

RZ 3645 (# 99655) 01/18/2006
Electrical Engineering 6 pages

Research Report

Distributed Crossbar Schedulers

Cyriel Minkenberg, François Abel

IBM Research GmbH
Zurich Research Laboratory
8803 Rüschlikon
Switzerland
sil@zurich.ibm.com

Enrico Schiattarella

Dipartimento di Elettronica
Politecnico di Torino
Corso Duca degli Abruzzi 24
10129 Torino
Italy
enrico.schiattarella@polito.it

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its dis-
tribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies (e.g., payment of royalties). Some reports are available at
http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research
 Almaden • Austin • Beijing • Delhi • Haifa • T.J. Watson • Tokyo • Zurich

Distributed Crossbar Schedulers
Cyriel Minkenberg, François Abel

IBM Research, Zurich Research Laboratory
Säumerstrasse 4, 8803 Rüschlikon, Switzerland

sil@zurich.ibm.com

Enrico Schiattarella
�

Dipartimento di Elettronica, Politecnico di Torino
Corso Duca degli Abruzzi 24, 10129 Torino, Italy

enrico.schiattarella@polito.it

Abstract— The goal of this work is to enable distributed
(multi-chip) implementations of iterative matching algorithms
for crossbar-based packet switches, as opposed to the traditional
monolithic (single-chip) ones. The practical motivation for this
effort is the design and implementation in FPGAs of a scheduler
for a 64-port optical crossbar switch. Sizing experiments show
that the scheduler logic must be distributed over multiple
devices, which introduces a number of new challenges. Most
importantly, the physical distances introduce latencies that exceed
the timing requirements, and the separation of logical units
prevents shared access to status information. We consider three
levels of distribution, and present techniques to mitigatethe
consequences of specific distribution levels. The performance
results obtained via simulation show that, using these methods,
a distributed scheduler can achieve a performance close to that
of a monolithic scheduler, even with large internal latencies.

I. I NTRODUCTION

Input-queued (IQ), crossbar-based switching architectures
have emerged as a popular choice for the development of high-
performance network switches and routers, largely because
they offer a combination of good performance and practicality.
These features also make them an attractive choice for other
application domains, such as storage area networks (SANs)
[1] and high-performance computing (HPC) interconnects [2],
[3]. These applications call for a large number of ports, high
line rates, and low latency.

IQ switches usually operate on fixed-size data units called
cells. Input buffers are organized as virtual output queues
(VOQs) to avoid Head-of-Line (HOL) blocking. A critical
component of the switch is the scheduler, which at every
time slot computes a matching between inputs and outputs
and configures the crossbar. As the known optimum match-
ing algorithms are not practically feasible, heuristic, parallel,
iterative matching algorithms are typically employed. These
algorithms employ

��
independent selectors (also referred to

as arbiters in [4]–[6]) at the inputs and the outputs. These
selectors perform one-out-of-

�
selections using, e.g., random

or round-robin policies.
Despite extremely high-density CMOS technologies, the

scheduler complexity quickly exceeds single-chip implemen-
tation limits as the number of ports

�
grows. The imple-

mentation is limited by gate count, pin count, I/O bandwidth,
and wiring, owing to the high degree of connectivity between

�
This work was performed while the author was at the IBM Zurich

Research Laboratory, Rüschlikon, Switzerland.
This research is supported in part by the University of California under

subcontract number B527064.

the input and output selectors. In addition to managing com-
plexity, a distributed implementation spreads the overallpower
dissipation over more devices, thus eliminating hot spots.

The main contribution of this work is a set of techniques
that allows multi-chip implementations of such matching al-
gorithms, enabling the construction of schedulers for large
switches, while achieving a level of performance that is close
to that of a monolithic implementation.

Section II recalls the most important iterative algorithms
and their properties. Section III discusses the challengesthat
must be mastered to enable a distributed implementation, and
Section IV presents a novel technique to achieve this goal.
Section V discusses support for multiple iterations. Section
VI shows simulation results that demonstrate the level of
performance attainable with such a distributed implementation.
Finally, we conclude in Section VII.

