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Abstract— This work considers the problem of relaying spa-
tially multiplexed signals between a source and a destination
using a non-regenerative relay equipped with multiple antennas.
In addition to the usual power amplification, the relay is assumed
to process the received data vector before forwarding it to
the destination. We present two linear filtering techniques that
perform this processing in an optimal manner when channel
state information (CSI) on the backward and forward channels
is available at the relay. Firstly, we derive the relay filter
that minimizes the pairwise error probability (PEP) assuming
maximum-likelihood (ML) detection at the destination. Secondly,
we simultaneously optimize the relay and destination filters in
the mean-square error (MSE) sense. The proposed relaying tech-
niques are shown to achieve error performance improvements,
especially when the number of antennas at the relay is increased.

I. INTRODUCTION

The use of multiple antennas in wireless relaying networks
offers significant gains in terms of spectral efficiency and
link reliability [1]. These advantages convert MIMO relay-
ing into a key technology for future high data-rate wireless
communication systems in cellular and ad-hoc networks. Both
non-regenerative and regenerative relays can exploit the bene-
fits stemming from the use of multiple antennas. However,
regenerative relaying incurs a considerable implementation
complexity that is not always desirable or affordable. On the
other hand, simpler non-regenerative techniques (i.e. where
information data is copied, processed and retransmitted, but
not regenerated) usually take a performance hit in comparison
with regenerative ones. As a consequence, it is desirable
to investigate how and to what extent relay processing can
enhance their performance.

Wireless relaying has been shown to achieve significant
gains [2]–[4]. In particular, the use of relay nodes introduces
an additional source of diversity that can be exploited by an
appropriate signal design. The work in [1] studies the capacity
scaling laws in large MIMO relay networks, and quantifies
the benefits of using channel state information (CSI) at the
relays from a network capacity standpoint. Results on optimal
relaying when multiple source-destination pairs communicate
simultaneously can be found in [5]. In the absence of relays,
the optimal transmitter/receiver filter design for multiplexed
signals has been considered in [6]–[8], where the latter refer-
ence provides a comprehensive study of the MIMO channel
case. A generic capacity analysis of the MIMO relay channel

is reported in [9], and [10] derives the linear relay processing
that achieves maximum instantaneous capacity.

In this work, we study the problem of relaying spatially-
multiplexed signals between a source node and a destination
node using a single relay equipped with multiple antennas. The
end-to-end signal transmission is assumed to span two time
slots of a TDMA-based system or, equivalently, two orthog-
onal frequency bands of an FDMA-based system. The relay
amplifies and linearly processes the signal received from the
source before forwarding it to the destination. Using perfect
CSI on the backward (i.e. source to relay) and forward (i.e.
relay to destination) channels, we present two non-regenerative
processing methods that improve the error performance and
that are optimal in the maximum-likelihood (ML) and mean-
square error (MSE) senses. We illustrate the performance
gains with respect to conventional non-regenerative relaying
by simulations means and demonstrate that our optimized
processing techniques are particularly useful when the relay
has more antennas than the other nodes.

A. Notation

The superscript H stands for conjugate transpose, E {.} de-
notes the expectation operator and Tr (A) stands for the trace
of matrix A. The set of all m× n matrices over the complex
field is denoted by Mm,n. The random vector x ∼ CN (0,R)
is a zero-mean circularly symmetric complex Gaussian random
vector with covariance matrix R. The Frobenius norm of
matrix A is denoted as ||A||F = Tr

(
AHA

)1/2
.

II. SYSTEM MODEL AND ASSUMPTIONS

We consider a relaying network composed of a source (S),
a relay (R) and a destination (D) that have Ms, Mr and Md

antennas respectively. The transmitter operates in the spatial-
multiplexing mode, i.e. Md ≥ Ms, and we assume Mr ≥ Ms

to avoid relay-induced signal-space collisions. We focus on
a transmission strategy where no direct communication path
exists between S and D (e.g. they might be too far apart) and
R is constrained to linear processing and power amplification.

