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Simple Ergodic and Outage Capacity Expressions
for Correlated Diversity Ricean Fading Channels

Simeon Furrer,Student Member, IEEE, Pedro Coronel,Student Member, IEEE,
and Dirk Dahlhaus,Member, IEEE

Abstract— Multiple-antenna systems have been shown to
achieve very high spectral efficiencies. In this paper, we derive
simple single-integral expressions for the ergodic and outage
capacity of a diversity system in correlated Ricean fading
channels, where the channel coefficients are assumed to be
known to the receiver only. For illustration purpose, we present
numerical results showing the effect of channel correlation,
Ricean components, angular spread and multipath components in
an orthogonal frequency-division multiplexing (OFDM) system.

Index Terms— Ergodic capacity, outage capacity, correlated
fading channels, wireless SIMO systems, expected logarithm of
hermitian quadratic form in complex Gaussian random variables.

I. I NTRODUCTION

M ULTIPLE-antenna concepts have received considerable
attention in the recent history of wireless commu-

nication systems. Significant increases in spectral efficiency
can by achieved by exploiting the randomness in multipath
propagation. Relevant literature, however, is limited to very
specific fading channel characteristics to keep the analysis
tractable. A common assumption is to model the propagation
coefficients between transmit and receive antennas as identi-
cally and independently distributed (i.i.d) zero-mean complex
Gaussian random variables (CGRV) [1], which corresponds to
a rich scattering environment. In practical scenarios, however,
the coefficients are correlated and have nonzero mean because
of limited scattering, insufficient antenna spacing or line-of-
sight components.

In this paper, we investigate a diversity system in correlated
Ricean fading channels, where the channel coefficients are
assumed to be known to the receiver only. Related work is
either restricted to Rayleigh fading channels [1], [2], i.i.d
Ricean channels [3] [4, App. J] or uses chi-square [5] or
asymptotic approximations to compute the ergodic capacity.
The contributions of this paper are an exact single-integral
expression for the ergodic capacity and, for non-ergodic chan-
nels, a single-integral expression for the outage capacity.

The remainder of the paper is organized as follows. The sys-
tem model is introduced in Sect. II. Single-integral expressions
for the ergodic and outage capacity are subsequently derived in
Sect. III and Sect. IV, respectively. Numerical examples high-
lighting the effect of channel correlation, Ricean components,
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angular spread and multipath components in an orthogonal
frequency-division multiplexing (OFDM) system are presented
in Sect. V, and conclusions are drawn in Sect. VI.

II. SYSTEM MODEL

We consider a single-input multiple-output (SIMO) diversity
system withN receive antennas. The channel is modeled as
a multivariate circularly symmetric CGRV

h ∼ NC(µ
h
,Σhh), (1)

with mean vectorµh = E {h} and covariance matrix

Σhh = E
{

(h−µ
h
)(h−µ

h
)
H
}

. By defining the transmitted
signal x and an additive complex Gaussian noise vector
n ∼ NC(0,Σnn), the system can be described as

y = xh + n, (2)

wherey represents the vector of observations at theN receive
antennas. We assumeΣnn to be non-singular and furthermore
perfect channel-state information (CSI) at the receiver, but no
CSI at the transmitter.

Conditioned onh, the maximum mutual information be-
tweenx and y is achieved using a complex Gaussian input
distributionx ∼ NC(0, Es) and is known to be [1]

I (X;Y|h) = log
(

hHAh + 1
)

, (3)

whereA = EsΣ
−1

nn
is a hermitian positive definite matrix.

For the next two sections devoted to compute the ergodic
capacity and the outage capacity, we put forward the following
known results. The termQ = hHAh represents a hermitian
quadratic form in CGRV with probability density function
(PDF)fQ(q). AlthoughfQ(q) can only be expressed as infinite
series [6], its (two-sided) Laplace transform can be written in
compact form as [7]

ΦQ(s) = Eh

{

exp
(

−shHAh
)}

=
exp (−sµ

h

HA(I + sΣhhA)−1
µ

h
)

det [I + sΣhhA]

=

N
∏

i=1

exp(−sλi|νi|
2

(1+sλi)
)

(1 + sλi)
, (4)

where the last representation follows from to the eigende-
compositionΣhhA = V−1∆V so that∆ is the diagonal
matrix of non-negative eigenvaluesλi, i = 1, ..., N , and the
term λi|νi|

