
RZ 3608 (# 99618) 04/28/05
Computer Science 8 pages

Research Report

Application Integration Using Instant Messaging Based
Web Services

Carl Binding and Christian Ḧortnagl

IBM Research GmbH
Zurich Research Laboratory
8803 R̈uschlikon
Switzerland
{cbd,hoe}@zurich.ibm.com

Ted Bonkenburg and Benjamin Reed

IBM Almaden Research Center
650 Harry Road
San Jose, CA 95120-6099

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available
at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich



Application Integration Using Instant Messaging
Based Web Services

Carl Binding
and Christian Hörtnagl

IBM Zurich Research Laboratory
Email: {cbd,hoe}@zurich.ibm.com

Ted Bonkenburg
and Benjamin Reed

IBM Almaden Research Laboratory
Email: {tedbo,breed}@almaden.ibm.com

ABSTRACT

This paper explores the usage of Web services over an
instant messaging protocol to integrate structured instant mes-
saging into user-facing applications. The work is based on the
premiss that conventional usage of instant messaging proto-
cols is primarily based on exchanging hunan-readable textual
messages, but that instant messaging offers persona related,
real-time, addressing which can be explored to exchange struc-
tured data information between user-facing applications. We
describe an architecture which allows interactive applications
to use a deployed instant messaging environment for the
exchange of user initiated, structured dialogue data through the
use of Web services. One of our sample applications extends
the Eclipse workbench and enhances joint development by
enabling developers to monitor, in real-time, resources of their
partner’s environment.

I. INTRODUCTION

Instant messaging has become a widely used and vastly
popular communication technology in addition to more tra-
ditional means of communication, such as letters, fax, e-mail,
or short messaging services. End users register with the instant
messaging environment and are enabled to instantaneously
communicate with peers (sometimes coloquially referred to
as “buddies”) using dedicated windows for textual input and
output.

A presence service is used as a central registration point
at which subscribing end-users register their presence. Other,
befriended end-users can be alerted to the presence of newly
registered participants, using the presences subscription and
notification services. Thus, end-users become aware of poten-
tial, on-line, communication partners and may engage in actual
instant messaging or chat sessions.

Such systems have found wide-spread acceptance in the
inter- and intranet community with commercial offerings from
Lotus [6], America Online [20], and Microsoft [21], as well
as research projects [13].

Instant messaging services exhibit the following character-
istics:

• Text based: the various instant messaging services cur-
rently are text based. The entire dialogue consists in
textual, in-lined information limited by the character set
in use.

• Instantaneous: expressed in the technology’s naming,
communication is real-time and quasi simultaneous. Text
input is collected until a line is completed and transmitted
to one or multiple communication partners.

• Multi-party: chat sessions can include multiple commu-
nicating users. The input of one party is propagated to all
other parties and becomes visible quasi simultaneously to
all of them.

• Persona centric: chat partners are people, identified by
some (nick) name which is independent of the physical
machine used by the chatter. The central chat server’s
identity and the chat communities are configured into the
chat applications by using the network name of the chat
proxy’s host and the (nick) name of the chat community
respectively.

• Presence: the central chat proxy registers the presence
of newly joining members and propagates their presence
to other members of the chat community1. Thus, the
indication of a member’s presence implies his or her
current reachability and mode of operation.

• Reachability: chat applications can cross networking fire-
walls between connected hosts, if the firewalls are con-
figured appropriately. Transporting additional information
to invoke Web services over such a channel guarantees
instanteneous reachability, at the cost of potential security
risks.

The premiss of this paper is that the use of instant messaging
systems can be expanded by incorporating structured informa-
tion items into the dialogue between end-users. Furthermore,
we explore the use of standardized, open, middleware - namely
Web services [31], [32] - to augment text-oriented instant-
messaging applications. This differentiates our approach from
others, ad-hoc, extensions of instant-messaging infrastructures
with application specific functionality [5], [26].

Structured information exchanged over our messaging in-
frastructure originates from specific applications and is col-
lected during an ongoing chat conversation. It is then sent to
a chatter’s partner via Web services over the instant messaging
infrastructure and propagated into an application specific data
handler which uses standardized Web services functions to

1Users can express the set of members for which they wish to receive
presence notifications.



service an incoming request. As examples of this scenario,
consider the following use cases.