The wireless channels are described by a flat-fading matrix
that does not change over the packet duration. We denote the
backward channel (S → R) by H ∈ MMr,Ms , and the forward
channel (R → D) by G ∈ MMd,Mr . Both R and D (but not S)
have access to the current channel realizations, and we assume
that CSI updates occur as dictated by the channel variation
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Fig. 1. MIMO relay channel, where H denotes the backward channel, G
denotes the forward channel, and Φ and Ψ denote the processing performed
at the relay and at the destination respectively.

rate. Let us define the singular value decompositions (SVD)
for both channel matrices as follows:

H = TΣUH , T ∈ MMr , U ∈ MMs (1)

G = VΛWH , V ∈ MMd , W ∈ MMr (2)

where the matrix Σ = [σk,j ] ∈ MMr,Ms has σk,j = 0, for
all k �= j, and σk,k ≡ σk, k = 1, . . . ,Ms are the singular
values of H arranged in decreasing order. Similarly, the matrix
Λ = [λk,j ] ∈ MMd,Mr has λk,j = 0, for all k �= j, and
λk,k ≡ λπ(k), k = 1, . . . ,min(Mr,Md), is a permutation of
the singular values of G arranged in decreasing order.

Node S transmits a data vector x ∈ MMs,1 whose elements
are taken from a constellation with normalized energy. The
signals received at R and D are given respectively by

yr =
√

ρ1

Ms
Hx + n1 and y =

√
ρ2

Mr
Gxr + n2, (3)

where the SNRs ρ1 and ρ2 include the path-loss, and the noise
vectors n1 and n2 have i.i.d. entries distributed according to
CN (0, 1). The signal transmitted by the relay is obtained
from the incoming signal as xr =

√
sΦyr, where s is the

power amplification factor and Φ denotes a linear operation
constrained in power by Tr

(
ΦΦH

) ≤ Mr. The factor s com-
pensates for the signal attenuation caused by the propagation
from S to R. More precisely, the amplification ensures that
s Tr

(
yryH

r

)
= Mr, which yields s = 1

ρ1+1 on average. The
end-to-end signal model can be written as

y =
√

γ GΦHx + n, (4)

where we have introduced γ = ρ1ρ2
MsMr(ρ1+1) to simplify the

notation. The equivalent noise term is distributed according to
n ∼ CN (0,Rn), where

Rn = αGΦΦHGH + IMd , (5)

and we have introduced α = ρ2
Mr(ρ1+1) . The destination applies

the receiver Ψ to the incoming signal y to produce an estimate
of the transmitted signal x̂. Figure 1 depicts a block diagram
of the overall input-output relation.

III. MAXIMUM LIKELIHOOD OPTIMIZATION

Consider the end-to-end signal model in (4). Conditioned on
the transmit vector x and on the product GΦH, the received
signal is distributed according to CN (√

γGΦHx,Rn

)
,

where Rn is defined in (5). Consequently, the ML receiver
computes

x̂ = arg min
x

∥∥∥Rn
− 1

2 (y −√
γGΦHx)

∥∥∥2

F
. (6)

This nonlinear processing is implemented by the operation
Ψ at the destination (see Fig. 1). The ML pairwise error
probability (PEP), that is, the probability that the ML receiver
erroneously decides in favor of vector s when x was actually
transmitted, is given by

Pr (x → s|GΦH)=Q
(√

γ

2

∥∥∥Rn
− 1

2 GΦHe
∥∥∥2

F

)
, (7)

where Q(.) is the Gaussian error function and e = x − s
denotes the codeword difference vector. The relay filter that
minimizes the PEP is given by

Φ� = arg max
Φ:‖Φ‖2

F≤Mr

ξ(Φ), (8)

where ξ(Φ) := γeHHHΦHGHRn
−1GΦHe. It is interest-

ing to note that for α 	 1, i.e. the noise on the second hop
is negligible, the cost function becomes

ξ(Φ) ≈ γ

α
eHHHΦHGH

(
GΦΦHGH

)−1
GΦHe, (9)

where the matrix ΦHGH
(
GΦΦHGH

)−1
GΦ � I is the

orthogonal projection onto the range space of ΦHGH . Con-
sequently, for any Φ, the cost function is upper bounded as

ξ(Φ) ≤ ξ� :=
γ

α
eHHHHe, (10)

where equality is achieved for Φ� = G−1HH . For general
values of α, we employ the matrix inversion lemma (MIL)
[11] to write

ΦHGHRn
−1GΦ=

1
α

(
I − (αΦHGHGΦ + I

)−1
)

. (11)

Inserting this expression into the cost function yields

ξ(Φ)= ξ� − γ

α
eHHH

(
αΦHGHGΦ + I

)−1
He, (12)

where the second term of the RHS quantifies a penalty
associated with the second hop. As α → ∞, the penalty
vanishes and the solution is that discussed above. We shall
next determine the matrix Φ that minimizes this penalty.

