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Abstract— We present a scheme to concurrently schedule
unicast and multicast traffic in an input-queued switch. It aims
at providing high performance under any mix of the two traffic
types as well as at avoiding starvation of any connection. The
key idea is to schedule the two traffic types independently
and in parallel, and then arbitrate among them for access
to the switching fabric. The unicast and multicast matchings
are combined into a single integrated matching. Edges that
are excluded from the integrated matching are guaranteed to
receive service at a later time, thus preventing starvation. We use
simulation to evaluate the performance of a system employing
the proposed scheme and show that, despite its simplicity, the
scheme achieves the intended goals. We also design an enhanced
remainder-service policy to achieve better integration and further
improve performance.

I. I NTRODUCTION

The vast majority of Internet traffic today consists of unicast
(point-to-point) connections. However, efficient supportfor
multicast (point-to-multipoint) traffic is essential for commu-
nication applications such as audio- and video-conferencing,
multimedia content distribution (radio, TV) and remote col-
laboration, as well as computing applications such as the
implementation of collective operations or snoop-based cache
coherency in parallel computers. Ideally, a network switch
should be able to achieve high performance under any mix
of the two traffic types.

Multicast packets can be treated as unicast simply by
sending a separate copy of the packet to each of the intended
destinations; conversely, unicast packets can be considered as
multicast packets that have only one destination and are treated
without any differentiation. These trivial solutions allow the
switch to handle both types of traffic concurrently, but are far
from optimal and in general lead to poor performance.

Another issue to address when both unicast and multicast
are present is fairness. A traffic type must not be allowed to
monopolize switch resources; however, it is also importantto
guarantee thatall connections of a given traffic type receive
service. When both conditions are met, we say that the switch
scheduler isfair.
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Research Laboratory, Rüschlikon, Switzerland.
This research is supported in part by the University of California under

subcontract number B527064.

In this work we propose a novel method for integrated
scheduling of unicast and multicast traffic. It leads to highuti-
lization of switch resources under any traffic mix, guarantees
fairness, and exhibits a number of other desirable properties.

In the remainder of this section, we recall some relevant
results and discuss related work. In Section II we present
our scheme and highlight its key features. The performance
results obtained by simulation are shown in Section III. In
Section IV we propose an improvement to the base scheme
and show the benefits it provides. Next we briefly discuss
implementation issues. Finally we summarize the results and
propose directions for further work.

A. Background

In input-queued(IQ) switches, packets are buffered only at
the inputs, and a centralized scheduler resolves the contentions
for the access to the switching fabric. This architecture is
very attractive because it allows the switching fabric and the
memories to run at the same data rate as the input links, thus
providing high scalability of the data path.

IQ switches often operate in a synchronous fashion: time is
divided into slots of equal duration, and during a time slot a
fixed-size data unit calledcell can be transmitted through the
fabric. Incoming packets are segmented into cells at the inputs
and reassembled at the outputs. If the fabric is a crossbar, then
only one cell can depart from each input and only one cell
can arrive at each output during a time slot. However, a cell
departing from one input can be received at multiple outputs.
In other words, the crossbar naturally supports multicast traffic
because it can replicate a cell to multiple outputs at no
additional cost.

To achieve high throughput, unicast cells arriving at an input
are placed in different queues depending on their destination.
These per-destination queues are calledvirtual output queues
(VOQs) [1] and prevent the head-of-the-line (HOL) block-
ing phenomenon, which would severely limit the maximum
throughput [2].

The problem of scheduling unicast traffic consists of de-
ciding in every time slot which VOQ at each input will
be served. This is equivalent to finding a bipartite graph
matchingbetween the set of switch inputs and outputs. An
edgeconnecting node
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attention in the past, and very efficient algorithms that achieve
100% throughput are known [3]–[5].

Scheduling multicast cells taking advantage of the crossbar
replication capabilities, on the contrary, is a more difficult and
less understood problem. Thefanout of a multicast cell is
the set of outputs to which the cell is destined.1 A multicast
matching consists of edges that connect a single input to
one or more outputs. The problem has been studied from a
theoretical point of view in [6] and [7], and its computational
hardness is established in [8]. In [9] the optimal scheduling
discipline is defined, but neither the discipline itself northe
assumed queuing architecture are practically implementable.
Nevertheless in [10] the authors provide important insight
into the nature of the problem and propose algorithms with
reasonable complexity and relatively good performance.

