham. A logic for authentication. Technical Report 39, SRC
DIGITAL, 1990.

[15] R. Canetti and J. Herzog. Universally composable symbolic analysis of cryptographic protocols (the
case of encryption-based mutual authentication and key exchange). Cryptology ePrint Archive, Report
2004/334, 2004. http://eprint.iacr.org/.

[16] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions on Information
Theory, 29(2):198–208, 1983.

[17] S. Even and O. Goldreich. On the security of multi-party ping-pong protocols. In Proc. 24th IEEE
Symposium on Foundations of Computer Science (FOCS), pp. 34–39, 1983.

[18] J. Guttman. Key compromise and the authentication tests. In Proc. Mathematical Foundations of
Programming Semantics, vol.1̃7 of ENTCS, pp. 1–21, 2001.

15

[19] J. Herzog. Computational Soundness of Formal Adversaries. PhD thesis, MIT, 2002.

[20] J. Herzog, M. Liskov, and S. Micali. Plaintext awareness via key registration. In Advances in Cryptol-
ogy: CRYPTO 2003, vol. 2729 of Lecture Notes in Computer Science, pp. 548–564. Springer, 2003.

[21] R. Impagliazzo and B. M. Kapron. Logics for reasoning about cryptographic constructions. In Proc.
44th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 372–381, 2003.

[22] R. Kemmerer, C. Meadows, and J. Millen. Three systems for cryptographic protocol analysis. Journal
of Cryptology, 7(2):79–130, 1994.

[23] P. Laud. Semantics and program analysis of computationally secure information flow. In Proc. 10th
European Symposium on Programming (ESOP), pp. 77–91, 2001.

[24] P. Laud. Symmetric encryption in automatic analyses for confidentiality against active adversaries. In
Proc. 25th IEEE Symposium on Security & Privacy, pp. 71–85, 2004.

[25] P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time framework for protocol
analysis. In Proc. 5th ACM Conference on Computer and Communications Security, pp. 112–121,
1998.

[26] G. Lowe. An attack on the Needham-Schroeder public-key authentication protocol. Information Pro-
cessing Letters, 56(3):131–135, 1995.

[27] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In Proc.
2nd International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), vol. 1055 of Lecture Notes in Computer Science, pp. 147–166. Springer, 1996.

[28] C. Meadows. Using narrowing in the analysis of key management protocols. In Proc. 10th IEEE
Symposium on Security & Privacy, pp. 138–147, 1989.

[29] M. Merritt. Cryptographic Protocols. PhD thesis, Georgia Institute of Technology, 1983.

[30] D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active adversaries.
In Proc. 1st Theory of Cryptography Conference (TCC), vol. 2951 of Lecture Notes in Computer
Science, pp. 133–151. Springer, 2004.

[31] J. K. Millen. The interrogator: A tool for cryptographic protocol security. In Proc. 5th IEEE Sympo-
sium on Security & Privacy, pp. 134–141, 1984.

[32] J. Mitchell, M. Mitchell, and A. Scedrov. A linguistic characterization of bounded oracle computa-
tion and probabilistic polynomial time. In Proc. 39th IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 725–733, 1998.

[33] J. Mitchell, M. Mitchell, A. Scedrov, and V. Teague. A probabilistic polynominal-time process calculus
for analysis of cryptographic protocols (preliminary report). Electronic Notes in Theoretical Computer
Science, 47:1–31, 2001.

[34] L. Paulson. The inductive approach to verifying cryptographic protocols. Journal of Cryptology,
6(1):85–128, 1998.

[35] L. Paulson. Relations between secrets: Two formal analyses of the yahalom protocol. Journal of
Computer Security, 9(3):197–216, 2001.

16

[36] B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its application to secure
message transmission. In Proc. 22nd IEEE Symposium on Security & Privacy, pp. 184–200, 2001.
Extended version of the model (with Michael Backes) IACR Cryptology ePrint Archive 2004/082,
http://eprint.iacr.org/.