II. I TERATIVE MATCHING ALGORITHMS

Sequential schedulers such as RPA [7] and RRGS [8] are
inherently suitable for distribution, because they let inputs
independently add edges to a circulating matching. These
schemes can be pipelined to produce a matching at every time
slot, but they suffer from a major drawback: they impose an
average pipeline latency of

���
time slots, which increases

further if inputs schedulers are physically distributed. Thus,
they are not appropriate for the applications we are targeting,
which demand both low latency and high port count. There-
fore, only parallel iterative matching algorithms such as�-SLIP
[4], FIRM [5], and DRRM [6] are considered here. These are
widely used owing to the key advantages they offer:

1) High performance: More precisely, they guarantee 100%
throughput under uniform uncorrelated traffic with a
single iteration. Additional iterations significantly reduce
the mean latency.

2) Fairness: They ensure that under any traffic pattern any
nonempty VOQ receives service within finite time.

3) Practicality: Although a total of
��

selectors (one per
input and one per output) is required, these selectors op-
erate independently and in parallel. Thus, high matching
rates can be achieved. Moreover, the selectors are readily
implemented in fast hardware [9].

A. Two- vs. three-phase algorithms

Iterative matching algorithms can be classified into two- and
three-phase algorithms according to the number of steps per
iteration. In three-phase algorithms, there are request, grant,

TABLE I

SIZING IN X ILINX V IRTEX-II-PRO (SPEED GRADE-6), FROM [2].

input + output selectors only output
selectors�

4 8 16 32 48 52 64 64
slices 266 1K 4,5K 15K 35K 41K — 31K
% 0.60 2.43 10.3 34.1 78.6 93.8 — 69
#nets 2K 8K 34K 115K 264K 317K — 249K

and accept steps in every iteration. In the request phase, every
input sends a request to every output it has at least one cell
for. In the grant phase, every output independently selectsone
request to grant. As these decisions are independent, multiple
outputs may grant the same input. Therefore, in the third
phase, every input selects one grant to accept. Two-phase
algorithms, on the other hand, comprise only a request and a
grant phase. In the request phase, every input sends a request to
one output for which it has at least one cell. In the grant phase,
every output independently selects a request to grant. Because
every input can receive at most one grant, there is no need for
an accept phase, i.e., every grant is automatically accepted. �-
SLIP and FIRM are three-phase algorithms, whereas DRRM
is a two-phase one.

These algorithms are pointer-based, meaning that input
and output selections are based on a prioritized round-robin
mechanism, i.e., the input (output) selector chooses the first
eligible output (input) starting from the position indicated by
a pointer. The pointer-update policy is a crucial characteristic
of each algorithm and must be chosen carefully to guarantee
performance and fairness. The update policies employed by
these algorithms share a common trait: once a connection
becomes highest priority, it will be given precedence over the
other competing ones until it is established. In�-SLIP this is
achieved by having an output grant the same input (in the
first iteration) until the grant is accepted. In DRRM, on the
contrary, an input will keep requesting the same output (in the
first iteration) until it receives a grant. This feature guarantees
fairness and leads topointer desynchronization[10], i.e., it
assures that under heavy traffic (when all VOQs are nonempty)
each output grants a different input (�-SLIP) or each input
requests a different output (DRRM). When this happens, there
are no conflicts and a maximum-size matching is produced in
every time slot, leading to 100% throughput.

B. Sizing experiments

This study is motivated by the implementation of a crossbar
scheduler for a 64-port optical switch demonstrator (called
OSMOSIS) with 40-Gb/s ports for high-performance com-
puting applications [2], [11]. One of the challenges in this
project is to implement a scheduler of this size and speed in
FPGA technology, which is used mainly for reasons of cost
and flexibility.