B. Previous work

Although the problem of supporting unicast and multicast
concurrently is clearly important, not much attention has been
devoted to it in the past. The problem has been thoroughly
studied from a theoretical point of view in [8] and its hardness
has been assessed. These authors also propose an integration
scheme that consists of scheduling multicast first and usingthe
remaining resources for unicast. This scheme, which we call
“sequential,” predictably leads to high performance because
it uses the switch resources very efficiently. The multicast
scheduler has all the resources at its disposal and can produce
its best matching. The unicast scheduler, on the contrary,
is constrained by the remaining resources but, owing to the
VOQs, it can fully exploit them and increase the size of
the total matching. The main disadvantage of this scheme is
that it easily leads to starvation of unicast traffic. A single
input loading the switch with broadcast traffic would suffice
to prevent unicast from getting any service at all.

Moreover, the problem was also considered in [11], but
the proposed solution is mainly suitable for shared-memory
switches.

II. FAIR INTEGRATED SCHEDULING

Our integration scheme is conceived for a synchronous, IQ,
crossbar-based,� �� switch (Figure 1). We assume that each
input maintains� VOQs for unicast and a single FIFO queue
for multicast.

A. Reference architecture

At every time slot, contentions among the cells of a single
traffic type are resolved separately by specialized schedulers.
The unicast scheduler receives requests from the inputs for
nonempty VOQs and produces a one-to-one matching between
the inputs and the outputs. The multicast scheduler examines
the fanout of the cells that are at the HOL of the multicast
queues and produces a one-to-many matching. Fanout splitting
is allowed: during a time slot a multicast cell can receive
partial service, i.e., it is being transmitted only to a subset
of its destinations.

1We use the same term to refer to the cardinality of the set as well.
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Fig. 1. Reference architecture

As the two schedulers run in parallel and independently, the
matchings they produce in general are overlapping, meaning
that they have conflicting edges. To obtain a consistent config-
uration for the crossbar, the two matchings must be combined
into a single one. Anintegration blockdecides which unicast
and multicast edges will be part of the integrated matching.
The set of edges that are excluded from the integrated match-
ing is called theremainder.

Therequest filteris a block capable of reserving a subset of
the switch inputs and outputs by dropping the corresponding
unicast and multicast requests. Reservations at any time slot
may be made on the basis of information provided by a number
of sources, including current requests and the integration
block.

Employing two different schedulers that run in parallel
provides important advantages. The designer is free to choose
the algorithms that best fit his or her needs. The system can
easily be partitioned over multiple chips. The minimum time-
slot duration is determined by the scheduling time of the
slowest scheduler, whereas, if the schedulers ran in sequence,
it would be limited by the sum of the two.2

A block diagram of this scheme, called “FILM” (FILter &
Merge), is shown in Fig. 2.

B. Achieving fairness

In the FILM scheme, each connection experiences two
points of contention: first it competes with the other con-
nections belonging to the same traffic type, then with those
of the other traffic type. To achieve fairness we must make
sure that every connection regularly has a chance to win both
contentions.

2We assume that the delay contributed by the additional blocks is much
lower than the scheduling times. As we will see in Section V, which discusses
implementation complexity, this assumption is likely to hold.
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A scheduling algorithm is starvation-free if it guaranteesthat
no queue is allowed to remain unserved indefinitely. As this
is a fundamental property, many algorithms exhibit it. Unicast
algorithms such as iSLIP and DRRM prevent starvation by
using pointers that keep track of which VOQs have been served
most recently. Multicast algorithms, on the other hand, often
take into account the age of a cell or the order in which cells
at different inputs have advanced to the HOL of their queues
(e.g. WBA and TATRA [10], respectively). We require both
schedulers to employ starvation-free algorithms to be surethat
all connections eventually get past the first contention point.

Connections that have been selected by their schedulers will
still remain unserved if the integration block excludes them
from the integrated matching. The scheduler is unaware of
the fact that granted service has in fact been withdrawn, so
fairness is no longer guaranteed. A solution to this problemis
to ensure that all edges that are part of the remainder actually
receive service, albeit in a later time slot.

C. Integration policy

The performance of multicast scheduling algorithms varies
considerably, as demonstrated in [10]. This is because the
single FIFO queuing architecture causes HOL blocking, there-
fore the algorithms must carefully choose which inputs to
serve to mitigate its effects. For example, it is shown that
“concentrating the residue” at every time slot (which roughly
means providing full service to as many inputs as possible)
greatly helps in draining the queues fast. Hence, special care
should be taken when manipulating multicast matchings to
avoid compromising the effectiveness of the choices made by
the scheduler.

Unicast scheduling, on the contrary, is less sensitive to with-
drawal of resources because the VOQs provide the scheduler
with a wide choice of connections to serve. Moreover it is
important to note that if unicast and multicast contend for an
input, only one edge is lost if multicast wins, whereas multiple
edges might be removed if it loses.

Following these considerations, we opt for an integration
policy that gives strict priority to multicast over unicast.
Hence, the algorithm implemented in the integration block can
be formulated as follows:

1) Start with an empty matching.
2) Add all multicast edges.