2 in the exponent corresponds to thei-th diagonal
element of the matrixVµhµh

HAV−1.
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III. E RGODIC CAPACITY

If the transmission time is long enough to reveal the long-
term ergodic properties of the channel, a capacity in the
Shannon sense exists and is given by theergodic capacity
defined as [1]

CE = Eh {I (X;Y|h)} . (5)

The non-linear log function complicates the evaluation of the
expectation. The characteristic function ofI (X;Y|h) in (3)
is given by

ΨI(jξ) = EI [exp (jξI)] = Eh

[

(

hHAh + 1
)jξ
]

. (6)

The ergodic capacity (5) can then be evaluated by

CE = −j
d

dξ
ΨI(jξ)

∣

∣

∣

ξ=0

= lim
ǫ→+0

−j
d

dξ
Eh

{

(

hHAh + 1
)−(ǫ−jξ)

} ∣

∣

∣

ξ=0
, (7)

where we introduced anǫ ∈ ℜ+, which allows us to rewrite
(7) using the gamma integral

q−t =
1

Γ(t)

∫ ∞

0

zt−1 exp (−zq) dz, Re (t) > 0 (8)

and the substitutionst = ǫ− jξ andq = hHAh + 1 as

CE = lim
ǫ→+0

∫ ∞

0

−j
d

dξ

zǫ−jξ−1

Γ(ǫ−jξ)

∣

∣

∣

ξ=0

Eh

{

exp
(

−zhHAh
)}

exp (z)
dz

= lim
ǫ→+0

∫ ∞

0

ψ(ǫ)−log (z)

Γ(ǫ) z1−ǫ

Eh

{

exp
(

−zhHAh
)}

exp (z)
dz. (9)

Here Γ(.) and ψ(.) represent Euler’s gamma and psi
function [8, Eqs. (8.310), (8.360)], respectively. The term
Eh

{

exp
(

−zhHAh
)}

can be interpreted as the Laplace trans-
form of the PDFfQ(q) shown in (4), if z is replaced by
s = α+ jw.

Direct evaluation of (9) is not feasible owing to the singu-
larities on the real axes. Instead, we expandz to the complex
domains and resort to a contour integration

KΩ =

∫

Ω

ψ(ǫ)−log (s)

Γ(ǫ) s1−ǫ

ΦQ(s)

exp (s)
ds (10)

along the pathΩ =
∑6

i=1 Ωi as shown in Fig. 1. Ifc is chosen
such that0 < c < mini 1/λi, the integrand in (10) is analytic
within Ω and we conclude that

KΩ =

6
∑

i=1

KΩi
= 0, (11)

whereKΩi
represents the integral along the pathΩi. Our goal

is to find an expression for

CE = lim
ǫ→+0

lim
R→∞
δ→0

KΩ1
. (12)

Note that we define the complex logarithmlog (s) such that
its singular branch lies on the positive real axis, i.e. for
s = |s| exp (jφ), we define

log (s) = log |s| + jφ, 0 ≤ φ < 2π. (13)

x x

c

R

δ Ω1

Ω2Ω3

Ω4

Ω5Ω6

Im s

Re s

Fig. 1. Contour integral ins-plane.

Assessment of the integration in (10) alongΩ2, Ω4 and Ω6

using an upper bound argument shows that for any finite
c, we have limR→∞KΩ2

= 0, limR→∞KΩ4
= 0 and

limδ→0KΩ6
= 0, so that (11) simplifies to

lim
R→∞
δ→0

KΩ1
+KΩ3

+KΩ5
= 0. (14)

Furthermore, owing to (10) and (13),KΩ5
is related toKΩ1

by

KΩ5
= − exp (j2πǫ)

[

KΩ1
− 2πjK̃Ω1

]

, (15)

whereK̃Ωi
represents the integral

K̃Ωi
=

∫

Ωi

1

Γ(ǫ) s1−ǫ

ΦQ(s)

exp (s)
ds. (16)

By substitution ofKΩ5
in (14) by (15) and solving forKΩ1

,
we obtain

lim
R→∞
δ→0

KΩ1
= lim

R→∞
δ→0

−1

1−exp (j2πǫ)

[

KΩ3
+

2πjK̃Ω1

exp(−j2πǫ)