A. Shared Editing

Modern programming environments such as Eclipse [8],
[24] or Microsoft’s Visual Studio [23] support the creation and
management of projects of diverse natures such as various Web
applications styles or more conventional application program-
ming in languages such as Java, C#, C, or Visual Basic. Such
projects map to directories containing their diverse resources
i.e. configuration files, source code files, markup information,
etc.

Programming workbenches often also include facilities for
shared program development. Project resources can be com-
mitted to a centralized, shared data repository from which
other team members can update their environment with the
latest development releases. One example of such a shared
source code control system is the well known Code Versioning
System (CVS) [14]. Whilst this sharing of resources leads to
a well coordinated cooperative model, extreme programming
situations [2] between members of a geographically dispersed
team warrant tighter and more real-time co-operation. Systems
like the Eclipse extension described here and others, such as
the JAMM [3] and Jazz [5], intend to address these needs.

In our shared editing application scenario, we have inte-
grated some of Eclipse’s resources observation and differenc-
ing features into the chat environment: one Eclipse user can
find out about the resources of other Eclipse users registered
within the instant messaging environment. He can be notified
of changes in resources or perform a quick-diff2 against a
resource owned by his chat partner but of common interest.

B. Shared Calendaring

Electronic calendars are an essential part of today’s elec-
tronic office environments [7], [22]. Users can schedule meet-
ings, set reminders, and may share their calendars with a
pre-determined number of colleagues, friends, or relatives.
This sharing is done using the native GUI features of the
calendaring application.

Specifically, we can envision the following features for
calendar sharing across instant messaging:

• Transmission of calendaring information over a chat
session: if user A wants to display selected entries of
his calendar to his chat partner B, he may not wish to
force B to start up his calendar application and navigate
to retrieve A’s entry of interest. Instead, A just transmits
the calendar event over the active chat session and it is
the chat application which renders the event.

• Setting watch-dogs on a calendar: when user A modifies
specific calendar entries which are under observation by
B, B is alerted over the running chat session.

2QuickDiff is an Eclipse feature which summarily differentiates a work-
bench editor’s buffer against some reference of the same resource and
highlights the differences in the editor window.

• Scheduling a meeting: A may propose a meeting time
to B who can accept or deny the suggested event and
communicate in parallel with B over the chat session.

The above functions can partially be performed with today’s
electronic calendaring systems. However, the co-operation is
not real-time but asynchronous in nature. User A may send
calendaring information to user B via e-mail3 but user A cannot
infer when user B will receive and read the e-mail. The same
argument on timeliness applies for alerts on shared events
or scheduling a meeting. Integrating calendaring features into
an instant messaging environment thus does improve on the
timeliness of the application usage.

C. Help Desk Support

Another potential application area we have considered is
sharing of computing and network management information
in a help-desk situation. The help-desk assistant may en-
gage in a chat session with the end-user and, in parallel
and quasi-instantaneously, communicate with the end-user’s
system management application to retrieve, respectively to set,
information and thus detect system problems and repair them.
The key feature in this scenario is again the timeliness of the
shared information, reuse of the existing instant messaging
infrastructure, and the persona-centric addressing of the end-
user’s environment.

The remainder of this paper is organized as follows:
section II details the system architecture and describes the
programming APIs. Section III describes the realization of the
Eclipse application and section IV accounts experiences with
extending a calendar application. Some related work, mainly
concerned with collaborative programming environments, is
reviewed in section V. Finally, section VI comments on the
lessons learned and potential impact of our approach.

II. ARCHITECTURE

This section describes our approach to augment an instant
messaging protocol with Web services capabilities. We give a
brief review over Web services technology, instant messaging
architecture, and the XMPP [10], [25] protocol as one par-
ticular example of an instant messaging protocol. We then
proceed with the description of our architectue to use the
instant messaging infrastructure for Web services enablement.

