

RZ 3644 (# 99654) 01/18/2006
Computer Science 16 pages

Research Report

Babel: A Version Management System for the Java
Programming Language

Thomas Gschwind and Michael Moser

IBM Research GmbH
Zurich Research Laboratory
8803 Rüschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its dis-
tribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies (e.g., payment of royalties). Some reports are available at
http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research
 Almaden • Austin • Beijing • Delhi • Haifa • T.J. Watson • Tokyo • Zurich

Babel: A Version Management System

for the Java Programming Language

Thomas Gschwind and Michael Moser

IBM Research
Zurich Research Laboratory

Säumerstrasse 4
CH-8803 Rüschlikon, Switzerland

Abstract. For the deployment of large software systems powerful mech-
anisms for module and version management are essential. For both areas,
the popular Java programming language, however, provides only limited
support. Module management is supported by means of Java’s package
and jar file mechanisms which is mostly a packaging mechanism that
just allows to amend packages in a jar file with some meta information
via an included manifest file. The only version management functional-
ity supported is to allow developers to query a package for its version
number, after it has been loaded. Based on that, an application can try
to make assumptions whether that version might be compatible or not.
However, if the currently running Java application uses a module that
depends on a different and incompatible version of a component that is
already loaded, Java users are out of luck since Java does not allow to
load two different versions of the same class. In this paper, we present
the Babel Version Management System that tackles all of these issues.

1 Introduction

Today’s software systems strive to be modular and extensible. One common
approach to achieve modularity is the integration of third party software com-
ponents through standardized interfaces. Examples of such software systems
include the Eclipse Platform, the Apache Jakarta Tomcat Servlet Engine, or
Enterprise Java Beans Servers such as JBoss or IBM’s Websphere Application
Server. Because these software systems integrate or compose software compo-
nents that come from several different sources, they have to be able to cope with
different versions of the same software component. For instance, while one third
party component may depend on one version of the Xerces Java Parser, another
one might depend on a newer but incompatible version of the same parser.

The authors of this paper encountered exactly this situation when switch-
ing to the 3.0 version of the Eclipse Integrated Development Platform. Eclipse
versions 3.0 and higher require a Java Runtime Environments of version 1.4 or
higher. This version of the Java runtime environment already includes an XML
library. A plug-in that we depended on, however, required an older, incompatible

version of the Xerces XML parser. Since the two XML libraries could not co-
exist in a single application we either had to stick to an older version of Eclipse
or not to use the plug-in [2, 1]. Unfortunately, neither choice was an option.

The basic reason for this type of problem is that the Java programming
language does not allow to have more than one version of an element with the
same name. The standard mechanism to sidestep this dilemma is the use of
Java class loaders. Class loaders are responsible to find and load classes and can
allow individual modules and plug-ins to run within their own sandbox [11] and
thereby to protect a software system from buggy or malicious code [7].

The drawback of this approach, however, is that it further complicates Java’s
class path mechanism since every component or plug-in to be used in the soft-
ware system now has to provide its own class path setting and to many users
it is unclear which jar file should be put into the class path of which module.
Putting a jar file into the class path of the parent application has the advantage
that modules can share the same jar file and hence it only has to be loaded into
memory once, thus conserving memory. However, if different modules depend
on different versions of a jar file, they cannot be put into the parent applica-
tion’s class path but instead need to be put into the class path of the individual
modules. Worse, if some version has been put into the parent application’s class
loader there is typically no way to identify this issue, instead the application
fails unexpectedly during run-time.

In this paper, we present the Babel Versioning Management System that
solves the above problems. Section 2 presents some background information of
what kind of versioning information is currently provided by the Java program-
ming language. In Section 3, we give an overview of the Babel Version Manage-
ment System, which is our solution to that problem. In Section 4, we explain the
implementation and in Section 5 the evaluation results of Babel. We compare
our work to related work in Section 6 and draw our conclusions in Section 7.

2 Background

The Java programming language provides some support to ensure backwards
compatibility by allowing developers to deprecate methods allowing software
developers to gradually upgrade their components [8, 12]. This approach, how-
ever, only works as long as user’s of third party component’s manage to get hold
of a newer version of the component before the deprecated method has been
finally removed.