Our sizing results, shown in Table I (also previously re-
ported in [2]), demonstrate that a monolithic implementation
does not fit in the targeted FPGA device, which is the
biggest and fastest FPGA available from Xilinx at the time
of implementation, namely, the “xc2vp100-6ff1704,” a Virtex-

IS1

IS4

IS3

IS2

OS1

OS2

OS3

OS4

IS1

IS4

IS3

IS2

OS1

OS2

OS3

OS4

OS1

OS2

OS3

OS4

IS1

IS4

IS3

IS2

DL0 DL1 DL2

Fig. 1. Schematic representations of the three distribution levels. Bold lines
represent the device boundaries. IS = input selector, OS = output selector.

II-Pro series FPGA providing 8 M system gates (100 K logic
cells)1 and 1040 users I/Os.

Table I presents the sizing measurements for the uncon-
strained placement and routing of the request-grant-accept
phases of�-SLIP, based on the pipelined implementation
described in [9]. These sizing numbers only represent the
core of the algorithm without the I/O interfaces required to
convey the external requests and grants to/from the scheduler
device. The table lists the device utilization in number of
slices, percentage, and number of nets.

The device utilization results of Table I show that the largest
monolithic �-SLIP scheduler feasible in a single Virtex-II-Pro
xc2vp100 is somewhere in the range of 52�52. Therefore, we
cannot use a monolithic matching algorithm for our centralized
crossbar scheduler. Clearly, this holds for three- as well as
two-phase algorithms, as both require

��
selectors. However,

the rightmost column of Table I shows that it is feasible to
implement 64 output selectors in a single device. These results
indicate that without distribution the full scheduler cannot be
implemented.

III. D ISTRIBUTION CHALLENGES

The above sizing results call for a distributed implemen-
tation, which entails partitioning the selectors over multiple
physical devices. In a monolithic implementation, the selectors
are tightly coupled and decisions taken at the inputs are known
to the outputs (and vice versa) within the same time slot. In
a distributed implementation, in contrast, the communication
latency between physical devices starts to play a significant
role because of wire and I/O pin delays. This inter-chip
latency can amount to multiple time slots when pin sharing
or (de)serialization techniques are required to overcome the
I/O pin count limitation of current packages. This latency
implies that critical information needed, e.g. to update pointers
or issue new requests, is not available in a timely fashion.
Consequently, distribution will cause the performance and
the fairness of an iterative algorithm to deteriorate. For ease
of reference, we introduce three levels of distribution DL0
through DL2, as illustrated in Fig. 1:

DL0 Monolithic implementation: All input and output
selectors are implemented in a single device. The

1Virtex logic cell = (1) 4-input LUT + (1) flip-flop + carry logic. Virtex
slice = 2 logic cells.

implicit assumption is that the result of every iter-
ation is known globally before the next iteration is
being executed.

DL1 Separates the input from the output selectors, cre-
ating two groups of

�
selectors each, enabling

distribution over two devices.
DL2 Additionally separates the input selectors from each

other, enabling distribution over
� � �

devices.

A. Monolithic DRRM implementation

To clarify the issues that arise when selectors are distributed
and to explain our solutions, we will refer to an imple-
mentation of the DRRM algorithm. However, the techniques
we present are applicable to other two- and three-phase,
pointer-based algorithms as well. Before proceeding with the
distribution techniques, we review DRRM in greater detail.

Listing 1. C++ implementation of the DRRM matching algorithm.
1 void DRRM: : s c h e d u l e () �
2 i n t i , x , inp , outp , inpReq [N] ;
3 f o r (i = 0 ; i � I ; i ++) �
4 / / r e q u e s t
5 f o r (i np = 0 ; i np � N; inp ++) �
6 inpReq [i np] = �1;
7 i f (imatch [i np] == �1) �
8 f o r (x = 0 ; x � N; x ++) �
9 outp = (r e q P t r [i np]+ x) % N;

10 i f (omatch [outp] ==�1
11 && r e q u e s t s [i np] [outp]� 0) �
12 inpReq [i np] = outp ;
13 i f (i == 0)
14 r e q P t r [i np] = outp ;
15 break ;
16 � � � �
17 / / g ran t
18 f o r (outp = 0 ; outp � N; outp ++) �
19 i f (omatch [outp] == �1) �
20 f o r (x = 0 ; x � N; x ++) �
21 inp = (g r t P t r [outp]+ x) % N;
22 i f (imatch [i np] == �1
23 && inpReq [i np] == outp) �
24 imatch [i np] = outp ;
25 omatch [outp] = i np ;
26 i f (i == 0) �
27 r e q P t r [i np] = (outp +1) % N;
28 g r t P t r [outp] = (i np +1) % N;
29 �
30 break ;
31 � � � � � �

DRRM computes a matching in every time slot in a se-
quence of� iterations. We consider the enhanced version of
DRRM [6], which achieves lower mean latency via a modified
pointer update rule similar to that used in FIRM. The following
steps are performed in every iteration (initially all inputs and
outputs are unmatched) [6], [12]:
� Step 1: Request. Each unmatched input sends at most one

request, selecting the first unmatched, backlogged output
in the round-robin order starting from the current position
of the request pointer. In the first iteration, the pointer is
updated to point to the output just selected. The pointer is
further updated to one position beyond the output selected
(modulo

�
) if and only if the request is granted in Step

2 of the first iteration.

input status update
and selection

output selection
and status update

input
selector

output
selector

RTT
request

grant

Fig. 2. Communication round-trip time between input and output selectors.

� Step 2: Grant. If an output receives one or more requests,
it grants the one that appears first in the round-robin order
starting from the current position of the grant pointer. The
output notifies each requesting input whether its request
was granted. The pointer is updated to one position
(modulo

�
) beyond the input granted in the first iteration.

If there are no requests, the pointer remains where it is.

To facilitate the discussions that follow, Listing 1 shows
a piece of C++ code that implements the DRRM matching
algorithm in a monolithic fashion.

�
represents the number of

ports and� the number of iterations. The arraysimatch and
omatch store the port numbers that each input and output,
respectively, are matched to. They are initialized to the value
	� (i.e., unmatched) at the start of every time slot.reqPtr
andgrtPtr are the round-robin request and grant pointers,
respectively. The two-dimensionalrequests array stores the
number of requests per VOQ. The input selection (request) is
performed in lines 5–16, whereas the output selection (grant)
takes place in lines 21–31. Lines 13–14 of Listing 1 implement
the enhanced DRRM request pointer update.

B. Separating Input Selectors from Output Selectors

Physically separating the input and output selectors intro-
duces a nonnegligible round-trip time (RTT) in the commu-
nication between them, as illustrated in Fig. 2. Assuming
that this RTT is larger than the time-slot duration, there are
two major implications, which we explain with the help of
Listing 1. We assume that the RTT is symmetric, i.e., the
up- and downstream latencies are equal. Although DL2 has
been proposed before in [13], the RTT that results from this
distribution is not considered there at all.

The request decision of a given input� depends on the
position of the request pointerreqPtr[i] and is stored
temporarily ininpReq[i] (line 12). The requests made are
then considered in the grant loop (line 23). In a distributed
implementation, things are different. First, the request informa-
tion is delayed by RTT/2. Moreover, as the request pointers are
physically located at the input side, the request pointer update
(line 27) cannot be performed immediately after the grant; this
update occurs after another RTT/2, i.e., when the grant arrives
at the input selector. This has a further important consequence:
Unlike in a monolithic implementation, the requests to be
issued in the next time slot are based on pointer positions that

have not been updated according to the most recent grants.
This breaks the round-robin desynchronization mechanism,
leading to throughput limitations well below 100%.

Another consequence of the delayed availability of grant
information is that the request selector is not able to accurately
know the number of grants that are already underway. This af-
fects its request decisions: Clearly, issuing requests forVOQs
which are soon going to be empty is a waste of resources.
Sections IV-A and IV-B address the pointer-desynchronization
and latency issues, respectively.

IV. D ISTRIBUTED IMPLEMENTATION

For the moment we assume that during each time slot
only one iteration is performed. Performing multiple iterations
poses additional challenges and will be discussed in Sec. V.

A. Pointer Update Approach

Our objective is to enable physical separation of the input
and output selectors with an arbitrary RTT latency between
them, while preserving performance and fairness. The key to
achieving this is to conserve the pointer desynchronization
property. This can be accomplished by ensuring that every
pointer is updated at most once in every RTT time slots.