A. Web services

Web services are an XML [30] and – originally – an
HTTP [15] based technology allowing to interchange messages
between computing entities. The message format is defined
in [31] and the Web Services Description Language (WSDL)
[32] defines data types (using XML Schema [33]), messages,
service types, bindings of service types to protocols and
messaging formats, and service end-points, called ports.

The WSDL interface defines the external signature of a
given service, its implementation can use diverse kinds of
programming and execution environments and languages. The

3By either including the event or a reference to the event in the e-mail
message.



independence between a specific language and run-time and
the externally visible service specification is key to the inter-
operability aspects of the technology: heterogeneous infras-
tructures are enabled to interact via Web services. In addition,
running SOAP over HTTP enables inter-company reachability
of Web services across enterprises’ firewalls.

Fundamentally, the technology sends well-formed XML
datagrams over a given protocol from one end-point to another.
Thus, usage patterns such as remote protecure call (i.e. request
– reply) and one-way messaging are made available for
communicating entities.

Depending on the message, a receiving end-point triggers
the execution of some computing function, consuming the
message’s payload data. The use of XML as a data modeling
language enables the receiving entity to process the message
data using widely available XML tools and thus conveniently
supports the interchange of semi-structured data entities.

B. Instant Messaging

The end-user level functionality and key features of instant
messaging systems have already been given in section I.
Such systems adhere to an architectural model for presence
and instant messaging defined in [12]. So-called presentities
register with a centralized presence service which in turn
notifies a set of registered subscribers. The centralized service
approach is also advocated for the instant messaging service in
which sender and receivers of messages communicate over the
centralized instant messaging proxy. Commonly, the functions
of the presence service and instant messaging services are
merged into one logical service, called the service proxy.
Figure 1 illustrates this model.

Fig. 1. Model for Presence and Instant Messaging

The Extensible Messaging and Presence Protcol (XMPP)
[25] establishes an XML stream acting as envelope between
a client and the proxy. Embedded in that stream, server
and client exchange XML stanzas which are well-defined
XML constructs to describe presence notifications, messages,
and information queries. During establishment of the stream,
authentication and authorization can be performed by either
using Transport Layer Security (TLS) [9], [27] or the XMPP
specific Simple Authentication and Security Layer (SASL)
protocol.

To transport SOAP formatted XML content, we use the
XMPP information query (<iq>) stanza as proposed in [17].
The <iq> stanza allows to specify sender and destination of
the stanza and we use the type field to distinguish between
the entity requesting a web service and the response to the

request4. On the sending side, the sender embeds the SOAP-
XML envelope, containing any headers and the SOAP body,
into the <iq> stanza and on the receiving side this information
is extracted, parsed, and propagated to the Web services
handling code.

C. Combining instant messaging and Web services

Our architecture is shown in figure 2. We use the chat
application running on the end-user’s machine as a proxy for
traffic between chatlets. Chatlets communicate with the local
chat using local sockets. The local chat embeds the received
SOAP message into an XMPP <iq> stanza and forwards it
to the chat proxy which forwards it to the receiver’s, remote,
chat. The latter forwards the message to the target chatlet as
appropriate, again using local sockets.

Fig. 2. System architecture

The routing and correlation of requests and replies relies on
the use of WS-Addressing [1], which provides header elements
to indicate the destination address (To), the origin address
(From), message identity (MessageId), and a relates-to
(RelatesTo) element to correlate a reply with an original
request when an asynchronous transport protocol, such as
XMPP, is used for Web services in-out message exchange
patterns5.

Chatlets register themselves with their (local) chat proxy,
which propagates their presence to other, subscribing, chat
proxies – and thus users belonging to a particular chat commu-
nity – using the instant messaging infrastructure. The (remote)
chat proxy then forwards the presence of remote chatlets to
identically typed chatlets6.

When a new user goes on-line, his local chat proxy emits
a presence notification to other chat proxies. These reply with
their presence and query the chatlets of the new, on-line, chat
proxy.

The protocols for chatlet de-registration and chat proxy
termination perform the de-registration of chat proxies and
chatlets.