Deprecating methods, however, only warns developers of methods that are
going to be removed. Removing methods is not the only modification that can
cause software to break. If a method is added to an interface, every software
component that implements that interface needs to be changed as well. Again,
this is only possible of the software component’s source code is available.

The developers of the Eclipse Software Development Kit [6] addressed this
issue by ensuring that interfaces are never modified. If an interface needs to be
extended, a new interface either extending or replacing the original interface

ITextViewerExtension5

ITextViewerExtension3

ITextViewerExtension ITextViewerExtension2

ITextViewerExtension4

Fig. 1. The org.eclipse.jface.text.ITextViewerExtension Interfaces.

class SomeDocumentProviderExtension implements

ITextViewerExtension , ITextViewerExtension2 ,

ITextViewerExtension4 , ITextViewerExtension5 {

...

}

class SomeDocumentProviderUser {

...

ITextViewerExtension viewer = someObject .getViewer ();

((ITextViewerExtension2)viewer). doThis ();

((ITextViewerExtension5)viewer). doThat ();

...

}

Fig. 2. Using the ITextViewerExtension Interfaces.

is used. In order to achieve unique names, newer interfaces are suffixed with
numbers (Figure 1). Sometimes a higher numbered version completely replaces
the older version or covers an additional role or perspective of that class. In the
latter case newer interfaces extend older interfaces.

An example for this can be found in the declaration of extension points
that had to provide more and more functionality with each new version (Fig-
ure 1). The implicit assumption is that the latest implementation implements
all interfaces such that the programmer can be sure that it is possible to cast
a Name-object to a Namen -object as shown in Figure 2. Newer code then can
refer to higher numbered interfaces while older code continues to refer to a lower
numbered or unnumbered original version of the interface.

As can be seen, if this step is repeated a couple of times it becomes cumber-
some, not only for the implementor but also for the user of these interfaces. This
approach requires lots of distinctions, type checks using instanceof, and type
casts in the code, and hence reduces the code’s readability, clarity, the program-
mer’s oversight, and thus is prone to errors. Another downside is that methods

can never be removed nor their signatures changed, i.e. even if the internals of
some classes change, all historic methods have to be maintained. Additionally,
this approach only works if all the external libraries that the code depends on
follows the same approach.

Java archives (jar files) provide some simplistic version information on a
per package level. That is, the manifest file of the jar file may specify a title,
version and vendor of any package provided by the jar file. Information about
a given package can be requested using Package.getPackage(packagename). This
approach, however, has several shortcomings:

– It allows developers only during run-time to query whether a given package is
available in a specific version. Hence, we cannot statically determine whether
the system is configured correctly.

– The isCompatibleWith("version") method only returns whether the provided
version number is larger assuming backwards compatibility which is not
always the case. Unfortunately, backwards compatibility is only guaranteed
if the interfaces provided by a component never change.

– Java’s version management assumes that there is a one-to-one mapping be-
tween package names and modules which is not always the case. If two jar
files contain classes pertaining to the same package, the version information
provided by the jar file loaded first overrides the version information for the
same packages in the other jar file.

These shortcomings show that the version information provided by the man-
ifest file does not help to resolve the name clash if two different versions of the
same module need to be loaded. It allows the application to identify a version
conflict but it does not provide a solution to resolve it.

Before we describe, how different class loaders can solve the versioning prob-
lem, let us have a look at a large software system that has been extended using
plug-ins. Figure 3 shows an application that uses the software component xyz.
Additionally, the application has been extended with PlugIn1 and PlugIn2. These
plug-ins use the components bar and foo. PlugIn2 itself has been extended with
PlugIn3 (using the component bar) and PlugIn4. If all of the plug-ins use the
same versions of the respective components, there is no problem at all. How-
ever, if PlugIn1 and PlugIn2 use different versions of software component foo,
the application will not execute correctly.

Class loaders provide a separation of namespaces by allowing multiple pack-
ages or classes with the same name to exist within different class loaders, hence
preventing name collisions and avoiding that elements with the same name but
different versions can refer to each other.

