
RZ 3611 (# 99621) 06/06/05
Computer Science 10 pages

Research Report

Instruction-Set Synthesis for Reactive Real-Time Processors:
An ILP Formulation

Gero Dittmann and Paul Hurley

IBM Research GmbH
Zurich Research Laboratory
8803 Rüschlikon
Switzerland
{ged,pah}@zurich.ibm.com

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available
at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich

Instruction-Set Synthesis for Reactive Real-Time Processors:
An ILP Formulation

Gero Dittmann and Paul Hurley
IBM Research, Zurich Research Laboratory

Säumerstrasse 4 / Postfach
8803 Rüschlikon, Switzerland
{ged,pah}@zurich.ibm.com

Abstract

Today’s design methodologies for application-specific
instruction-set processors (ASIPs) focus on the data-
dominated domain characterized by computation-
intensive applications such as digital signal process-
ing. There is, however, a lack of methods for control-
dominated domains such as network-protocol process-
ing. These domains are characterized by branch-
intensive applications with fine-grained timing con-
straints imposed by frequent interactions with the ASIP
environment. The main challenge here is not to speed
up over-all application runtime, but to meet the many
timing constraints. This challenge can be addressed
by introducing special instructions that speed up the
timing-critical paths.

In this paper we propose the first ASIP design
methodology for the control-dominated domain. We di-
vide the task into two separate optimization problems,
each formulated as an integer linear program (ILP). The
first is to find a complete set of operation sequences that
must be implemented as macro instructions in order to
meet given timing constraints. The second is to reduce
the number of parallel instruction issues, achieved by
bundling pairs of instructions. An ILP solver can auto-
mate the instruction-set synthesis, enabling the analysis
of large benchmarks and yielding optimal solutions.

1 Introduction

Owing to the ever-decreasing feature size of today’s
semiconductor processes, the cost of a mask set has
crossed the one-million-dollar line. Given this invest-
ment, a design must be applicable for multiple purposes.
This flexibility is commonly provided by programmable
elements. A fine-grained and gradual trade-off be-
tween flexibility and performance can be achieved with
application-specific instruction-set processors (ASIPs).

The instruction set of an ASIP is specialized for a par-
ticular class of applications by compound instructions
that speed up critical parts of the applications without
compromising the flexibility of the processor in its ap-
plication domain. In this way, ASIPs combine the flex-
ibility of general-purpose processors (GPPs) with the
performance of hard-wired logic.

Most research publications on ASIPs concentrate on
the design of digital signal processors (DSPs) or, more
generally, on the data-dominated application domain
[1, 2, 3]. Data-dominated applications are character-
ized by long arithmetic sections between control-flow
boundaries, i.e., between branches. Furthermore, they
typically contain many computation-intensive loops.
Processing often starts with receiving a sample of data
and ends with sending out a resulting frame. Inbetween
start and end, there is no other I/O to be handled. Hence,
there is only one deadline to be met per algorithm run:
The resulting frame has to be output in time. This kind
of timing constraint is called a rate constraint because
the overall running time of an algorithm is constrained
to guarantee that a required rate of samples per time unit
can be processed.

Control-dominated applications, in contrast, fea-
ture many branches interleaved with short computation
blocks, and loops are rare. In most control-dominated
real-time systems, such as protocol processors [4], there
is not only one deadline at the end of a run but many I/O
interactions with the environment, many of which have
a deadline associated with them. As a consequence of
these fine-grained timing constraints, the focus moves
away from patterns that occur frequently and therefore
provide an overall speed-up. Instead, patterns must be
implemented as instructions in order to meet the fine-
grained timing constraints, even if they occur only once
in an application. Table 1 contrasts the properties of the
two application domains.

1

Table 1: Characteristics of application domains.

Properties Data-dominated Control-dominated

Examples DSP, media processor NP, microcontroller
Arithmetic sections long short
Branches few many
Loops many few
Memory size large small
Arithmetic type fractional integer
Timing rate constraints fine-grained
Data-dependent wait no yes
Pattern purpose speed-up forced by timing
Pattern metric occurrence frequency meets timing constraints

The first step in any application-driven ASIP design
methodology is to define a set of benchmark applica-
tions that is representative of the targeted domain. Of-
ten there already is a code base in a commodity pro-
gramming language, such as C. This code, however, is
lacking the timing constraints required by the ASIP en-
vironment. In [5], we proposed methods to specify fine-
grained timing constraints for reactive systems in ANSI
C and to translate them to a timing layer in an inter-
mediate representation (IR). Graph edges in the timing
layer connect I/O operands and are annotated with the
minimum and maximum time between these nodes.