In order to find a solution that does not depend on a
specific codeword difference vector e, we use the Rayleigh-
Ritz Theorem [11] to bound the penalty term as

eHHH
(
αΦHGHGΦ + I

)−1
He

≤ λmax

(
HH

(
αΦHGHGΦ + I

)−1
H
)
||e||2,

where λmax(A) denotes the maximum eigenvalue of A. We
shall minimize this upper bound. Assuming without loss of
generality that the relay processing matrix has the structure
Φ̃ = WΦTH , the optimization problem can be recast as

Φ� = arg min
Φ:‖Φ‖2

F≤Mr

λmax

(
Σ
(
αΦHΛ2Φ + I

)−1
Σ
)

. (13)

The maximal eigenvalue is minimized when λmax = λmin,
and consequently, the optimal relay processing has to satisfy
Z Σ

(
αΦHΛ2Φ + I

)−1
ΣZH = µI, where Z is an arbitrary

unitary matrix and µ is a scaling introduced to meet the



power constraint. In other words, the optimal matrix is unitary
equivalent to the identity matrix. Solving for Φ in the above
expression yields

Φ2 =
1

µα
Λ−2

(
Σ2 − µI

)
+

, (14)

where (a)+ = max(a, 0) is used to ensure the positive
semi-definiteness of the solution. Note that the optimal Φ is
diagonal. The constant µ is determined by the power constraint
as

µ =

∑
k

σ2
k

λ2
π(k)

αM +
∑

k
1

λ2
π(k)

, (15)

where the sum is taken over the active modes. To see the
behavior of the solution as α grows, let us assume that all the
modes are employed. Noting that limα→∞ µ

α = 0, the cost
approaches its optimal value ξ� according to:

ξ(Φ) = ξ� − γµ

α
||e||2. (16)

We observe that the relay rotates the backward and forward
channels in order to align their eigenmodes. All the power is
directly poured on the eigenmodes of the equivalent channel
as a function of the singular values of H and G. Note from
(14) that while the weaker singular values of G lead to larger
power allocations, the weaker singular values of H determine
the modes to be dropped. Finally, it should be stressed that
the optimal solution depends on the eigenvalue permuation π.

IV. MEAN SQUARE ERROR OPTIMIZATION

The objective of this section is to determine the optimal
linear filters that R and D can apply to their received signals.
Both filters should be jointly designed to optimize the overall
MSE. Recalling the system model described in Figure 1, and
the signal model in (4), the output of the destination filter Ψ
is given by

x̂ =
√

γ ΨGΦHx + Ψn, (17)

where n is additive white Gaussian noise distributed according
to CN (0,Rn). Using the MSE criterion between x and its
estimate x̂, the optimization problem can be stated as

min
Φ,Ψ:‖Φ‖2

F≤Mr

Tr (Ce) , (18)

where, assuming E {xxH
}

= I and E {xnH
}

= 0, the error
covariance matrix is given by

Ce = (
√

γΨGΦH − I) (
√

γΨGΦH − I)H

+ αΨGΦΦHGHΨH + ΨΨH . (19)

Denoting by µ ≥ 0 the Lagrange multiplier, we form the
Lagrangian:

L(µ,Φ,Ψ) = Tr (Ce) + µ
(
Tr
(
ΦΦH

)− Mr

)
. (20)

A necessary and sufficient condition for optimality of a pair
(Φ,Ψ) is given by the conditions:

∂

∂Φ
L(µ,Φ,Ψ) = 0,

∂

∂Ψ
L(µ,Φ,Ψ) = 0, (21)

µ
(
Tr
(
ΦΦH

)− Mr

)
= 0, Tr

(
ΦΦH

)− Mr ≤ 0. (22)

Considering a matrix and its Hermitian transposed as indepen-
dent variables and using the matrix derivatives ∂Tr(AXB)

∂X =

BA and
∂Tr(AXHB)

∂X = 0 [12], it can be shown that (21)
yields the following relations between Φ and Ψ:(
γHHH + αI

)
ΦHGHΨHΨGΦ + µΦHΦ =

√
γHΨGΦ,

ΨGΦ
(
γHHH + αI

)
ΦHGHΨH + ΨΨH =

√
γΨGΦH.