]

. (17)

By an auxiliary calculation, we redo the analysis steps (11)-
(14) shown above for the contour integral (16) to further show
that

K̃Ω1
=

−1

1 − exp (j2πǫ)
K̃Ω3

. (18)

In the limit asR → ∞ and δ → 0, by combining (18) and
(17) and the definition of our contour integrals (10) and (16),
we get the expression

lim
R→∞
δ→0

KΩ1
=

−c+j∞
∫

−c−j∞

ψ(ǫ)−log (s)− 2πj exp(j2πǫ)
1−exp(j2πǫ)

Γ(ǫ) s1−ǫ [1 − exp (j2πǫ)]

ΦQ(s)

exp (s)
ds.

(19)
The remaining limitǫ → +0 exists, and we finally obtain
the desired single-integral expression for the ergodic capacity
(12)

CE =
1

2πj

−c+j∞
∫

−c−j∞

(γ−jπ+log(s))

s

ΦQ(s)

exp (s)
ds (20)

with region of convergence (ROC)0 < c < mini 1/λi and
γ ≈ 0.577216 denoting Euler’s constant.
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IV. OUTAGE CAPACITY

If the transmission time is not long enough to reveal the
long-term ergodic properties of the fading channel, the concept
of outage capacityis evoked, in which the capacity is viewed
as a random variable. The outage capacityCO is the capacity
guaranteed for(100 − p)% of the channel realizations

Pr [C≤CO] = p% (21)

and can be achieved by assuming coding within one channel
realization, but the length of this block goes to infinity (noise
averaging).

Next we derive a single-integral expression for the cumula-
tive distribution function (CDF) (21). With

Pr [C≤CO] = Pr [I (X;Y|h) ≤ log (exp (CO))]

= Pr
[

hHAh + 1 − exp (CO) ≤ 0
]

, (22)

we can again solve the problem in the Laplace domain using
(4) and by interchanging inverse Laplace transform and PDF
integration obtain

Pr [C≤CO] =
1

2πj

c+j∞
∫

c−j∞

exp(s exp(CO))

s

ΦQ(s)

exp(s)
ds, (23)

where the ROC is given by0 < c. Alternatively, the evaluation
of Pr [C>CO] = 1 − Pr [C≤CO] leads to

Pr [C>CO] =
1

2πj

−c+j∞
∫

−c−j∞

exp(s exp(CO))

s

ΦQ(s)

exp(s)
ds, (24)

with ROC 0 < c < mini 1/λi, which turns out to achieve
faster convergence in the remaining numerical integration. The
relation to (23) is determined by shifting the integration strip
to the left half-plane ofs while correcting for the residue of
the simple pole at zero.

The mean capacity (ergodic capacity) can be derived from
the CDF above using partial integration

CE =

∫ ∞

0

CO

(

d

dCO
Pr [C≤CO]

)

dCO

= CO Pr [C≤CO]
∣

∣

∣

∞

0
−

∫ ∞

0

Pr [C≤CO] dCO, (25)

which, owing to the properties of densities, leads to

CE =

∫ ∞

0

(1 − Pr [C≤CO]) dCO. (26)

Applying the identity [8, Eq. 3.327]

−Ei(−s) =

∫ ∞

1

exp (st)

t
dt

=

∫ ∞

0

exp (s exp (CO)) dCO, Re{s} < 0 (27)

and inserting (24) in (26), we finally get

CE =
1

2πj

−c+j∞
∫

−c−j∞

−Ei(−s)

s

ΦQ(s)

exp (s)
ds (28)

with ROC defined by0 < c < mini 1/λi. Note that (28) has
a similar structure as (20), but a different and more complex
weighting function.

V. A PPLICATION AND NUMERICAL RESULTS

The remaining integration in the ergodic capacity expression
(20) and the outage capacity expression (23) can easily be
evaluated using numerical methods [9]. In the following, we
use the Gauss–Chebyshev quadrature [10] to evaluate these
expressions and Monte Carlo simulations for verification. We
consider a SIMO system employing OFDM over a broadband
channel that follows the model introduced in [11], [12].

