
RZ 3653 (# 99663) 03/20/06
Computer Science 7 pages

Research Report

Automatic User Interface Composition by a Semantic Web Client

Daniela Bourges-Waldegg, Marcel Graf, Christian Hoertnagl

IBM Research GmbH
Zurich Research Laboratory
8803 Rüschlikon
Switzerland
{dbw, grm, hoe}@zurich.ibm.com

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available
at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich

 page 1

Automatic User Interface Composition by a Semantic Web Client

Daniela Bourges-Waldegg, Marcel Graf, Christian Hoertnagl

IBM Zurich Research Laboratory, Saeumerstrasse 4
CH-8803 Rueschlikon, Switzerland
{dbw, grm, hoe}@zurich.ibm.com

The presented demo is a simple web-based application for managing a wish list of
products, in this case books. It uses an RDF-based model comprising books, authors and
keywords and benefits from a generic programming model with facets that automatically
attach context-sensitive commands based on what data and metadata arrives to the
application; a first prototype is currently realized using a JSP (JavaServer Pages) tag
library. Applying the framework to another example domain is straightforward, because
model and views are well isolated from the generic parts. Knowledge workers testing this
proof-of-concept application will make generous use of mouse right-clicks for activating
dynamically composed popup menus. Summary points:

• RDF serves as unifying technology for both persisting the model and driving the user

interface. The Jena semantic web platform mediates all manipulations of the model
both while in memory and while stored across servers on the network, in that the
demo application is currently programmed against the Jena API.

• By default, commands attach to information regardless of its presentation context.
• Because information is semantically tagged, it is straightforward to e.g. sort names

correctly by surnames or to link to other services such as Amazon.com1.
• The JSP tag library spreads work between the client (JavaScript) and server (servlets).

On the server side, this prototype implementation relies on the Apache Tomcat servlet
container and Jena 2.3 libraries; the only extra piece necessary on the thin clients is a
small JavaScript library that is automatically shipped with the content. The following
seven screenshots comprise a representative sample demo walk through.

1. Main demo application portal

The main application portal looks at first like a conventional web application. However,
the server-side data is captured in an RDF graph, and the content displayed at the client
preserves this semantic information. The exploitation of such information to tailor the
user interface is what is specific to the presented thin client. When a user performs
graphical interactions (e.g. right-clicking on items, following hyperlinks, sorting items,
etc.) this information is used to offer functionality that is best suited to the specific kind
of data.

In the example screenshot (Screenshot 1), this leads to the presentation of a popup
menu for performing application-specific functions in relation to books and their

1 Amazon.com is a registered trademark of Amazon.com, Inc.

 page 2

associated keywords – in the particular case shown, the popup menu, displayed after
right-clicking on an author, offers in addition author-related functionality. This and other
popup menus are created dynamically, and there is no piece of code or other description
that explicitly binds the specific listed items together, except for the implicit fact that they
all become relevant (and are hence automatically offered) in a particular usage situation.

The framework’s exploitation of semantic information in the underlying model is also
visible in relation to its sorting rules: author names are sorted by surnames-then-given-
names, whereas looking up author information in Wikipedia2 (command entry visible in
popup menu) requires a given-name-then-surname use of the same information. The
underlying semantic model makes it straightforward to distinguish between given names,
surnames and other types of strings, and to convert between different human-friendly
notations of abstract information.

Screenshot 1: main application portal, showing a dynamically generated pop-up menu

that offers commands relevant in the particular semantic context

2. Facets encapsulate self-contained user interface behavior

The next screenshot shows another web page that belongs to the same application: it can
be accessed by choosing the “Add keyword” entry from a popup menu, such as the one
shown before. Since the popup menus and other parts of the user interface are constructed
dynamically by the framework, it is already clear that this entry can appear in multiple
places, and this gives the user convenience in manipulating information elements (in this
case keywords), in principle regardless of their contexts of appearance.

For instance, consider that the popup entry “Lookup on Wikipedia” appears on both
Screenshots 1 and 2, although there is a semantic difference: Screenshot 1 was captured

2 Wikipedia is a registered trademark of the non-for-profit Wikimedia Foundation,

 page 3

after right-clicking on an author name: This Wikipedia lookup will therefore reveal
information about the author. If we had right-clicked on a keyword (to the right) instead,
a different choice of appropriate entries would have been offered, and Wikipedia lookup
would have revealed information about the keyword term. This is also the case with the
options offered in the popup menu displayed in Screenshot 2 .

