

RZ 3637 (# 99647) 11/07/2005
Computer Science 12 pages

Research Report

Techniques for Integrating Sensors into the Enterprise Network

Sean Rooney, Daniel Bauer, Paolo Scotton

IBM Research GmbH
Zurich Research Laboratory
8803 Rüschlikon
Switzerland
{sro,dnb,psc}@zurich.ibm.com

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its dis-
tribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies (e.g., payment of royalties). Some reports are available at
http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research
 Almaden • Austin • Beijing • Delhi • Haifa • T.J. Watson • Tokyo • Zurich

1

Techniques for Integrating Sensors into the
Enterprise Network
Sean Rooney, Daniel Bauer, Paolo Scotton
IBM Research, Zurich Research Laboratory

Säumerstrasse 4.
8803 Rüschlikon, Switzerland
{sro,dnb,psc}@zurich.ibm.com

Abstract— Cheap programmable sensor devices are be-
coming commercially available. They offer the possibility of
transforming existing enterprise applications and enabling
entirely new ones. The merging of sensor networks into the
enterprise network poses some distinct problems. In par-
ticular, information from theses devices must be obtained
in a way which minimizes their energy use and must be
aggregated and filtered before being sent to the application
server to prevent it from being overwhelmed. We describe a
range of complementary techniques for integrating sensors
into an enterprise network. These comprise new architec-
tural entities within the enterprise network — edge server
— new means of sharing information within the enterprise
network — messaging binning — and new protocols for
extracting information from the sensor network — Messo.

Index Terms— asynchronous messaging, sensor systems,
scalability, power efficient protocols

I. INTRODUCTION

A sensor is an entity capable of sensing the state of
some underlying systems and transmitting information
about that state to some higher-level entity. Hellerstein
et al. [5] give an overview of the spectrum of sensor
technologies that are, or soon will be, available. Existing
work in the sensor field has looked at protocol design
for sensor-to-sensor communication [10] and on creating
the TinyOS Operating system which runs on the sensors
themselves [6].

From a commercial point of view, the use of sen-
sor information within enterprise applications has the
potential to enhance existing applications and to offer
entirely new ones. For example, RFID readers allow
better inventory management systems in warehouses,
novel car insurance schemes can be realized using in-
vehicle sensors to observe customer driving patterns.

In those applications where there is a small maximum
acceptable delay between event occurrence and message
reception or where the sensors are too simple to buffer
messages, the message rate at the application server is
mainly determined by the sum of the peak rates of all the
sensors. This can potentially be very large. For example,

extrapolating from the retail figures given in [12], a large
supermarket chain may handle a number of purchases on
the order of 108 per day. Assuming a constant purchase
rate over a twenty four period, this corresponds to an
average of 104 purchase events per second.

To reduce the load on the application server, an
architectural entity is often placed between sensor and
application server. These servers are termed edge servers
as they are logically located at the edge of the network.
This edge server performs application specific processing
on the data before forwarding it to the application server.
This processing reduces the amount of data the applica-
tion server has to receive by filtering or aggregating the
raw sensor data. For example, an average temperature
reading can be calculated for a set of thermal sensors.

(1) E-Commerce type Application

Clients PCs

Load Balancing
Edge Server

Application Servers

(2) Sensor application

Aggegating Edge
Servers

Application Servers

Sensor Networks

Fig. 1. Integrating sensor networks with enterprise applications

Figure 1 shows the distinction between these edge
servers and more traditional ones. Edge servers are
necessary for scaling certain sensor applications, but a
large number of geographically distributed edge servers
means that failure of parts of the system are more the

2

norm than the exception. This problem is exacerbated
by the fact that the edge servers often are executing in
a more hostile and less protected environment than the
application servers, in the sense that edge servers are
deployed “in the field” and are not as easily protected
as within large centralized server farms. As the logic
they execute is application-specific it is important that
they are easily extensible and modifiable. We describe
an edge server architecture in which tolerance of failure
is achieved through the use of a novel form of distributed
asynchronous messaging for inter-edge server communi-
cation. We motivate its feasibility through a description
of its implementation and its use in supporting a real
application.

Low end sensors are typically battery powered. Much
work in the literature has focused on how communica-
tions with such devices can be performed in a power
efficient way. The protocols that connect the sensors to
the enterprise network must also be frugal in their power
usage. We explain the protocols we have developed for
allowing the edge server to communicate with the sensor
network, building on previous work in the literature but
extending it such that it integrates easily into enterprise
middleware. We describe our implementation of the
Messo protocol which runs on the TinyOS operating
system.

Some of the work has been described in previous
papers [15], [16]. Those papers assumed a complex
sensor such as a telematics device in a car or an RFID
reader in a supermarket. What is novel here is the
extension of the architecture to take into account much
simpler sensors.

II. INTER-EDGE SERVER COMMUNICATION

A. Asynchronous Messaging

Connect to receiver and send data to the receiver

Connect to the channel and send data

to the receiver through the channel

Connect to the channel and send

data on a topic

S SR

Data R Data Topic

R

Message Oriented Middleware (MOM) Publish/Subscribe MOM

S R

Data

Remote Procedure Call

ChannelChannel

Fig. 2. Remote procedure call and messaging operations

The use of asynchronous messaging reduces the de-
gree of coupling between system components. To un-

derstand why this is so, first consider the transmission
of data between a sender and receiver using a Remote
Procedure Call. First a transport-layer connection is
established between the sender and the receiver. Then
the sender sends data to the receiver. The degree of
coupling is quite tight because the party that initiates
the connection must know the address of the other, and
both parties must be active simultaneously for data to be
exchanged. In a messaging system, senders and receivers
do not communicate directly with each other but via a
messaging abstraction. This additional indirection allows
senders and receivers to be unaware of each others’
existence and allows the transmission and reception of
a message to be decoupled in time. In consequence
neither senders nor receivers need to maintain state about
each other, allowing the addition and removal of, for
example, edge servers and sensors without requiring
the reconfiguration of others. The abstraction to which
producers send messages and from which consumers
receive them has many names in the literature, but we
shall refer to it as a channel. Figure 2 illustrates these
principles. For a good overview of publish/subscribe
messaging systems, see [4].