The aim of class loaders is usually to enforce a tree-shaped visibility struc-
ture [7] like the example shown in Figure 3, where elements within PlugIn1

and PlugIn2 cannot see (or refer to) any element that is part of the other but
both see the BaseApplication. This allows both plug-ins to contain a different
version of element foo without interfering with each other. Likewise PlugIn3, a
child plug-in of PlugIn2, can contain an element bar which does not interfere

xyz

bar

foobarfoo

PlugIn1 PlugIn2

PlugIn3 PlugIn4

BaseApplication

Fig. 3. Classes with Visibility

Base App. apps/base:apps/sharedlib:libs/xyz

PlugIn 1 apps/bin/plugin1:libs/bar-1.0:libs/foo

PlugIn 2 apps/bin/plugin2:libs/foo

PlugIn 3 apps/bin/plugin3:libs/bar-2.0

PlugIn 4 apps/bin/plugin4

Table 1. Sample Class Path Setting

with the element bar inside PlugIn1. And all elements can, for instance, refer
to the element xyz in the BaseApplication but there cannot be another xyz in
any other plug-in.

Strongly associated with the above namespaces is the Java classpath issue.
Since different element versions must be loaded from different files one must
make sure, that the code belonging to each subtree is searched for and loaded
from a specific, corresponding location in the system’s file space.

In the above example the search path for files of the different class loaders is
shown in Table 1. As can be seen from this simple example this approach very
much complicates Java’s class path mechanism since every module or plug-in to
be used in the system has to have its own well-defined class path setting and to
many users it is unclear which jar file should be put into the class path of which
module and in which order.

Putting a jar file into the class path of the base (or higher up) has the
advantage that plug-ins can share the same file and hence conserve memory by
loading it only once into memory. This is possible since a class loader before
loading a class should check whether its parent class loader already provides the
class [18]. This approach, however, has several disadvantages:

– If different modules depend on different versions of the jar file, these cannot
be put into the parent application’s class path but rather need to be put
into the class path of the individual modules.

– If an identically named element is already present in the parent parent ap-
plication’s class loader (e.g., if the BaseApplication had already loaded a
version of bar), then other libraries (e.g., PlugIn1 and PlugIn3) would later
not be able to load their required version of the library and thus one or even
both of them may fail unexpectedly during runtime.

– If PlugIn1 uses a class from the BaseApplication which triggers the loading
of a new class then (for security reasons) this new class will be loaded with
the class loader of the base application. This can be cumbersome if the newly
loaded class needs to cooperate with any of the software components loaded
using PlugIn1’s class loader.

– Additionally, using different class loaders works fine if the plug-ins implement
interfaces defined by the base application as is typically the case for plug-ins.
However, if the interfaces were defined as part of PlugIn1 and PlugIn2 (which
would be the case if they were nested software components), their interfaces
would be loaded with the base application’s class loader, unless we split up
their jar files manually.

Unfortunately, there is no practical way to identify the above issues in ad-
vance (e.g. by doing statical or load time checking) and generically solving the
naming conflicts. In fact this entire topic is complicated enough that entire pa-
pers such as [17] have been written about it.

In [4], Corwin et al. present an approach that tries to address these issues.
Their approach is based on using a separate class loader for each module to be
loaded. If a class requests another class to be loaded, the class loader checks
which class is trying to load the class and whether it is responsible to load the
class. If not, it locates the appropriate class loader which is achieved by a table
of the class loaders and the modules they are responsible for.

Their approach not only checks the parent class loader as recommended by
Sun Microsystems but also other class loaders. Hence, this approach requires
the class loaders to be aware of each other so that a class can be loaded by the
class loader defined for the module the class belongs to and not by the class
loader of the class accessing this class for the first time. As a consequence, this
implementation cannot deal well with the not so rare case that a plug-in comes
with its own class loader. This class loader would not have any knowledge about
the other class loaders and hence would interfere with their operation.

This and all previous scenarios above are handled nicely by our Babel Class
Loading System.

3 The Babel Version Management System

The Babel version management system resolves version conflicts by transparently
renaming the involved components instead of using different class loaders for
loading the different components. In order to identify such version conflicts, our
Babel system makes use of meta-data that describe the components, their version
numbers, and their dependencies. This version information can be provided as

babel.v0.com.apache.xerces.*

BaseApplication

Component1

Java Archive

babel.v1.com.apache.xerces.*

Xerces 2.6

Xerces 2.3
Dependency

Rewrite org.apache.xerces.* toRewrite org.apache.xerces.* to

Fig. 4. An Application Using Different Versions of the Same Library

part of a separate configuration file as used in [4] or derived automatically from
a jar file’s manifest file [19]. Both approaches have their respective advantages.