In this paper we introduce methods that analyze an IR
graph to select operation patterns for implementation as
special instructions, tailored to the control-dominated
domain. The resulting instruction set has to enable an
implementation of the benchmark applications such that
the following two kinds of constraints are met:

• the timing constraints given by the timing layer of
the IR, and

• a maximum number of parallel instruction issues,
specified by the ASIP designer.

An instruction set that meets these constraints is to be
optimized in two respects:

• The primary goal is to minimize the maximum la-
tency of any instruction in the instruction set. This
improves the implementability of the instruction
set with the required cycle time.

• The secondary goal is to minimize the number of
instructions in the instruction set. This minimizes
the number of bits needed for the instruction en-
coding.

We formulate these optimizations as two consecutive
scheduling problems. The first is to segment each path
covered by a timing constraint into patterns such that
the constraint is met while balancing the latency of the
patterns to work towards the primary optimization goal.
The second is to bundle parallel patterns such that the
constraint on parallel issues is met while keeping the
number of incurred instructions low in order to work to-
wards the secondary optimization goal. Figure 1 shows
the entire design flow.

Intermediate
Representation

Timing
Constraint
Analysis

Timing-Forced
Patterns

Constraining
Parallelism

ASIP
Instruction Set

Application Specification
w/ Timing Constraints

Compiler Front End

Figure 1: ASIP design flow.

This paper is structured as follows. We start by giving
an overview of scheduling algorithms commonly used
in high-level synthesis (HLS) in Section 2. Section 3
states our assumptions on the ASIP architecture. In Sec-

2

tion 4 we present our integer linear program (ILP) for-
mulation of finding timing-forced sequential operation
patterns. We introduce our ILP for reducing the number
of parallel instruction issues in Section 5. In Section 6
we propose a new, low-complexity on-chip communi-
cation scheme that only becomes possible with the real-
time guarantees that our design methodology provides.
Finally, we conclude in Section 8.

To our knowledge, this is the first complete
instruction-set design flow for control-dominated appli-
cations.

2 Related Work

The simplest scheduling algorithms used in HLS
are as-soon-as-possible (ASAP) and as-late-as-possible
(ALAP). ASAP positions each operation in the first step
in which all its inputs are available. Similarly, the
ALAP schedule positions each operation just before all
operations that read its output and in the latest control
step possible without adding another step to the total
schedule. In both cases, the total schedule length is
equal to the length of the critical paths. The term mobil-
ity for the difference between ASAP and ALAP sched-
ules was coined in [6]. ASAP and ALAP schedules do
not take resource constraints into consideration.

An early algorithm for resource-constrained schedul-
ing is list scheduling (LS) [7]. In LS, operations are
ordered according to their dependencies on other oper-
ations. A priority function assigns precedence values to
the operations. Based on these values, the operations
are then iteratively assigned to control steps. LS and its
many variations are widely used in synthesis systems
because they are simple and efficient.

Another popular algorithm is force-directed schedul-
ing (FDS) [8]. FDS is time-constrained, i.e., it tries to
minimize the resources required to achieve a given max-
imum schedule length. The priority function in FDS is
based on the mobility of operations and the resource re-
quirements in each control step. Operations with the
lowest mobility, the least effect on the mobility of other
operations, and the lowest resource increase are sched-
uled first.

More complex scheduling algorithms include itera-
tive scheduling [9] and the formulation of scheduling as
an ILP [10]. Solving an ILP provides optimum sched-
ules. A comprehensive introduction to the schedul-
ing problem followed by a survey of the most popular
scheduling algorithms for HLS can be found in [11].

Most HLS systems only allow the specification of
static timing constraints, neglecting minimum, max-

imum, and range constraints for optimization and
scheduling. A notable exception of a constructive
scheduling algorithm that considers these types of tim-
ing constraints for the synthesis process has been de-
scribed in [12].