An important distinction between messaging systems
is whether a message is retained within the channel
until it is explicitly removed by a consumer (consume
semantics) or whether it is dispatched to all subscribed
entities and automatically removed from the system
(multicast semantics). The former is typically provided
by message queues and is most useful when a message
should be consumed by exactly one consumer, whereas
the latter is useful for the dissemination of the same
message to many consumers and is typically provided by
message brokers. Sometimes an additional distinction is
made with channels that support multicast semantics be-
tween channel-based, subject-based and content-based
systems distinguished by whether the consumer receives
all messages produced on a channel, only those on a
certain subject, or those that match consumer-defined
patterns on the message header and content.

The capacity of a channel can be measured in terms
of both the volume of messages and the number of
publishers/subscribers that the channel can support. For
sufficiently high volumes of messages or numbers of
publisher/subscribers, a single channel will become a
bottleneck. In order for the messaging system to scale,
it must be distributable across multiple channels.

Some attempts [1], [3], [14], [17] have been made
to scale publish/subscribe systems to large scale net-
works. The typical application involves the distribution
of information from a small number of authoritative
sources, for example, the distribution of stock quotes
is the canonical application in the literature. Existing

3

��

��

Channel 1

Channel 4

Channel 2
Channel 3

������������������������������������Sender 1

����������������������������������	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	Sender 2

�
�
�
�
���������Sender 3

������������������
�
�
�

�
�
�
Receiver 1

��������������������������������Receiver 2

����������������Receiver 3

��Receiver 4

���������������
����� to Channel 3

to Channel 4

to Channel 4

Routing Table

��������������������������

��

��

��
��

 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!!�!�!�!�!�!�!�!"�"�"�"�"�"�"�""�"�"�"�"�"�"�""�"�"�"�"�"�"�""�"�"�"�"�"�"�"
#�#�#�#�#�#�#�##�#�#�#�#�#�#�##�#�#�#�#�#�#�##�#�#�#�#�#�#�#

$�$$�$%%

&�&&�&''

(�((�()�))�)

*�**�*+�++�+,- .�..�./�//�/

0011

23 4�44�45�55�5

6�66�67�77�789
::;;

<�<<�<=�==�=>?
@@AA

B�B�BB�B�BC�C�CC�C�CD�DD�DE�EE�E
F�FF�FF�FG�GG�GG�G

Subscribe

Subscribe

Subscribe

Subscribe

Subscribe

Subscribe

Subscribe

to Channel 2

to Channel 4

to Channel 4

Routing Table

to Channel 3

to Receiver 4

to Receiver 4

Routing Table

to Receiver 1,2

to Channel 4

to Channel 4

Routing Table

Note: For readability not all the subscription messages are shown

Fig. 3. Simple example of message routing

solutions are information disseminating rather than in-
formation gathering. Scalability in such systems refers
to the fact that there may be a very large number of
geographically distributed consumers. All of the projects
use a message routing approach in which messages are
routed between channels. Message routing reduces the
number of consumers that each channel has to handle.
The projects differ in the details of the format and means
by which the association between channels is established
and how the routing information is disseminated. In
Siena [3], an application advertises its ability to produce
messages and its desire to subscribe to them to an ingress
channel, which propagates the information in aggregated
form to other connected channels. A message routing
tree can then be formed such that channels know which
other channels to forward messages to. Figure 3 shows
a very simple example of message routing.

While the message routing approach is appropriate for
information distribution, it is unsuitable for gathering
information from sensors because the data produced by
one sensor is typically consumed by only one edge
server. Data may be forwarded to more than one edge
server in order to enhance fault tolerance or if several
different applications are making use of the same data,
but even in these cases the number of consumers is small.
This observation leads us to propose an alternative means
of distributing the messaging system.

B. Message Bins and Meta-Channels

A message bin is a message channel with an associ-
ated controller. The channel retains messages until they
are consumed. The message bin’s controller announces

HIHHIHHIHJIJJIJJIJ

KIKKIKLILLIL

MNMNMMNMNMONONOONONO
PIPQIQ

RRRS
SS

TNTTNTUNUUNU
VW
XY

ZIZZIZ[
[

\I\\I\\I\]
]]

^N^N^^N^N^^N^N^_N_N__N_N__N_N_ `I``I`aa

Receiver 1

Receiver 2

Receiver 3

Receiver 4

Sender 1

Sender 2

Sender 3

Sender 4

Only one of the receivers
will get a message posted in the bin

Message Bin

Fig. 4. Simple example of message bins

its willingness to receive messages on a given topic. A
message producer selects a bin among those that have
announced their willingness to receive messages on the
topic that the producer wants to produce. An entity
wishing to subscribe to a topic chooses some subset of
the message bins that are willing to accept messages on
that topic. By configuring the system such that not all
message bins accept all topics, we reduce the number
of connections that publishers and subscribers have to
maintain.

The message bins make announcements, called Chan-
nelDescriptions, using a meta-channel. The meta-
channel, unlike a message bin, supports multicast se-
mantics. There is nothing special about the meta-channel
other than the information it carries, and that it can be
implemented using any messaging system that supports
multicast semantics. In our current implementation we
have used both the CORBA [13] Notification system
and a broker based on the Message-Queue Telemetry
Transport (MQTT) [7]. Message producers and con-
sumers both subscribe to the meta-channel in order to
learn about the availability of bins. The message bins
publish the ChannelDescriptions periodically, so that a
subscriber to the meta-channel will learn about the exis-
tence of all message bins sometime after subscribing to
the meta-channel. All receivers of ChannelDescriptions
must treat them as soft state, i.e. information that must
be refreshed regularly or otherwise expires.