To this end, each input and output selector maintains a
distinct pointer for every time slot of the RTT. These pointers
are labelled����� and�� ��� for the request and grant pointers,
respectively, with

�
being the temporal index. Bypointer set

we denote the set of all pointers����� and�� ��� correspond-
ing to a specific index

�
, so there are RTT sets in total.

The traditional pointer update rules are used: Request point-
ers are only updated at the time a grant arrives (which happens
one RTT after issuing the corresponding request), whereas
grant pointers are updated immediately after issuing a grant,
because issued grants are automatically accepted.

In a given time slot
�
, each input� issues requests using

pointer ���� ��	
RTT

�
. When a request issued using a

pointer with temporal index
�

is granted, the corresponding
grant pointer�� ��� with the same index

�
is updated. At time

slot
�
 �

RTT 	 �
, the grant decision for requests submitted

at time slot
�

will arrive, so that the pointers����
� can be
updated and used again in time slot

�
 �
RTT. The output

selectors use a different pointer at every time slot in the same
way.

This pointer update policy implies that all pointer sets
evolve independently and that no pointer is ever reused before
being updated according to the result of its previous request.
Therefore, it preserves the important features of the matching
algorithm regardless of the value of RTT. In particular, every
pointer set will eventually desynchronize, resulting in 100%
throughput. Fairness is also preserved, as each input will
request the same output at least once every RTT time slots,
until it is granted.

This scheme requires RTT pointer registers (each����
bits wide) per selector. However, the combinatorial selection
logic does not have to be duplicated. Instead, every selector
employs a multiplexer to select one of the registers depending

on the temporal index. Also needed is a counter (modulo RTT)
indicating the current pointer set to be used.

B. Pending Request Counters

The VOQ status registers reside close to the input selectors.
The variablerequests[i][j] is incremented whenever a
new cell arrives for VOQ���� � and decremented whenever
a grant for VOQ���� � is received. The RTT introduced by
the distribution implies that when an input selector submits a
request, it has to wait RTT time slots before knowing whether
it was granted. In the meantime, the input selector can submit
further requests. If the number of submitted requests exceeds
the number of enqueued cells, it may happen that a slot is
reserved for a VOQ that is currently empty. In general, this is
undesirable because grants that arrive for an empty VOQ are
wasted, while there may be another cell that could have used
this time slot.

To avoid the problem of issuing too many requests for a
given VOQ, we introducepending request counters(PRCs,
labelled���) per VOQ plus a request history per input selector.
The pending request counter��� is incremented when input�
issues a request for output�. The request history����� for
input selector� is an array with RTT entries, where entry
����� indicates the output that was requested

�
time slots ago.

In every time slot, input selector� decrements��� for which
� � ���RTT 	 ��

. As a result,��� keeps track of the number
of requests per VOQ for which the results are still pending.

The input selectors use these counters to filter their requests.
Any VOQ���� � for which ��� exceeds or equals the current
VOQ occupancy is not eligible for issuing a new request,
which improves performance by preventing grants from being
wasted. The use of PRCs, while not strictly necessary for the
distribution solution proposed, is beneficial with large RTTs
and light loads or when traffic is heavily unbalanced and
different VOQs have significantly varying occupancy. Section
VI shows the performance improvement obtained by the PRCs.

V. PERFORMING MULTIPLE ITERATIONS

In a monolithic implementation, performing multiple iter-
ations per time slot significantly improves performance by
allowing more edges to be added if multiple inputs requested
the same output (or multiple outputs granted the same input
in the case of�-SLIP). In our distributed implementation the
effectiveness of subsequent iterations will be much lower,as
explained below.

In Listing 1, the matched ports are indicated by theimatch
andomatch arrays. These are updated in lines 24–25 when
a new edge is added. In the next iteration, these updated
values are taken into account in lines 7 and 10 to produce
requests for that iteration. In our distributed implementation,
these updates occur at the output side, so the input side
does not learn of them for another RTT/2 time slots; as a
consequence, the input selectors do not know which outputs
to disregard. Accordingly, requests can turn out to be use-
less, as the requested output is already matched. These are
wasted requests. In contrast, the approach of [13] assumes
global knowledge of outputs requested in previous iterations.