3 Processor Architecture

In our research, we make the following assumptions
about the ASIP architecture:

VLIW format. To avoid the hardware overhead that
superscalar architectures entail, we opt for the very
long instruction word (VLIW) approach in order to
obtain a small footprint for the ASIP. With VLIW
processors, it is up to the compiler to pack multiple
instructions into one memory word that will then
be executed in parallel. The resulting binary in-
compatibility between processor models with dif-
ferent issue widths is usually not a problem for
embedded systems, as it is possible to recompile
code for a new processor. Moreover, controlling
parallelism by the compiler simplifies the schedul-
ing under timing constraints because the scheduler
does not need to estimate the behavior of the hard-
ware parallelization.

No pipelining. Control-dominated applications have
many branches, which is the classical stumbling
block for processor pipelines. To keep the pipeline
filled after a branch, speculative execution can be
employed but it is only effective if the speculation
is correct. Branch prediction is used to improve
the rate of correct speculations but the rare occur-
rence of loops in control-dominated applications
renders branch prediction largely ineffective. Fur-
thermore, the short arithmetic sections in control-
dominated applications constrain opportunities for
speculation. Finally, speculation is a probabilis-
tic technique that interferes with hard timing con-
straints. We conclude that pipelining and control-
dominated applications do not match well because
frequent stalls make pipelining largely inefficient
in this domain. Consequently, the overhead in
logic and the increased instruction completion time
due to pipeline registers and imbalances between
the stages would not be justified.

Unlimited registers. The control-dominated applica-
tions we analyze typically do not have large stor-
age requirements so that the required number
of registers will be low. Not imposing con-
straints on the number of available registers, on the

3

other hand, significantly reduces the complexity of
scheduling.

Single-cycle instructions. Control-dominated applica-
tions typically do not use floating-point data types
but rely exclusively on integers. Hence, it is not a
severe restriction to disregard multi-cycle instruc-
tions.

With these assumptions, the complexity of our meth-
ods is kept under control for this first proof-of-concept
methodology. However, our methodology can be com-
bined with existing methods to overcome its restric-
tions. In particular, it can be complemented with
pipeline design methods and register scheduling ap-
proaches to support pipelined architectures with a lim-
ited number of registers.

4 Timing-Forced Patterns

4.1 Problem Statement

The main concern in developing an ASIP for control-
dominated applications is to meet the timing constraints
specified by the benchmarks. The generated instruction
set must be able to implement the applications with the
required timing. Therefore, our first step is to find the
operation patterns that are forced to be part of the pat-
tern set by the timing constraints. In this selection pro-
cess, it is important to balance the size of patterns in
the pattern set because all patterns will have to be im-
plemented in a single processor cycle and therefore the
most complex pattern will determine the critical path in
the processor design. In order to maintain control-flow
dependencies, a pattern does not cross branches.

The scheduling algorithms mentioned in Section 2
determine how to distribute operations over a given or
minimum number of time steps with a given or mini-
mum number of resources. None of them, however, ad-
dresses the question of how to bundle operations in an
instruction to obtain a lean instruction set that meets all
constraints and in which instruction latencies are bal-
anced. Therefore, our objective is different from the
general scheduling problem.

To analyze applications, we transform them to a
control-data flow graph (CDFG), G = (V,E), with V a
set of nodes and E a set of directed edges e = (u, v) ∈
E with u, v ∈ V . There are two types of nodes in the set
V = Vop ∪ Vdmy: the set of operation nodes in the data-
flow layer, Vop, and dummy nodes, Vdmy, that connect
the control layer with the data-flow layer.

The dummy nodes serve as unified entry or exit
points for the control nodes, i.e., for the basic blocks.

An entry node connects all leaves of all data flow graphs
(DFGs) in a control node, and an exit node connects all
roots of the DFGs. The edges from the control layer
connect the exit node of their source with the entry node
of their destination in the CDFG. Basic blocks with a
conditional branch get one exit node for each outgoing
control edge.

The set of edges in G therefore consists of edges
Edmy between dummy nodes and leaves or roots of
DFGs, and regular control and data-flow edges: E =
Edmy ∪ Ec ∪ Ed. An edge in the CDFG is denoted
vi → vk, where vi is an immediate predecessor of vk.