Based on the version information, Babel can identify whether two different
components (plug-ins, or modules) depend on different versions of the same
component. Whenever this is the case, Babel renames the conflicting components
and rewrites all the components making use of the conflicting component. This
way, it does not matter whether a plug-in depends on a different version of a
component than its base application.

To illustrate our approach, Figure 4 shows a simple application and its de-
pendencies. The base application depends, say, on version 2.6 of the Xerces XML
parser and on a Component1 which depends, say, on Xerces version 2.3 and due
to some incompatibilities cannot use Xerces 2.6. Since version 2.3 and 2.6 of
the cannot both be loaded by the Java’s main class loader. In this case, Babel
would rewrite the package names of the different implementations so that they
no longer collide. This is also shown in the figure.

Once Babel has analyzed the dependency description, it starts loading the
classes. In our example, it first loads the base application’s classes and rewrites
them in such a way that all package references to the library in question are
renamed from org.apache.xerces to babel.v0.org.apache.xerces. Similar,
all classes of version 2.3 of the Xerces library are renamed the same way as
soon as they need to be loaded by the base application. In order to avoid
name clashes, all references in Component1 to Xerces (version 2.6) classes are
also renamed. Here the package name is changed from org.apache.xerces to
babel.v1.org.apache.xerces and all the classes of version 2.6 of the Xerces
library are renamed the same way when they are loaded.

Components can be either rewritten offline or on demand while they are being
loaded. In the former case, all of the components used by the system need to be
known a-priori. Otherwise our version management system would not be able to
identify the components whose names are to be rewritten. Hybrid approaches
are also conceivable as well as other tricks or optimizations.

If the components are to be rewritten on-demand, the application has to be
loaded using Babel. Babel is necessary to intercept Java’s class loading mecha-
nism in order to rewrite the class files. How this is being accomplished will be
presented in the next section. If a conflict between classes of different components
is detected (e.g., due to the need to use a different but incompatible version of
a component), our class loader assigns a new and unique name to the classes in
question and adapts the references in all classes referring to the renamed classes.
This even works if there is already a version of that library with the same name
loaded and active in the current system.

Given a flexible specification (e.g. some form of mapping language) one can
rename arbitrary elements at different levels of granularity: entire packages, in-
dividual classes or subsets of classes, even individual methods or fields only, or
any mixture thereof.

4 The Implementation of Babel

For the purpose of Babel, we liberally define a component as a jar file. Babel uses
the jar file’s manifest file in order to identify the component’s version number
and subsequently operates on the bye code of the jar file’s classes. An alternative
implementation might have been to operate on the source code but as we have
said before we assume that this is not always available.

The classes are renamed in a way such that the different versions of a given
class can coexist with each other. Instead of renaming the actual class names,
Babel renames the package names. This way it can ensured that the rewritten
name does not accidentally overlap with another name by reserving a namespace
below, for example, the namespace com.ibm.babel.

Before we present the detailed implementation of our approach, we give a
brief overview of the layout of Java class files. A more detailed presentation of
the Java class file format can be found in [12].

4.1 Java’s Class File Format

The layout of Java class files is depicted in Figure 5. A Java class file first starts
with a magic number indicating that this is a Java class file, followed by the
minor and major version number of the Java Virtual Machine for which the file
is valid. After that the class file stores the constant pool, the access rights for
the class defined and the indices of this and the super class within the constant
pool. Finally, the class file contains the interfaces implemented by the class, the
fields and methods it provides and a set of attributes pertaining to the class.

Constant Pool The constant pool contains all the constants that are used
within a Java class file. This includes all the strings, class names, interface
names, field names, method names. Hence, if we want to rename the name
of a class or a method, we only need to identify the respective entry inside
the constant pool and change it.