However, the output notification signals (free/busy) have to
propagate across all input ports before the start of the next
iteration. These output signals experience propagation delays
associated with the pin driver of the output selector, the PCB
trace and the input pin driver of the input selector. When
considering fast port rates, these propagation delays amount
to a significant part of the iteration time. Next, there are cases
where the propagation delays even exceed the cell duration,
e.g. when serialization/deserialization and re-synchronization
techniques are used to achieve a practical implementation of
the distributed system with a large number of ports.

We address this issue by adding a separate pointer
flywheel[inp] to every input selector. In the first it-
eration, a selection is made using the round-robin pointer
reqPtr[inp]. flywheel[inp] is updated to one be-
yond the output just requested, modulo

�
. In sub-

sequent iterations, the input selector is operated using
flywheel[inp] rather thanreqPtr[inp]. After every
selection,flywheel[inp] is updated to one beyond the
output just requested, modulo

�
. In this way, we make sure

that the input selector at least requests as many different
outputs as possible across the iterations, although there is no
guarantee that the outputs requested are still available. Each
input selector also keeps track of which outputs it has already
requested in the current time slot and avoids requesting the
same output more than once, as this would be useless.

PRC-based request filtering, as described above, ensures that
the number of wasted grants is minimized. On the other hand,
overly conservative filtering can be detrimental: Once the
filtering condition is met, a new request can only be submitted
when the result for the oldest in-flight one is received. This
can introduce gaps in the request pipeline and therefore cause
unnecessary delays. Furthermore, requests for subsequentiter-
ations are increasingly less likely to be successful. Indeed, our
findings show that it is counterproductive to include requests
beyond the first iteration in the PRCs and request history.
Therefore, the PRC and request history operations (updating,
filtering) applyonly to requests in thefirst iteration.

In the case of multiple iterations, the input selec-
tors also base their choice on previously matched edges
(omatch[outp] in line 10 of Listing 1). Note that this
information is lost in moving from DL0 to DL1. Therefore,
no additional limitation is introduced when moving from DL1
to DL2, i.e., when separating the input selectors. As their
decisions are based on local information only, they can operate
independently.

VI. SIMULATION RESULTS

We built a software model of the proposed architecture with
the OMNeT++ simulation environment. Using Akaroa2, we
simulated this model to obtain its performance characteris-
tics. Specifically, we are interested in the mean throughput
(measured at the egress across all ports) and the mean packet
latency (measured from source to sink). In our experiments,
we study a switch with

� � ��
ports using the distributed

DRRM architecture according to DL2. We vary RTT and the
number of iterations per time slot.

Figures 3(a,b) show the performance results with uniform
Bernoulli traffic for RTT = 4 and 20 time slots, respectively.
� is varied from 1 to 16 iterations per time slot. Note that the
minimum latency at very light load equals RTT. For reference,
results using a monolithic DRRM implementation are also
included, adjusted to take into account the constant latency
component of the distributed implementation. These results
lead to the following observations:
� The achievable maximum throughput exceeds 98% in all

simulations, i.e., for all values of RTT and�.
� The mean latency decreases significantly as the num-

ber of iterations increases. When� � � � ��
, the

performance of the distributed implementation is almost
identical to that of the monolithic implementation with
four iterations. Using as many iterations as there are ports
overcomes the issue of wasted requests, as there is an
opportunity to request every output in every time slot.
However, it does not overcome the issue of uncertainty
due to pending requests.

� For large RTT, there is a load region in which the mean
latency decreases as the load increases (Fig. 3b). This
effect is caused by excess grants that, instead of being
wasted on an empty VOQ, find a new arrival in their
VOQ; these cells experience a latency smaller than RTT.