The timing constraints specified with the benchmark
applications are represented in a timing layer [5] on
top of the CDFG. The edges in the timing layer im-
pose maximum or minimum constraints on the time be-
tween the CDFG operands at their ends. This represents
an optimization problem on the CDFG, namely, how to
schedule the operation nodes along each timing edge.

4.2 ILP Formulation

We formalize the optimization problem in the form of
an ILP [13]. The result of the optimization will be a set
of m patterns St = {I1, . . . , Im}, with each pattern be-
ing a DFG. The latency of pattern s ∈ {1, . . . ,m} is the
length of its critical path, denoted |Is|. Our global ob-
jective is to balance the latency of the selected patterns,
i.e., to minimize the maximum latency in the pattern set:

min{max(|Is| : 1 ≤ s ≤ m) }. (1)

Let X = [xi,j]|Vop|,jmax be a scheduling matrix of 0-
1 integer variables with vi ∈ Vop, j ∈ {1, . . . , jmax},
and xi,j = 1 iff vi is scheduled in time step j (see
Figure 2). |Vop| is the number of operation nodes in
G. Note that the matrix considers only operation nodes.
The dummy nodes, in contrast, cannot be scheduled as
they do not represent any operation.

X =

x1,1 x1,2 . . . x1,jmax

x2,1 x2,2 . . . x2,jmax

...
...

. . .
...

x|Vop|,1 x|Vop|,2 . . . x|Vop|,jmax

↑
operation

nodes
↓

←− time steps −→

Figure 2: Scheduling matrix.

Let Gt = (Vt, Et) be the subgraph of G between the
endpoints of a timing edge t. Let Pt be the set of all

4

acyclic paths p through Gt from one timing-edge end-
point to the other. A path is defined by a vector p ∈
B
|Vop| such that pi = 1 iff vi is on the path. Component-

wise multiplication of the vector (x1,j, . . . , x|Vop|,j) for
one time step j with a path vector p yields a charac-
teristic vector of those operation nodes on the path that
are scheduled in that time step. As these nodes must
be implemented by the same pattern, the number of 1’s
in the characteristic vector is equivalent to the number
of operation nodes of the path in that time step, which
corresponds to the latency of the path segment. We can
write this latency as the scalar product of the path vec-
tor with the column vector xj of the time step j in the
scheduling matrix:

|p(j)| = p1x1,j + . . . + p|Vop|x|Vop|,j = p · xj. (2)

The path segment with the largest latency corresponds
to the critical path in the slowest pattern. Therefore, the
objective in Eq. (1) can be recast as a function of all
path vectors of all timing edges, which are combined in
the set P :

min{max(

|Vop|
∑

i=1

pi xi,j, ∀ p ∈ P, j ∈ {1, . . . , jmax}) }

= min{max(p ·xj , ∀p ∈ P, j ∈ {1, . . . , jmax})}. (3)

This is the objective function for the ILP. Now the
constraints a valid schedule must meet can be devel-
oped. The first requires that each operation node be
scheduled in exactly one time step:

jmax
∑

j=1

xi,j = 1, ∀ i : vi ∈ Vop. (4)

The precedence of nodes in the CDFG must be pre-
served. We achieve this by requiring that the time step
of a node be equal to or higher than the time step of its
predecessors. If gl is the time step for vl, we obtain

gi ≤ gk, ∀ (i, k) : vi → vk. (5)

The time step gl of a node l is expressed by the sum

gl =

jmax
∑

j=1

j xl,j. (6)

Transforming the inequality to gi − gk ≤ 0 and substi-
tuting with Eq. (6), we get the precedence constraint:

jmax
∑

j=1

j xi,j −

jmax
∑

j=1

j xk,j ≤ 0,

∀ (i, k) : vi → vk, vi, vk ∈ Vop.

(7)

This constraint only applies to operation nodes because
dummy nodes are not assigned to any time step. There-
fore, another constraint to preserve precedence across
dummy nodes is needed:

jmax
∑

j=1

j xi,j −

jmax
∑

j=1

j xk,j ≤ −1,

∀ (i, k) : vi → vexit → ventry → vk,

vi, vk ∈ Vop, vexit, ventry ∈ Vdmy.

(8)

The left-hand side of the inequality must be negative be-
cause operation nodes connected across dummy nodes
belong to different basic blocks and thus must not be
scheduled in the same time step. As a consequence of
this constraint, the ILP has no solution if there exists a
path having more control nodes than the timing edges
allow cycles. In this case, transformations such as if-
conversion [14] must be used to decrease the number of
control nodes and resolve the situation.