[37] P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A block-cipher mode of operation for efficient
authenticated encryption. In Proc. 8th ACM Conference on Computer and Communications Security,
pp. 196–205, 2001.

[38] A. W. Roscoe. Modelling and verifying key-exchange protocols using CSP and FDR. In Proc. 8th
IEEE Computer Security Foundations Workshop (CSFW), pp. 98–107, 1995.

[39] S. Schneider. Security properties and CSP. In Proc. 17th IEEE Symposium on Security & Privacy, pp.
174–187, 1996.

A Absence of the Commitment Problem for the Yahalom Protocol

As the name suggests, a “commitment problem” in simulatability proofs captures a situation where the sim-
ulator commits itself to a certain message and later has to change this commitment to allow for a correct
simulation. In the case of symmetric encryption, the commitment problem occurs if the simulator learns
in some abstract way that a ciphertext was sent and hence has to construct an indistinguishable ciphertext,
knowing neither the secret key nor the plaintext used for the corresponding ciphertext in the real world. To
simulate the missing key, the simulator will create a new secret key, or rely on an arbitrary, fixed key if the
encryption systems guarantees indistinguishable keys, see [3]. Instead of the unknown plaintext, the simula-
tor will encrypt an arbitrary message of the correct length, relying on the indistinguishability of ciphertexts
of different messages. So far, the simulation is fine. It even stays fine if the message becomes known later
because secure encryption still guarantees that it is indistinguishable that the simulator’s ciphertext contains
a wrong message. However, if the secret key becomes known later, the simulator runs into trouble, because,
learning abstractly about this fact, it has to produce a suitable key that decrypts its ciphertext into the correct
message. It cannot cheat with the message because it has to produce the correct behavior towards the honest
users. This is typically not possible.

The solution for this problem taken in [6] for the cryptographic library is to leave it to the surrounding
protocol to guarantee that the commitment problem does not occur, i.e., the surrounding protocol must
guarantee that keys are no longer sent in a form that might make them known to the adversary once an
honest participant has started using them. To exploit the simulatability results of [6], we hence have to prove
this condition for the Yahalom protocol. Formally, we have to show that the following property NoComm
does not occur: “If there exists an input from an honest user that causes a symmetric encryption to be
generated such that the corresponding key is not known to the adversary, then future inputs may only cause
this key to be sent within an encryption that cannot be decrypted by the adversary”. This event can be
rigorously defined using temporal logics but we omit the rigorous definition due to space constraints and
refer to [6]. The event NoComm is equivalent to the event “if there exists an input from an honest user
that causes a symmetric encryption to be generated such that the corresponding key is not known to the
adversary, the adversary never gets a handle to this key” but NoComm has the advantage that it can easily
be inferred from the abstract protocol description without presupposing knowledge about handles of the
cryptographic library. For the Yahalom protocol the event NoComm can easily be verified by inspection of
the abstract protocol description, and a detailed proof based on Algorithms 1-3 can also easily be performed
by exploiting the invariants we will present in Section 5.

17

Technically, the event NoComm is an integrity property, and the notion that SysYa,id perfectly fulfills
NoComm, written SysYa,id |=perf NoComm means that the property holds with probability one (over the
probability spaces of runs, a well-defined notion from the underlying model [36]) for all honest users and
for all adversaries.

Lemma A.1 (Absence of the Commitment Problem for the Yahalom Protocol) The ideal Yahalom system
SysYa,id perfectly fulfills the property NoComm, i.e., SysYa,id |=perf NoComm. �

Proof. Note first that the secret key shared initially between a user and the trusted party will never be sent
by definition in case the user is honest, and it is already known to the adversary when it is first used in case
of a dishonest user. The interesting cases are thus the keys generated by the trusted party in the protocol
sessions.