Figure 3(d) shows the performancewithoutPRCs with
� ���

and RTT� �. These graphs clearly show that the use of
PRCs drastically reduces latency throughout the load range.
Considering the case� � �

, the main difference is in the load
range from 10 to 70%; beyond 70% there is no noticeable
latency difference vs. Fig. 3(a). The reason is that, with heavy
loads, the rate of wasted grants will be low, as most VOQs will
be backlogged; therefore, the negative effect of excess requests
is not noticed. At low to medium loads, on the other hand,
many of the excess requests will result in wasted grants; every
wasted grant potentially is a wasted opportunity to transmit
another cell, which therefore incurs a longer latency. As a
result, the mean latency increases.

To study the performance under nonuniform traffic, we
adopt a destination distribution characterized by a nonunifor-
mity parameter�, where� � � corresponds to uniform traffic
and� � �

to fully unbalanced, contention-free traffic:��� �
� �� � ���	
 if � � �, ����	 otherwise. Here,��� represents
the traffic intensity from input� to output�, � � ��� ��

; �
is the aggregate offered load, and� the nonuniformity factor.
No input or output is oversubscribed and traffic is admissible
as long as� � �

. We vary the value of� from 0 to 1 and
measure the throughput achieved at an offered load of 100%.

Figure 3(e) shows the results for
� � ��

, RTT � �, and
Bernoulli arrivals for� ranging from 1 to 16. Also included
for reference is a curve for monolithic DRRM with� � �.
All curves dip to significantly less than 100% throughput
as � moves away from the extremes. However, increasing
� increases the throughput. The method proposed is able to
reduce the gap with the reference to less than four percentage
points when� �.

We also evaluate the performance using bursty traffic with

 256

 128

 64

 32

 16

 8

 4

 2
 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

La
te

nc
y

[ti
m

e
sl

ot
s]

Throughput

distributed, I = 1
distributed, I = 2
distributed, I = 3
distributed, I = 4
distributed, I = 8

distributed, I = 16
monolithic, I = 4

(a) Uniform Bernoulli, RTT� �

 256

 128

 64

 32

 16

 8
 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

La
te

nc
y

[ti
m

e
sl

ot
s]

Throughput

distributed, I = 1
distributed, I = 2
distributed, I = 3
distributed, I = 4
distributed, I = 8

distributed, I = 16
monolithic, I = 4

(b) Uniform Bernoulli, RTT� ��

 8192

 4096

 2048

 1024

 512

 256

 128

 64

 32

 16

 8

 4

 2
 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

La
te

nc
y

[ti
m

e
sl

ot
s]

Throughput

distributed, I = 1
distributed, I = 2
distributed, I = 3
distributed, I = 4
distributed, I = 8

distributed, I = 16
monolithic, I = 4

(c) Uniform bursty, RTT� �
 256

 128

 64

 32

 16

 8

 4

 2
 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

La
te

nc
y

[ti
m

e
sl

ot
s]

Throughput

distributed, I = 1
distributed, I = 2
distributed, I = 3
distributed, I = 4
distributed, I = 8

distributed, I = 16
monolithic, I = 4

(d) Uniform Bernoulli, RTT� �, no PRCs

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
T

hr
ou

gh
pu

t
Nonuniformity (w)

distributed, I = 1
distributed, I = 2
distributed, I = 3
distributed, I = 4
distributed, I = 8

distributed, I = 16
monolithic, I = 4

(e) Nonuniform Bernoulli, RTT	

Fig. 3. Delay vs. throughput curves (a–e),� 	 �.

geometrically distributed burst sizes with an average burst
size of 10 cells. Figure 3(c) shows the results. Here, we
first observe that the maximum throughput again exceeds
98% in all cases. Moreover, the latency differences to the
reference curves are even smaller than with Bernoulli traffic.
Hence, the proposed distributed implementation is able to
closely approximate a monolithic implementation in terms of
performance for correlated as well as uncorrelated arrivals.

VII. C ONCLUSIONS

The main contribution of this paper is a set of techniques
that enable the construction of crossbar schedulers in a highly
distributed fashion, while maintaining a high level of perfor-
mance with uncorrelated and correlated arrivals as well with
uniform and nonuniform destination distributions.