All of these protocol operations are implemented as Web
services provided by the chat proxies. Presence notification

4Concretely, we use the type values set and result.
5Although this message exchange pattern does not strictly imply syn-

chronicity, we primarily focus on synchronous replies to a given request.
6Currently, we simply use name equality to assert chatlet type equality; a

functional signature based approach could be envisioned.



and detection are provided by the instant messaging infrastruc-
ture; these trigger execution of protocol specific operations.

The protocol can be summarized as follows:

• Chat to Chat:

– Query (remote) registered chatlets: when notified on
the presence of a joining chat proxy, the notified chat
queries the notifying chat about its set of registered
chatlets.

– Advertise/withdraw local chatlet: when a new chat-
let registers, respectively unregisters, with its local
chat proxy, the latter propagates this information to
remote chat proxies.

• Chatlet to Chat:

– Register/unregister local chatlet: when a newly in-
stantiated chatlet registers with its local chat proxy,
it also obtains the instant messaging identity of the
chat proxy to complete its own address within the
chatlet address space. Registration triggers the chat
to chat advertisement operation.

• Chat to Chatlet:

– Advertise/withdraw remote chatlet: to forward regis-
tration and de-registration events to registered local
chatlets.

• Chatlet to Chatlet:

– Application level services: these are arbitrary SOAP
messages addressed from one chatlet to another chat-
let. Chatlets are identified via URIs [16], [25] which
include the identity of the chat proxy and the identity
of the chatlet. (We use the proposed Jabber URI
format jabber://node@domain/resource to
identify the chat proxy which we augement with
a URI query parameter chatlet.) Once a SOAP
message is received by a chatlet, it can further
dispatch or otherwise handle the message before
sending the reply.

With regards to the application layer interface, chatlets may
use operations which provide for the initialization and proper
termination of a chatlet’s life cycle. The application may
also implement a call-back interface used to dispatch received
application level SOAP messages to the application layer and
provding following methods:

• handles: this method is called by the message dis-
patcher with a message’s WS-Addressing To element
value and the callee indicates whether it wants to accept
messages addressed to the given target.

• getWSAActions: if the client handles a specific des-
tination address, it can further indicate which actions it
is prepared to handle. A wildcard operator indicates that
the client handles all operations addressed to it.

• received: when the dispatcher has determined that a
particular client handles an incoming message, it uses the
received callback, passing a SOAP message structure
as argument and expecting a SOAP reply message in

return7.

The astute reader may have observed that our protocol
principally serves one purpose: to exchange communication
end-points between communicating entities across the instant
messaging infrastructure. Beyond the propagation of end-point
presence we also exchange application level Web services
traffic across the instant messaging infrastructure. However,
a direct, TCP communication channel - bypassing the in-
stant messaging proxies and server - could be envisioned.
We rejected this approach as it would violate our persona-
centric addressing paradigm, raises issues with firewalling, and
complicates the appropriate handling of chat parties leaving
the instant messaging community.

III. EXTREME PROGRAMMING SUPPORT FOR THE ECLIPSE

WORKBENCH

The Eclipse workbench [24] provides a framework to build
development environments and relies on the use of so-called
plug-ins to integrate new functionality into the workbench.
The environment defines a set of extension points which are
pre-defined by the workbench8 and which are associated with
corresponding plug-ins. When execution reaches an extension
point, the code bound to related plug-ins is executed. The call
interface is defined by individual extension-point types and the
plug-in code must implement these.

We have used Eclipse’s extension mechanism to associate
a workbench instance with a user’s chat environment and
to allow the end-user to interact with remote Eclipse work-
benches across the instant messaging environment. Concretely,
following features are supported:

1) Select a partner workbench: The Eclipse workbench
behaves as a chatlet of our architecture in section II.
When starting an instance of the workbench, it registers
with the local chat proxy. The local chat proxy propa-
gates this information to remote chat proxies and queries
these about instances of (remote) Eclipse chatlets. These
are transmitted to the new Eclipse workbench chatlet,
identifying potential interaction partners. The end-user
then selects one of the remote Eclipse chatlets for further
operations (see also figure 4).