In addition to the list of accepted topics, the Chan-
nelDescriptions contain the following information:

• the technology used to support the message bin,
e.g. tuplespace;

• the information needed to connect to the bin,
e.g. address, port;

• the number of publishers and the number of sub-
scribers;

• an indication of the current load on the message
bin;

• the time period between successive publications
of ChannelDescriptions in seconds, i.e. the refresh

4

rate.
This information is sent in the form of an XML doc-

ument, meaning the same format can be used regardless
of the publish/subscribe system supporting the meta-
channel. Additional information may be added to the
message in order to aid filtering in specific technologies.
For example, the message types supported by the channel
are added to the variable header part of the CORBA
event or into the property field with the Java Message
Service (JMS) message. This allows consumers to spec-
ify that they are only interested in information about
channels carrying messages of a given type.

Failure of a channel may be inferred from non-
reception of a channel description in a time period
proportional to the time period stated in the last Chan-
nelDescription, for example twice the announced refresh
period. It is recommended that refresh periods be on the
order of many seconds in order to reduce the effect of
queuing and propagation delays. The more frequent the
refresh rate, the more reactive the system is in response
to change but the higher the control overhead. Receivers
may make a local decision to ignore the alleged failure of
a channel due to non-reception of a ChannelDescription
if they are successfully sending messages to or receiving
messages from that channel. However, they must remove
all stored state about that channel and not try to reuse it
after their current sessions have finished.

Meta−Channel Meta−Channel

Meta−Channel Meta−Channel

bbcc
d dd de ee e

ffgg

hhii jjkk
l ll ll lm mm mm m

nnoop p pp p pq qq q

rsrrsrtsttst

uuvv
w ww wx xx x

ysyysyysyzz
z

{ {{ {{ {| || || |

}}~~ ����

� �� �� �� �

�����
�

� � �� � �� � �� �� �� �

�s��s��s��s�

� �� �� �� �

� �� �� �� � � � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �
� � �� � �� � �� � �

� � �� � �� �� �

Sender 1

Sender 2

Bin 1

Receiver 1 Sender 1

Sender 2

Bin 1Bin 2

Receiver 1

Sender 1

Sender 2

Bin 1Bin 2

Receiver 1 Sender 1

Sender 2

Bin 1Bin 2

Receiver 1

Receiver 2

Receiver 2Receiver 2

Receiver 2

Bin 2 accepts

Bin 2 accepts

1 2

3 4

Fig. 5. Example of dynamic configuration

Figure 5 shows an example of dynamic configuration
using the meta-channel. In Subfigure 2, when Bin 2 is
activated, it communicates to the meta-channel that it is
willing to accept a given type of messages. The meta-
channel broadcasts this information to all the compo-
nents of the system (Sub-figure 3) and in particular to
Sender 2 and Receiver 2, which deal with messages of
the same type as those processed by Bin 2. Therefore
Sender 2 and Receiver 2 can connect to Bin 2 as
depicted in Sub-Figure 4.

In the message binning approach, all entities must

agree on the means of communicating with the meta-
channel; but as message bins never communicate with
each other, several different technologies can simul-
taneously be used to support the message bins. So,
for example, within the edge server architecture, both
lightweight and complex queuing systems can coexist.
This is important as the architecture deals with the
boundary between very simple sensors on one side and
more sophisticated application servers on the other.

The means by which the channel controller extracts
information from the channels is technology-specific.
For example, in the tuple server implementation we have
used [9], there is a special control tuple space which
contains information about the others; in the MQTT
microbroker [7], there is a control topic which serves
a similar purpose. The CORBA notification service [13]
does not offer the necessary information directly but can
be extended to so so. The controller may reside within
the same process as the channel or within an entirely dif-
ferent process. A given process may contain controllers
for many different channels; however controllers must
always reside on the same machine as the channel they
control in order to reduce the possibility of inconsistency
within the system.

Soppera et al. [20] describe an approach broadly
similar to our own, but using IP multicast as the technol-
ogy for the meta-channel. This removes the need for a
distinct meta-channel but requires coordination between
the middleware and network layers.

In summary, the meta-channel offers a means for
disseminating information about channels within the
system. This allows entities to adapt to changes in the
system as load fluctuates or channels fail. Clients learn
from the meta-channel where data messages may be
published to and where they can be received from.
Data messages are never forwarded between channels
allowing heterogeneous channel types to coexist within
the system. A system entity may identify and react to
failure independently of other system entities. The need
for a separate management system is lessened, but not
entirely removed. For example, it may be the case that all
channels are overloaded, because the offered load is too
high for the available number of edge servers. In this
case the meta-channel can be used for the publication
of alarm messages to which management systems can
subscribe.

C. Distributed Meta-Channels

In a sufficiently large system, a single meta-channel
would become the bottleneck and a single point of
failure. In consequence, the distribution of control in-
formation itself needs to be distributed. However, unlike
data messages, control messages are not consumed. In

5

that sense the distributed control plane is similar to the
message routing systems such as Siena [3]. It would
be possible to use Siena-type message routing systems
for the dissemination of control information. However
in our initial implementation we chose not to as the
sensor systems, although large, are not as large as the
Internet. For example, assuming a uniform channel tech-
nology capable of supporting as few as 100 publishers
or subscribers, then each meta-channel could support
100 channel controllers, the channel of each capable
of supporting 100 sensors. Ten meta-channels would be
required for a system containing 100,000 sensors. So
even a large number of sensors corresponds to only a
small number of meta-channels.