CLASSFILE := magic minor major CONSTANTS access this super

INTERFACES FIELDS METHODS ATTRIBUTES

CONSTANTS := constcount (CONSTANT)*

CONSTANT := tag_class name | tag_fieldref class name_type |

tag_methodref class name_type |

tag_ifmethodref class name_type |

tag_string content | tag_int int |

tag_float float | tag_long long |

tag_double double | tag_name_type name type |

tag_utf utf

INTERFACES := ifcount (interface)*

FIELDS := fldcount (access name desc ATTRIBUTES)*

METHODS := methcount (access name desc ATTRIBUTES)*

ATTRIBUTES := attrcount (name attrlen (byte)*)*

Fig. 5. Format of a Java Class File

Interface Section This section contains one index into the constant pool for
each interface implemented by the class.

Field Section The field section contains all the fields of the class. Each field is
described using an access flag, an index into the constant pool for the name
of the field, another one for the description of the field (i.e., the type), and
finally a set of attributes pertaining to the field. The attributes are stored
in the same format as the class attributes (see below).

Method Section The method section looks like the field section except that it
describes methods of the underlying class instead of fields.

Attribute Section The attribute section contains a number of attributes each
having an index into the constant pool describing the name of the attribute,
a length field and then length bytes describing the attributes. The format of
the attribute depends on its name. Using this attribute section, Java class
files can be extended with additional information not available in earlier
versions of Java’s Virtual Machine without confusing earlier versions of the
JVM.

An excerpt of the constant pool of a simple Java class implementing the Sieve
of Eratosthenes is shown in Figure 6. For instance, the Sieve class itself is stored
at index 7, other classes referenced by the Sieve class are stored at indices 2,
7, 12, and 28. Constants are referenced by the byte-code of a class using their
respective indices. The byte-code of a sample method is shown in Figure 7.

4.2 The Babel Class Loader

Our Babel Version management system uses the manifest file to identify if dif-
ferent versions of the same component are being required. The manifest file is
typically packaged as part of a Java archive and stores among other things the
name, version, and vendor of the specification implemented by the Java archive.

1(methodref): class=#28 , name_type =#58

2(class): name =#59

4(fieldref): class=#7, name_type =#60

7(class): name =#64

9(methodref): class=#7, name_type =#67

12(class): name =#71

28(class): name =#88

29(UTF): sieve

30(UTF): [B

31(UTF): <init >

32(UTF): (I)V

39(UTF): Lcom /ibm/sample/sieve/Sieve;

42(UTF): Lcom /ibm/sample/primes/Primes;

53(UTF): ()V

58(name_type): name =#31 , type =#53

59(UTF): com/ibm/sample/primes/Primes

60(name_type): name =#29 , type =#30

64(UTF): com/ibm/sample/sieve/Sieve

67(name_type): name =#31 , type =#32

71(UTF): java /lang / StringBuffer

88(UTF): java /lang /Object

Fig. 6. Part of the Constant Pool of a Simple Java Class

public byte [] getSieve () {

// 0 0: aload_0

// 1 1: getfield #4 <Field byte [] sieve >

// 2 4: areturn

}

Fig. 7. The Byte-Code of a Sample Method

The manifest file, however, does not provide a standardized way of defining
the Java classes and versions that it depends on. In order to store this informa-
tion, we use the user-defined field Depends-On. This field stores the name of the
specification and version number that the Java archive depends on. If multiple
entries need to be specified, they may be separated using a semi-colon. A sample
such manifest file is shown in Figure 8.

Once the conflicting components are being identified, it rewrites the classes
to use one package name for the classes of one version of a component and
another, different, package name for another version of the same component.
Thanks to Java’s simple class file structure all the above can be implemented in
a straight forward manner by simply changing the strings identifying the class
names within the class files’ constant pools.

Manifest -Version : 1.0

Specification -Title: Sieve

Specification -Version : 1.0

Specification -Vendor : IBM

Main -Class: com.ibm.sample.sieve.Sieve

Depends -On: Primes /1.0

Fig. 8. A Sample Babel Configuration File

Figure 8 shows a Java archive that relies on version 1.0 of the Primes com-
ponent. If another part of our application relies on version 2.0 of the Primes
component, Babel renames all the references to any com.ibm.sample.primes.*

class. However, Babel also needs to keep track of these renamings because at
one point in time, the Java Virtual Machine will try to load the renamed class
and then, Babel needs to identify the component to which the class belongs to.