2) Subscribe to change events of selected resources: Having
selected one specific, remote, Eclipse chatlet, the user
can query its set of resources. Resources are Eclipse
abstractions to model projects, their contained folders,
and their file resources. Eclipse provides an internal
listener mechanism to detect changes in resources; for
instance saving a particular file resource is mapped onto
a change event of the file resource, its container resource,
and the containing project resource.
When the end-user selects a partner’s workbench re-
source for change observation, he is notified whenever
the remote resource is saved. Our plug-in code detects
the Eclipse internal change event and propagates it to

7The data structures used are modelled after [29].
8However, extensions can in turn define further extension-points.



remote Eclipse chatlets. On the receiving side, we create
a pop-up to inform the user about the change of the
observed resource.

3) Show observed resources: The workbench keeps track
which remote resources are observed and thereby allows
the end-user to cancel an observation.

4) Quick-diff against a remote resource: The Eclipse work-
bench provides a quick-diff feature which summarily
compares the content of an editor’s buffer against a refer-
ence instance of that resource, in general the disk-saved
file corresponding to the resource. We have augmented
Eclipse by extending the quick-diff mechanism to use
resources of the selected partner workbench. That is, if
user A has selected user B’s workbench, A can enable
a quick-diff of his currently active editor buffer against
B’s corresponding resource9.

The GUIs of the instant messaging extensions for the
Eclipse workbench are shown in figures 3 and 4. The first
figure shows the Eclipse window’s menu extension for the
Jabber Plugin Extension. The first panel in figure 4 allows
the user to select one particular chat partner also running
the Eclipse chat extension. The middle panel displays the
resources of the selected partner and the bottom panel lists
the set of remote, observed resources.

Fig. 3. Eclipse Application User Interface

Implementation of these features relies on Eclipse’s internal
architecture for resource representation, event listening, and
extensibility mechanism described above. The plug-in in turn
uses the chatlet abstraction of our architectural model in
section II to register with the instant messaging environment
and to communicate with other registered Eclipse workbench
chatlets. Application level functions are invoked using Web
services across the instant messaging channel and propagated
to the Eclipse plug-in via the call-back interface described in
section II. Figure 5 illustrates the interplay between Eclipse’s
internal data structures and our chatlet based architecture.
Our implementation is based on JabberBeans, a Java package
handling the Jabber/XMPP protocol [34]. For the chatlet appli-
cation, we provide a Java class which handles the protocol with

9If B does not maintain a similarly named resource, no differencing
operation is performed.

Fig. 4. Eclipse Application User Functions

Fig. 5. Eclipse Application

the local chat proxy which in-turn interacts with the Jabber
environment. The local chat proxy code has been integrated
into [13].

We have currently not implemented any explicit security
features into the system. Following considerations, however,
can be made related to security and privacy concerns:

• Data exchange can be made secure using WS-
Security [19] to secure the traffic between involved
chatlets. Hence, no additional support beyond WS-
Security needs to be considered.

• Participating in a chat session and enabling presence
detection by others implicitly reveals some information
about a chat participant. However, it is unclear to which
extent a chatter’s resources are made available to others.
An access control list [28] based authorization scheme
would be the appropriate and straightforward solution to
manage finer grain access authorization and enable the
owner of Eclipse resources to grant access to other chat
participants.

Additional end-user functionality for cooperative program-
ming can be envisioned. Expanding the current quick-diff
feature into a richer viewing and merging capability which
allows for deeper sharing of resources of common interest
amongst members of a programming team would be an evident



extension of the current prototype.

IV. INTEGRATION WITH A CALENDAR ENVIRONMENT

To implement the functionality suggested in I-B, we have
chosen the IBM Lotus Notes calendar environment [7] and
implemenetd the basic architecture of section II. However,
in comparison with the Eclipse application, the Lotus Notes
environment does not provide a similarly flexible and powerful
extension mechanism. The calendaring chatlet is thus a free-
standing Windows application implemented in Java which uses
the Lotus Notes APIs [18] to access the calendar’s database, as
illustrated in figure 6. Data sharing between the chatlet and the
application is done through the Lotus Notes calendar database
and not via in-(virtual)memory shared data. The Lotus Notes
application launches the calendaring chatlet as an indepen-
dent operating system application using Notes’ Excecute
command. We currently only have implemented sharing of

Fig. 6. Calendaring Application

calendaring information, where user A can send information
from his calendar to a chat partner B. The triggering of
this exchange is done from the Notes Calendar GUI which
launches the Windows application in the background. This
application, implementing the chatlet functions, accesses the
Notes calendar database, extracts the relevant information, and
forwards it to its pendant chatlet on user B’s chat environment
where it is displayed.