Instead of using a message routing approach, we
flood control information amongst meta-channels. The
entity which bridges control information available on a
given meta-channel to others is called a meta-channel
controller. The meta-channel controller entity creates a
digest of all the channel descriptions on the meta-channel
it controls and publishes it on all meta-channels (includ-
ing its own). The digest is a list of ChannelDescriptions
of the normal channels as well as a ChannelDescrip-
tion of the meta-channel. Data message producers and
consumers need only to subscribe to these control di-
gests as they contain all the information required. The
channel controllers use the digest as confirmation that
their control information is actually being read, and
use the refresh period in the ChannelDescription as a
minimum for their own control messages. The meta-
channel controller can therefore apply back pressure
to the channel controllers to reduce their sending rate,
allowing the system to adapt its responsiveness as a
function of the load on the meta-channels.

The system needs to bootstrap itself so one meta-
channel is well known. Channel controllers subscribe to
this meta-channel to learn about other, possibly more
appropriate, meta-channels for the publication of their
controller information. Meta-channel controllers use it
to learn about all the other meta-channels in the system.
Initially, the configuration of a bootstrap meta-channel
is done statically.

Flooding works well for a small number of meta-
channels, but for a large system we would use message
routing for disseminating the ChannelDescription mes-
sages.

D. Load-Balancing

As described in Section II-B, message bins announce
the topics they are willing to receive using the meta-
channel and their current load. Message producers use
this information to determine where to actually place
a message. The message producers make this decision

 0

 100

 200

 300

 400

 500

 600

 550 600 650 700 750 800 850 900 950 1000

M
es

sa
ge

s
lo

st

Messages sent per sec

(a) One Subscriber

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 450 500 550 600 650 700 750 800 850 900 950

M
es

sa
ge

s
lo

st

Messages sent per sec

(b) Two Subscribers

Fig. 6. Crosstalk between consumers on the TAO notification server

entirely locally. There is no attempt to create a global
schedule, not only because the schedule would need
to be recalculated and redistributed upon failure, but
also because estimating the service rate of a message
bin requires exact knowledge of the software stack and
the resources required by the executing software for a
given message arrival rate. This is not easily achievable
because resource consumption is non-linear with offered
load; non-trivial computer systems have many thresholds
across which behavior changes in a step-like fashion.
Moreover crosstalk between software processes when
executed together causes them to behave in ways that are
difficult to predict, even when their behavior in isolation
is known. For example, look at Figure 6(a) which shows
the sending rate against the loss rate for the TAO
implementation [19] of the CORBA notification server

6

with one publisher and one subscriber, all components
running on different machines, and then compare it with
Figure 6(b), where the only difference is that there
is an additional subscriber on a fourth machine1. The
reasons for the effect need not concern us here; what is
important is that it is difficult to extrapolate the behavior
of the notification server with two subscribers, even if
the behavior with one subscriber is well known.

The three factors that determine the distribution of
load in the system are: (1) how the topics are distributed
between message bins, (2) how message producers deter-
mine where to publish messages, and (3) how subscribers
determine where to subscribe. Message producers and
subscribers connect to a maximum of N message bins.

Message producers will not connect to a message
bin that is announcing itself as overloaded; if they are
already connected, they will not publish a message to
that message bin. Message producers spread their load
across all lightly loaded message bins to which they are
connected. They may disconnect from one message bin
and connect to another if the first bin is consistently
overloaded. If a message producer cannot deliver a
message on a given topic, it sends an alarm message on
the meta-channel. Another unloaded message bin may
then choose to start accepting messages on that topic. If
the number of alarm messages sent per time unit exceeds
a threshold, a human operator is notified, who then may
add additional edge servers to the system or restart failed
ones.

The disadvantage of a self-adjusting system is that it
may become oscillatory if not properly designed. For
example, a set of publishers might all decide to move
their publications away from an overloaded message bin
to a less loaded one. This causes the less loaded one
to become congested, causing them all to switch back;
the system never stabilizes although the resources, if
correctly shared, would suffice to satisfy all requests. To
avoid this oscillatory behavior, we introduce damping
into the system. When a message publisher receives
a ChannelDescription from the meta-channel, thereby
indicating that a message bin to which it is connected is
overloaded, it only decides to change message bin with
some probability. This probability is inversely propor-
tional to the current number of publishers announced
in the ChannelDescription. For example, if there are
M publishers on the overloaded channel, then each

1The default settings for the TAO 1.3.1 notification server were
used except that multi-threading was enabled. Publishers, subscribers
and the notification channel ran on different machines, each running
a Linux 2.4 kernel. The attempted sending rate was increased by 10
messages per second for each test starting at 600 per second up to 1000.
The word attempted is used because of the synchronous nature of the
communication between publisher and notification server: publishers
slow down as the server slows down. The tests were repeated 20 times.

chooses a random number in the range 1..M and only
changes location if the value is equal to M. The expected
outcome is that only one publisher changes location for
every ChannelDescription received, but any number may
actually do so. Using this system, the probability that M
publishers all switch to a new channel is 1/(M (M−1))
, and the probability they all switch back is the square
of this.

Similarly a message bin only agrees to accept a new
topic when an alarm is raised with a probability that
is inversely proportional to the number of other message
bins not offering that topic. When an alarm is sent on the
meta-channel, message bins remove all topics for which
they currently have no publishers, i.e. the alarm acts as
a sort of garbage collection to free resources.

Note that indication of load is binary, i.e. a channel
is either overloaded or it is not. An alternative would
be to introduce a measure of load, for example in-
stantaneous queue occupancy or number of messages
received per second in a previous time window. More
subtle load balancing decisions might then be made than
that described here. In practice, we found that it was
difficult to find simple measures of load that would allow
a meaningful comparison between different channels
running on computers with different resources.

After a step change in load, the system converges to
a stable state without entities directly coordinating with
one another. The speed of convergence is controlled by
the exact probability function used and by the frequency
at which ChannelDescription messages are sent.