We assume the channel impulse response to consist of
L equally spaced taps resulting from different uncorrelated
clusters. Thus, the channel’s frequency response is given by

h(θ) =

L−1
∑

l=0

hl exp (−j2πθl) , 0 ≤ θ < 1, (29)

where thel-th tap hl is an N × 1 vector representing the
response of the receive antenna array to the impinging wave.
Furthermore, each tap can be decomposed into direct and
specular components according to

hl =
√

σ2
l

(√

κl

1 + κl
h̄l +

√

1

1 + κl
Σ

1/2
l h̃l

)

, (30)

whereσ2
l , κl and Σ

1/2
l denote the power delay profile, the

RiceanK-factor and the receive spatial correlation matrix
for tap l, respectively. The direct component vectorh̄l is
fixed and has unit energy entries, whereash̃l is a zero mean
complex Gaussian random vectorh̃l ∼ NC(0, I). As the taps
are assumed Gaussian, the channel’s frequency response at a
given frequencyθ is a CGRV. Assuming that only the first tap
has a line-of-sight component, the distribution is completely
determined by

h(θ) ∼ NC

(

√

σ2
0

√

κ0

1 + κ0
h̄0,

L−1
∑

l=0

σ2
l

1

1 + κl
Σl

)

(31)

and is wide-sense stationary in the frequency domain. We as-
sume a uniform linear antenna array at the receiver and use the
correlation model considered in [11] to determine the matrices
Σl. For small cluster angle spreads, the correlation function
between receive antennasm andm′ can be approximated as
[13]

ρ(δn, θ̄, σθ) ≈ exp
(

−j2πnδ cos θ̄ − 1
2 (2πnδσθ sin θ̄)2

)

,

wheren = m−m′, δ is the antenna spacing in wavelengths,θ̄
is the mean angle of arrival andσθ denotes the angular spread.
Thus, the entries of the spatial correlation matrix are given by

[Σl]m′,m = ρ(δ(m−m′), θ̄l, σθ,l). (32)

We use the single-integral expressions derived above to ex-
amine the impact of some parameters in the channel model
on information rates. For an analysis of the influence of the
propagation environment on the capacity of general MIMO
systems, the reader is referred to [12]. In what follows, we
assume uncorrelated noiseΣnn = σ2

nI and normalize the
energy of the channel

∑L−1
l=0 σ2

l = 1 so that the SNR can
be defined asρ = Es/σ

2
n.

First, we consider a flat-fading environment, where the
channel consists of a single purely specular tap. The mean
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Fig. 2. 10%-outage capacities for different numbers of receive antennas,
N ∈ {2, 4}, and angular spreads,σ2

θ
∈ {0.01, 0.05, 0.09}.
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Fig. 3. Impact of the angular spreadσθ on ergodic and 10%-outage
capacities. The receiver hasN = 4 antennas.

angle of arrival is fixed at̄θ = π/2, antenna spacingδ = 1/2,
and different values of angular spreadσθ are considered. The
resulting 10% outage capacities are plotted versus SNR in
Fig. 2 for N = 2 andN = 4 receive antennas. Clearly, the
angular spread plays an important role from the perspectiveof
mutual information: a 4-antenna system can be outperformed
by a 2-antenna one that experiences a larger angular spread.

The dependencies of ergodic and outage capacities on
the angular spread are compared with each other in Fig. 3.
Obviously, angular spread is beneficial for both. However, the
increase is more pronounced in the outage case, where higher
rates can be guaranteed at a given outage level as the angular
spread increases.

In the third example, a frequency-selective channel compris-
ing L equal-energy multipath components is considered. The
mean angle of arrival for every tap is uniformly distributedin
the interval [0, 2π), and the angular spread for each cluster
is set to zero. As it can be observed in Fig. 4, the tail
probability of the mutual information atρ = 10 dB decreases
for increasing number of tapsL. A direct component (κ0 = 1)
stabilizes the link and higher rates are supported at low outage
probabilities.
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Fig. 4. Tail behavior of the mutual information for different numbers of
multipath tapsL, RiceanK-factorκ0 andN =4 antennas at SNRρ=10 dB.

VI. CONCLUSIONS

In this paper, simple single-integral expressions have been
derived for the ergodic and outage capacities of a diversitysys-
tem in correlated Ricean fading channels, where the channel
coefficients are assumed to be known to the receiver only. The
capacity expression have been used in numerical examples to
evaluate the effect of channel correlation, Ricean components,
angular spread and multipath components in an OFDM-based
receive diversity system.
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