We shall assume hereafter that Ms = Mr = Md to simplify
our exposition, but the extension to asymmetric antenna con-
figurations is straightforward. Using the SVD of the channel
matrices defined in (1) and (2), let Φ and Ψ have the following
structure

Φ = WDΦTH , DΦ ∈ MMr (23)

Ψ = UDΨVH , DΨ ∈ MMs,Md , (24)

where DΦ = diag {dΦ,1, dΦ,2, . . . , dΦ,Mr} and DΨ =
diag {dΨ,1, dΨ,2, . . . , dΨ,Ms}. The equations in (21) yield

DΦ
2 =

(
γΣ2Λ2 + αΛ2

)−1
(√

γ

µ
ΣΛ − I

)
+

(25)

DΨ
2 = µDΦ

2, (26)

where (a)+ = max(a, 0). Using Tr
(
ΦΦH

)
= Mr and

assuming that M ≤ rank (GH) subchannels are used, the
Lagrange multiplier µ is the solution to

√
µ =

∑M
k=1

(
γδ2

k + αλ2
π(k)

)−1 √
γδk

Mr +
∑M

k=1

(
γδ2

k + αλ2
π(k)

)−1 , (27)

for an arbitrary permutation π and δk = σ(k)λ(π(k)), δ1 ≥
δ2 ≥ . . . ≥ δN . The optimal µ ≥ 0 should ensure that the
matrices DΦ and DΨ have non-negative entries.

As in the previous method, the relay rotates the backward
and forward channels in order to align their eigenmodes. The
available power is directly poured on the eigenmodes of the
equivalent channel as a function of the singular values of
H and G. When sufficient power is available, the allocation
policy yields equally strong subchannels, resulting in perfect
interstream interference cancellation. Note that the optimal
power allocation depends on the eigenvalue permutation π.

V. PERFORMANCE SIMULATIONS

In our simulations, the source and the destination have a
fixed number of antennas Ms = Md = 2 and the relay has
Mr = 2, 3 or 4 antennas. Assuming Rayleigh flat-fading, the
entries of the forward and backward channel matrices are
generated according to a CN (0, 1) distribution and the perfor-
mance is averaged over multiple independent realizations. We
consider spatial-multiplexing of BPSK uncoded symbols (i.e. 2
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Fig. 2. Error performance comparison between ML techniques and MSE
techniques at ρ1 = 10 dB SNR on the backward link. Optimized relaying is
depicted by solid lines, amplify-only relaying by dashed lines. The number
of antennas at the relay are Mr = 2, 3 and 4.
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Fig. 3. Error performance comparison between ML techniques and MSE
techniques at ρ1 = 20 dB SNR on the backward link. Optimized relaying is
depicted by solid lines, amplify-only relaying by dashed lines. The number
of antennas at the relay are Mr = 2, 3 and 4.

bits/transmission), and our optimized techniques are compared
to a simple power amplification (the signal power is scaled at
the relay, but Φ = I) where the destination implements an
ML or MMSE receiver matched to the equivalent channel.

In Figure 2, the Symbol Error Rate (SER) is plotted versus
ρ2 with the SNR on the backward channel set to ρ1 = 10
dB. We note that optimized techniques always outperform
simple power amplification and the performance gap grows
as the number of antennas at the relay increases. Using
optimized relaying, diversity gains are achieved by increasing
the number of relaying antennas. In contrast, the gains due to
additional antennas at the relay are marginal for amplify-only
relaying. We finally note that the ML criterion leads to better

performance than the MSE criterion. In Figure 3, the SER
is plotted versus ρ2 with the SNR on the backward channel
set to ρ1 = 20 dB. Increasing the SNR on the backward
channel results in lower error floors as can be observed by
comparing with Figure 2. Furthermore, the performance gap
between MSE and ML relaying is significantly reduced.

VI. CONCLUSION

We have considered the problem of relaying spatially-
multiplexed signals in a MIMO wireless system. We have
proposed two optimal relaying techniques based on the ML
and MSE criteria. In both cases, the relay rotates the backward
and forward channels in order to align their eigenmodes. The
available power is directly poured on the eigenmodes of the
equivalent channel according to different allocation policies.
We have demonstrated that the proposed relaying techniques
achieve error performance improvements, especially when the
number of antennas at the relay is increased. In the latter case,
our simulation results show that a relay that only amplifies the
signal power fails to exploit this additional source of diversity.
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