Finally, the timing constraints must be considered.

For each maximum time vi
tmax−−→ vk between two op-

eration nodes vi and vk with I/O nodes as operands,
gk−gi ≤ tmax is required for their assigned time steps gi

and gk. Similarly, from each minimum time vi
tmin−−→ vk

follows gk− gi ≥ tmin. Substituting with Eq. (6) results
in:

jmax
∑

j=1

j xi,j −

jmax
∑

j=1

j xk,j ≤ tmax,

∀ (i, k) : vi
tmax−−→ vk, vi, vk ∈ Vop

(9)

jmax
∑

j=1

j xi,j −

jmax
∑

j=1

j xk,j ≥ tmin,

∀ (i, k) : vi
tmin−−→ vk, vi, vk ∈ Vop.

(10)

This completes our formulation with objective func-
tion (3) and constraints (4) for assignment, (7) and (8)
for precedence between operation nodes, and (9) and
(10) for timing. In a solution to the optimization prob-
lem, each set of nodes scheduled in the same time step
and connected by data dependencies in the CDFG rep-
resents a pattern in the pattern set St.

5 Constraining Parallel Instruction
Issues

5.1 Problem Statement

The methods to find timing-forced patterns described
in Section 4 consider constraints on the number of in-
structions in a sequence, defined in the form of timing

5

constraints. Another type of constraint provided by the
designer in our methodology is the maximum number
of instructions issued in parallel by the ASIP to be de-
signed, kmax. Our approach to meet this constraint is to
bundle patterns that frequently occur in parallel.

Building upon the results of the preceding section,
we replace the operation nodes in the CDFG with their
associated patterns in St, resulting in a set of pattern
nodes Vpat. We get a graph G′ = (V ′, E′) with a set of
nodes V ′ = Vpat∪Vdmy and edges E ′. It is not necessary
to migrate the timing edges as they are attached to I/O
operands, which have not changed in the process.

The optimization problem to be solved on this graph
is how to schedule the nodes in time steps with the min-
imum number of incurred bundles of parallel patterns.
Again, we develop a formal definition of the problem as
an ILP.

5.2 ILP Formulation

The result of the second optimization problem will be
a set of instructions Sp. Our objective is to keep the
number of instructions in Sp as low as possible:

min{ |Sp| }. (11)

Let Y = [yi,j,k]|Vpat|,jmax,kmax be a three-dimensional
scheduling array of 0-1 integer variables with vi ∈ Vpat,
j ∈ {1, . . . , jmax}, and yi,j,k = 1 iff vi is scheduled in
time step j and parallel-issue slot k (see Figure 3). |Vpat|
is the number of pattern nodes in G′. The dummy nodes
are not represented in the array.

time steps

issue slots

pattern
nodes

Y =

Figure 3: Three-dimensional scheduling array.

Each issue slot k in each time step j is represented
by a characteristic vector yj,k = (y1,j,k, . . . , y|Vpat,j,k)
in the array with a 1 at each node that is scheduled in
that particular slot. The pattern associated with each
node is determined by a function τ : Vpat → St. The
combination of patterns in one issue slot forms a pattern
bundle in Sp. Hence, the number of different pattern

bundles in all issue slots yields |Sp| for the objective
function.

The first constraint for a valid schedule is an assign-
ment constraint, requiring that each operation node be
scheduled in exactly one time step and exactly one is-
sue slot:

jmax
∑

j=1

kmax
∑

k=1

yi,j,k = 1, ∀ i : vi ∈ Vpat. (12)

The precedence constraint requires that each node be
scheduled later than its predecessors. Unlike the prob-
lem in Section 4.2, it is not possible to schedule depen-
dent nodes in the same cycle. If gl is the time step for vl

we get
gi < gh, ∀ (i, h) : vi → vh. (13)

To express the time step gl of a node l, all time steps and
issue slots are scanned:

gl =

jmax
∑

j=1

kmax
∑

k=1

j yl,j,k. (14)

Tranforming Eq. (13) to gi − gh ≤ −1 and substituting
with Eq. (14) yields the precedence constraint:

jmax
∑

j=1

kmax
∑

k=1

j yi,j,k −

jmax
∑

j=1

kmax
∑

k=1

j yh,j,k ≤ −1,

∀ (i, h) : vi → vh, vi, vh ∈ Vop.