III. EDGE SERVER/SENSOR NETWORK
COMMUNICATION

A. Data-Centric Sensor Networks

When considering the communication between edge
server and sensors it is important to distinguish between
different sensors types. When a sensor is externally pow-
ered and has enough processing capabilities to support
TCP/IP, it can be treated as an edge server. It may
use ’lighter weight’ middleware tailored for lower end
devices such as MQTT, but communications between
the sensor and the channel follow the conventional
publish/subscribe semantics. As far as the channel is
concerned it is an addressable entity from which data
is received and to which data can be sent. An example
of such a sensor would be a position reporting device on
a vehicle.

When a sensor is not externally powered then all
operations must be performed so as to minimize the
energy usage. In particular, as radio power varies with
the square of distance such sensors will typically form a
network in which messages from sensors are forwarded
across other sensors to reach a destination. The dominant

7

power draw within a sensor is typically the radio even
when it is idling. Consequently, energy efficient network
and MAC layer protocol are designed to allow the radio
to be put to sleep as often as possible.

An additional observation is that it is often the case
that the identity of simple sensors is not important,
e.g. if we wish to know the temperature at a given
location, which sensor from the set resident at that
location actually reports is irrelevant. When this is the
case then in-band processing can be performed by the
sensor network itself, to aggregate data, e.g. throwing
away duplicate readings. This reduces the amount of
communication within the sensor network and hence
saves power. Intanagowiwat et al [10] terms this a
data-centric, as opposed to an address-centric, approach.
Individual sensors are anonymous from the point of
the view of the enterprise network allowing sensors to
be added/removed from the network without requiring
external configuration.

TinyDB [11] describes a means by which data can be
extracted from a sensor network in a data-centric way.
TinyDB treats the entire sensor network as a database
that can be queried using SQL type requests. In TinyDB
the sensors organize themselves into a tree such that
requests are received from the parent and propagated to
the children, while replies are returned back up the tree.
Nodes within the tree combine data received both from
their children and from themselves in order to reduce the
total amount of data that needs to be transmitted. The
root of the tree is the connection to the fixed network
from which requests originate. The children and parents
radio duty cycles are synchronized such that they the
times that they wake up overlap.

B. Messo Protocol

Messo is a protocol that allows data-centric sensors
to publish into a channel. Subscribers to that channel re-
ceive publications using the normal subscription protocol
provided by the channel. We use the MQTT broker as
the channel implementation, but Messo is independent
of MQTT.

As in TinyDB there is a single location to which all
data flows. We use the TinyDB tree approach to structure
the sensor network such that the root of the tree is the
edge server running the broker. Messo nodes are capable
of publishing on a topic, topics are typically mapped
onto sensor types: light, temperature, pressure etc, and
Messo publications are one or more readings from these
sensors. Figure 7 shows the Messo sensor network tree.

Messo nodes publish on a topic by sending a Messo
publish message to their parent. Messo messages have a
maximum length determined by the underlying sensor
technology being used. Data is not segmented across

Edge Server

Tree of Messo
Sensor Nodes

Child and Parent
Nodes Active Radio

Period overlap

Fig. 7. Overview of the Messo Tree

messages, if a Messo node wishes to send more data than
fits into one message then it sends multiple independent
messages. This means that a sensor reading must fit
into one Messo message. A Messo node receiving a
publication from a child forwards it on to its parent
adding any data it may have on the same topic if
there is enough free space in the payload. When the
Messo publication is received at the edge server, it is
mapped into one or more equivalent MQTT messages
and published into the broker.

A Messo node will only publish on a topic if it can
communicate with the broker at the root node and that
broker has at least one subscription for that topic. In this
way messages are not needlessly forwarded to the broker,
and in consequence power squandered, unless there is
a recipent for the message. The Messo node periodical
sends the set of topics that it can publish-on to the root
node. Just as for data messages, forwarding nodes may
add additional topics into the set as it is forwarded up the
tree, but in addition parent nodes remember the topics
that their sub-tree can publish on, this set is called the
publication set.

The channel periodically sends the current subscrip-
tion set to the root node. Each Messo node only forwards
this set to the sub-tree in which the intersection between
the subscription set and the announced publication set is
non empty. A Messo node will only publish on a topic
for some period after it has received a subscription set
message containing that topic, i.e. a softstate approach
is used in which the subscription set message acts as a
refresh.

Figure 8 shows an exanple of control message ex-
change between the channel and the Messo nodes. Each
Messo node sends a publish set message stating which

8

Edge Server

Subscriptions
 a
 bPub-Set={a}

Pub-Set={c}

a

c

a

Pub-Set={a,c}

a,c

c

c

Pub-Set={a,c}

Pub-Set={c}

Pub-Set={a,c}

Sub-Set{a,b}

MQTT-Broker

Fig. 8. Control Message Exchange

of three sensor types it is capable of sensing for: a, b,
c. A given Messo node may support multiple different
sensors. Each non-leaf nodes merges the sets from all its
children with its own before fowarding on. There are two
subscriptions on the channel for topics corresponding to
sensor type a and b. The subscription set message is
propagated down the tree to all those parts of the tree
whose publication set has a non empty intersection with
the subscription set; the path through the tree is shown
in bold. A non-leaf node may receive the subscription
set even though it itself has no sensors corresponding
to the current subscriptions. In this case it forwards to
the appropriate children but does not start publishing; all
publishing nodes are shown in bold.