Let i ≤ size , D[i].type = skse such that D[i] was created by MYa
T in Step 3.9, where, with the notation

of Algorithm 3, we have x1 = u and t1 = v for x1, t1 ∈ {1, . . . , n}. If u or v were dishonest, then the
adversary would get a handle for D[i] after MYa

T finishes its execution, i.e., in particular before D[i] has
been used for encryption for the first time, since the adversary knows the keys shared between the dishonest

users and the trusted party. If both u and v are honest, encrypted-key secrecy applied to the entry D[c(1)3

ind
]

created in Step 3.11 in the same execution of MYa
T then immediately implies D[i].hnda = ↓ for all time t,

which finishes the proof.

B Proof of the Invariants

In the following we prove correct nonce owner, unique nonce use, correct encryption owner, and encrypted-
key secrecy by induction. Hence assume that all invariants hold at a particular time t in a run of the system,
and we have to show that they still hold at time t + 1.

We start with the proof of correct nonce owner.

Proof. (Correct nonce owner) Let (nhnd, v, j) ∈ Nonceu for u ∈ H \ {T}, v ∈ {1, . . . , n}, and j ∈
{1, 2, 3, 4}. By construction, this entry has been added to Nonceu by MYa

u in Step 1.2, Step 2.8, Step 1.21,
or Step 1.31. In the last two cases, the entry (nhnd, v, j−2) was already contained in Nonceu at time t, hence
the claim follows by induction hypothesis of correct nonce owner. Thus consider the first two cases. In both
cases xhnd has been generated by the command gen nonce() at some time t, input at port inu? of THcry

H .
Convention 1 implies nhnd �= ↓, as MYa

u would abort otherwise and not add the entry to the set Nonceu. The
definition of gen nonce then implies D[hndu = nhnd] �= ↓ and D[hndu = xhnd].type = nonce at time t.
Because of Lemma 5.1 this also holds at all later times t′ > t, which finishes the proof.

The following proof of unique nonce use is quite similar.

Proof. (Unique Nonce Use) Assume for contradiction that both x1 := (D[i].hndu , w, j) ∈ Nonceu and
x2 := (D[i].hndv , w′, j′) ∈ Noncev at some time t. Without loss of generality, let t + 1 be the first
such time and let x2 �∈ Noncev at time t. By construction, x2 is thus added to Noncev at time t + 1 by
Step 1.2, Step 2.8, Step 1.21, or Step 1.31. In the last two cases, the entry (xhnd, w′, j − 2) was already
contained in Nonceu (for the same handle xhnd and the same identity w′) and the claim follows by induction
hypothesis for unique nonce use again. In the first two cases, D[i].hndv has been generated by the command
gen nonce() at time t. The definition of gen nonce implies that D[i] is a new entry and D[i].hndv its only
handle at time t, and thus also at time t + 1. With correct nonce owner this implies u = v. Further,
x2 = (D[i].hndv , w′, j′) is the only entry that is put into Noncev at times t and t + 1. Thus also w = w′.
This is a contradiction.

18

Proof. (Correct encryption owner) Let u ∈ H \ {T}, i ≤ size with D[i].type = symenc. Let lind
k :=

D[i].arg [2k − 1] and pkse ind
k := D[i].arg [2k] for k ∈ {1, . . . , |D[i].arg|

2 }. Let further x ind
k,q := D[l ind

k].arg [q]
and xhnd

k,q,u := D[x ind
k,q].hndu for q = 1, 2, 3, 4, and xk,1 := D[x ind

k,1].arg [1]. Assume that for some k we

have pkse ind
k = pkseu, and assume further that (xhnd

k,3,u, xk,1, j) ∈ Nonceu for some j ∈ {1, 3} or that

(xhnd
k,4,u, xk,1, j) ∈ Nonceu for some j ∈ {2, 4}.