3) Add all nonconflicting unicast edges.

As a consequence, the remainder always contains only unicast
edges.

D. Remainder-service policy

As noted above, if a remainder is produced in a time slot,
it is important to ensure that all the edges it contains are
eventually served. This can be done according to different
policies, the simplest one being to serve all of them in the next
time slot. As these edges are part of a matching, they do not
conflict with each other. In addition, the resources they claim
are known and can be reserved to avoid further contention.

At every time slot, new unicast and multicast requests are
issued. The request filter drops all those that involve inputs and
outputs that are needed to serve the remainder produced in the
preceding time slot and submits the others to the corresponding
scheduler. Accordingly, the integration block issues grants for
the edges in the remainder as well as for those in the current
matching. A new remainder is produced and fed back to the
request filter for the next time slot.

An important property of the scheme is that, as a conse-
quence of filtering unicast requests, the remainders produced
in two consecutive time slots are disjoint, i.e., have no inputs
or outputs in common. This is crucial for fairness because it
ensures that all switch resources eventually become available
for scheduling. Reserving resources for the remainder doesnot
persistently preclude access to any input or output.

We expect this combination of integration and remainder-
service policy to achieve good link utilization. The resources
allocated to the remainder are fully utilized, and any remaining
resources can be assigned to either unicast or multicast. The
integration block preserves the matching produced by the
multicast scheduler, but tries to enlarge it by adding unicast
edges.

III. S IMULATION RESULTS

We have studied the performance of a system employing
the FILM scheme by simulation. In particular, we observed
the total throughput as well as the individual throughputs of
unicast and multicast traffic as the fraction of multicast traffic
(MCF) grows from 0 (unicast only) to 1 (multicast only).
Ideally, the throughput achieved by each traffic type should
be equal to the corresponding share of the output load, and
the total should be 100%.

The simulated system is an��� switch with infinite buffers
at the inputs. The unicast scheduler uses iSLIP with three
iterations, and the multicast scheduler uses WBA. Simulations
run for 1 million cell times, and results are collected aftera
quarter of the total simulation time has elapsed.

Cells are generated according to an i.i.d. Bernoulli process,
i.e., every input port receives a cell with probability�, equal
to the input load. Each cell has a probability� of being
a multicast cell. The fanout of multicast cells is uniformly
distributed between 2 and 8. Traffic is uniform, i.e., all
outputs have the same probability of being the destination of
a unicast cell or of belonging to the fanout of a multicast cell.
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Fig. 3. Performance of the FILM integration scheme

Note that, under these conditions, when the switch is loaded
with multicast traffic only, the multicast scheduler limitsthe
maximum switch throughput to approximately 0.93, whereas
it is 1.0 when only unicast traffic is present.

The total load on the switch is�
�
�� � ���� ��, where�

is the average fanout. In our case,� � �, whereas� and �
are varied to obtain the desired multicast load on the switch
while keeping the total load equal to 1.

Figure 3 shows the throughput achieved by FILM with
the integration and remainder-service policies describedin the
preceding section. The performance of the sequential scheme,
which is close to ideal, is also shown for reference.

The total throughput achieved by our scheme is always
higher than 0.9. Unicast throughput exhibits very little degra-
dation (on the order of a few percent) when it is the pre-
dominant traffic type, and it achieves ideal performance when
multicast traffic predominates. However, multicast throughput
progressively decreases with respect to output load as MCF
grows from 0.4 to 1.0. The worst case is MCF = 0.7,
when multicast throughput is 0.6 instead of 0.7. This also
corresponds to the point at which the overall throughput is
at its minimum (0.9).

Figure 4 shows the delay experienced by unicast and
multicast cells as a function of the throughput when MCF
= 0.5, i.e., when each traffic type is responsible for half of the
output load. The unicast curve is bounded for any value of the
total throughput, whereas the multicast curve saturates when
it approaches 1.0.

IV. ENHANCED REMAINDER-SERVICE POLICY

Although the scheme presented above provides overall good
performance and is quite simple, it has a drawback: it penalizes
multicast traffic most, especially when it is predominant.

Multicast performance is limited because, at every time slot,
some switch resources are used to discharge the remainder.
Although it is essential to eventually serve all edges that
are not selected in the merge, it is not necessary to do so
immediately. Thanks to the disjoint remainder property, itis
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possible toaccumulatethe remainders produced in consecutive
time slots and serve the individual edges when the conditions
are most favorable. The remainder-service policy identifies
which edges should be served at every time slot and filters the
corresponding multicast requests. Unicast requests, in contrast,
are always filtered using all the accumulated edges to obtain
disjoint remainders.