C. Messo Implementation on TinyOS

Destination
Address

Group
Id

Type
Id Length Data CRC

5 Bytes Max 29 Bytes 2 Bytes

Fig. 9. TOS Active Message Format

We have implemented Messo on the open-source
TinyOS operating system [6]. TinyOS is a simple
event based operating system that runs on the Berke-
ley/Crossbow motes. Mica2 is a typical example of a
current generation mote pocesssing a 8Mhz processor
with a 128 Kbytes of ROM and 4 kbytes of RAM.
TinyOS offers a set of libraries that allow application
to read from a range of sensors type and send/receive

values over a radio interface. As all of the system is
open-source any part of it can be modified, but it is
clearly beneficial to reuse existing libraries as much as
possible. TinyOS offers an active message abstraction
whose format is shown in Figure 9. Note that there is
no source field in the TOS message header, i.e. a receiver
does not know (unless the information is added to the
payload) from whom the message was sent. The single
byte group id allows multiple different application to
share the same radio frequency and the single type id
allows the purpose of the message to be identified. Messo
is mapped directly onto the TOS message format. The
2 byte destination address is either the parent’s address
when a message is being sent up the tree or the reserved
broadcast address when it is being sent down it. Type
id’s whose top most bit is set are considered control
messages, currently there are only two: PUBLICATION-
SET, SUBCRIPTION-SET, id’s whose top most bit is
zero are publication message on a topic defined by
the remaining 7 bit integer, hence there are currently
127 possible topics within a given Messo network. The
groupd id is not currently set.

TinyOS sensor reading are typically 16 bit integers, so
a maximum of 14 distinct readings can be held within
a given TOS message, less if additional information
about the reading needs to be carried in the data; 29
topics types can be carried in a PUBLICATION-SET
and SUBCRIPTION-SET

One mote is connected via a serial line to the edge
server. This mote does not have any sensors but simply
forwards TOS messages from the radio interface to the
serial line and visa-versa. When a Messo/TOS message
is received over this serial line a Messo/MQTT bridge
running on the edge server converts the message into
the appropriate MQTT format and publishes it into the
MQTT broker. The mapping between the single byte
Messo topic and the MQTT topic (a string) is held at
the edge server. Conversely the current subscription set
is extracted by the bridge and transmitted over the serial
line, and then down through the tree of Messo nodes.
A Messo client capable of storing ten sensors readings
uses 12k of RAM and 1.5k of ROM on a Mica2 mote

IV. EDGE SERVER SOFTWARE ARCHITECTURE

The edge server runs on a single processor, either
a cabled PC or a lighter weight battery powered plat-
form such as a PDA. Our software runs on a Java
virtual machine, either standard or micro edition. The
three major components within the architecture are: the
application-specific code that processes the messages,
message channels from which messages are received
and to which messages are forwarded and the channel

9

controller which tracks to where messages should be
published and from where they can be subscribed.

A. Application Boosters

In order to distinguish between the software running
on the application server and the application-specific
software running on the edge server we term the latter
a booster. The name emphasizes that the edge servers
are there to enhance performances. There may be many
different boosters running on the same edge server.
Boosters receive messages from one or more input
message channels, process them and forward them to one
or more other output message channels. The technologies
that support the input and output message channels may
be distinct.

Threads running asyncronous operations

Result
Queue

Thread Pool

Completions

Proactor
Thread

handleResult(AsyncResult res)
{
 ...
}

handleResult(AsyncResult res)
{
 ...
}

AsyncResult

Fig. 10. Proactor model for supporting boosters

The edge server software architecture is built around a
proactor [18]. There is one proactor instance per booster,
cf. Figure 10. Boosters add asynchronous operations to
the proactor which allocates them to threads taken from
a thread pool. The asynchronous operations deliver the
result from the operation to the proactor which then
dispatches them to booster defined handlers. From the
application programmers view the booster is defined by
a list of asynchronous operations and the handlers that
should be used to treat the results from those operations.
The environment offers a set of standard asynchronous
operations, these include those required to register and
receive or transmit messages from different messaging
systems such as the TAO/JacORB [2] implementation
of the CORBA notification service, IBM Research’s
TSpaces [9] implementation of a tuplespace, IBM’s com-
mercial MQ messaging system and the SCADA sensor
protocol MQTT [7] 2 as well as the Messo protocol

2Note that MQTT was original known as MQIsdp.

explained in the previous section. In addition, there
are non-messaging asynchronous operations of which
the most useful are timers. Application programmers
may add new asynchronous operations. Figure 10 shows
the interaction between handlers, the proactors and the
asynchronous operations.

Example: an application programmer wishes to pro-
cess a set of messages received from a MQTT broker
before transmitting them to an application server using
MQ. The application running on the application server is
implemented as a message bean and expects to receive
messages using the Java Messaging System (JMS) API.
A maximum of 100 MQTT messages are combined in 1
MQ message, but no message is held by the edge server
longer than 30 seconds. The application programmers
uses three asynchronous operations:

• MQTTConsumerOp passing the address of the bro-
ker service and the type of the message to consume;

• JMSMQProducerOp passing the address of the MQ
broker and the type of the message to produce;

• TimerOp passing the expiry period.
The message types are simply represented as strings,

which the MQTTConsumerOp maps to a filter expression
at subscription to the MQTT broker and the JMSMQPro-
ducerOp maps to a JMS topic name. The application
also writes the handler that does the application-specific
processing, this handler takes JMSMQProducerOp as
argument and is associated with MQTTConsumerOp and
TimerOp. Every time an MQTT message is received it
is dispatched to the handler, when either a 100 such
messages have been received or the timer has elapsed the
result is processed and the result placed in JMSMQPro-
ducerOp. This asynchronously formats the result as a
JMS message and transmits it to the broker.

The approach is similar to the Rio architecture out-
lined in [21] in that Rio also uses asynchronous opera-
tions within a publish/subscribe framework to support
distributed application specific processing in a fault
tolerant way. It is distinct from Rio, in as much as
Rio supposes one publish/subscribe mechanism — Sun’s
JavaSpaces — while we assume that multiple different
messaging system are required. In addition, Rio uses
Sun’s Jini system for service discovery while, as ex-
plained in Section II-B we introduce a new component
called a meta-channel.