The only possibilities to violate the invariant correct encryption owner are that (1) the entry D[i] is
created at time t+1 or that (2) the handle D[i].hndu or D[x ind

k,q].hndu for q = 3 in part a) or q = 4 in part b)

is created at time t+1 for an entry D[i] that already exists at time t or that (3) the handle (xhnd
k,q,u, xk,1, j) for

q ∈ {3, 4} is added to Nonceu at time t+1 such that (xhnd
k,q,u, x1, j−2) was not contained in Nonceu at time

t (i.e., we have to consider j ∈ {1, 2}). In all other cases the invariant holds by the induction hypothesis for
correct encryption owner and Lemma 5.1.

We start with the third case. Assume that (xhnd
k,q,u, xk,1, j) for q ∈ {3, 4} and j ∈ {1, 2} is added to

Nonceu at time t + 1. By construction, this only happens in a transition of MYa
u in Step 1.2 and Step 2.8.

However, here the entry D[x ind
k,q] has been generated by the command gen nonce input at inu? at time t,

hence x ind
k,q cannot be contained as an argument of an entry D[lind

k] at time t. Formally, this corresponds to
the fact that D is well-formed, i.e., index arguments of an entry are always smaller than the index of the
entry itself; this has been shown in [8]. Since a transition of MYa

u does not modify entries in THcry
H , this also

holds at time t + 1.
For proving the remaining two cases, assume that D[i].hndu or D[x ind

k,q].hndu is created at time t+1 for

an already existing entry D[i] or D[lind
k] or that D[i] is generated at time t+1. Because both can only happen

in a transition of THcry
H , this implies (xhnd

k,q,u, xk,1, j) ∈ Nonceu already at time t, since transitions of THcry
H

cannot modify the set Nonceu. Now correct nonce owner implies xhnd
k,q,u = D[x ind

k,q].hndu �= ↓ already at
time t and thus also at time t + 1 by Lemma 5.1. Symmetric encryptions can only be generated by the basic
command sym encrypt, which requires handles to all its elements. More precisely, if w ∈ H ∪ {a} creates
an entry D[i′] with D[i′].type = symenc and (x′

1, . . . , x
′
m) := D[i].arg at time t + 1 then D[x′

i].hndw �= ↓
for i = 1, . . . ,m already at time t. In particular, we have that D[x′2k].ind = D[pkse ind

k].ind = pkseu. The
definition of sym encrypt then implies D[skseu].hndw �= ↓ and hence D[i] must have been created by either
u or T.

We finally have to show that the entry D[i] has been created by T in the claimed steps. This can easily
be seen by inspection of Algorithms 1, 2, and 3. We only show it in detail for the first part of the invariant;
it can be proven similarly for second part. Let (xhnd

k,3,u, xk,1, j) ∈ Nonceu and D[x ind
k,2].type = skse. By

inspection of Algorithms 1, 2, and 3 and because D[i].type = symenc, we see that the entry D[i] must have
been created by either MYa

u in Step 2.11 or by MYa
T in Step 3.11 or 3.13. The list encrypted in Step 2.11 only

has two elements, which implies xind
k,3 = ↓ and hence xhnd

k,3,u = ↓, and by correct nonce owner this gives a

contradiction to (xhnd
k,3,u, xk,1, j) ∈ Nonceu. Similarly, if the entry D[i] were created in Step 3.13 then we

had D[x ind
k,2].type = data as the algorithm would have aborted otherwise in Step 3.2 by the definition of

retrieve and Convention 1.

Finally, we prove encrypted-key secrecy.

Proof. (Encrypted-key secrecy) Let u, v ∈ H, i ≤ size with D[i].type = symenc. Let lind := D[i].arg [1],
pkse ind := D[i].arg [2], x ind

j := D[l ind].arg [j], and xj := D[x ind
t].arg [1] for t = 1, 2, 3. Assume

D[l ind].type = list, pkse ind = pkseu, x1 = v, and D[x ind
j].type = skse for some j.