(15)

In order to cover also the dummy nodes a second prece-
dence constraint is needed:

jmax
∑

j=1

kmax
∑

k=1

j yi,j,k−

jmax
∑

j=1

kmax
∑

k=1

j yh,j,k ≤ −1,

∀ (i, h) : vi → vexit → ventry → vh,

vexit, ventry ∈ Vdmy.

(16)

Finally, the timing constraints are taken into account.
We derive the constraint similarly to Eqs. (9) and (10),
with Eq. (14) for the scheduled time steps:

jmax
∑

j=1

kmax
∑

k=1

j yi,j,k −

jmax
∑

j=1

kmax
∑

k=1

j yh,j,k ≤ tmax,

∀ (i, h) : vi
tmax−−→ vh, vi, vk ∈ Vop

(17)

jmax
∑

j=1

kmax
∑

k=1

j yi,j,k −

jmax
∑

j=1

kmax
∑

k=1

j yh,j,k ≥ tmin,

∀ (i, h) : vi
tmin−−→ vh, vi, vk ∈ Vop.

(18)

6

This completes the formulation with objective func-
tion (11), and constraints (12) for assignment, (15) and
(16) for precedence between operation nodes, and (17)
and (18) for timing. The result of the optimization is the
set of pattern bundles Sp.

In order to reduce the number of bundles in the set,
we employ a method described in [15] that substitutes
patterns by others. This method exploits the fact that a
pattern can also implement simpler patterns by apply-
ing identity operands to operators in the pattern, thus
bypassing the operators. The substitution relations be-
tween patterns are represented in an identity-operand
graph (IOG).

An IOG can also be constructed for patterns in a pair.
Therefore, a pair can implement combinations of sim-
pler patterns that are part of the IOGs of the pair pat-
terns. We use the IOGs of the patterns to find all pairs
of simpler patterns that are dominated by a pair. Any
pair in Sp that is dominated by another pair in Sp is re-
moved from the instruction set.

We also construct the IOG library of the sequential
patterns needed to cover the remaining operations that
are not covered by any chosen parallel pair. From this
IOG, we select all those patterns that are not dominated
by any other pattern as instructions. The final instruc-
tion set for the ASIP consists of those sequential pat-
terns and the chosen parallel pattern pairs. The entire
design process is automated by feeding the ILP formu-
lations to an ILP solver.

6 On-Chip Communication: Data-
Push

The methods proposed in Sections 4 and 5 enable
the automated design of highly-specialized small ASIP
cores which are guaranteed to meet tight timing con-
straints. When several such ASIPs are integrated in
a System-on-a-Chip, however, shared bus and mem-
ory accesses introduce an unpredictability that compro-
mises the required deterministic performance. In this
section we propose an on-chip communication scheme
that solves this problem by again relying on the ASIP to
meet tight timing constraints.

The scheme avoids data fetches from a central mem-
ory altogether. Instead, we use a model in which data
is pushed to the ASIP’s input registers as soon as it is
available and data must be read before the register is
overwritten with the next input. Similarly, the ASIP
writes its results to the output registers in a write-and-
forget fashion. The data in an output register is then

pushed to the input of the consuming building block.
We call this communication style a data-push model.

The requirement that the ASIP precisely times reads
and writes to the I/O register. Is met by our design
methodology for real-time ASIPs. The advantage of
data-push communication is that it avoids any complex-
ity associated with queuing, buffer management, and
access to shared busses and memory.

In [16] a network processor (NP) is introduced that
has functional units arranged in a pipeline so that one
unit passes the results of its computations on to the
next one by means of data-push communication. When
a packet arrives from the network, the link interface
writes the first word of the packet to the appropriate in-
put register of a header parser and generates a signal to
start header processing. The interface continues to write
packet data to the same input register until the packet
ends. The parser pushes each header field it extracts to
an input register of the look-up processor, signaling the
field type. In the same manner, results are passed from
one unit to the next until the packet handling is com-
pleted.