The (structured) calendaring data exchange is based on the
Web services over instant messaging protocol described in
section II above. Message dispatching, handling, and replying
is identical to the Eclipse application. The main differences be-
tween the two applications lies in the difference of integration
and extensibility of the core application environment. Whereas
in the case of the Eclipse workbench we could use its extension
points mechanism, we could not as conveniently integrate the
chatlet functionality into the Lotus Notes calendar environ-
ment. The provided scripting mechanisms for Lotus Notes
indeed do not provide the powerful and rich environment of
a full fledged Java environment as is the case for Eclipse,
leading to the application architecture shown in figure 6.

Whilst the differences of the integration depth is not surpris-
ing given the two environments, it raises the more fundamental
question of application extensibility. This issue also comes to

play for the extensibility of the chat application itself when
dealing with the issue of integrating the various chatlet GUIs
into an already existing GUI. The choice there is threefold:

1) Integration with the core application: This is the ap-
proach we have chosen for the Eclipse application. It ap-
pears to be the most natural approach since first the end-
user functionality of the chatlet is closely linked with the
core application and secondly since Eclipse provides for
convenient extension mechanisms. However, it depends
on the openess of the application for extensions.

2) Integration with the chat application: We have rejected
this approach based on the previous argument. First,
the chatlet end-user functionality is more application
specific than chat generic. Second, the chat application
we used did not provide extensions mechanisms which
strongly suggested using it for GUI extensions.

3) Free-standing application: In this case, the chatlet runs
as a free standing GUI enabled operating system level
application and represents the solution when the applica-
tion does not provide convenient extensions mechanisms
as has been the case for our calendaring scenario. Whilst
this approach leads to workable results, it forces re-
implementation of many function points which already
are implemented in the application.

It may be worthwhile to further explore the extension mech-
anisms as examplified by Eclipse and their general applica-
bility to other end-user applications such as word-processing,
spread-sheets, mail programs, or calendaring.

V. RELATED WORK

An up-to-date survey on collaborative development envi-
ronments (CDE) is given by Booch and Brown [4]. The
current state of the art is surveyed and the salient requirements
for valuable CDEs are outlined. Our system only offers a
rudimentary set of these CDE features, however our aim
was not to implement a full-fledged CDE but to explore and
demonstrate the use of an instant messaging system to carry
Web services traffic; a technology which can then be used to
augment existing IDEs into CDEs.

Shared programming specifically within the Eclipse envi-
ronment has been explored by other researchers. Cheng et
al. [5] describe an extensive feature set which allows to man-
age and enable cooperation within small scale programming
groups. Their system supports the initiation of structured chat
sessions from within the Eclipse workbench, allows to share
the Eclipse screen [11], to take part in a shared white-board
service, and - similar to our prototype - to indicate editing
activities on some partner’s Eclipse resources.

The Jazz work concentrates primarily on providing and
exploring new collaboration paradigms and how to apply these
to joint programming; whereas our work is more concerned
with the re-use of existing infrastructures to implement novel
user features. We have not extended the instant messaging
capabilities to support shared programming. Instead we expand
the integrated development environment’s features using the



unmodified instant messaging environment to locate commu-
nication partners and provide communication channels.

The JAMM project [3] also addresses the issue of collabora-
tion by instrumenting the Java widget library to provide a more
flexible interaction model for collaboration. By reimplement-
ing key widget classes, JAMM enables collaboration even in
applications that were not written with collaboration support,
much like the screen sharing scheme used by Jazz. Because
the sharing is implemented at the widget layer, JAMM has the
advantage of not confining collaborators to the same view of
the application. For example, one collaborator can be working
on some methods of a code module while his JAMM partner
may be working on an unrelated feature of the same module.
Visual clues are used to indicate what each collaborator is
doing.