Screenshot 2: add-keyword page, showing popup menu associated to a keyword;

commands have different semantics depending on their context of invocation

3. Different user interface manipulations can trigger facets

Adding and deleting keywords, as well as all other commands that have side-effects, can
be undone by selecting the generic command “Undo”.

Not only popup menu entries trigger command executions by facets: submitting an
electronic form, following hyperlinks (e.g for collapsing the tree view in Screenshot 2),
and other graphical manipulations by a user lead to similar effects, and they employ the
same basic abstractions in the underlying framework. For instance, changing the interface
style such that book details (Screenshot 3) can be accessed by issuing commands from
popup menus instead of by following hyperlinks (e.g. book titles in Screenshot 1)
requires only changing a Java method signature and a JSP library tag in one place each.
Supporting both styles similarly requires adding a Java method (signature) and a JSP
library tag.

 page 4

Screenshot 3: book details are displayed after following a hyperlink; this behavior can be

also attached to a popup menu command

4. The demo application interacts with other services.

The next Screenshot shows a Wikipedia article as use case for integration of other
services into the demo. In this particular case, a simple HTTP redirect occurred as a result
of the selection of a popup menu entry e.g. in Screenshot 2. However, interactions
between the demo application and other existing applications could be much richer; in the
particular sample domain e.g. Amazon Web Services (AWS) could be used to find the
average rating of a selected book by those Amazon.com reviewers whose correlation with
local ratings (see “High priority” in Screenshot 1) are above a certain numeric threshold.

It is a fundamental property of the underlying RDF technology, that models can be
distributed across servers (e.g. the user providing some ratings, and more arriving from
AWS). Important scaling effects can be achieved from expressing metadata (e.g.
indication of what is a positive rating as opposed to a positive value in another semantic
domain) in equivalent terms, so the necessary data mixing and matching can be
automated in software. The OWL (Web Ontology Language) layer that builds on top of
RDF helps to coalesce or align ontologies if necessary (e.g. this demo application uses
binary ratings, whereas other sites use 1-to-5 stars, but the semantic mapping between the
two is straightforward).

The multiple opportunities to combine lateral sources of information that are afforded
by Semantic Web base technologies, leads to a greater amount of overall (partly inferred)
information and hence a greater variety of possible manipulations in a user interface. The
presented demo application and its underlying framework are representative of a more
general approach that composes aspects of user interfaces from dynamic properties of
underlying models, but because of the aforementioned scaling this approach makes
particular sense for models that encode unified semantic information, as is the case here.

 page 5

Screenshot 4: linking to an external service

5. The framework can enrich existing pages with legacy content

The next Screenshot demonstrates the feasibility of accessing facets also from legacy
web-pages. The only change that is required concerns introduction of JSP library tags at
those places where verbatim strings alone cannot convey the semantic category of data to
which certain facets should attach.

Screenshot 5: adding semantic behavior to a legacy web page

 page 6

In this first prototype, the implementation relies more on the server-side (servlets and
JSP tag library) and less on the client-side (small JavaScript library for rendering popup
menus, etc.). In the future, we will evolve this and other prototypes in such a way that
more functionality will be shifted to (thin) clients, and that the same dynamic user
interface can be achieved without support from particular servers (RDF/A under
consideration).

6. W3C Resource Description Framework (RDF) defines model

The demo application is also integrated with the W3C Validation Service (accessible e.g.
via “Show model” in Screenshot 5 or Screenshot 7), as shown in Screenshot 6. Invocation
of this service, which is deployed remotely from our demo on the W3C web server,
confirms that the underlying model, as examined and manipulated by the Jena API, fully
conforms to Semantic Web specifications.

Next to triple notation and RDF/XML serialization of our sample model, it also
renders a convenient graphical depiction as directed labeled graph. The resulting image is
too big to fit on an article page, much less inside a window the size of the other
screenshots, and it is best inspected by testing the actual demo live. However, even the
small corner that is visible in Screenshot 6 indicates that the demo makes use of the
Dublin Core Metadata Initiative (DCMI) element reference set to describe certain
resources (titles, creators, etc.).

Screenshot 6: integration with W3C RDF validation service

7. The framework manages an open set of facets

Screenshot 7 gives a glimpse of what specific facets contribute to the current demo
application. The three columns with binary markers encode trigger conditions that the

 page 7

listed facets are aware of, and that e.g. concern structural properties of the model graph.
Additional trigger conditions are possible.

Further details of the implementation are beyond the scope of this demo write-up and
will be documented in another conference submission.

Screenshot 7: enumerating facets and their triggers

(end of demo walk through; demo can be shown live or captured in video;
references, etc., not included in this demo write-up)