A good policy should be able to serve the edges in the
remainder rapidly and at the same time cause as little disrup-
tion as possible to the flow of multicast cells. We propose an
enhancedpolicy that serves a remainder edge if it uses

1) an input not requested by multicast OR
2) an output not requested by multicast OR
3) an input that discharged a multicast cell in the preceding

time slot.

The first two rules obviously aim at improving integration: if
it is possible to use a resource that would otherwise remain
idle, it is desirable to do so. In this case the cost of servinga
remainder edge is to make one output (first rule) or one input
(second rule) unavailable to multicast.

The third rule instead stems from the general observations
on multicast scheduling found in [10]. The scheduler tends
to favor cells that contend with few others. Cells that have
just advanced to the HOL still have their full, usually large,
fanout and cause many conflicts. They are unlikely to receive
much consideration, so postponing their scheduling shouldnot
significantly affect the quality of the matching. This rule is
particularly important because it enables fairness: the multicast
scheduler guarantees that the HOL cell at any input will
be served in finite time; consequently, the inputs becomes
available to serve remainder edges. Many algorithms (such
as TATRA, WBA and mRRM [12]) ensure that at least one
multicast cell is fully discharged at every time slot.

Figure 5 shows the performance of FILM when the en-
hanced policy is used, under the same conditions as assumed
in Section III. The benefits on multicast traffic are evident:
Throughput increases when (0.4� MCF � 0.9) and closely
tracks the output load up to MCF = 0.7. Unicast, on the other
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hand, shows a moderate decrease in the same range. In the
worst case (MCF = 0.7), the difference with respect to the
output load is slightly less than 0.06. Overall throughput is
noticeably increased when multicast predominates, whereas it
shows little degradation when both traffic types are equally
active.

Figure 6 shows the delay vs. throughput curve for this
situation (MCF = 0.5). Multicast experiences very low delay,
seeming to be almost insensitive to the presence of unicast.
Unicast delay instead saturates when the total throughput is
approximately 0.95.

V. I MPLEMENTATION COMPLEXITY

In this section we discuss some implementation aspects of
the FILM scheme to assess its complexity.

A. Integration policy

As the integration policy always prioritizes multicast over
unicast, its implementation is quite straightforward. From the
output of the multicast scheduler, it is immediately known
which inputs and which outputs are used by the multicast
matching. This information (�� bits) in turn determines

whether an edge in the unicast matching is to be interpreted
as part of the integrated matching or of the remainder. In
the former case, grants are released immediately, in the latter
the information is buffered for subsequent time slots. The
remainder can be stored using� registers, each

�����
� ���

bits wide.

B. Base remainder-service policy

The request filter needs to know which inputs and outputs
are used by the remainder edges so that it can drop the
corresponding requests. This information is available at the
integration block and can be carried to the request filter with
a channel that is�� bits wide. Filtering a request for an input-
output pair simply translates to ANDing it with the negated
values of the corresponding signals.

C. Enhanced remainder-service policy

When the enhanced policy is used, the request filter needs
more information and performs more complex operations. It
needs to know exactly which edges are in the remainder, not
only which inputs and outputs are taken. This means that
�

������ � �� bits must be transferred from the integration
block. The information about which inputs discharged a mul-
ticast cell in the preceding time slot consists of� bits and can
be maintained by the queue managers. Finally, the information
about which inputs and which outputs are being requested by
multicast (�� bits) is readily available as it can be derived
from the requests themselves.

Unicast requests are filtered using all edges in the remainder
as before, whereas multicast requests are now filtered depend-
ing on which remainder edges are served. This information
is produced at the request filter block by ORing the signals
corresponding to the three conditions that grant service toan
edge. The integration block also needs to know which edges
are served, as it has to issue the appropriate grants. As the
remainder edges are part of a matching, only� bits need to
be transferred from the request filter to the integration block.

As a final remark, note that all the operations described
above can be performed in parallel and implemented using
combinational logic only.

VI. CONCLUSIONS

We have shown howfair integratedscheduling of unicast
and multicast traffic can be achieved by first scheduling the
two traffic types separately and then arbitrating among the
results for access to the switching fabric. The integration
block combines the matchings produced by the two schedulers,
producing an integrated matching and a remainder. Edges in
the remainder must receive service in subsequent time slotsto
prevent starvation. The policy used to select which remainder
edges to serve has an impact on the overall performance of the
scheme and on the service received by the two traffic types.
The first policy we have proposed is extremely simple and per-
forms well, but tends to penalize multicast. The second is more
sophisticated and is able to serve remainder edges, resulting in
only minimal interference with the flow of multicast cells. It



leads to a very high overall performance and an almost ideal
treatment of multicast traffic, at the cost of some additional
complexity.

In future work, we will investigate policies that have differ-
ent goals or have additional advantages over those proposed
here. In particular, it would be desirable to have more fine-
grained control over the partitioning of resources between
unicast and multicast.
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