4.3 Reflection

One of the drawbacks of the babel class loader is that in its current version
it does not deal well with all forms of reflection. That is, if a program uses
reflection in order to create or access classes from a given library, there might
be a problem. We believe, however, that these problems do not occur for a
typical software product and can be fixed in most cases by also instrumenting
the reflective code. A frequent use of reflection is for the emulation of a kind of
method pointers since Java does not provide this language feature. Code that
makes use of this typically looks as follows:

Class c= anObject .getClass ();

c.getMethod (methodname). invoke (...);

Code like the above, fortunately, poses no problem with our Babel class loader
because Babel does not change the name of methods.

A situation that can pose some problems, however, is if code that has been
renamed tries to get hold of the class name of an object as illustrated in the
following:

System.out.println(anObject .getClass (). getName ());

Such code frequently occurs in log statements. This line prints out the rewrit-
ten name instead of the original name. In many cases this might actually be de-
sirable, since it allows developers that are looking at the log files to distinguish
between the versions of the library used. Of course there might be some cases
where this may lead to problems, for instance, if the name of the class is bound
to some external entity or property and an exact match of the class names is
required.

A similar problem occurs if developers use Class.forName("pkg.Class1") to
instantiate a class. In this case, the Babel class loader, depending on the con-
figuration, would either load another instance of the Class1 of either version of

the library or would throw a ClassNotFound exception. The former case might in
some cases be desirable. To solve this problem, we provide an option that allows
the replacement of the class name in any kind of string which we assume works
fine in most cases but cannot be guaranteed to always work.

A solution to the above problem is to rewrite all calls to the getName and
forName methods and rewrite the renamed class name to the original class name
(and vice-versa) as necessary. This way we can guarantee correct behavior as
long as the programmer does not use reflection in order to invoke these methods
in order to get hold of a method name. If necessary, however, this problem can
be solved by wrapping the Class class and rewriting the code to call our Class

wrapper instead of the original Class class.

4.4 User-Defined Class-Loaders

A problem that we have not tackled yet are user-defined class loaders. If a class
makes use of such a class loader, without any precautions, it would circumvent
our Babel Version Management System. Since every class, however, is being
loaded using Babel, we can identify if a custom class loader is being loaded.
As soon as this is the case, we can wrap the class loader’s findClass and make
sure that before the class loader defines the class any references to external
components are being adapted as necessary.

5 Evaluation

In order to evaluate the Babel Version Management System, we have imple-
mented a simple application which we used for our evaluation. This applica-
tion uses a component that implements the Sieve of Eratosthenes which uses
version 1.0 of a Primes component and another component that counts prime
numbers which uses version 2.0 of the same Primes component. Additionally, we
assume that the sieve, prime counter, and Primes components are third party
components that have been packaged within a Java archive.

Since we do not have the source code of the components, we cannot change
their code in order to load each individual component using a separate class
loader as would be required by MJ [4]. Similarly, loading the sieve and Primes
components using a custom class loader is not an option either since this would
not allow us to access their functionality other than using reflection or wrapping
them with our own interfaces. This makes this application a perfect use case for
our Babel Versioning System.

Since Babel, needs to identify the component dependencies, we had to put
the dependency information into the manifest file of the components. This can be
achieved easily, even with third party components: one simplys unpack the Java
archive, adds the required Depends-On line as shown in Figure 8 and repackages
the Java archive.

For our first experiment, we assumed the availability of the complete depen-
dency information. That is, every manifest file listed the components it depended

on. Once the dependencies had been set up, we had to instruct the Babel class
loader to run the application as follows:

String classpath ="...";

String mainClassname =" com.ibm.sample.BaseApp ";

BabelClassLoader babel=new BabelClassLoader (classpath);

babel.run(mainClassname , new Object []{ new String []{}});

After looking up the main class, Babel analyzed the manifest file, and the
dependency information and successfully reserved new namespaces for the indi-
vidual components used by our application. Our only complaint is that we have
been a bit to active in creating new namespaces for the components. That is,
the package name of every component was rewritten into a new package name
in order to ensure uniqueness. In our next version, we plan to put components
into a new namespace only, if one of their class names collides with a class name
present in another component.

In our next experiment, we assumed that only the dependency information of
the sieve and prime counter components were available. Again, Babel successfully
managed to run the components. In order to locate the classes of the sieve
and prime counter components, Babel fell back to using Java’s mechanisms of
locating classes but once Babel identified that these components depended on
another component, it set up a new namespace for these components and located
them not only using the class name but also using their version numbers and
subsequently changed their package names into a new and unique one.