Part a) of the invariant can only be affected if a handle for w is added to an entry D[l′ind] or D[x ind
j] that

already exist at time t. (Creation of D[l′ind] at time t with a handle for w is impossible as above because that
presupposes handles to all arguments of D[l′ind], i.e., in particular to D[x ind

j], which contradicts encrypted-

19

key secrecy at time t; creation of D[xind
2] at time t with a handle for w would yield a contraction to xind

2

being an argument of lind at time t + 1 since D is well-formed, cf. the proof of correct encryption owner.
Thus we only have to consider those commands that add handles for w to entries of type list and skse
that already existed at time t. The only commands that add handles for w to D[lind], i.e., a list entry,
are list proj, decrypt, adv parse, send i, and adv send i applied to an entry D[k] with l′ind ∈ D[k].arg .
Encrypted-Key secrecy for the entry D[l′] at time t then yields D[k].type = symenc. Thus the commands
list proj, send i, and adv send i do not have to be considered any further. Moreover, encrypted-key secrecy
also yields D[k].arg [2] ∈ {pkseu, pksev}. The keys shared between u and T respectively between v and
T are not known to w �∈ {u, v,T}, formally D[skseu].hndw = D[sksev].hndw = ↓; Hence the command
sym decrypt input at inw? does not violate the invariant. Finally, the command adv parse applied to an entry
of type symenc with unknown secret key also does not give a handle to the cleartext list, i.e., to D[k].arg [1],
but only outputs its length and the key identifier.

The only commands that add handles for w to D[xind
j], i.e., a symmetric key entry, are list proj or

adv parse input at inw?, where adv parse has to be applied to an entry of type list, since only entries of
type list can have arguments which are indices to symmetric key entries. More precisely, if one of the
commands violated the invariant there would exist an entry D[i′] at time t such that D[l′ind].type = list,
D[l′ind].hndw �= ↓ and x ind

j ∈ D[l′ind].arg . Encrypted-key secrecy for the entry D[l′ind] at time t implies

D[l′ind].hndw = ↓, which yields a contradiction.
Part c) of the invariant can only be violated if a new entry D[k] is created at time t+1 with l′ ∈ D[k].arg

such that x ind
j ∈ D[l′].arg (by Lemma 5.1 and well-formedness). As D[l′] already exists at time t, encrypted-

key secrecy for D[l′] implies D[l′].hndw = ↓ for w �∈ {u, v,T} at time t. We can easily see by inspection of
the commands that the new entry D[k] must have been created by one of the commands list and sym encrypt
(or by encrypt or sign, which create an asymmetric encryption or a signature, respectively), since entries
newly created by other commands cannot have arguments that are indices of entries of type list. Since all
these commands entered at a port inz? presuppose D[j].hndz �= ↓, the entry D[k] is created by w ∈ {u, v,T}
at time t + 1. However, the only steps that can create an entry D[k] with l′ ∈ D[k].arg (with the properties
demanded for the entry D[l′]) are Steps 3.11 and 3.13. In all these cases, we have D[k].type = symenc.
Further, we have D[k].arg [2] = pksew′ where w′ denotes w’s current believed partner. We have to show

that w′ ∈ {u, v}. Let t ind
1 := D[hndT = l

(1)hnd

3].arg [1] and t1 := D[t ind
1].arg [1] at the time of Step 3.10.

Since the entry D[x ind
t] is created immediately before in Step 3.9, we have that the entry D[k] has been

created in Step 3.11 is the first database entry with the properties demanded for D[k]. If i = k, then we have
w′ = u by construction and we are done. If i �= k then nothing has to be shown since no entry D[i] exists
yet for which we have to show something.

If D[k] has been created in Step 3.13 we only have to show something if D[i] has been created be-
fore in Step 3.11. In this case Step 3.2 and the check in Step 3.8, imply w′ = t1 = D[t ind

1].arg [1] =
D[x ind

1].arg [1] = x1 = v by definition of D[i].
Hence in both cases we obtained w′ ∈ {u, v}, i.e., the list containing the symmetric key was indeed

encrypted with the key of either u or v.

20