A particular constraint that results from distribution is that
requests for subsequent iterations are “blind,” which reduces
their effectiveness. This drawback can be compensated by
performing more iterations; specifically, the optimal number of
iterations changes from

�������
in a monolithic implementa-

tion to
�

in a distributed one. This creates a new challenge in
the timing constraints to complete enough iterations. Thisissue
can be addressed with pipelining techniques as introduced
in [14], [15]. We are currently working towards combining
these approaches into a single architecture that is both highly
distributed as well as deeply pipelined.

REFERENCES

[1] A. Bianco, P. Giaccone, E. Giraudo, F. Neri, and E. Schiattarella,
“Performance analysis of storage area network switches,” in Proc. IEEE
HPSR 2005, Hong-Kong, May 2005.

[2] C. Minkenberg, F. Abel, P. Müller, R. Krishnamurthy, and M. Gusat,
“Control path implementation of a low-latency optical HPC switch,” in
Proc. Hot Interconnects 13, Stanford, CA, Aug. 17–19 2005, pp. 29–35.

[3] J. Kim, W. J. Dally, B. Towles, and A. K. Gupta, “Microarchitecture of
a high-radix router,” inProc. ISCA 2005, Madison, WI, June 2005.

[4] N. McKeown, “The iSLIP scheduling algorithm for input-queued
switches,” IEEE/ACM Trans. Networking, vol. 7, no. 2, pp. 188–201,
Apr. 1999.

[5] D. Serpanos and P. Antoniadis, “FIRM: A class of distributed scheduling
algorithms for high-speed ATM switches with multiple inputqueues,”
in Proc. IEEE INFOCOM 2000, vol. 2, Tel Aviv, Israel, Mar. 2000, pp.
548–555.

[6] Y. Li, S. Panwar, and H. Chao, “On the performance of a dualround-
robin switch,” in Proc. IEEE INFOCOM 2001, vol. 3, Anchorage, AK,
Apr. 2001, pp. 1688–1697.

[7] M. Ajmone Marsan, A. Bianco, and E. Leonardi, “RPA: A simple,
efficient, and flexible policy for input buffered ATM switches,” IEEE
Commun. Lett., vol. 1, no. 3, pp. 83–86, May 1997.

[8] A. Smiljanić, R. Fan, and G. Ramamurthy, “RRGS-round-robin greedy
scheduling for electronic/optical terabit switches,” inProc. IEEE
GLOBECOM 1999, Rio de Janeiro, Brazil, Dec. 1999, pp. 584–555.

[9] P. Gupta and N. McKeown, “Designing and implementing a fast crossbar
scheduler,”IEEE Micro, vol. 19, no. 1, pp. 20–28, Jan./Feb. 1999.

[10] N. McKeown, “Scheduling algorithms for input-queued switches,” Ph.D.
dissertation, University of California at Berkeley, 1995.

[11] R. Hemenway, R. Grzybowski, C. Minkenberg, and R. Luijten, “Optical-
packet-switched interconnect for supercomputer applications,” OSA J.
Opt. Netw., vol. 3, no. 12, pp. 900–913, Dec. 2004.

[12] H. Chao and J. Park, “Centralized contention resolution schemes for
a large-capacity optical ATM switch,” inProc. IEEE ATM Workshop,
Fairfax, VA, May 1998, pp. 11–16.

[13] L. Peng, C. Tian, and S. Zheng, “iRGRR: A fast schedulingscheme with
less control messages for scalable crossbar switches,” inProc. IEEE
HSNMC 2004, Toulouse, France, June 30–July 2 2004, pp. 191–202.

[14] E. Oki, R. Rojas-Cessa, and H. Chao, “A pipeline-based approach for
maximal-sized matching scheduling in input-buffered switches,” IEEE
Commun. Lett., vol. 5, no. 6, pp. 263–265, June 2001.

[15] C. Minkenberg, I. Iliadis, and F. Abel, “Low-latency pipelined crossbar
arbitration,” in Proc. IEEE GLOBECOM 2004, Dallas, TX, Dec. 2004.