Finally, we wanted to get a rough estimate of the overhead posed by our
Babel class loader (Table 2). In order to compute the overhead, we implemented
our example a second time where we used different package names for the two
prime number components. In the first run, we wanted to see the pure overhead
caused by our class loader. In the second run we wanted to see how the overhead
changes when the application performs some computations.

With Babel Without Babel
First Run (only class loading) 275ms 29ms
Second Run (full execution) 1107ms 856ms

Table 2. Overhead Imposed by Babel

As shown in Table 2, the absolute overhead added by Babel did not increase.
This is not surprising, since the only overhead added by Babel is when a new
class is being loaded due to the renaming of the package names. During runtime,
the length of the package names, under most circumstances, is irrelevant since
Java refers to the classes via references and their indices in the constant pool.

Our application consisted of 6 classes that needed to be renamed. This makes
a per-class overhead of 40ms. In a large application, this may pose some overhead
during the application’s startup when a large number of classes needs to be

renamed. On the other hand, our current implementation has not been optimized
at all; it iterates sequentially through all the namespaces in order to determine
the jar file to which a class belongs. And for rewriting the classes, it iterates
again through the list of classes to be rewritten for every entry in the constant
pool. Clearly, there is room for optimization.

6 Related Work

Several other approaches exist that use multiple class loaders in order to solve
the versioning problem such as MJ [4], or Websphere’s graph class loader [9].
These approaches are based on using a separate class loader for each module
to be loaded. Their solution, however, requires the class loaders to be aware of
each other so that a class is loaded by the class loader defined for the module
the class belongs to and not by the class loader of the class instantiating it (i.e.
accessing that class for the first time). As a consequence, their implementation
cannot deal well with user-defined class loaders, a case which is handled by our
Babel System. Additionally, in order to use Websphere’s graph class loader, an
application has to be modified in order to internally make use of the class loaders
whereas Babel only requires the application to be loaded using the Babel class
loader.

Whether MJ or our approach is superior depends on the application domain.
If an application makes already use of class loaders in order to load plug-ins or
EJBs, such as application servers, it might be more beneficial to retrofit it to
use MJ because it allows modules to be unloaded. On the other hand, if the
system with all the components loaded is intended to run forever, our approach
is superior.

A different approach is taken by Jiazzi [13] and MultiJava [3] that both
support open classes. Instead of allowing different versions of the same class to
be loaded, Jiazzi supports the addition of features to classes without editing
their source code. Hence, using their approach, any new method that has been
added to an interface, could be added to the classes implementing that interface.
Providing an implementation for such method, however, requires at least some
basic knowledge about the component to be extended.

The versioning problem is not new, and has already been addressed by ear-
lier programming languages such as Ada [10] or Modula-2 [22]. Their techniques
never really took off on a larger scale, probably because they required corre-
sponding language runtime support and failed as soon as code and libraries from
different origin and/or written in different languages came together. Another rea-
son may have been, that the approach used by many Modula-2 compilers was too
rigid. For instance, if the name of a parameter within an interface was changed,
the interface was considered to be of a different version and hence every module
making use of that interface had to be recompiled. Using different versions of a
module was not supported.

The versioning issue is not only an issue of programming language but of
computing environments in general. In [20], Vinoski describes that several state-

of-the-art middleware environments such as COM and CORBA are lacking any
decent versioning support.

An exception seems to be the .NET environment [21, 15, 14]. .NET provides
side-by-side execution with strong version support via mechanisms such as strong
assembly names (which include the version number), full and partial assembly
references, configuration files, including an application configuration file, pub-
lisher policy file, and machine configuration file plus a CLR (common language
runtime) and an execution environment which enforces these versioning policies.

On the operating system level, most systems provide some degree of version-
ing support, but mostly on a coarse-grained library basis. Component versions
are typically checked by installation or package managers which provide different
levels of install-time dependency and version checking. Some are pretty elaborate
and their checks include dependency tree analysis based on version number and
hashes or checksums of all involved libraries [16, 5], others only rely on rather
unsafe methods like file naming conventions.