Data-push communication is particularly well-suited
for NPs: They require deterministic performance, and
bus and memory bandwidth are the main performance
bottlenecks in NPs. A data-push architecture addresses
both problems by replacing the complexity of queue
and buffer management between building blocks with a
scheme that requires neither bus nor memory accesses.
Furthermore, the data-push model provides full wire-
speed processing and matches the streaming character
of the network traffic.

Moving from a memory-centric to a data-push model
involves a change in the way data is addressed. Fig-
ure 4 demonstrates this change for a network header
structure. In the memory-centric model, an element in a
data structure is accessed by adding an offset to the base
address of the structure and reading from the resulting
address. The offset corresponds to the position of the
element in the structure and is therefore a spacial ad-
dress. In the data-push model, by contrast, an element
in the input data is accessed by waiting for it to occur in
an input register. The number of cycles to wait from the
signaled start of a data transmission corresponds to the
position of the element in the input data and is therefore
a temporal address.

7 Case study: Networking ASIP

In order to prove the concept of our design methodol-
ogy in a real-life case, we applied our methodology to

7

struct IPHeader {
 uint4 version;
 uint4 ihl;
 uint8 tos;
 uint16 tot_len;
 uint16 id;
 uint16 frag_off;
 uint8 ttl;
 uint8 protocol;
 uint16 check;
 uint32 saddr;
 uint32 daddr;
};

Vers IHL ToS Total Length

ID Fragment Offset

TTL Header ChecksumProtocol

Source Address

Destination Address

Data-push Input RegisterData Structure

M
em

or
y

A
dd

re
ss

es

W
ai

t T
im

e

1 cycle

2 cycles

3 cycles

4 cycles

start

1 word

2 words

3 words
4 words

base address

spacial addressing temporal addressing

Figure 4: From spacial to temporal addressing.

a representative control-dominated ASIP: a parser for
packet headers as a building block for an NP. The man-
ual design and optimization of a header parser for net-
work processing have been described in [4]. Figure 5
shows the interfaces of the parser. Protocol data is ap-
plied to the 32-bit input port, and a packet start is in-
dicated by a delimiter flag. The flag starts the analysis
of the packet header. Communication with the environ-
ment of the parser follows the data-push paradigm, i.e.,
the data words are expected to be available in an input
register for only one cycle. The parser extracts the pro-
tocol fields that other building blocks in the NP need
and writes the extracted data to the 32-bit output port
together with a 4-bit ID that identifies the type of output
data. The parser can issue two instructions in parallel in
a VLIW fashion.

Clock

Reset

Protocol
Data

Delimiter

Configuration
Data

Address

Write
Enable

Configuration
Interface

Header
Parser

Extracted
Data

ID

Figure 5: Header-parser interfaces.

The network protocols considered are versions 4 and
6 of the Internet protocol (IPv4, IPv6). As an example,

AND

Operand2

SHR

Operand3 Operand 4

Instruction 2

MOV

Operand1
AND

SHR

ADD

Instruction 1

Operand1 Operand2

Operand3

Operand 4

Target Target1 Target2

Figure 6: Automatically derived compound instruc-
tions.

Table 2 gives the relevant header fields to be extracted
for IPv6, indicating the clock cycle in which a field oc-
curs, its position in the 32-bit input word, and whether it
is needed for processing within the parser or by an exter-
nal building block. The clock cycles dictate the timing
constraints that must be specified along with the appli-
cation code. We have written this specification with the
ANSI C timing constructs defined in [5].

The resulting optimal instruction set consists of only
two compound instructions, shown in Figure 6. Com-
bined with control instructions, this instruction set is
sufficient to implement the benchmarks with the re-
quired timing.

The parser has been synthesized for an 18-µm tech-
nology, supporting data rates close to 10 Gb/s. The size
of the parser, including a small instruction memory, is
on the order of 0.45 mm2, which demonstrates the area
efficiency of the ASIP approach.

8

Table 2: Relevant header fields in IPv6.