Our approach taken together with Jazz and JAMM illustrates
a continuum of collaboration models. Jazz offers very tight
collaboration where the application itself is not collaboration
aware and the collaborators work in a follow-the-leader fash-
ion using a collaboration specific middleware. In the middle of
the continuum we have JAMM which transparently modifies
the application by replacing key widget classes and allows the
collaborators to work in a more independent fashion. Our work
is on the far end of the continuum where we had to modify the
application code but not to adapt the collaboration middleware
and we allow collaboration even if the collaborators work
on different document resources. For example, in Jazz two
programmers can tightly work on a function in a source
module together. In JAMM the same programmers can work
on different functions in the module. Our project aims to let
the programmers work on different versions of the same source
module and share different parts of the module. It may be that
the programmers are prototyping different ways of addressing
a problem but want to share parts of each others changes.

Another piece of related work is described in [26]. Kaegi’s
work expands the Eclipse workbench very similarly to our
approach: one user obtains information on another user’s
Eclipse resources and visualizes these. Unlike [5], there are
no enhanced chat features, nor a shared white-board, or screen
sharing. Kaegi uses a proprietary XML based protocol and, by
not relying on an instant messaging infrastructure’s presence
capabilities, the system must provide its own partner location
and detection mechanisms.

VI. CONCLUSION

We have shown the feasibility of carrying Web services traf-
fic over an instant messaging infrastructure. Thereby we have
enabled novel application functionality in which we open end-
user application’s data spaces to chat-like interactions. This
allows to support quasi instantaneous information exchange of
complexly structured application data - represented in XML.
The use of an instant messaging infrastructure provides us
with a firewall crossing communication channel to exchange
Web services traffic, a persona centric addressing scheme, and
the means to detect communication partners within the chat
community.

The Web services paradigm allows to exchange application
level, structured data and provides quasi-instantenous data
exchange in a flexible, yet standardized way. Thus well-known
procedures of Web services usage and data processing can be
re-used.

Our work has focussed on providing the underlying archi-
tecture, its protocols, and to explore application paradigms. We
have not specfically addressed performance issues. However,
we have observed that repetitive message handling within dif-
ferent entities may cause performance issues, due in particular
to the XML parsing needed to analyze XMPP stanzas and their
payload. Care must be taken to avoid parsing the full message
body when only header elements are needed for proper routing
of the message.

An important differentiator in integrating instant messaging
into user-facing applications has been the extensibility of the
application itself. As argued above, a powerful and flexible
extension mechanism supports reuse of application internal
data and GUI features. The investigation of generic application
extensions mechanisms and their capabilities has however not
been a focus of this work.

A further facet of investigation can be integration of end-
user applications which are more pervasive in their nature,
running on PDAs or smart-phones. The user-centric and device
independent addressability provided through the instant mes-
saging environment, combined with the invocation semantics
of Web services may very well ease and broaden inter-
application integration on such platforms.

REFERENCES

[1] BEA Systems Inc., International Business Machines Corporation, and
Microsoft Corporation, Inc. Web Services Addressing (WSAddressing),
March 2004.
ftp://www6.software.ibm.com/software/developer/library/ws-
add200403.pdf.

[2] Kent Beck. Extreme Programming Explained: Embrace Change.
Addison Wesley, 1999.

[3] James Begole, Mary Beth Rosson, and Clifford A. Shaffer. Supporting
worker independence in collaboration transparency. In Proceedings of
the 1997 Symposium on User Interface Software and Technology,
pages 55–64. ACM, 1997.

[4] Grady Booch and Alan W. Brown. Collaborative development
environments. Advances In Computer Science, 49, 2003.

[5] Li-Te Cheng, Susanne Hupfer, Steven Ross, and John Patterson.
Jazzing up Eclipse with Collaborative Tools. In OOPSLA 2003 - 18th
Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages and Applications, pages 45–49, Anaheim, CA,
October 2003. ACM SIGPLAN. Eclipse Technology Exchange
Workshop.

[6] IBM Corporation. IBM Lotus Instant Messaging and Web
Conferencing.
http://www.lotus.com/products/product3.nsf/wdocs/homepage.