7 Conclusions

Our approach allows several different versions of the same class to be loaded
into the same Java Virtual Machine without requiring any changes to the ap-
plication’s source. The only requirement is the availability of the dependency
information of the dependency graph inside the manifest file or within an ex-
ternal configuration file. As we have shown, however, adding this information to
the manifest file is straight forward and can even be done for third party Java
archives.

Unlike other approaches, our approach solves the versioning problem by load-
ing the application with our class loader that transparently rewrites the package
names of conflicting elements during loading such that their names no longer
clash. The advantage of our approach is that we do not have to modify any third
party components in order to resolve any versioning conflicts.

The only environment that seems to address the versioning problem prop-
erly seems to be Microsoft’s .NET platform, at least when we talk about code
libraries on a single system and for code that is based on the .NET runtime.
A standardized general solution for open environments, however, is still badly
lacking! For the Java platform, our Babel Version Management system is the
first step towards this direction.

References

1. John Arthorne and Chris Laffra. FAQ108 in Official Eclipse 3.0 FAQs. http:

//www.eclipsefaq.org/chris/faq/html/faq108.html, 2004.
2. John Arthorne and Chris Laffra. Official Eclipse 3.0 FAQs. Addison-Wesley, June

2004.
3. Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein. Multijava:

Modular open classes and symmetric multiple dispatch for java. In Proceedings of

the 15th ACM SIGPLAN Conference on Object-Oriented Programming, Systems,

Languages, and Applications, pages 130–145. ACM, October 2000.
4. John Corwin, David F. Bacon, David Grove, and Chet Murthy. MJ: A rational

module system for java and its applications. In Proceedings of the 18th ACM

SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and

Applications, pages 241–254. ACM, October 2003.
5. Eric Foster-Johnson. RPM Guide. RedHat, 2005. http://fedora.redhat.com/

docs/drafts/rpm-guide-en/.
6. The Eclipse Foundation. The Eclipse Software Development Kit, 2005.
7. Li Gong. Secure Java class loading. IEEE Internet Computing, 2(6):56–61, Novem-

ber/December 1998.
8. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Spec-

ification. Addison-Wesley, 3rd edition, June 2005.
9. IBM. Websphere. http://www.ibm.com/software/websphere/.

10. ISO/IEC. Ada Reference Manual: Language and Standard Libraries, 2000.
ISO/IEC 8652.

11. Sheng Liang and Gilad Bracha. Dynamic class loading in the Java virtual ma-
chine. In Proceedings of the 13th ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications, pages 36–44. ACM, 1998.
12. Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-

Wesley, 2nd edition, April 1999.
13. Sean McDirmid, Matthew Flatt, and Wilson C Hsieh. Jiazzi: New-age components

for old-fashioned java. In Proceedings of the 16th ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages, and Applications, pages 211–
222. ACM, November 2001.

14. Microsoft Corporation. .NET Framework Developer’s Guide: Assembly Ver-

sioning, 2005. http://msdn.microsoft.com/library/en-us/cpguide/html/

cpconassemblyversi%oning.asp.
15. Microsoft Corporation. .NET Framework Developer’s Guide: Using Side-by-Side

Execution, 2005. http://msdn.microsoft.com/library/en-us/cpguide/html/

cpconside-by-sidee%xecution.asp.
16. Microsoft Corporation. Platform SDK: Windows Installer, 2005. http:

//msdn.microsoft.com/library/en-us/msi/setup/windows_installer_sta%

rt_page.asp.
17. Rick Robinson. Developing and Deploying Modular J2EE Applications with

WebSphere Studio Application Developer and WebSphere Application Server.
IBM, June 2002. http://www.ibm.com/developerworks/websphere/library/

techarticles/0206_r%obinson/robinson.html.
18. Alan Sommerer. The java tutorial: The extension mechanism. Technical report,

Sun Microsystems, 2005.
19. Sun Microsystems. Jar file specification. http://java.sun.com/j2se/1.4.2/

docs/guide/jar/jar.html, 2005.
20. Steve Vinoski. The more things change. . . . IEEE Internet Computing, 8(1), Febru-

ary 2004.
21. Damien Watkins, Mark Hammond, and Brad Abrams. Programming in the .NET

Environment. Addison-Wesley, 2003.
22. Niklaus Wirth. Programming in Modula-2. Springer-Verlag, 2nd edition, April

1983.