Fields relevant
Cycle # internally externally

1 – Traffic Class [4–11],
Flow Label [12–31]

2 Next Header [16–23] –
3–6 – Source Address [0–31]

7–10 – Destination Address [0–31]
wait until Next Header [0–7], stored layer-4 NextHeader

NextHeader = layer-4 header HdrExtLen [8–15]
wait for end of IP header TCP / UDP:
⇒ layer-4 header – Source Port [0–15]

Destination Port [16-31]

8 Conclusions and Future Work

In this paper we have introduced the first ASIP design
methodology for the control-dominated application do-
main. We have defined instruction-set synthesis for
hard timing constraints as two consecutive optimization
problems. The first step finds operation sequences that
must be implemented as compound instructions to meet
the timing constraints. The second reduces the number
of required parallel instruction issues. We have formu-
lated both problems as ILPs. The resulting ability to
generate ASIPs that meet tight timing constraints has
enabled us to propose the data-push paradigm, a low-
complexity on-chip communication model. In a case
study, we have demonstrated the relevance of the in-
troduced concepts. Our next step will be to develop
heuristics to solve both optimization problems more ef-
ficiently in order to enable the analysis of large sets of
benchmark applications. Another area for future work
will be to relax our assumptions on the processor archi-
tecture.

References

[1] Marnix Arnold and Henk Corporaal. Design-
ing domain-specific processors. In Proceedings
of the Ninth International Symposium on Hard-
ware/Software Codesign (CODES’01), pages 61–
66, April 2001.

[2] Philip Brisk, Adam Kaplan, Ryan Kastner, and
Majid Sarrafzadeh. Instruction generation and
regularity extraction for reconfigurable proces-
sors. In Proceedings of CASES 2002, pages 262–
269, October 2002.

[3] Kubilay Atasu, Laura Pozzi, and Paolo Ienne.
Atomatic application-specific instruction-set ex-

tensions under microarchitecutral constraints. In
Proceedings of 40th DAC, pages 256–261, June
2003.

[4] Gero Dittmann. Programmable finite state ma-
chines for high-speed communication compo-
nents. Master’s thesis, Darmstadt University
of Technology, http://www.zurich.ibm.
com/˜ged/, 2000.

[5] Gero Dittmann and Andreas Herkersdorf. Fine-
grained timing constraints for reactive systems in
ANSI C. In Proceedings of the 25th IEEE In-
ternational Real-Time Systems Symposium (RTSS
2004) – WIP Session, pages 32–35, Lisbon, Portu-
gal, December 2004.

[6] Barry Michael Pangrle and Daniel D. Gajski. De-
sign tools for intelligent silicon compilation. IEEE
Transactions on Computer-Aided Design, CAD-
6(6):1098–1112, November 1987.

[7] T. C. Hu. Parallel sequencing and assembly
line problems. Journal of Operations Research,
9(6):841–848, November 1961.

[8] Pierre G. Paulin and John P. Knight. Force-
directed scheduling for the behavioral synthesis of
ASIC’s. IEEE Transactions on Computer-Aided
Design, 8(6):661–678, June 1989.

[9] In-Cheol Park and Chong-Min Kyung. Fast and
near optimal scheduling in automatic data path
synthesis. In Proceedings of the 28th DAC, pages
680–685, 1991.

[10] J. Lee, Y. Hsu, and Y. Lin. A new integer lin-
ear programming formulation for the scheduling
problem in data-path synthesis. In Proceedings of
the IEEE ICCAD, pages 20–23, November 1989.

[11] Robert A. Walker and Samit Chaudhuri. Introduc-
tion to the scheduling problem. IEEE Design and
Test of Computers, 12(2):60–69, 1995.

9

[12] David C. Ku and Giovanni De Micheli. High Level
Synthesis of ASICs Under Timing and Synchro-
nization Constraints. Kluwer, Norwell, MA, USA,
1992.

[13] George L. Nemhauser and Laurence A. Wolsey.
Integer and Combinatorial Optimization. John
Wiley & Sons, New York, 1999.

[14] J. R. Allen, Ken Kennedy, Carrie Porterfield, and
Joe Warren. Conversion of control dependence to
data dependence. In Proceedings of the 10th ACM
SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pages 177–189, 1983.

[15] Gero Dittmann. Pattern libraries for fast search-
ing and data-path sharing. In Proceedings of
the 3rd Workshop on Application Specific Proces-
sors (WASP), pages 76–83, Stockholm, Sweden,
September 2004.

[16] Maria Gabrani, Gero Dittmann, Andreas Doering,
Andreas Herkersdorf, Patricia Sagmeister, and Jan
van Lunteren. Design methodology for a modu-
lar service-driven network processor architecture.
Computer Networks, 41(5):623–640, April 2003.

10