[7] IBM Corporation. IBM Lotus Notes.
http://www.lotus.com/products/product4.nsf/wdocs/noteshomepage.

[8] J. des Riviêres and J. Wiegand. Eclipse: A platform for integrating
development tools. IBM Systems Journal, 43(2):371–381, 2004.

[9] T. Dierks and C. Allen. Transport Layer Security (TLS). Internet
Society, January 1999. http://www.ietf.org/rfc/rfc2246.txt.

[10] P. Saint-Andre (ed.). Extensible Messaging and Presence Protocol
(XMPP): Instant Messaging and Presence. Internet Society, December
2003. http://www.ietf.org/internet-drafts/draft-ietf-xmpp-im-20.html.

[11] Constantin Kaplinsky et al. TightVNC Software.
http://www.tightvnc.com/.



[12] M. Day et al. A Model for Presence and Instant Messaging. Internet
Society, February 2000. http://www.ietf.org/rfc/rfc2778.

[13] Marc Eisenstadt et al. BuddySpace Instant Messenger.
http://kmi.open.ac.uk/projects/buddyspace/.

[14] Per Cederqvist et al. Version Management with CVS. Signum Support
AB, cvs 1.11.2 edition, 1993. https://www.cvshome.org/.

[15] Robert Fielding et al. Hypertext Transfer Protocol – HTTP/1.1. IETF
Networking Group, January 1997.
http://www.faqs.org/rfcs/rfc2068.html.

[16] T. Berners-Lee et al. Uniform Resource Identifier (URI): Generic
Syntax. Internet Society, August 1998. http://www.ietf.org/rfc/rfc2396.

[17] Fabio Fornio. JEP-0072: SOAP Over Jabber.
http://www.jabber.org/jeps/jep-0072.html.

[18] IBM. Lotus Domino Toolkit for Java/Corba, 2.1 edition, January 2001.
http://www-130.ibm.com/developerworks/.

[19] IBM, Microsoft, VeriSign. Web Services Security (WS-Security), April
2002. http://www-
106.ibm.com/developerworks/webservices/library/ws-secure/.

[20] America On-Line Inc. AOL Instant Messenger. http://www.aim.com/.
[21] Microsoft Inc. Microsoft Live Communications Server 2003: Windows

Messenger.
http://www.microsoft.com/office/livecomm/prodinfo/default.mspx.

[22] Microsoft Inc. Microsoft Office Online.
http://office.microsoft.com/home/.

[23] Microsoft Inc. Microsoft Visual Studio.
http://msdn.microsoft.com/vstudio/.

[24] Object Technology International Inc. Eclipse Platform Technical
Overview, 2001. http://www.eclipse.org/articles/index.html.

[25] Internet Society. Extensible Messaging and Presence Protocol
(XMPP): Core, June 2004.
http://www.jabber.org/ietf/draft-ietf-xmpp-core-21.html.

[26] S. Kaegi. Lightweight code sharing in the eclipse environment.
http://www.scs.carlton.ca/˜skaegi/cdt/index.html.

[27] R. Khare and S. Lawrence. Upgrading to TLS Within HTTP/1.1.
Internet Society, May 2000. http://www.faqs.org/rfcs/rfc2817.html.

[28] Charles P. Pfleeger. Security in Computing. Prentice-Hall, Inc., 1996.
[29] Sun Microsystems. Class SOAPMessage.

http://java.sun.com/j2ee/1.4/docs/api/javax/xml/soap/SOAPMessage.html.
[30] W3C. Extensible Markup Language (XML), February 1998. Version

1.0, http://www.w3.org/TR/REC-xml.
[31] W3C. Simple Object Access Protocol (SOAP) 1.1, May 2000. Version

1.1, http://www.w3.org/2000/NOTE-SOAP-20000508/.
[32] W3C. Web Services Description Language (WSDL) 1.1, March 2001.

Version 1.1, http://www.w3.org/TR/wsdl.
[33] W3C. XML Schema Part 0: Primer, May 2001.

http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/.
[34] David Waite. JabberBeans: a Java library for the Jabber Instant

Messaging network. http://jabberbeans.jabberstudio.org/.