B. Management and Deployment

The OSGi is a consortium of software and hard-
ware vendors concentrating on enabling dynamic ser-
vices for networked appliances. In particular, the OSGi
specifies a service platform for loading and executing
the software on networked appliances [22]. Code is
installed on this platform in the form of a bundle, a

10

Java Micro or Standard Edition

OSGi Services
...

Booster
Library

System Bundles

Application
Boosters

SMF Client

...

SMF
Bundle Server

Push New Bundle
To Clients

Fig. 11. Service Management Framework

bundle is just a jar file with additional meta information
describing the resources that the bundle requires, the
services that the bundle imports/exports and the means
to activate/deactivate the bundle. Clients can request the
installation of new bundles from a bundle server or
the bundle server can push bundles to the clients. The
bundle server keeps track of the dependencies between
bundles and negotiates with the clients to ensure that
an update will not render them inconsistent. The OSGi
also specifies a set of standard bundles offering useful
services for the platform. We use the IBM implemen-
tation of the OSGi platform – the Service Management
Framework (SMF) – for the configuration management
of the boosters. Figure 11 shows how the edge server
is structured into several SMF bundles. Each booster
is implemented as an active bundle, starting the bundle
creates the appropriate asynchronous operations and the
environment in which they run, stopping it remove them.
The generic edge server code: proactor, thread pool,
standard asynchronous operations, etc, is implemented
as a library bundle.

C. Edge Server Software Performance

We measured the performance of our edge server
using the a commercial traffic generator. We use simple
UDP point-to-point communication rather than via a
channel as this allows us to measure the performance
of the edge server independently of the implementation
of a channel. In addition, all TCP based communication
is implicitly rate controlled by the receiver window size
meaning that the sender can not offer arbitrary loads,
furthermore channels that use protocols such as IIOP

require that senders wait for application level acknowl-
edgments from the channel before sending again. We use
a UDPConsumerOp for the performance measurement
that simply waits on a socket and dispatches the result
to a handler. The sender writes a sequence number at
the head of the packet payload and the handler uses it
to determine the sending rate and the number of packets
dropped.

 200000

 400000

 600000

 800000

 1e+06

 10000 15000 20000 25000 30000 35000 40000

R
ec

ei
ve

d
P

ac
ke

ts

Packet per second

128 byte packets
256 byte packets
384 byte packets
512 byte packets

Fig. 12. Performance

Figure 12 shows the number of packets that the edge
server receives at various sending rates for different
packet lengths. In each test 1,000,000 packets are sent
and the number that the actually application processes
is recorded. For all packet lengths 20,000 packets per-
second are comfortably processed without loss, above
this level losses increase at a rate proportional to the
packet length. Note that 20,000 512-byte packets per-
second represents a rate of 82 Mbit/s.

V. EXAMPLE APPLICATION

TSpace
Server

Application
Code

TSpace
Server

Application
Code

Select item type K
whose PickUp queue

is longer than threshold T

Decrease T and sleep

Get all elements of
PickUp and Pay queues

for item type K

Match PickUp and Pay
messages and return
umatched messages

to the queues

Increase T Send summary to the
back−end sever

WebSphere
Application

Server

Enterprise
Java Bean

Meta−Channel

Edge Server

Back−End Server

Smart Shelves

Cash Registers

MQSeries
...

Service Management Framework

(OSGi)

Service Management Framework

(OSGi)

(PickUp Messages)

(Pay Messages)

found

not found

Application Dependent Code

Fig. 13. Architecture of the example application

11

Our example application tracks the “in-flight time”
of items within a supermarket. Every time an item
is picked up within the system, a pick-up message is
generated; every time an item is payed for, a pay message
is generated. An application running on a WebSphere
[8] application server uses this information in order
to determine when an item has been in-flight for a
suspiciously long time. This helps the supermarket to
identify in real time when items are being stolen.

As Figure 13 shows, we use a tuplespace server [9]
implementation and IBM’s commercial WebSphere MQ
messaging system to support two types of message
bins. The tuplespace server accepts raw pick-up or pay
messages, whereas MQ accepts summary messages. The
tuple servers run on the edge servers; MQ is run on the
application server, and a single meta-channel (based on
the MQTT microbroker) is also run on the application
server. Application-specific code running on the edge
servers matches pick-up and pay messages in order to
calculate the average in-flight time of different item
types, e.g. razor blades, and to identify individual items
that have been in-flight significantly longer than the av-
erage. They place the summary messages on WebSphere
MQ, which are subsequently picked up by the back-
end application running on the WebSphere Application
Server. The application-specific piece of code uses the
meta-channel to identify where the raw messages are
being published. Edge servers can be added and removed
dynamically from the system, without requiring manual
reconfiguration of the running components.

It is advantageous to wait until numerous raw item
messages are available before processing, as this in-
creases the ratio of raw to summary messages; however a
raw message should not be left unprocessed for too long
as this delays the time taken to indicate that the item has
gone missing. The algorithm that the application-specific
code executes is summarized in Figure 13. Note that,
in scheduling theory terms, it is not work conserving,
i.e. the application will sleep if there is not “enough”
work to do. The reason for this is that other tasks
running on the same edge server should be given a
chance to execute. The application tracks the rate at
which items arrive using the threshold value. Each time
the number of items found is greater than the current
threshold, the threshold value is increased by an amount
proportional to the difference between the number of
items found and the current threshold; for a fixed item
arrival rate R and fixed service time S, the threshold
thus approaches S × R asymptotically. Note that if
S increases, for example when MQ becomes loaded,
the threshold also increases, reducing the number of
summary messages that are being sent to the application
server. The threshold is divided by two when not enough

work is found. Decreasing exponentially allows us to
react quickly to a reduction in the arrival rate.

1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

Number of Edge Servers

M
es

sa
ge

s
pe

r S
ec

on
d

Receiving Rate (Aggregated Messages)

Receivng Rate

Transmitting Rate

Fig. 14. Performance of Edge Servers

Figure 14 shows how the number of messages per
second varies as we add additional edge servers to the
system. The system reaches stability at six edge servers.
The bottom line shows the receive rate of aggregated
messages at the application server. The ratio of this to
the receive rate of raw messages is the edge server gain.
At equilibrium, the gain is about 10, but arbitrarily high
gains can be achieved at the cost of increased delay. The
more than linear increase in the performance is explained
by the fact that the time to write a tuple is independent
of the number of tuples in the space, but the time to
read a specified tuple is linear with the number of tuples
in the space. Hence, there is a double gain in adding a
new edge server: there are more readers and the average
queue length is shorter.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 2000 4000 6000 8000 10000 12000

To
ta

l M
at

ch
ed

 T
up

le
 p

ai
rs

Time in ms

1 Edge Server
2 Edge Servers
4 Edge Srevers

Fig. 15. Load-Balancing Edge Servers

Figure 15 shows how the cumulative number of tuples
matched by a given edge server varies as the number

12

of edge servers increases. As the number of servers
increases by two, the cumulative number of tuples a
given edge server matches is divided by almost exactly
two, which demonstrates that the load is well balanced
among the edge servers.

VI. CONCLUSION

Work within the area of sensor networks has con-
centrated on the set of problems related to the power
efficient forwarding of data across those networks. In a
commercial setting data extracted from sensors will be
typical destined to an application server. In this paper
we have looked at a the set of techniques which enable
the integration of sensor networks into the enterprise
network. The use of edge servers to preprocess data at
the boundary between the sensor and enterprise network
helps in scaling but makes the system more prone to
failure. We have proposed an means of creating networks
of edge servers within failure is handled gracefully. We
have shown through the use of appropriate protocols how
even very simple sensors can be connected into the edge
server network. We have described our implementation
of a proof of concept system and given performance
results for a novel sensor based application.

REFERENCES

[1] G. Banavar, M. Kaplan, K. Shaw, R. E. Strom, D. C. Sturman, and
W. Tao. Information flow based event distribution middleware.
In Proceedings of Middleware Workshop at the International
Conference on Distributed Computing Systems, 1999. http:
//www.research.ibm.com/gryphon.

[2] G. Brose. Jacorb: Implementation and design of a java orb. In
Procs. of DAIS’97, IFIP WG 6.1 International Working Con-
ference on Distributed Aplications and Interoperable Systems,
Cottbus, Germany, Sept. 1997.

[3] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design
and evaluation of a wide-area event notification service. ACM
Transactions on Computer Systems, 19(3):332–383, Aug. 2001.

[4] P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The
many faces of publish/subscribe. ACM Computing Surveys,
35(2):114 – 131, June 2003.

[5] J. M. Hellerstein, W. Hong, and S. R. Madden. The sensor spec-
trum: technology, trends, and requirements. SIGMOD Records,
32(4):22–27, 2003.

[6] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and
K. S. J. Pister. System architecture directions for networked
sensors. In Architectural Support for Programming Languages
and Operating Systems, pages 93–104, 2000.

[7] IBM. Telemetry integration. http://www-306.ibm.com/
software/integration/mqfamily/integrator/
telemet%ry/.

[8] IBM. Websphere application server. http://www-306.ibm.
com/software/webservers/appserv/was.

[9] IBM. TSpaces Programmer’s Guide. 2002. http://www.
almaden.ibm.com/cs/TSpaces.

[10] C. Intanagowiwat, R. Govindan, and D. Estrin. Directed diffu-
sion: a scalable and robust communication paradigm for sensor
networks. In Mobile Computing and Networking, pages 56–67,
2000.

[11] S. Madden. The Design and Evaluation of a Query Processing
Architecture for Sensor Networks. PhD thesis, University of
California, Berkeley, 2003.

[12] D. Mladenié, W. F. Eddy, and S. Ziolko. Exploratory analysis of
retail sales of billions of items. In Computing Science and Statis-
tics, Volume 33 , Frontiers of Data Mining and Bioinformatics,
Costa Mesa, CA, June 2001.

[13] OMG. CORBA Notification Service Specification. Object Man-
agement Group Publication, August 2002.

[14] P. Pietzuch and J. Bacon. Hermes: A distributed event-based
middleware architecture, 2002.

[15] S. Rooney, D. Bauer, and P. Scotton. Distributed Messaging
Using Meta Channels and Message Bins. In IM 2005, Integrated
Network Management, Nice France, pages 703–716, May 2005.

[16] S. Rooney, D. Bauer, and P. Scotton. Edge Server Software
Architecture for Sensor Applications. In Saint 2005, Symposium
on Applications and the Internet, Trento Italy, pages 64–73, Feb
2005.

[17] A. I. T. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel.
SCRIBE: The design of a large-scale event notification infrastruc-
ture. In Networked Group Communication, pages 30–43, 2001.

[18] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-
Oriented Software Architecture, volume 2, chapter 3, pages 215–
260. Wiley, 2001. ISBN 0-471-60695-2.

[19] D. C. Schmidt, M. Stal, H. Rohert, and F. Buschmann. Pattern-
Oriented Software Architecture: Patterns for Concurrent and
Networked Objects. Wiley and Sons, 2000.

[20] A. Soppera, T. Burbridge, and B. Briscoe. ”Generic Announce-
ment Protocol for Event Messaging”. In London Communications
Symposium (LCS),University College London, September 2003.

[21] Sun Microsystems. Rio architecture overview, v1.0, 2000. Tech-
nical report, Sun Microsystems, Inc.

[22] The OSGi Alliance. OSGi Service Platform, Release 3, 2003.
http://www.osgi.org.

